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Abstract We study the generalization ability of distributed learning equipped with a
divide-and-conquer approach and gradient descent algorithm in a reproducing kernel
Hilbert space (RKHS). Using special spectral features of the gradient descent algo-
rithms and a novel integral operator approach, we provide optimal learning rates of
distributed gradient descent algorithmsin probability and partly conquer the satu-
ration phenomenon in the literature in the sense that the maximum number of local
machines to guarantee the optimal learning rates does not vary if the regularity of
the regression function goes beyond a certain quantity. We also find that additional
un-labeled data can help relaxing the restriction on the number of local machines in
distributed learning.
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Integral operator
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1 Introduction

Distributed learning based on a divide-and-conquer approach has triggered enormous
recent research activities in various areas such as optimization [27], data mining [26],
and machine learning [13]. This learning strategy breaks upa big problem into man-
ageable pieces, operates learning algorithms on each pieceon individual machines or
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processors, and then puts the individual solutions together to get a final global out-
put. In this way, distributed learning is feasible to conquer big data challenges [30],
promote the privacy protection [2], and reduce communication risks [21]. A number
of high-adaptive and fault-tolerant distributed data management systems have been
practically developed based on distributed learning. Typical examples include the
Hadoop[9] andSpark[1] systems.

Theoretical foundations of distributed learning form a hottopic in machine learn-
ing and have been attempted recently in the framework of learning theory [19,28,17,
14,5]. For example, a variance estimate for distributed conditional maximum entropy
models was provided in [19]. Optimal learning rates in expectation for distributed
regularized least squares were established in [28] under some eigenfunction assump-
tions, which were improved in [17] by removing the eigenfunction assumptions with
a novel integral operator method. In [14], as well as in an independent work [5], op-
timal learning rates in expectation for distributed spectral algorithms were presented.

This paper aims at refined analysis of distributed learning with kernel-based gra-
dient descent algorithms. Given a Mercer kernelK : X ×X → R on a compact met-
ric spaceX (input space), and a data setD = {(xi ,yi)}N

i=1 ⊂ X ×Y with Y ⊆ R

being the output space, the kernel-based gradient descent algorithm can be stated
iteratively with f0,D = 0 as

ft+1,D = ft,D − β
|D| ∑

(x,y)∈D

( ft,D(x)−y)Kx, (1)

whereβ > 0 is a step size,Kx = K(·,x) and |D| denotes the cardinality of the set
D. Thedistributed kernel-based gradient descent algorithmconsidered in this paper
starts with a partition of the data setD into mdisjoint subsets{D j}m

j=1. Then it assigns
each data subsetD j to a local machine to produce a local estimatorft,D j by using (1).
Finally, these local estimators are communicated to a central processor to derive a
global estimatorf t,D by taking a weighted average

f t,D =
m

∑
j=1

|D j |
|D| ft,D j . (2)

The gradient descent algorithm (1) can be regarded as a special spectral algo-
rithm [18], so optimal learning rates for the distributed algorithm (2) may be obtained
from general results for distributed spectral algorithms in [14,5]. However, the gen-
erality of the results in [14,5] for general spectral algorithms imposes a saturation
phenomenon with respect to the number of local machines in the sense that the max-
imal m to guarantee optimal learning rates no longer improves whenthe regression
function goes beyond a certain level of regularity (see Section 3 for a detailed de-
scription). The first purpose of this paper is to conquer thissaturation phenomenon
by means of special features of the gradient descent algorithm. Using two representa-
tions of the difference betweenft,D j and its data-free limitft (to be given in Section
4), we shall provide a new error decomposition for distributed kernel-based gradi-
ent descent algorithms. With this, the recently developed integral operator approach
for distributed learning [14,17] will be used to obtain optimal learning rates without
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saturation. Different from the previous results in [28,17,14,5] established in expec-
tation, our learning rates are in probability. As a consequence, we deduce almost
sure convergence of distributed kernel-based gradient descent algorithms by using
the Borel-Canttelli Lemma. The second purpose of this paperis to propose the use
of additional un-labeled data to enhance the performance ofthe distributed algorithm
(2). We prove that by inputting some additional un-labeled data, the maximal number
m of local machines to guarantee the optimal learning rate off t,D can be enlarged
(See Section 3 for detailed comparisons).

2 Main Results

Our analysis is carried out in a standard least squares regression framework. Let the
sampleD = {(xi ,yi)}N

i=1 be independently drawn according toρ , a Borel probability
measure onZ := X ×Y . Our primary objective is the regression function defined
by

fρ(x) =
∫

Y

ydρ(y|x), x∈ X ,

whereρ(y|x) denotes the conditional distribution atx induced byρ . Throughout this
paper, we assume

∫
Y

y2dρ < ∞ and

∫

Y

(
e
|y− fρ (x)|

M − |y− fρ(x)|
M

−1

)
dρ(y|x) ≤ γ2

2M2 , ∀x∈ X , (3)

whereM and γ are positive constants. Condition (3) was adopted in [6] to derive
confidence-based error estimates for regularized least squares and in [3] for spec-
tral algorithms. It can be found in [23, page 103] or [3] that (3) is equivalent to the
following momentum condition (up to a change of constants)

∫

Y

|y− fρ(x)|ℓdρ(y|x) ≤ 1
2
ℓ!γ2Mℓ−2, ∀ℓ ≥ 2,x∈ X .

Hence (3) is a broad model for the noise of the outputy and it is satisfied if the noise
is uniformly bounded, Gaussian or sub-Gaussian [20].

Let L2
ρX

be the Hilbert space ofρX square integrable functions onX , with
norm denoted by‖ · ‖ρ , andHK be the reproducing kernel Hilbert space associ-
ated with the Mercer kernelK. SinceX is compact andK is a Mercer kernel,
κ =

√
supx∈X K(x,x) < ∞. Furthermore,K : X ×X →R defines an integral oper-

atorLK onHK (or L2
ρX

) by

LK( f ) =

∫

X

Kx f (x)dρX , f ∈ HK (or f ∈ L2
ρX

).

Our error analysis for thedistributed gradient descent algorithmis stated in terms of
the followingregularity condition

fρ = Lr
K(hρ), for somer > 0 andhρ ∈ L2

ρX
, (4)
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whereLr
K denotes ther-th power ofLK : L2

ρX
→ L2

ρX
as a compact and positive oper-

ator. We use theeffective dimensionN (λ ) to measure the complexity ofHK with
respect toρX which is defined to be the trace of the operator(LK + λ I)−1LK , that is,

N (λ ) = Tr((λ I +LK)−1LK), λ > 0.

2.1 Optimal learning rates

The following error estimate for thedistributed gradient descent algorithm(2) is the
first result of this paper and will be proved in Section 5.

