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Abstract We study the generalization ability of distributed leam@quipped with a
divide-and-conquer approach and gradient descent aigoiit a reproducing kernel
Hilbert space (RKHS). Using special spectral features efgtadient descent algo-
rithms and a novel integral operator approach, we provideng learning rates of
distributed gradient descent algorithnts probability and partly conquer the satu-
ration phenomenon in the literature in the sense that theémuaw number of local
machines to guarantee the optimal learning rates does nptf#he regularity of
the regression function goes beyond a certain quantity. iééefand that additional
un-labeled data can help relaxing the restriction on thelbmrmof local machines in
distributed learning.
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1 Introduction

Distributed learning based on a divide-and-conquer amrbas triggered enormous
recent research activities in various areas such as ogtiimiz[27], data mining [26],
and machine learning [13]. This learning strategy breaka bjg problem into man-
ageable pieces, operates learning algorithms on eachgiendividual machines or
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processors, and then puts the individual solutions togethget a final global out-
put. In this way, distributed learning is feasible to conopig data challenges [30],
promote the privacy protection [2], and reduce communicatisks [21]. A number
of high-adaptive and fault-tolerant distributed data nggmaent systems have been
practically developed based on distributed learning. dgjpexamples include the
Hadoop[9] and Spark[1] systems.

Theoretical foundations of distributed learning form atogic in machine learn-
ing and have been attempted recently in the framework ohiegitheory [19, 28,17,
14,5]. For example, a variance estimate for distributedid@mmal maximum entropy
models was provided in [19]. Optimal learning rates in exaten for distributed
regularized least squares were established in [28] undee ségenfunction assump-
tions, which were improved in [17] by removing the eigenfiimic assumptions with
a novel integral operator method. In [14], as well as in arepahdent work [5], op-
timal learning rates in expectation for distributed spa@afgorithms were presented.

This paper aims at refined analysis of distributed learniitg kernel-based gra-
dient descent algorithms. Given a Mercer kelel?” x 2" — R on a compact met-
ric spaceZ” (input space), and a data $t= {(x;,yi)}N; C 2" x # with # CR
being the output space, the kernel-based gradient deslgamitlam can be stated
iteratively with fop =0 as

fio=ho— o T (fo()—yke M
Pl o

wheref > 0 is a step sizeKy = K(-,x) and|D| denotes the cardinality of the set
D. Thedistributed kernel-based gradient descent algorittonsidered in this paper
starts with a partition of the data deinto mdisjoint subset$D; }' ;. Then it assigns
each data subsB; to a local machine to produce a local estimdftgy; by using (1).
Finally, these local estimators are communicated to a akptocessor to derive a
global estimatoif, ; by taking a weighted average

fip= £|D—[)j|ft,Dj- 2
& D]

The gradient descent algorithm (1) can be regarded as aa$[speictral algo-
rithm [18], so optimal learning rates for the distributeda@ithm (2) may be obtained
from general results for distributed spectral algorithm§li4, 5]. However, the gen-
erality of the results in [14,5] for general spectral altfuris imposes a saturation
phenomenon with respect to the number of local machinesis¢hse that the max-
imal mto guarantee optimal learning rates no longer improves whemegression
function goes beyond a certain level of regularity (seeiBe@ for a detailed de-
scription). The first purpose of this paper is to conquer $aigiration phenomenon
by means of special features of the gradient descent digoritising two representa-
tions of the difference betwee‘rapj and its data-free limif; (to be given in Section
4), we shall provide a new error decomposition for distolikernel-based gradi-
ent descent algorithms. With this, the recently developéeiral operator approach
for distributed learning [14,17] will be used to obtain opél learning rates without
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saturation. Different from the previous results in [28,14,5] established in expec-
tation, our learning rates are in probability. As a consegeewe deduce almost
sure convergence of distributed kernel-based gradiemedéslgorithms by using

the Borel-Canttelli Lemma. The second purpose of this paptr propose the use
of additional un-labeled data to enhance the performantteeddistributed algorithm

(2). We prove that by inputting some additional un-labelathdthe maximal number
m of local machines to guarantee the optimal learning raté gfcan be enlarged

(See Section 3 for detailed comparisons). '

2 Main Results

Our analysis is carried out in a standard least squaresssgreframework. Let the
sampleD = {(x;,yi)} ; be independently drawn accordinggoa Borel probability
measure o ;= 2 x % . Our primary objective is the regression function defined

by
00 = [ ydplyx).  xe 2,

wherep(y|x) denotes the conditional distributionxainduced byp. Throughout this
paper, we assumg, y?dp <  and

vt |y— fp(X)| Y2
/ (GT RO o< ) wer. @)

whereM andy are positive constants. Condition (3) was adopted in [6]adve
confidence-based error estimates for regularized leastregjand in [3] for spec-
tral algorithms. It can be found in [23, page 103] or [3] thaY i6 equivalent to the
following momentum condition (up to a change of constants)

[y tp0ldplyin < 5072 ez 2xe 2
a

Hence (3) is a broad model for the noise of the outpand it is satisfied if the noise
is uniformly bounded, Gaussian or sub-Gaussian [20].