Theorem 1 Let 0 < δ < 1, 0 < β ≤ κ−2. Assume (3) and (4) with r> 1/2, then for
t ∈ N andλ = t−1, with confidence at least1− δ , there holds

‖ f t,D − fρ‖ρ ≤C

{
t−r + log(t +1)ÃD,λ log4 12m

δ
+AD,λ log

8
δ

}
, (5)

where C is a constant depending only on M,γ,β ,κ ,‖hρ‖ρ and r, and

AD,λ =
1

|D|
√

λ
+

√
N (λ )√
|D|

, ÃD,λ = max
1≤ j≤m

[(
AD j ,λ√

λ

)2

+1

]
A

2
D j ,λ√
λ

. (6)

For optimal learning rates ofdistributed gradient descent algorithms, we also
need to quantify the effective dimensionN (λ ) with a parameter 0< s≤ 1 and a
constantC0 ≥ 1 as

N (λ ) ≤C0λ−s, ∀λ > 0. (7)

Whens= 1, condition (7) always holds with the constantC0 ≥ Tr(LK). For 0< s< 1,
the above condition is slightly more general than an eigenvalue decaying assumption
in the literature [6]. Indeed, let{(σℓ,φℓ)}ℓ be a set of normalized eigenpairs of the
operatorLK onHK with {φℓ}∞

ℓ=1 forming an orthonormal basis ofHK . If σn ≤C0n−α

for someα > 1 andC0 ≥ 1, then the eigenvalues of the operator(λ I +LK)−1LK are
{ σℓ

λ+σℓ
}ℓ and we have

N (λ ) =
∞

∑
ℓ=1

σℓ

λ + σℓ
≤

∞

∑
ℓ=1

C0ℓ
−α

λ +C0ℓ−α =
∞

∑
ℓ=1

C0

C0 + λ ℓα

≤
∫ ∞

0

C0

C0 + λ tα dt = O(λ−1/α).

Therefore, (7) follows from the eigenvalue decaying assumption σn = O(n−1/s) with
0 < s< 1.

The following corollary, to be proved in Section 5, exhibitsthe concrete learning
rates of the distributed kernel-based gradient descent algorithm (2). Denote⌈a⌉ as the
smallest integer not less thana > 0.
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Corollary 1 Let 0 < δ < 1 and 0 < β ≤ κ−2. Assume (3), (7) with0 < s≤ 1, (4)

with r > 1/2, and|D1| = |D2| = · · · = |Dm|. If t =
⌈
|D| 1

2r+s

⌉
and

m≤ |D|
r−1/2
2r+s

log5 |D|+1
, (8)

then with confidence at least1− δ , there holds

‖ f t,D − fρ‖ρ ≤C′|D|− r
2r+s log4 12

δ
,

where C′ is a constant depending only on M,γ,β ,κ ,‖hρ‖ρ , C0 and r.

Applying the probability to expectation formula for nonnegative random variables

E[ξ ] =

∫ ∞

0
Prob[ξ > t]dt (9)

to ‖ f t,D− fρ‖2
ρ , we can easily deduce the following optimal learning rate inexpecta-

tion.

Corollary 2 Let 0 < β ≤ κ−2. Assume (3), (7) with0 < s≤ 1, (4) with r > 1/2, and

|D1| = |D2| = · · · = |Dm|. If t =
⌈
|D| 1

2r+s

⌉
and (8) holds, then

E
[
‖ f t,D − fρ‖2

ρ

]
= O

(
|D|− 2r

2r+s

)
.

Based on the confidence-based error estimate in Corollary 1,we can derive almost
sure convergence of thedistributed gradient descent algorithm(2).

Corollary 3 Let 0 < β ≤ κ−2. Assume (3), (7) with0 < s≤ 1, (4) with r > 1/2, and

|D1| = |D2| = · · · = |Dm|. If t =
⌈
|D| 1

2r+s

⌉
and (8) holds, then for arbitraryε > 0,

there holds
lim

|D|→∞
|D| r

2r+s(1−ε)‖ f t,D − fρ‖ρ = 0.

2.2 Allowing more local machines by using additional un-labeled data

Although optimal learning rates of the algorithm (2) were stated in the previous sub-
section, the restriction (8) on the number of local machinesseems a bit strict. In this
subsection, we show that this restriction can be relaxed by using additional un-labeled
data. Utilizing un-labeled data was studied in [7] for a different purpose of improving
learning rates for spectral algorithms whenfρ /∈ HK . It was also adopted in [4] for
this purpose for kernel-based conjugate gradient algorithms. The idea of applying un-
labeled data to relaxing the restrictions on the number local processors is motivated
by our earlier empirical experiments done for distributed regularized least squares.
These experiments and theoretical analysis carried out afterwards can be found in
[8].
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Let D̃ j(x) = {x j
1, . . . ,x

j
|D̃ j |

} be drawn independently according toρX. We then

introduce the training set associated with labeled and un-labeled data in each local
machine as

D∗
j = D j ∪ D̃ j = {x∗i ,y

∗
i }

|D∗
j |

i=1

with

x∗i =

{
xi , if xi ∈ D j(x),
x̃i , if x̃i ∈ D̃ j(x),

and y∗i =

{ |D∗
j |

|D j |yi , if (xi ,yi) ∈ D j ,

0, otherwise,

whereD j(x) = {x : (x,y) ∈ D for somey∈Y }. Let D∗ =∪m
j=1D∗

j . We can obtain the
following enhanced results.

Theorem 2 Let 0 < δ < 1, 0 < β ≤ κ−2. Assume (3) and (4) with r> 1/2, then for
t ∈ N andλ = t−1 with confidence at least1− δ , there holds

‖ f t,D∗ − fρ‖ρ ≤C

{
t−r + log(t +1)ÃD,D∗,λ log4 12m

δ
+AD,λ log

8
δ

}
, (10)

where

ÃD,D∗,λ := max
1≤ j≤m



(

AD∗
j ,λ√
λ

)2

+1




AD∗
j ,λ AD j ,λ√

λ
. (11)

Based on Theorem 2, we can relax the restriction onm as follows.

Corollary 4 Let 0 < δ < 1 and 0 < β ≤ κ−2. Assume (3), (7) with0 < s≤ 1, (4)

with r > 1/2, |D1|= |D2|= . . . = |Dm| and|D∗
1|= |D∗

2|= . . . = |D∗
m|. If t =

⌈
|D| 1

2r+s

⌉

and

m≤
min

{
|D∗|1/2|D|− s+1

4r+2s , |D∗|1/3|D| 2r+s−2
6r+3s

}

log5 |D|+1
, (12)

then with confidence at least1− δ , there holds

‖ f t,D∗ − fρ‖ρ ≤C′|D|− r
2r+s log4 12

δ
. (13)

3 Related Work and Discussions

The kernel-based kernel gradient descent algorithm algorithms (1) can be viewed as
a special case of spectral algorithms, which is well known inthe context of inverse
problems [12].

To describe this in detail, we define an empirical integral operatorLK,D(x) by

LK,D(x)( f ) =
1
|D| ∑

x∈D(x)

f (x)Kx, f ∈ HK .
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The gradient descent algorithm (1) can be rewritten asf0,D = 0 and

ft+1,D = ft,D −β (LK,D(x) ft,D − f̂K,D) = (I −βLK,D(x)) ft,D + β f̂K,D, (14)

where f̂K,D = 1
|D| ∑(xi ,yi )∈D yiKxi . It follows directly that

ft,D =
t−1

∑
k=0

β π ′
k+1(LK,D(x)) f̂K,D, (15)

whereπ ′
k+1 denotes the polynomial (π ′

t ≡ 1),

π ′
k+1(u) = Π t−1

ℓ=k+1(1−βu) = (1−βu)t−k−1

and π ′
k+1(LK,D(x)) is defined by spectral calculus [18,14]. Therefore, the gradient

descent algorithm (1) is a member of the family of spectral algorithms [18] corre-
sponding to the filter function

gλ (u) =
t−1

∑
k=0

β π ′
k+1(u) =

1− (1−βu)t

u
, u > 0 (16)

with λ = 1/t.
As a typical example of spectral algorithms, the gradient descent algorithm (1)

has the advantage of overcoming the saturation phenomenon of the regularized least
squares [18]. Furthermore, the computational complexity of algorithm (1) isO(|D|2),
which is much smaller than that of the regularized least squares [25]. Learning rates
of gradient descent algorithms have been studied in [25,3,7,20,10,14]. To be more
specific, an integral operator approach developed in [22] was used in [25] to derive
learning rates for algorithm (1) in the special case ofs= 1 in (7), which were im-
proved to be almost optimal in [3] by noting that algorithm (1) is a special spectral
algorithm. For the general case of 0< s< 1 in (7), almost optimal learning rates of
spectral algorithms including the gradient descent algorithms (1) were established in
[7], but additional un-labeled data were required. In [20],optimal learning rates of
gradient descent algorithms were established forr = 1/2 in (4) without un-labeled
data. Optimal learning rates of spectral algorithms including (1) were derived in our
recent paper [14] forr ≥ 1/2 by using a novel integral operator approach.

Remark 1After the submission in January 2016 of our previous paper [14] on dis-
tributed spectral algorithms, we found two independent nice papers in arxiv: [10] in
May 2016 and [5] in October 2016. For the classical spectral algorithms, optimal
learning rates were established in [10] under assumptions (4), (3) and some eigen-
value decaying conditions. For the distributed spectral algorithms, optimal learning
rates were obtained in [5] under the effective dimension assumption (7).

As a special class of distributed spectral algorithms, optimal learning rates of the
distributed gradient descent algorithm (2) have been provided in [14,5]. That is, under
the conditions of Corollary 1, if

m≤ |D|min{ 2
2r+s, 2r−1

2r+s}, (17)
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then
E[‖ f D,λ − fρ‖2

ρ ] = O

(
|D|− 2r

2r+s

)
.

We see from (17) that the restriction on the number of local machines suffers from a
saturation phenomenon in the sense that whenr > 3/2, the maximalm to guarantee
the optimal learning rate does not improve asr increases and is the same as that ofr =
3/2. This is quite different from the case when 1/2≤ r ≤ 3/2. In the present paper, we
use special features of the distributed kernel-based gradient descent algorithms and
provide optimal learning rates in confidence under the assumption (8). Comparing (8)
with (17), we find that the saturation is partly overcome in the sense that the maximal
m to guarantee the optimal learning rate is strictly increasing with respect tor and

|D|
r−1/2
2r+s

log4 |D|+1
≥ C̃r |D| 2

2r+s , if r >
5
2
,

whereC̃r is a constant depending only onr. It should be mentioned that whenr ≤ 5/2,
our result is a little worse than that in [14], because

|D|
r−1/2
2r+s

log4 |D|+1
≤ C̃r |D| 2

2r+s .

We think the reason is that we devote to the confidence-based error estimate for
distributed kernel-based gradient descent algorithms requiring a deterministic error
decomposition, which is totally different from the previous methods [28,17,14,5]
focusing on deriving error decompositions for distributedlearning in expectation.
Based on the confidence-based error estimate, we can derive the almost sure conver-
gence of algorithm (2). We believe that using some delicate techniques in integral
operators, our restriction onm can be relaxed to

m≤ |D| 2r−1
2r+s (18)

for arbitraryr > 1/2.
Adopting un-labeled data to improve learning rates of spectral algorithms was

proposed in [7]. Corollary 4 in our paper shows that unlabeled data can also be used to
enlarge the range of the number of local machines. In fact, if|D∗| = |D| andr > 1/2,
we have

|D∗|1/2|D|− s+1
4r+2s = |D| 2r−1

4r+2s ,

and
|D∗|1/3|D| 2r+s−2

6r+3s > |D| 2r−1
4r+2s .

Then, (12) coincides with (8). However, if|D∗| > |D|, we obtain

|D| 2r−1
4r+2s < min

{
|D∗|1/2|D|− s+1

4r+2s , |D∗|1/3|D| 2r+s−2
6r+3s

}
,

which shows an essential advantage of using un-labeled datain distributed learning.
In particular, when|D∗| = |D|2, it is derived from Corollary 4 that if

m≤ |D|
2r−2/3
2r+s

log5 |D|+1
, (19)
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then (13) holds with confidence at least 1−δ . It should be noticed that the restriction
(19) is even weaker than the restriction (18).

By combining our approach with results in [7], we conjecturethat optimal learn-
ing rates of distributed kernel-based gradient descent algorithms can be derived when
the regression function is outsideHK by adding un-labeled data in the learning pro-
cess, as done for distributed regularized least squares in [8]. This paper is focused on
distributed learning with the gradient descent algorithm.It would be nice to extend
our analysis to other algorithms [24,15,16] by using un-labeled data.

4 Error Decomposition Based on Integral Operators

Our error decomposition is motivated by some special features of the gradient descent
algorithm and a recent developed integral operator approach [14,17]. Our main nov-
elty is to use two special representations offt,D − ft (with { ft} to be defined by (20)
below) to derive an error decomposition in a deterministic sense, different from the
decomposition in [28,17,14,5] involving the expectation of the generalization error.

4.1 Special representations for gradient descent algorithms

To demonstrate our ideas, we need data-free limits of the sequence{ ft,D} defined as
a sequence{ ft}t by f0 = 0 and

ft+1 = ft −βLK( ft − fρ). (20)

The first noveltyof our error decomposition is to decompose the iteration relation
ft+1 = (I − βLK) ft + βLK fρ from (20) in terms of the empirical integral operator
LK,D(x) as

ft+1 =
(
I −βLK,D(x)

)
ft + β

(
LK,D(x) −LK

)
ft + βLK fρ .

It follows by induction that

ft =
t−1

∑
k=0

β π ′
k+1(LK,D(x))

[(
LK,D(x) −LK

)
fk +LK fρ

]
. (21)

This together with (15) yields the first representation forft,D − ft as

ft,D − ft =
t−1

∑
k=0

β π ′
k+1(LK,D(x))χk,D, (22)

where
χk,D = f̂K,D −LK fρ +(LK −LK,D(x)) fk.

Furthermore, from [25, Proposition 4.3], we can get the second representation for
ft,D − ft as

ft,D − ft =
t−1

∑
k=0

β π ′
k+1(LK)χ∗

k,D (23)
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with
χ∗

k,D = f̂K,D −LK fρ +(LK −LK,D(x)) fk,D.

The above two representations offt,D − ft will play essential roles in our analysis.