Let L,%x be the Hilbert space opx square integrable functions ofi”, with
norm denoted by - ||, and % be the reproducing kernel Hilbert space associ-
ated with the Mercer kerndf. Since 2" is compact anK is a Mercer kernel,

K = +/SUPc 9~ K(X,X) < co. FurthermoreK : 2" x 2" — Z defines an integral oper-
atorlLx on . (orL3 ) by

LK(f):/nyf(x)dpx, fest (orfel?).

Our error analysis for thdistributed gradient descent algorithisistated in terms of
the followingregularity condition

fo =Lk (o), for somer >0andh, € L3 , 4)
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whereL}, denotes the-th power oflL : L;23x — Lf,X as a compact and positive oper-
ator. We use theffective dimension/’(A) to measure the complexity offk with
respect tqox which is defined to be the trace of the operdtaq + A1) 'L, that is,

NA)=Tr(Al +Lg) k), A >0.

2.1 Optimal learning rates

The following error estimate for theistributed gradient descent algorith{) is the
first result of this paper and will be proved in Section 5.

Theorem 1 Let0< 6 < 1,0 < B < k2. Assume (3) and (4) withx 1/2, then for
t e NandA =t~1, with confidence at leadt— &, there holds

_ — 12m 8
[fip—follp <C {tr +log(t + 1) 5 log? — Ap A |093} a %)

where C is a constant depending only onWpB, K, ||hy ||, and r, and

1 ) K%M)ZH] 7,0 ()

) = + , “p ) = mMax .
VRN PA T smm | UV VA
For optimal learning rates dfistributed gradient descent algorithmse also
need to quantify the effective dimensiof (A) with a parameter & s< 1 and a
constantCy > 1 as

N(A)<CoA™S, YA >0. @

Whens= 1, condition (7) always holds with the const&t> Tr(Lk ). For 0< s< 1,
the above condition is slightly more general than an eigelevéecaying assumption
in the literature [6]. Indeed, lef(oy, @)}, be a set of normalized eigenpairs of the
operatolLk on . with {@}7_; forming an orthonormal basis o#x . If g, <Con™“

for somea > 1 andCy > 1, then the eigenvalues of the operatdr + LK)*lLK are

{/\fb, }, and we have

o _<_Ct" e S

A (4) :,;/\Jra,g ~ A A+ Col @ :,Zlcomea
' CO _ -1/a
< [ ggmat= o0,

Therefore, (7) follows from the eigenvalue decaying assionw, = ¢/(n~ /%) with
O0<s< 1.

The following corollary, to be proved in Section 5, exhilitie concrete learning
rates of the distributed kernel-based gradient desceotitign (2). Denotda] as the
smallest integer not less than> 0.
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Corollary 1 Let0< d < 1and0< B < k2 Assume (3), (7) with < s< 1, (4)

with r > 1/2, and|Dy| = |Dp| = -+~ = |Dp. If t = [|D|z%s] and
r—1/2
D|z

m< 27 8
~log®|D|+1 ®

then with confidence at least- 9, there holds
_ 12
[Teo—follo <C'ID| 7 log* -5

where Cis a constant depending only on, M, k, ||hy|/p, Co and r.

Applying the probability to expectation formula for nonmgige random variables
E[£] = / Probl¢ > t]dt ©)
0

to|[fip— fp||,%, we can easily deduce the following optimal learning ratexpecta-
tion.

Corollary 2 LetO< 8 < k=2, Assume (3), (7) with < s< 1, (4) withr> 1/2, and
ID1| = |Dy| = - = |Dp. If t = [|D|z%s] and (8) holds, then

E [ITip— fol2] = o (1D 2%).

Based on the confidence-based error estimate in Corollarg &an derive almost
sure convergence of thigstributed gradient descent algorith¢®).

Corollary 3 LetO< B < k~2. Assume (3), (7) with < s< 1, (4) withr> 1/2, and
|ID1| = |Dy| =+ = |Dml. If t = “DP%SW and (8) holds, then for arbitrarg > 0,
there holds

‘Dli‘rgwlDIﬁ‘l"”ll fio— follp =0.

2.2 Allowing more local machines by using additional undkal data

Although optimal learning rates of the algorithm (2) weratst in the previous sub-
section, the restriction (8) on the number of local machsessms a bit strict. In this
subsection, we show that this restriction can be relaxegimguadditional un-labeled
data. Utilizing un-labeled data was studied in [7] for aeliéint purpose of improving
learning rates for spectral algorithms whén¢ . It was also adopted in [4] for
this purpose for kernel-based conjugate gradient algostfi he idea of applying un-
labeled data to relaxing the restrictions on the numbel jpessors is motivated
by our earlier empirical experiments done for distributeduiarized least squares.
These experiments and theoretical analysis carried oeitvadtds can be found in

[8].
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Let Dj(x) = {x{,...,x‘jﬁ_‘} be drawn independently according pg. We then
]
introduce the training set associated with labeled andabeled data in each local
machine as

Dj =D;UD; = {X"¥ }iy
with
iy €D il i (x v .
Xr:{{.,!fiqu}J(X), and y = { oy if 06.0) €D,
%, if % € Dj(x), 0, otherwise
whereDj(x) = {x: (x,y) € D for somey € #'}. LetD* = U} ; Dj. We can obtain the
following enhanced results.

Theorem 2 Let0 < 6 < 1,0 < B < k2. Assume (3) and (4) withx 1/2, then for
t € NandA = t~! with confidence at leadt— &, there holds

_ B — 12m 8
[fip—follo < C{t "+log(t + 1) p |0947 + ) |093} ,  (10)
where
p” Hja )", | i o (11)
. ) 1= max —
PEA T m |\ VA VA

Based on Theorem 2, we can relax the restrictiomars follows.

Corollary4 Let0< d < 1and0< B < k2 Assume (3), (7) with < s< 1, (4)

With r > 1/2, |Dy| = |D2| = ... = |Dpn| and|D}| = |Dj| = ... = Dy If t = [|D|ﬁs]
and

min{|D*[/2D| %, |D*[+3)p| ¥ |

m< z : (12)
log®|D| +1

then with confidence at least- 8, there holds

- r 12

[fio- — follo <C'|D|"Z7slog? (13)

X .

3 Related Work and Discussions

The kernel-based kernel gradient descent algorithm dlgos (1) can be viewed as
a special case of spectral algorithms, which is well knowtha context of inverse
problems [12].

To describe this in detail, we define an empirical integraragorL px) by

1
Lo () =157 > 0K, f e k.

|D| xeD(x)
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The gradient descent algorithm (1) can be rewrittefiggs= 0 and
fiirp = fio — B(Lk px fro — fkp) = (| = Bl p) o+ Bfkp,  (14)

wherefy p = ﬁ Y (x y1)<D YiKx . It follows directly that

t-1
fio = Z)BThl(LK,D(x))fK,D, (15)
K=
wherery ,, denotes the polynomiaiy = 1),

Ty a(U) = MZf 4 (1—Bu) = (1 Bu) <1

and 14 (Lg, D) is defined by spectral calculus [18,14]. Therefore, the igrad
descent aIgorlthm (1) is a member of the family of spectrgbathms [18] corre-
sponding to the filter function

Z)Bnﬁﬂ AP o (16)

with A = 1/t.

As a typical example of spectral algorithms, the gradiescdat algorithm (1)
has the advantage of overcoming the saturation phenoménbe regularized least
squares [18]. Furthermore, the computational compleXigfgorithm (1) is¢’(|D|?),
which is much smaller than that of the regularized least sEpI25]. Learning rates
of gradient descent algorithms have been studied in [2528,70,14]. To be more
specific, an integral operator approach developed in [22] uged in [25] to derive
learning rates for algorithm (1) in the special caseef 1 in (7), which were im-
proved to be almost optimal in [3] by noting that algorithn) {d a special spectral
algorithm. For the general case okOs < 1 in (7), almost optimal learning rates of
spectral algorithms including the gradient descent allgors (1) were established in
[7], but additional un-labeled data were required. In [2ijjtimal learning rates of
gradient descent algorithms were established fer1/2 in (4) without un-labeled
data. Optimal learning rates of spectral algorithms inicigd1) were derived in our
recent paper [14] for > 1/2 by using a novel integral operator approach.

Remark 1After the submission in January 2016 of our previous papé} ¢b dis-
tributed spectral algorithms, we found two independeng pigpers in arxiv: [10] in
May 2016 and [5] in October 2016. For the classical specigirahms, optimal
learning rates were established in [10] under assumptibng3) and some eigen-
value decaying conditions. For the distributed spectgd@thms, optimal learning
rates were obtained in [5] under the effective dimensionragsion (7).

As a special class of distributed spectral algorithmsogtiearning rates of the
distributed gradient descent algorithm (2) have been geslin [14,5]. That is, under
the conditions of Corollary 1, if

m < |D|™nzs 35} (17)
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then B ”

El o, — fpll3] = & (IDI 7).
We see from (17) that the restriction on the number of locathirees suffers from a
saturation phenomenon in the sense that wherB8/2, the maximamto guarantee
the optimal learning rate does not improve @screases and is the same as that-of
3/2. This is quite different from the case whef2 r < 3/2. In the present paper, we
use special features of the distributed kernel-based gmadiescent algorithms and
provide optimal learning rates in confidence under the apsiom(8). Comparing (8)
with (17), we find that the saturation is partly overcome i $lense that the maximal
mto guarantee the optimal learning rate is strictly incnegsvith respect to and

ID| 7T X2 _ 5
———— >C/|D| 7, ifr>—,
Iog“|D|+1_Crl | 2

whereC; is a constant depending only orit should be mentioned that wher 5/2,
our result is a little worse than that in [14], because

~ 2
L — 2r+s

log*|D| +1 < GID|==.

We think the reason is that we devote to the confidence-based estimate for

distributed kernel-based gradient descent algorithmsiri@g a deterministic error
decomposition, which is totally different from the prevéomethods [28,17,14,5]
focusing on deriving error decompositions for distributedrning in expectation.
Based on the confidence-based error estimate, we can degiadnbost sure conver-
gence of algorithm (2). We believe that using some delica¢briiques in integral
operators, our restriction an can be relaxed to

m< |D| 3 (18)

for arbitraryr > 1/2.

Adopting un-labeled data to improve learning rates of spéelgorithms was
proposed in [7]. Corollary 4 in our paper shows that unlathdkta can also be used to
enlarge the range of the number of local machines. In fa{@if= |D| andr > 1/2,
we have

[D*[M2|D| 4% = D[,
and
D" [/%|D| & > D] ¥

Then, (12) coincides with (8). However,|D*| > |D|, we obtain

DI &4 < min{|D* 2| 45, o' [+opp W ),
which shows an essential advantage of using un-labeledrddtstributed learning.