4.2 Special features of the gradient descent algorithm

To present the error decomposition, we unify (23) and (22) tobe

F1 =
t−1

∑
k=0

β π ′
k+1(LK)Gk, and F2 =

t−1

∑
k=0

β π ′
k+1(LK,D(x))Gk

with Gk ∈ HK and bound the norm as

max
{
‖F1‖ρ ,

√
λ‖F1‖K

}
= max

{∥∥∥L1/2
K F1

∥∥∥
K

,
√

λ‖F1‖K

}
≤
∥∥∥(LK + λ I)

1
2 F1

∥∥∥
K

=

∥∥∥∥∥
t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)(LK + λ I)−

1
2 Gk

∥∥∥∥∥
K

, (24)

and

max
{
‖F2‖ρ ,

√
λ‖F2‖K

}
= max

{∥∥∥L1/2
K F2

∥∥∥
K

,
√

λ‖F2‖K

}
≤
∥∥∥(LK + λ I)

1
2 F2

∥∥∥
K

≤
∥∥∥(LK + λ I)

1
2 (LK,D(x) + λ I)−1/2

∥∥∥
∥∥∥(LK,D(x) + λ I)

1
2 F2

∥∥∥
K

= QD,λ

∥∥∥∥∥
t−1

∑
k=0

β (LK,D(x) + λ I)π ′
k+1(LK,D(x))(LK,D(x) + λ I)−

1
2 Gk

∥∥∥∥∥
K

, (25)

whereλ > 0 can be arbitrarily chosen andQD,λ is an operator norm defined by

QD,λ =
∥∥∥(LK + λ I)

1
2 (LK,D(x) + λ I)−

1
2

∥∥∥ . (26)

Thesecond noveltyof our error decomposition is to bound the norm (26) tightly
using our work in [17,14] and to use special features of the gradient descent algorithm
for estimating the norms concerning the operatorβ (LK,D(x) + λ I)π ′

k+1(LK,D(x)) and
β (LK + λ I)π ′

k+1(LK) as follows.

Lemma 1 For λ > 0, 0 < β ≤ κ−2, t ∈ N and k= 0,1, . . . ,t −1, we have

max
{∥∥β (LK + λ I)π ′

k+1(LK)
∥∥ ,
∥∥β (LK,D(x) + λ I)π ′

k+1(LK,D(x))
∥∥}≤ 1

t −k
+ β λ

(27)
and

max

{∥∥∥∥∥
t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)

∥∥∥∥∥ ,

∥∥∥∥∥
t−1

∑
k=0

β (LK,D(x) + λ I)π ′
k+1(LK,D(x))

∥∥∥∥∥

}
≤ 1+β λ t.

(28)
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Proof. We only prove (27) and (28) for the operator norms concerningLK,D(x). The
inequalities concerning the operatorLK can be derived by using the same method.
Let {σx

i }i be the set of all eigenvalues of the operatorLK,D(x) on HK . Then 0≤
σx

i ≤ ‖LK,D(x)‖ ≤ κ2 and the symmetric operatorβ (LK,D(x) + λ I)π ′
k+1(LK,D(x)) has

eigenvalues

β (σx
i + λ )π ′

k+1(σ
x
i ) = (β σx

i + β λ )(1−β σx
i )t−k−1 .

Since 0< β ≤ κ−2, these eigenvalues are nonnegative and bounded by

β σx
i (1−β σx

i )t−k−1 + β λ ≤ 1
t −k

+ β λ .

Here we have used the fact that the univariate functionu(1−u)t−k−1 defined on the
interval[0,1] takes its maximum values atu = 1

t−k and satisfies

0≤ u(1−u)t−k−1 ≤ 1
t −k

, ∀0≤ u≤ 1.

Then the first desired norm estimate (27) follows.
The above proof also shows that‖π ′

k+1(LK,D(x))‖ ≤ 1 for k ∈ {0, . . . ,t − 1}. To
verify the second estimate, we note that the symmetric operator βLK,D(x) has eigen-
values 0≤ β σx

i ≤ 1. It follows that the operatorI −βLK,D(x) is positive and (16) with
u = LK,D(x) yields ∥∥∥∥∥

t−1

∑
k=0

βLK,D(x)π ′
k+1(LK,D(x))

∥∥∥∥∥≤ 1.

Then the second desired norm estimate (28) follows. �

4.3 A novel error decomposition for gradient descent algorithm

To derive the error decomposition fordistributed gradient descent algorithms, we
shall use the representation (22) and Lemma 1 and derive a novel error decomposition
for the gradient descent algorithm in the following proposition.

Proposition 1 Let λ > 0 and0 < β ≤ κ−2. If (4) holds with r> 1/2, then

max
{
‖ ft,D − ft‖ρ ,

√
λ‖ ft,D − ft‖K

}

≤ (1+ λ tβ )Q2
D,λ
(
PD,λ +RD,λ‖ fρ‖K

)
+

t−1

∑
ℓ=0

(
1

t − ℓ
+ λ β

)
‖ fℓ− fρ‖KQ

2
D,λ RD,λ ,

where
PD,λ :=

∥∥∥(LK + λ I)−1/2(LK fρ − f̂K,D)
∥∥∥

K
,

and
RD,λ :=

∥∥∥(LK + λ I)−1/2(LK −LK,D(x))
∥∥∥ .
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Proof.For arbitraryt ≥ 0, it follows from (22) and (25) that

max
{
‖ ft,D − ft‖ρ ,

√
λ‖ ft,D − ft‖K

}

≤ QD,λ

∥∥∥∥∥
t−1

∑
k=0

β (LK,D(x) + λ I)π ′
k+1(LK,D(x))(LK,D(x) + λ I)−1/2χk,D

∥∥∥∥∥
K

≤ QD,λ

∥∥∥∥∥
t−1

∑
ℓ=0

β (LK,D(x) + λ I)π ′
ℓ+1(LK,D(x))(LK,D(x) + λ I)−1/2( f̂K,D −LK fρ)

∥∥∥∥∥
K

+ QD,λ

∥∥∥∥∥
t−1

∑
ℓ=0

β (LK,D(x) + λ I)π ′
ℓ+1(LK,D(x))(LK,D(x) + λ I)−1/2(LK −LK,D(x))( fℓ − fρ)

∥∥∥∥∥
K

+ QD,λ

∥∥∥∥∥
t−1

∑
ℓ=0

β (LK,D(x) + λ I)π ′
ℓ+1(LK,D(x))(LK,D(x) + λ I)−1/2(LK −LK,D(x)) fρ

∥∥∥∥∥
K

=: QD,λ (A1,t,λ ,D +A2,t,λ ,D +A3,t,λ ,D). (29)

ConcerningA1,t,λ ,D, (28) and the definitions ofPD,λ andQD,λ yield

A1,t,λ ,D ≤
∥∥∥∥∥

t−1

∑
ℓ=0

β (LK,D(x) + λ I)π ′
ℓ+1(LK,D(x))

∥∥∥∥∥‖(LK,D(x) + λ I)−1/2( f̂K,D −LK fρ )‖K

≤ (1+ β λ t)‖(LK,D(x) + λ I)−1/2(LK + λ I)1/2‖‖(LK + λ I)−1/2( f̂K,D −LK fρ)‖K

= (1+ β λ t)QD,λ PD,λ ,

where we have used‖AB‖ = ‖BA‖ for positive operatorsA,B in the last equality.
Since (4) holds forr > 1/2, we havefρ ∈HK . Then (28) together with the definition
of RD,λ and

‖A f‖K ≤ ‖A‖‖ f‖K (30)

for positive operatorA and f ∈ HK yields

A3,t,λ ,D ≤ (1+ β λ t)QD,λ RD,λ‖ fρ‖K .