In particular, whe)D*| = |D|?, it is derived from Corollary 4 that if

r-2/3
|D| 7rFs

m< ———, 19
~ log®|D|+1 (19)



Distributed kernel-based gradient descent algorithms 9

then (13) holds with confidence at least ®. It should be noticed that the restriction
(19) is even weaker than the restriction (18).

By combining our approach with results in [7], we conjectilna optimal learn-
ing rates of distributed kernel-based gradient descenti#iigns can be derived when
the regression function is outsidék by adding un-labeled data in the learning pro-
cess, as done for distributed regularized least squar&$.imiis paper is focused on
distributed learning with the gradient descent algorithiraould be nice to extend
our analysis to other algorithms [24, 15, 16] by using urelat data.

4 Error Decomposition Based on Integral Operators

Our error decomposition is motivated by some special featafthe gradient descent
algorithm and a recent developed integral operator apprfdak; 17]. Our main nov-
elty is to use two special representationsiaf — f; (with { f; } to be defined by (20)
below) to derive an error decomposition in a deterministicse, different from the
decomposition in [28,17, 14, 5] involving the expectatidth® generalization error.

4.1 Special representations for gradient descent algosith

To demonstrate our ideas, we need data-free limits of theese®{ f; p } defined as
a sequencéfi }+ by fop =0 and

fiyr = fo — BLe (fe — fp). (20)

The first noveltyof our error decomposition is to decompose the iteratioatiah
fir1 = (I — BLk) ft + BLk fp from (20) in terms of the empirical integral operator
LK,D(X) as

frr1= (I = Blkpy) ft + B (Lo — L) ft + BLk fp.

It follows by induction that

t—1
f = k;B Tera(Lk.op) [ (Lo — Lk) fie+ L fo] (21)

This together with (15) yields the first representationfigy — f; as

t-1
fip—ft = %B T 1(Lk () Xk (22)
=

where .
Xkp = fkp — Lk fp + (Lk — Lk ppo) fk-

Furthermore, from [25, Proposition 4.3], we can get the sda@presentation for
ft,D — ft as

t—1
fip—fi = kéﬁ T2 (L) Xkp (23)
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with A
X;,D = fK,D — Lk fp + (LK — LK,D(X)) fk,D-

The above two representationsfof — f; will play essential roles in our analysis.

4.2 Special features of the gradient descent algorithm

To present the error decomposition, we unify (23) and (2Deto

t-1 -1
Fi=3 Bri1(l)G,  and =3 B 1(Lipp)Ck
k=0 k=0
with G € 7« and bound the norm as

1
max{||F1|\p,\/X||F1|\K} - max{HLi/ZFl ‘K,\/X||F1|\K} < H(LK +)\I)2F1HK

; (24)

-1
tz B(Lk + A1) T4 (Li) (Lk + Al )*%Gk
K=o

and

max{ |Follp . VA IFall | = ma{ || L¢*F | VARl | < [ (e +ADER |

< [+ A0Ecop + A2 (ko +AD2R

t—1

1
= 9p. %B('«,D(x)+/\|)T¢+1(|—K,D(x))(LK,D(x>+)\|)7Gk 7 (25)
=

K

whereA > 0 can be arbitrarily chosen ané, , is an operator norm defined by

Do = [[(Lc+A1)3 (Lo +A1) 2. (26)

Thesecond noveltgf our error decomposition is to bound the norm (26) tightly
using our work in [17,14] and to use special features of thelignt descent algorithm
for estimating the norms concerning the opergk p) + A1) 1 (Lk px) and
B(Lk +Al)m, (Lk) as follows.

Lemmal ForA >0,0<B <k ?tecNandk=0,1,...,t—1, we have

max{[|B (L + A1) (Ll 1Bl + AN Kea(Lic o)} < g+ BA
@)
and

max{

t—1

%B(LK + AN (L)

k=

t—1

Z)B(LK,D(x) + AN 1 (Lk o)

3

}g 1+BAt.
(28)
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Proof. We only prove (27) and (28) for the operator norms concerhjngy . The
inequalities concerning the operatgy can be derived by using the same method.
Let {o}}i be the set of all eigenvalues of the operatQrp ) on . Then 0<

0% < ||Lk py || < k2 and the symmetric operat@(Ly pi + A1) 7.1 (Lx piy) has
eigenvalues

B(OF+M)Ti, 1(07) = (Bo¥ +BA) (1— Boy)' L.

Since 0< B < k2, these eigenvalues are nonnegative and bounded by
Bo(1- o} L epA< T 1 BA

Here we have used the fact that the univariate funatidn- u)' -1 defined on the
interval[0, 1] takes its maximum values at= ;. and satisfies

O<u(l—-ut*l< %( Yo<u<1l
Then the first desired norm estimate (27) follows.

The above proof also shows thity, ,(Lk pry)|| < 1 forke {0,...,t —1}. To
verify the second estimate, we note that the symmetric opefd.x p(,) has eigen-
values 0< Bo* < 1. It follows that the operatdr— Lk p(y is positive and (16) with
U= Lk p(x Yields

t-1
Z BLk oo Tk 1Lk o) || < 1.
r=

Then the second desired norm estimate (28) follows. O

4.3 A novel error decomposition for gradient descent atbaori

To derive the error decomposition fdistributed gradient descent algorithise
shall use the representation (22) and Lemma 1 and derivesd @wer decomposition
for the gradient descent algorithm in the following propiosi.

Proposition 1 LetA > 0and0 < B < k2. If (4) holds with r> 1/2, then

max{(|fo  fello, VA feo — fll }

t—1 1
< (1 418) 28, (Fos + ol plk) + 3 (mwa) 10— Tl 23, %o,
/=0
where A
Pop = | Le+A) et~ o) -
and

Hp ) = H(LK +AN) Y2 (L — L pg)
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Proof. For arbitraryt > 0, it follows from (22) and (25) that

max{||feo  fello, VA feo — Tl }

t—1
2o || > BlLkpw + A1) T (L b)) (Lk b + Al )Xk
=

IN

K
t—1
Zp /%B(LK,D(X) FANT, (L o) (Lo + AT Y2(fp — Lk fp)

IN

K
t—-1
+ Zp. /%B(LK,D(X) +ANT, (L) (Lo + A1) ™2 (Lk — L po) (Fe — fp)

K

t1

+ Zpa ; B(Lk o + AT 1(Lk o) (ko A1) Y2(Li = Lk pi) fo
/=0

K
= Zp ) (A1iap+A2aD+A30 D) (29)

ConcerningAs ¢ ) p, (28) and the definitions of’p , and2p , yield

Aitap < (Lo + A1) Y2(fkp — Lk o) Ik

t—1
/Z B(Lk oy + AN, 1(Lk o)
(=0

< (14 BAY | (Lk ppy + A1 Y2 (L + ANV (L + A1) 2 (fiep — Lic Fo)llk
= (1+BAt) Zp ) Ppa,
where we have useflAB|| = ||BA|| for positive operator#\,B in the last equality.

Since (4) holds for > 1/2, we havef, € 7. Then (28) together with the definition
of %p » and

IAf]c < A Ik (30)
for positive operatoA andf € 7 yields

Agtap < (14 PAY) 2p ) Zpal follk-
Furthermore, (27) and (30) imply

t—1
Asiap < ; 1B(Lk oy + AN 1 (L o) || 2o Zoall fe— follk
(=0
t—1 1
< 5 (T 48) 11~ ol ZoaFo

Inserting bounds oA\ ; ) p, Azt x p @NdAg;  p into (29), we have

max{ [[fco — fllp, VAl fuo — fillc } < (1+AtB) 235 (P04 + ol folk)

t—1 1
+ 5 (25 +28) 16— ol 2B Ao

This completes the proof of Proposition 1. O
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4.4 Error decomposition for distributed gradient descéguar&hm

By the aid of Proposition 1, we can use the representationdta (23) to derive the
error decomposition ddistributed gradient descent algorithnmsProposition 2. The
main novelty is that our error decomposition is exhibitetedministically rather than
in expectation, which makes our analysis totally differfeot [28,17,14,5].

Proposition 2 LetA > 0and0 < B < k2. If (4) holds with r> 1/2, then
Ifio—follo <l ft—follo + Zb1a + %o (31)

where

t—1 1
Yoia = %p Z)(B/\ +—) [ fik—follk + (1+AB(Fpx + Zo sl follk),
K=

(32)
and

o@% A%D' A =1 1
. B b
Loy = 1|;nja<>r<n7\//T kzl (BA + _— k) (33)

(B (o,00+0,01l) + 5 (5

+/\B) 1~ follk o, A ]

Proof. Applying (23) toD; for each fixedj € {1,...,m}, we have

m

-1
fip—ft= k;)ﬁ T 1(Lk) z Xk Dj-

| _
Sincey ., Tj_land
D |Dj| » T Dj| 1 1
ZuKDJZZuD— YKy = 7 z yKyx = fkp,
1:1| | J:1| | ] J|(x,y)eDJ | |(x,y)eD
we have
™Dl . D
uXkDJ => u(LK—'—KD( )fip; + fkp — Lk fp
J:1| | J:1| |
Then
_ t—1 TEL m D
[feo— fillo < Brica(lx) y =7 LK—LKD ) fp;
t,D p k; +1 Z D| j(x)/ 'kD;j ,
t-1 .
> Bria (k) (Lk fp — fk.p)
K=0 5

=:l1+1>.
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Boundingl, is easy. In fact, we know from (24) that

t-1
o< ||S BlLi+ AN T 1(Lk) (L + A1) "2 (L fp — ficp)
K=0 K
This together with (28) and the definition oy , yields
t-1
I> < ZB(LK+/\|)711’<+1(LK) Ppr < (L+ABHPp ). (34)
K=o

Boundingl; is more technical. Using (24) again and the triangle indgyale have

m
Dj
Iy < Z)ﬁ (Lk +AD T (L) %(LK +A1)” l/Z(LK_LK,Dj(X))(fk,Dj — fy)
K
t—1 m D
# 3 Bl AL z%amm Y21~ Ly o) (i~ Tp)
k= =1 K
t—1 m |D |
+ Bl +ANTE, 1 (L) S =L (L + A1) Y2 (L — Lx p. () f
k;) n‘iJrl JZl |D| K.Dj(x)/) 'p .
=l +1lio+ 113
For f € J#, we have
1Dl < IDjl 1
LKD( = T~ T~ X T Kxf _LKD )f
Z ol o= 2 B byl &, 5 B ~
(35)
Then, it is easy to see
t-1
2% 5 [B(Le+ AN (L L+ M) oL = Licow) (= o)
K=
t-1
< 3 B+ AN T 1 (L | | i+ A1) Y2 L = L) (= To) -
K=0
Combining this with (27)f, € 7% and the definition of7p , yields
t—1 1
l12 <%p ) Z BA +m [ fc— follx- (36)
K=0