Furthermore, (27) and (30) imply

A2,t,λ ,D ≤
t−1

∑
ℓ=0

∥∥β (LK,D(x) + λ I)π ′
ℓ+1(LK,D(x))

∥∥QD,λ RD,λ‖ fℓ− fρ‖K

≤
t−1

∑
ℓ=0

(
1

t − ℓ
+ λ β

)
‖ fℓ − fρ‖KQD,λ RD,λ .

Inserting bounds ofA1,t,λ ,D, A2,t,λ ,D andA3,t,λ ,D into (29), we have

max
{
‖ ft,D − ft‖ρ ,

√
λ‖ ft,D − ft‖K

}
≤ (1+ λ tβ )Q2

D,λ
(
PD,λ +RD,λ‖ fρ‖K

)

+
t−1

∑
ℓ=0

(
1

t − ℓ
+ λ β

)
‖ fℓ − fρ‖KQ

2
D,λ RD,λ .

This completes the proof of Proposition 1. �
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4.4 Error decomposition for distributed gradient descent algorithm

By the aid of Proposition 1, we can use the representation formula (23) to derive the
error decomposition ofdistributed gradient descent algorithmsin Proposition 2. The
main novelty is that our error decomposition is exhibited deterministically rather than
in expectation, which makes our analysis totally differentfrom [28,17,14,5].

Proposition 2 Let λ > 0 and0 < β ≤ κ−2. If (4) holds with r> 1/2, then

‖ f t,D − fρ‖ρ ≤ ‖ ft − fρ‖ρ +LD,t,λ +GD,t,λ , (31)

where

GD,t,λ := RD,λ

t−1

∑
k=0

(
β λ +

1
t −k

)
‖ fk− fρ‖K +(1+ λ β t)(PD,λ +RD,λ‖ fρ‖K),

(32)
and

LD,t,λ := max
1≤ j≤m

Q2
D j ,λ RD j ,λ√

λ

t−1

∑
k=1

(
β λ +

1
t −k

)
(33)

[
(1+ λ tβ )

(
PD j ,λ +RD j ,λ‖ fρ‖K

)
+

k−1

∑
ℓ=0

(
1

k− ℓ
+ λ β

)
‖ fℓ− fρ‖KRD j ,λ

]
.

Proof.Applying (23) toD j for each fixedj ∈ {1, . . . ,m}, we have

f t,D − ft =
t−1

∑
k=0

β π ′
k+1(LK)

m

∑
j=1

|D j |
|D| χ∗

k,D j
.

Since∑m
j=1

|D j |
|D| = 1 and

m

∑
j=1

|D j |
|D| f̂K,D j =

m

∑
j=1

|D j |
|D|

1
|D j | ∑

(x,y)∈D j

yKx =
1
|D| ∑

(x,y)∈D

yKx = f̂K,D,

we have

m

∑
j=1

|D j |
|D| χ∗

k,D j
=

m

∑
j=1

|D j |
|D| (LK −LK,D j (x)) fk,D j + f̂K,D −LK fρ .

Then

‖ f t,D − ft‖ρ ≤
∥∥∥∥∥

t−1

∑
k=0

β π ′
k+1(LK)

m

∑
j=1

|D j |
|D| (LK −LK,D j (x)) fk,D j

∥∥∥∥∥
ρ

+

∥∥∥∥∥
t−1

∑
k=0

β π ′
k+1(LK)(LK fρ − f̂K,D)

∥∥∥∥∥
ρ

=: I1 + I2.
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BoundingI2 is easy. In fact, we know from (24) that

I2 ≤
∥∥∥∥∥

t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)(LK + λ I)−

1
2 (LK fρ − f̂K,D)

∥∥∥∥∥
K

.

This together with (28) and the definition ofPD,λ yields

I2 ≤
∥∥∥∥∥

t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)

∥∥∥∥∥PD,λ ≤ (1+ λ β t)PD,λ . (34)

BoundingI1 is more technical. Using (24) again and the triangle inequality, we have

I1 ≤
∥∥∥∥∥

t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)

m

∑
j=1

|D j |
|D| (LK + λ I)−1/2(LK −LK,D j (x))( fk,D j − fk)

∥∥∥∥∥
K

+

∥∥∥∥∥
t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)

m

∑
j=1

|D j |
|D| (LK + λ I)−1/2(LK −LK,D j (x))( fk− fρ)

∥∥∥∥∥
K

+

∥∥∥∥∥
t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)

m

∑
j=1

|D j |
|D| (LK + λ I)−1/2(LK −LK,D j (x)) fρ

∥∥∥∥∥
K

=: I1,1 + I1,2+ I1,3.

For f ∈ HK , we have

m

∑
j=1

|D j |
|D| LK,D j (x) f =

m

∑
j=1

|D j |
|D|

1
|D j | ∑

x∈D j (x)

Kx f (x) =
1
|D| ∑

x∈D(x)

Kx f (x) = LK,D(x) f .

(35)
Then, it is easy to see

I1,2 ≤
t−1

∑
k=0

∥∥∥β (LK + λ I)π ′
k+1(LK)(LK + λ I)−1/2(LK −LK,D(x))( fk− fρ)

∥∥∥
K

≤
t−1

∑
k=0

∥∥β (LK + λ I)π ′
k+1(LK)

∥∥
∥∥∥(LK + λ I)−1/2(LK −LK,D(x))( fk− fρ)

∥∥∥
K

.

Combining this with (27),fρ ∈ HK and the definition ofRD,λ yields

I1,2 ≤ RD,λ

t−1

∑
k=0

(
β λ +

1
t −k

)
‖ fk− fρ‖K . (36)

ConcerningI1,3, we use (28) and (35) to get

I1,3 ≤
∥∥∥∥∥

t−1

∑
k=0

β (LK + λ I)π ′
k+1(LK)

∥∥∥∥∥RD,λ‖ fρ‖K ≤ RD,λ (1+ β λ t)‖ fρ‖K . (37)
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To boundI1,1, we use (27),∑m
j=1

|D j |
|D| = 1 f0 = f0,D j = 0 and Jensen’s inequality to

obtain

I1,1 ≤
t−1

∑
k=1

∥∥β (LK + λ I)π ′
k+1(LK)

∥∥
∥∥∥∥∥

m

∑
j=1

|D j |
|D| (LK + λ I)−1/2(LK −LK,D j (x))( fk,D j − fk)

∥∥∥∥∥
K

≤
t−1

∑
k=1

(
β λ +

1
t −k

) m

∑
j=1

|D j |
|D|

∥∥∥(LK + λ I)−1/2(LK −LK,D j (x))( fk,D j − fk)
∥∥∥

K

=
m

∑
j=1

|D j |
|D|

t−1

∑
k=1

(
β λ +

1
t −k

)∥∥∥(LK + λ I)−1/2(LK −LK,D j (x))( fk,D j − fk)
∥∥∥

K

≤ max
1≤ j≤m

t−1

∑
k=1

(
β λ +

1
t −k

)
‖ fk,D j − fk‖KRD j ,λ .