Concerning1 3, we use (28) and (35) to get

t—-1

lia< ||y B(lk + AT (L) || Zoa [ follk < Zpa (14 BAY| follk.  (37)
k=0
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To boundly 1, we use (27);’“: TJ‘ =1fy= fo,Dj = 0 and Jensen’s inequality to
obtain
< S IB(Le+ Al Lol s Pl an-2, - L feo — f
11 = Y |[BlLk + A1) (Lk) || |D|( k +A1)"74(Lk — Lk ;) (fkp; — fi)
K=1 K
<tzl<l3)\ i)EM‘(LK—H\I)1/2(|-K—|-KD ) (fip; —fk)H
k=1 t—k =1 Dl :
=§Ht§ BA+ | L+ A1) 2 = Lo, 0) (Feoy = )|
2, Dl 2, — K K —Lk,Dj( kD; — Tk

But Proposition 1 wittD andt being replaced b{p; andk yields that

[ fo; — fillk
QIZDJ,A k=1 1
<o (1+Akﬁ>(<@0j,A+%Dj,A|fp|K)+/;<m+w)|fz—fan%j,A.
It follows that
QD L@D )\t 1 1
< TDiATEIA
s =3 () @)

(1+AKB) (P, + %o, Aol +; (i +/\B) = fp||K%Dj,A] .

This together with (34), (36), (37) and (38) gives

2
D

o fllp < max 20T gy 1
[fro = fillp < max —"— Z(B +ﬁ<>

(14 AkB) (P, + oy ol +%<m+w) It fp||K%,.,A]

t—1 1
+ %oy Yy (BA + m) [fk— follk + (L+AB)(Ppa+Zpall folk)-
o

Then (31) follows from the triangle inequality

[fio = follo < IIfe—follo+ I Tep — fillp-

This completes the proof of Proposition 2. O
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5 Proofs

To prove our main results, we need to bound the quantifes, #Zp » andZp ) by
the following probability estimates.

Lemma 2 Let D be a sample drawn independently according tand0 < é < 1. If
(3) holds, then each of the following estimates holds wittfidence at least — J,

2(k2+ K)o 5 log 2\ °
98, s2< [k K\)ﬁ‘” °gf‘> +2, (39)
Hpa < 2(K*+ K)o/ 109(2/8), (40)
Ppp < 2(kM+y) a5 10g(2/0). (41)

These inequalities are well studied in the literature. Trg fivo can be found in
[17,14] while the last one can be found in [6].
We are in a position to prove the main results of this paper.

Proof of Theorem 1We follow our error decomposition (31) described in Proposi
2. We need the following bounds fdy— f, fort > 1 under the regularity assumption
(4) withr > 1/2, stated as Theorem 2.10 in [25],

1o — follp < [Ihpllp(2rk®/e)t T, (42)
[f—follk < ||hp||p[(2r—1)K2/e]rfl/2rr+%- (43)

Then, we use (43) and Lemma 2 to bou#f; , and%p », respectively.
Step 1. Estimatingp » . Since (4) holds witlh > 1/2, we have

/2y, 1/2 _
Ifollk = [Licholli < IILic 2L gl < kI lp. (44)
The above inequality together with (43), (32)= 1/t andfy = 0 yields
Goia = Ao (BA+t7) oIk

t-1
+ 5 (BA+ =K Y fc— follkZpa + (1+ABY(Ppa +Zoallfollk)
=]

< |Ihpllpl(2r — Dk? /e 2% til[ﬁ)\ +(t—k) k2
=1

+ (14 B) 1+ 26| p)(Ppp + X p)- (45)
Notice that
t—1p—r+3
> % K2 k*r+2+ S by 1
&t 1< t/2<k<t—1 t—k

| N

k<t/
{t "+3 log(t + 1), when3 <r<%, (46)

whenr > 2,
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whereC] is a constant given by

%JrZr*%, whend <r <3,
=18, whenr = 3,
r=1¢8 h 3
(g +2 2 minen {1+ 3log(¢+ 1)}, whenr > §,
and
t-1 . {3, wheni <r <3,
k™2 <C/{ log(t + 1), whenr = %, (47)
k=1 1, whenr > 3.
We obtain
t—1 1
5 (BA+ 2 K2 2@ BB,
= t—
where

Biari= [Vl +A +t*’+1/2+/\t*f+3/2} log(t +1).

SinceA = 1/t, we have
Buas =2 [t*1+t*r+1/2] log(t + 1).