But Proposition 1 withD andt being replaced byD j andk yields that

‖ fk,D j − fk‖K

≤
Q

2
D j ,λ√
λ

[
(1+ λkβ )

(
PD j ,λ +RD j ,λ‖ fρ‖K

)
+

k−1

∑
ℓ=0

(
1

k− ℓ
+ λ β

)
‖ fℓ− fρ‖KRD j ,λ

]
.

It follows that

I1,1 ≤ max
1≤ j≤m

Q2
D j ,λ RD j ,λ√

λ

t−1

∑
k=1

(
β λ +

1
t −k

)
(38)

×
[
(1+ λkβ )

(
PD j ,λ +RD j ,λ‖ fρ‖K

)
+

k−1

∑
ℓ=0

(
1

k− ℓ
+ λ β

)
‖ fℓ − fρ‖KRD j ,λ

]
.

This together with (34), (36), (37) and (38) gives

‖ f t,D − ft‖ρ ≤ max
1≤ j≤m

Q2
D j ,λ RD j ,λ√

λ

t−1

∑
k=1

(
β λ +

1
t −k

)

×
[
(1+ λkβ )

(
PD j ,λ +RD j ,λ‖ fρ‖K

)
+

k−1

∑
ℓ=0

(
1

k− ℓ
+ λ β

)
‖ fℓ− fρ‖KRD j ,λ

]

+ RD,λ

t−1

∑
k=0

(
β λ +

1
t −k

)
‖ fk− fρ‖K +(1+ λ β t)(PD,λ +RD,λ‖ fρ‖K).

Then (31) follows from the triangle inequality

‖ f t,D − fρ‖ρ ≤ ‖ ft − fρ‖ρ +‖ f t,D − ft‖ρ .

This completes the proof of Proposition 2. �
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5 Proofs

To prove our main results, we need to bound the quantitiesQD,λ , RD,λ andPD,λ by
the following probability estimates.

Lemma 2 Let D be a sample drawn independently according toρ and0 < δ < 1. If
(3) holds, then each of the following estimates holds with confidence at least1− δ ,

Q
2
D,λ ≤ 2

(
2(κ2 + κ)AD,λ log 2

δ√
λ

)2

+2, (39)

RD,λ ≤ 2(κ2 + κ)AD,λ log
(
2/δ

)
, (40)

PD,λ ≤ 2(κM + γ)AD,λ log
(
2/δ

)
. (41)

These inequalities are well studied in the literature. The first two can be found in
[17,14] while the last one can be found in [6].

We are in a position to prove the main results of this paper.

Proof of Theorem 1.We follow our error decomposition (31) described in Proposition
2. We need the following bounds forft − fρ for t ≥ 1 under the regularity assumption
(4) with r > 1/2, stated as Theorem 2.10 in [25],

‖ ft − fρ‖ρ ≤ ‖hρ‖ρ(2rκ2/e)r t−r , (42)

‖ ft − fρ‖K ≤ ‖hρ‖ρ [(2r −1)κ2/e]r−1/2t−r+ 1
2 . (43)

Then, we use (43) and Lemma 2 to boundLD,t,λ andGD,t,λ , respectively.
Step 1. EstimatingGD,t,λ . Since (4) holds withr > 1/2, we have

‖ fρ‖K = ‖Lr
Khρ‖K ≤ ‖Lr−1/2

K ‖‖L1/2
K hρ‖K ≤ κ2r−1‖hρ‖ρ . (44)

The above inequality together with (43), (32),λ = 1/t and f0 = 0 yields

GD,t,λ = RD,λ (β λ + t−1)‖ fρ‖K

+
t−1

∑
k=1

(β λ +(t −k)−1)‖ fk− fρ‖KRD,λ +(1+ λ β t)(PD,λ +RD,λ‖ fρ‖K)

≤ ‖hρ‖ρ [(2r −1)κ2/e]r−1/2
RD,λ

t−1

∑
k=1

[β λ +(t −k)−1]k−r+1/2

+ (1+ β )(1+2κ2r−1‖hρ‖ρ)(PD,λ +RD,λ ). (45)

Notice that

t−1

∑
k=1

k−r+ 1
2

t −k
≤ ∑

1≤k≤t/2

2
t
k−r+ 1

2 + ∑
t/2<k≤t−1

2r− 1
2 t−r+ 1

2
1

t −k

≤ C′
r

{
t−r+ 1

2 log(t +1), when 1
2 < r ≤ 3

2,

t−1, whenr > 3
2,

(46)
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whereC′
r is a constant given by

C′
r =





3
3
2−r

+2r− 1
2 , when 1

2 < r < 3
2,

8, whenr = 3
2,(

2(2r−1)
2r−3 +2r− 1

2

)
minℓ∈N

{
1+ ℓ−r+ 3

2 log(ℓ+1)
}

, whenr > 3
2,

and

t−1

∑
k=1

k−r+ 1
2 ≤ C′

r





t−r+ 3
2 , when 1

2 < r < 3
2,

log(t +1), whenr = 3
2,

1, whenr > 3
2.

(47)

We obtain
t−1

∑
k=1

(
β λ +

1
t −k

)
k−r+1/2 ≤ 2C′

r(1+ β )Bt,λ ,r ,

where
Bt,λ ,r :=

[
t−1 + λ + t−r+1/2+ λ t−r+3/2

]
log(t +1).

Sinceλ = 1/t, we have

Bt,λ ,r = 2
[
t−1 + t−r+1/2

]
log(t +1).

Due tor > 1/2, there exists some constantCr ≥ 1 depending only onr such that

max
{

t−1 log(t +1), t−r+1/2 log(t +1)
}
≤Cr , ∀t ≥ 1. (48)

So
Bt,λ ,r ≤ 4Cr .

Then, we have
t−1

∑
k=1

(
β λ +

1
t −k

)
k−r+1/2 ≤ 8CrC

′
r(1+ β ). (49)

Plugging (49) into (45), we obtain

GD,t,λ ≤C1
(
RD,λ +PD,λ

)
, (50)

where

C1 = (1+ β )max
{

1+2κ2r−1‖hρ‖ρ ,8CrC
′
r‖hρ‖ρ [(2r −1)κ2/e]r−1/2

}
.

It follows from Lemma 2 that there exist two subsetsZ
|D|

1,δ andZ
|D|

2,δ of Z |D| with

measures at least 1− δ such that for arbitraryD ⊂ Z
|D|

1,δ ∩Z
|D|

2,δ there holds

RD,λ ≤ 2(κ2 + κ)AD,λ log
(
2/δ

)
, and PD,λ ≤ 2(κM + γ)AD,λ log

(
2/δ

)
.
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The above estimates together with (50) yield that for arbitraryD⊂Z
|D|

1,δ ∩Z
|D|

1,δ , there
holds

GD,t,λ ≤C2AD,λ log
(
2/δ

)
,

where
C2 = 2C1(κ2 + κ + κM + γ).

Then, with confidence at least 1− δ/2, there holds

GD,t,λ ≤C2AD,λ log
(
8/δ

)
. (51)

Step 2. EstimatingLD,t,λ . Due to (43) and (44), we have from (33) that

LD,t,λ ≤ max
1≤ j≤m

Q2
D j ,λ RD j ,λ√

λ

t−1

∑
k=1

(
β λ +

1
t −k

){
(1+ λ tβ )(PD j ,λ + κ2r−1‖hρ‖ρRD j ,λ )

+ (k−1 + λ β )κ2r−1‖hρ‖ρRD j ,λ +‖hρ‖ρ [(2r −1)κ2/e]r−1/2
k−1

∑
ℓ=1

(
1

k− ℓ
+ λ β

)
ℓ−r+1/2

RD j ,λ
}
,

where we denote∑0
ℓ=1aℓ = 0. Then, it follows fromλ = 1/t and (49) that

LD,t,λ ≤ max
1≤ j≤m

Q2
D j ,λ RD j ,λ√

λ

t−1

∑
k=1

(
β λ +

1
t −k

){
(1+ β )(1+ κ2r−1‖hρ‖ρ)(PD j ,λ +RD j ,λ )

+
[
(k−1 + λ β )+8CrC

′
r(1+ β )[(2r −1)/e]r−1/2]κ2r−1‖hρ‖ρRD j ,λ

}

≤ 2(1+ β )2(1+ κ2r−1‖hρ‖ρ) max
1≤ j≤m

Q2
D j ,λ RD j ,λ (PD j ,λ +RD j ,λ )

√
λ

log(t +1)

+ 2(1+ β )2[1+8CrC
′
r [(2r −1)/e]r−1/2]κ2r−1‖hρ‖ρ max

1≤ j≤m

Q2
D j ,λ R2

D j ,λ√
λ

log(t +1)

≤ C3 log(t +1) max
1≤ j≤m

Q2
D j ,λ RD j ,λ (PD j ,λ +RD j ,λ )

√
λ

, (52)

where

C3 := 2(1+ β )2max{1+ κ2r−1‖hρ‖ρ ,
[
1+8CrC

′
r [(2r −1)/e]r−1/2]κ2r−1‖hρ‖ρ}.

Furthermore, Lemma 2 implies that for each fixedj, there exist three subsetsZ
|D j |

1,δ ,

Z
|D j |

2,δ andZ
|D j |

3,δ of Z
|D j | with measures at least 1− δ such that forD j ⊂ Z

|D j |
1,δ ∩

Z
|D j |

2,δ ∩Z
|D j |

3,δ there holds

RD j ,λ ≤ 2(κ2+ κ)AD j ,λ log
(
2/δ

)
, PD j ,λ ≤ 2(κM + γ)AD j ,λ log

(
2/δ

)
,

and

Q
2
D j ,λ ≤ 2

(
2(κ2 + κ)AD j ,λ log 2

δ√
λ

)2

+2.
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So, forD j ⊂ Z
|D j |

1,δ ∩Z
|D j |

2,δ ∩Z
|D j |

3,δ , there holds

Q
2
D j ,λ RD j ,λ√

λ
(PD j ,λ +RD j ,λ ) ≤C4

[(
AD j ,λ√

λ

)2

+1

]
A

2
D j ,λ√
λ

log4 2
δ

,

where
C4 := 16(κ +1)4[κ2+ κ + κM + γ].

Thus, with confidence at least 1−3δ , there holds

Q2
D j ,λ RD j ,λ√

λ
(PD j ,λ +RD j ,λ ) ≤C4

[(
AD j ,λ√

λ

)2

+1

]
A 2

D j ,λ√
λ

log4 2
δ

.

This implies that with confidence at least 1−3mδ , there holds

max
1≤ j≤m

Q
2
D j ,λ RD j ,λ√

λ
(PD j ,λ +RD j ,λ ) ≤C4 max

1≤ j≤m

[(
AD j ,λ√

λ

)2

+1

]
A

2
D j ,λ√
λ

log4 2
δ

.

Scaling 3mδ to δ
2 , we have with confidence at least 1− δ/2, there holds

max
1≤ j≤m

Q2
D j ,λ RD j ,λ√

λ
(PD j ,λ +RD j ,λ ) ≤C4 max

1≤ j≤m

[(
AD j ,λ√

λ

)2

+1

]
A 2

D j ,λ√
λ

log4 12m
δ

.

All these estimates yield that with confidence at least 1− δ/2, there holds

LD,t,λ ≤C4C3 log(t +1)ÃD,λ log4 12m
δ

, (53)

whereÃD,λ is defined by (6).
Step 3. Deducing learning rate.Plugging (51), (53) and (42) into (31), with con-

fidence 1− δ we have

‖ f t,D − fρ‖ρ ≤C

{
t−r + log(t +1)ÃD,λ log4 12m

δ
+AD,λ log

8
δ

}
,

where
C := max

{
‖hρ‖ρ(2rκ2/e)r ,C4C3,C2

}
.

This completes the proof of Theorem 1. �

Proof of Corollary 1.Let t =

⌈
|D|

1
(2r+s)

⌉
. Sinceλ = t−1 and r + s > r > 1/2, we

obtain from (6), (7) and|D1| = · · · = |Dm| that

AD,λ ≤ |D|−1+ 1
4r+2s +

√
C0|D|− 1

2+ s
4r+2s ≤ (

√
C0 +1)|D|− r

2r+s (54)

and

AD j ,λ ≤ m|D|−
2r+s−1/2

2r+s +
√

C0m|D|− r
2r+s ∀ j = 1, . . . ,m. (55)
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But (8) implies

m|D|− 4r+2s−1
4r+2s ≤

√
m|D|− r

2r+s .

So
AD j ,λ ≤ (

√
C0 +1)

√
m|D|− r

2r+s , ∀ j = 1, . . . ,m, (56)

and
AD j ,λ√

λ
≤ (
√

C0 +1)
√

m|D|−
r−1/2
2r+s , ∀ j = 1, . . . ,m.

Hencer > 1/2 together with (8) gives

(
AD j ,λ√

λ

)2

+1≤ (
√

C0 +1)2+1, ∀ j = 1, . . . ,m.

Then,

ÃD,λ ≤ [(
√

C0 +1)2+1](
√

C0 +1)2√m|D|−
r−1/2
2r+s

√
m|D|− r

2r+s . (57)

Plugging (8) and (57) into (5) and noting

log4 12m
δ

≤ 16(log4 12
δ

+ log4m) ≤ 16log4 12
δ

(log3m+1) (58)

and
(log4 |D|+1)(log|D|+1)≤ 2(log5 |D|+1),

we have with confidence 1− δ ,

‖ f t,D − fρ‖ρ ≤ C5

{
|D|− r

2r+s + |D|− r
2r+sm|D|−

r−1/2
2r+s (log5 |D|+1)+ |D|− r

2r+s

}
log4 12

δ

≤ 3C5|D|− r
2r+s log4 12

δ
,

where
C5 := 32C[(

√
C0 +1)2+1](

√
C0 +1)2.