Due tor > 1/2, there exists some const&t> 1 depending only on such that

max{tfllog(t +1),t72jog(t + 1)} <C, Vt>1 (48)
So
Bt,}\,r < 4Cr-
Then, we have
t—1
> (B/\ + ﬁ) k"+1/2 < 8C.Cl(14B). (49)
K=1 -

Plugging (49) into (45), we obtain
Yoir <C1(Zpr+ PbA) . (50)
where
C1 = (1+ By max{ 1+ 26Ny, 8C S lInplo[(2r — L)%/l Y2}

It follows from Lemma 2 that there exist two subs&’%{%‘ and ffz‘%‘ of 2Pl with

measures at least-14 such that for arbitrarlp C ,,?1‘%‘ N ffz‘%‘ there holds

Fpa < 2(K2+ K)o 5 109(2/8), and  Pp, < 2(kM+y)ahp , log(2/d).
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; i i i D] D]
'rl]'hlzabove estimates together with (50) yield that for aabytb C ,,?1’5 N 53”1’5 , there
olds

Yora < Codp plog(2/0),
where
Cp = 2C1 (k%2 4+ K+ KM+ ).

Then, with confidence at least15/2, there holds
Yora < Codp 5 10g(8/0). (51)

Step 2. Estimating/p  » . Due to (43) and (44), we have from (33) that

2
QD] A r%Dj A =1

1 -1
Lo < 1?]?&7,\ k; (BA + m) {(X+AtB) (P a + K" HIhplloZp,; 2)

~ B Lt -
+ (K 2B H|hpllp%p; 4 + Ihollpl(2r — 1)k /€] 1/2; (m +AB>f 200}
/=1

where we denotg9_; a, = 0. Then, it follows fromA = 1/t and (49) that

ooy < max oA (g1 2Yihy o) (P 1 + %
DA < 122(“7)\k; BA+—¢ {1+ B) A+ HNollo)( Py 2 +Zp,; 2)
+ (KT 4+AB)+8CC(L+B)[(2r — 1) /e Y2k gl p %, 2 }

Q%j ,)\%Dj,)\ ('@Dj A +‘@Dj,A)

2 2r—1
< 21+B) 1+ KT Npllp) max "y log(t +1)
92 72
+ 201+ B)2[1+8CCl(2r — 1) /e Y2 k2 Y hy |l max AP jogt 4 1)
PIPZf<m VA

Q%j))\‘%Dj,A (‘@Dj,)\ +L%Dj,)\)
Cslog(t+1) 1r<njzi>r<n iy ,

IN

(52)
where
Cs = 2(1+ B)?max{1-+ k2 Yhy||o, [1+8CC/[(2r — 1) /e Y2k hy ).

Furthermore, Lemma 2 implies that for each fiyedhere exist three subs ‘2”,
sz‘g” and Qg‘%‘ of ZIPil with measures at least-15 such that foD; ¢ Qfl‘g” N
QFZ‘EJ‘ N Q@JEJ‘ there holds

o p < 2K+ K) 2 109(2/8),  Ppa < 2(KM+y)ehp 2 log(2/9),

and

2(k2+K)efp, ) log % 2 )
+2.
VA

‘QIZD],A < 2(
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So, forD; C ff‘DJ‘ ﬂff‘DJ‘ ﬂ,,@‘;g”, there holds

Q% }\%D‘A 2 2 .12{2 2
j» ) j»

— (P \+%p. ) <C +1
VA (Zoy DJ’)\) * ( \/X) \/X

Iog4

where
Cs:=16(Kk + 1)K+ K+ KM +y].

Thus, with confidence at least139, there holds
‘Q[ZDJ’A‘@DJ',A

(202 1) Bt
VA VA VA 5

This implies that with confidence at least Bmd, there holds

(‘@DJ,A +%Dj,)\) < C4

D5, 1% 2 Do\’ . 2
i I < Dj.A 4
X — 5 (Zpj A +%p;2) < C4ll;ﬂja<>r<n ( 7 ) +1 \/X Iog
Scaling 3nd to ‘%, we have with confidence at least1 /2, there holds
N A S 12m
IB 1K < DJ,A DJ,A 4
122(117\/X (Zpjr +%p;2) < C4lr<njg>r<n ( i ) +1 7 log =
All these estimates yield that with confidence at leastd/2, there holds
—— 12m
Loia < CaCslog(t + 1), log? = (53)

wherewp, , is defined by (6).
Step 3. Deducing learning rat€lugging (51), (53) and (42) into (31), with con-
fidence 1- & we have

_ — 12m 8
[fip—follo <C {tr +log(t + 1) 5 log? — Ap ) |093} a

where
C:=max{|[ho|p(2rk?/€)",CsCs,C2} .
This completes the proof of Theorem 1. O
Proof of Corollary 1.Lett = {|D| 2'+S] SinceA =t~ andr+s>r>1/2, we
obtain from (6), (7) andD1| = --- = |Dyy| that
oo < |D| M arm 4 /GolD| 2 < (\Co+ 1D F (54)
and

o, ) <mD|” "t 4 /ComD[ 7S Vj=1,...m. (55)
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But (8) implies
mD|~“#5 < /m|D|" 7.
So .
o a < (VCo+1)vmD| 7=, Vi=1,...m, (56)

and
"Q{Dj,A

VA

Hencer > 1/2 together with (8) gives

< (VGo+1)VMD| 55,  vj=1..m

T\ °
2 ) +1<(V/Co+1)2%+1,  Vj=1,....m
(5F) rr=ieory ‘

Then,
— r—1/ r
Aoa <[(v/Co+ 12+ 1)(v/Co+ 12V/mD| == yimD| 5. (57)
Plugging (8) and (57) into (5) and noting
log* %n < 16(log’ %2 +log*m) < 16lod! %Z(Iog3m+ 1) (58)

and
(log*|D| +1)(log|D| + 1) < 2(log®[D| + 1),

we have with confidence- 9,

— r— 12
[Too— follo < Cs{|DI"#% + D #=miD|~ % (1og° D] + 1) +|D| 7= }log" -

12

< 3Cs|D| z7s log 5

where
Cs :=3C[(v/Co+1)%+1)(v/Co+1)%
This completes the proof of Corollary 1. O

Proof of Corollary 2.Applying the formula (9) for nonnegative random variables t
¢ = |Ifo,» — fol5 and use the bound

Probjé > u] = Prob{é% > uﬂ < 12exp{—(C’)*1/4N#4su%}
for u> (C'log*12)2|D|~2/(Z+9) derived from Corollary 1. We find

_ e _ ro1
E[||fD,A_fp||g} < (C'log*12)?|D| 2r/<2r+5>+12'/0 exp{_(c’) U“Nmm}du

which equalg96+ log 12)(C')2|D| 7+ Jo uetexp{—u}du Duetofs’ ud~texp{—u}du=
I (d) for arbitraryd > 0, we have

E[|lfo — fol[2] < (96+log? 12)(C')?7![D| #¥s.
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This completes the proof of Corollary 2. O

To prove Corollary 3, we need the following Borel-Cantelérhma [11, page
262]. The Borel-Cantelli Lemma asserts for a sequenggn of events that if the
sum of the probabilities is finitg,,_, Prolinn] < o, then the probability that infinitely
many of them occur is 0.

Lemma 3 Let{nn} be a sequence of events in some probability space arjdbe a
sequence of positive numbers satisfyling, ... &, = 0. If

> Probf|nn —n| > &] <,
n=1

thenn, converges t@) almost surely.

Proof of Corollary 3LetN :=|D| andd = &y = N~2in Corollary 1. Sety = N~ zs,
By Corollary 1, ift = “DP#s} and (8) holds, then for anlyt ande > 0,

4
PrOb[qJNHSHTt,D —fpllp > C'H ('09 %2) ] <.

4 .
Denotepy = C' ¥ (Iog %) . Obviously,

’\Z Prob[¥ 4Ty p — follp > 1] < ’\Z O < o
=) c,

and uny — 0 whenN — 0. Then our conclusion follows from Lemma 3. This com-
pletes the proof of Corollary 3. O

Proof of Theorem 2t follows from (31), (50) and (52) that
[fio = follo < lIfe = follo +Co(Zo p + Poe 1)
o . Q%T,AL@DT,A(WDT,A + %)
+Cslog(t + )lrgja;ﬁn 7 .

From the definitions ob*, we obtain

1 |D*|

. 1 .
fkpr = = YiKe = = —ViKyx = fk b,
O o 2o 5 T 1, 2 D
and D)
A 1 1 D7 A
fo; = 157 YiKe = 157 D—J_Yini = fkp;-
b Bl fen; 151 7o 1Pl

Then we obtain

gD,A ZQD*’A, and ng))\ :yD$))\, Vj =1....,m
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Thus,
[fior = follo < Ife = follp +Ca(%pep + Ppa)

D8 7\ Boi ) (P 3 + Ko 2)
+ Czlog(t+1) max ‘ 7r

A similar argument as that in the proof of Theorem 1 togethigh wemma 2 and
-y < p » Yields that with confidence at least-15/2, there holds

C1(%p- A + Ppr) < Costp ) log(8/9) (60)
and with confidence * 6/2, there holds
. QST,A%DT,A (Zpjr +Zp:a)
1<j<m VA

where., -, is defined by (11). Plugging (42), (60) and (61) into (59), vistain
with confidence at least4 9, there holds

oo — follp <C [rf + 25,1 100(8/8) + b - log? (12m/ 8) log(t + 1)} .

(59)

<Casppp log'(12m/3),  (61)

This completes the proof of Theorem 2. O
1
Proof of Corollary 4.SinceA =1/t, |Dj| = --- = |D};| andt = ['D“mﬂ , we have
olp;a < D[ HDJ# + /ComiD*| 2D # s, Vi=1..m  (62)
This means
A Y205 ) < mID*| Y| + /Com|D* | Y/2D|#.
Dueto (12)r > 1/2 and|D| < |D*|, we have
2
(A*l/ZMDT,A) F1<(VCo+ 1241, Vj=1,...m 63)
Furthermore, based on (12), we have
miD*| D < VmiD*|¥/?|D|« 7.
Therefore s
A M2 5 < (v/Co+ 1)v/mIDY| /2| D]# . (64)
Plugging (63), (64) and (55) into (11), we get
pea < [(VCo+1)?+1(/Co+1) (65)

8 [m\/ﬂDrmﬁ/zID*I*”ZIDI%TS +/ComiD| 7 |D*| /2D #E |

Inserting (54), (65) and (58) into (10), we obtain from (18§ia= [|D|*/(>+9] that
with confidence + 6
412
6 )
whereC' is the constant in Corollary 1. This completes the proof ofdllary 4. [J

Ifio+ = follp <C'ID| 7= log
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