This completes the proof of Corollary 1. �

Proof of Corollary 2.Applying the formula (9) for nonnegative random variables to
ξ = ‖ fD,λ − fρ‖2

ρ and use the bound

Prob[ξ > u] = Prob
[
ξ

1
2 > u

1
2

]
≤ 12exp

{
−(C′)−1/4N

r
8r+4su

1
8

}

for u≥ (C′ log412)2|D|−2r/(2r+s) derived from Corollary 1. We find

E
[
‖ fD,λ − fρ‖2

ρ

]
≤ (C′ log412)2|D|−2r/(2r+s)+12

∫ ∞

0
exp
{
−(C′)−1/4N

r
8r+4su

1
8

}
du

which equals(96+ log812)(C′)2|D|− 2r
2r+s

∫ ∞
0 u8−1exp{−u}du. Due to

∫ ∞
0 ud−1exp{−u}du=

Γ (d) for arbitraryd > 0, we have

E[‖ fD,λ − fρ‖2
ρ ] ≤ (96+ log812)(C′)27!|D|− 2r

2r+s .
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This completes the proof of Corollary 2. �

To prove Corollary 3, we need the following Borel-Cantelli Lemma [11, page
262]. The Borel-Cantelli Lemma asserts for a sequence{ηn}n of events that if the
sum of the probabilities is finite∑∞

n=1Prob[ηn] < ∞, then the probability that infinitely
many of them occur is 0.

Lemma 3 Let{ηn} be a sequence of events in some probability space and{εn} be a
sequence of positive numbers satisfyinglimn→∞ εn = 0. If

∞

∑
n=1

Prob[|ηn−η | > εn] < ∞,

thenηn converges toη almost surely.

Proof of Corollary 3.LetN := |D| andδ = δN = N−2 in Corollary 1. SetΨN = N− r
2r+s .

By Corollary 1, ift =
⌈
|D| 1

2r+s

⌉
and (8) holds, then for anyN andε > 0,

Prob

[
Ψ−1+ε

N ‖ f t,D − fρ‖ρ > C′Ψ ε
N

(
log

12
δN

)4
]
≤ δN.

DenoteµN = C′Ψ ε
N

(
log 12

δN

)4
. Obviously,

∞

∑
N=2

Prob
[
Ψ−1+ε

N ‖ f t,D − fρ‖ρ > µN
]
≤

∞

∑
N=2

δN < ∞

andµN → 0 whenN → 0. Then our conclusion follows from Lemma 3. This com-
pletes the proof of Corollary 3. �

Proof of Theorem 2.It follows from (31), (50) and (52) that

‖ f t,D∗ − fρ‖ρ ≤ ‖ ft − fρ‖ρ +C1(RD∗,λ +PD∗,λ )

+C3 log(t +1) max
1≤ j≤m

Q2
D∗

j ,λ
RD∗

j ,λ (PD∗
j ,λ +RD∗

j ,λ )
√

λ
.

From the definitions ofD∗, we obtain

f̂K,D∗ =
1

|D∗| ∑
(x∗i ,y∗i )∈D∗

y∗i Kx∗i =
1

|D∗| ∑
(xi ,yi)∈D

|D∗|
|D| yiKxi = f̂K,D,

and

f̂K,D∗
j
=

1
|D∗

j |
∑

(x∗i ,y
∗
i )∈D∗

j

y∗i Kx∗i =
1

|D∗
j |

∑
(xi ,yi)∈D j

|D∗
j |

|D j |
yiKxi = f̂K,D j .

Then we obtain

PD,λ = PD∗,λ , and PD j ,λ = PD∗
j ,λ , ∀ j = 1, . . . ,m.
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Thus,

‖ f t,D∗ − fρ‖ρ ≤ ‖ ft − fρ‖ρ +C1(RD∗,λ +PD,λ )

+ C3 log(t +1) max
1≤ j≤m

Q2
D∗

j ,λ
RD∗

j ,λ (PD j ,λ +RD∗
j ,λ )

√
λ

. (59)

A similar argument as that in the proof of Theorem 1 together with Lemma 2 and
AD∗,λ ≤ AD,λ yields that with confidence at least 1− δ/2, there holds

C1(RD∗,λ +PD,λ ) ≤C2AD,λ log
(
8/δ

)
(60)

and with confidence 1− δ/2, there holds

max
1≤ j≤m

Q2
D∗

j ,λ
RD∗

j ,λ (PD j ,λ +RD∗
j ,λ )

√
λ

≤C4ÃD,D∗,λ log4(12m/δ
)
, (61)

whereÃD,D∗,λ is defined by (11). Plugging (42), (60) and (61) into (59), we obtain
with confidence at least 1− δ , there holds

‖ f t,D∗ − fρ‖ρ ≤C
[
t−r +AD,λ log

(
8/δ

)
+ ÃD,D∗,λ log4(12m/δ

)
log(t +1)

]
.

This completes the proof of Theorem 2. �

Proof of Corollary 4.Sinceλ = 1/t, |D∗
1| = · · · = |D∗

m| andt =

⌈
|D|

1
(2r+s)

⌉
, we have

AD∗
j ,λ ≤ m|D∗|−1|D| 1

4r+2s +
√

C0m|D∗|−1/2|D| s
4r+2s , ∀ j = 1, . . . ,m. (62)

This means

λ−1/2
AD∗

j ,λ ≤ m|D∗|−1|D| 1
2r+s +

√
C0m|D∗|−1/2|D| s+1

4r+2s .

Due to (12),r > 1/2 and|D| ≤ |D∗|, we have
(

λ−1/2
AD∗

j ,λ

)2
+1≤ (

√
C0 +1)2+1, ∀ j = 1, . . . ,m. (63)

Furthermore, based on (12), we have

m|D∗|−1|D| 1
4r+2s ≤

√
m|D∗|−1/2|D| s

4r+2s .

Therefore
λ−1/2

AD∗
j ,λ ≤ (

√
C0 +1)

√
m|D∗|−1/2|D| s+1

4r+2s . (64)

Plugging (63), (64) and (55) into (11), we get

ÃD,D∗,λ ≤ [(
√

C0 +1)2+1](
√

C0 +1) (65)

×
[
m
√

m|D|−
2r+s−1/2

2r+s |D∗|−1/2|D| s+1
4r+2s +

√
C0m|D|− r

2r+s |D∗|−1/2|D| s+1
4r+2s

]
.

Inserting (54), (65) and (58) into (10), we obtain from (12) and t = ⌈|D|1/(2r+s)⌉ that
with confidence 1− δ

‖ f t,D∗ − fρ‖ρ ≤C′|D|− r
2r+s log4 12

δ
,

whereC′ is the constant in Corollary 1. This completes the proof of Corollary 4. �
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