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Based on the tree architecture, the objective of this paper is to design deep neural18

networks with two or more hidden layers (called deep nets) for realization of radial func-19

tions so as to enable rotational invariance for near-optimal function approximation in20

an arbitrarily high-dimensional Euclidian space. It is shown that deep nets have much21

better performance than shallow nets (with only one hidden layer) in terms of approxi-22

mation accuracy and learning capabilities. In particular, for learning radial functions, it23

is shown that near-optimal rate can be achieved by deep nets but not by shallow nets.24

Our results illustrate the necessity of depth in neural network design for realization of25

rotation-invariance target functions.26
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1. Introduction29

In this era of big data, datasets of massive size and with various features are rou-30

tinely acquired, creating a crucial challenge to machine learning in the design of31

learning strategies for data management, particularly in realization of certain data32

features. Deep learning [11] is a state-of-the-art approach for the purpose of realizing33

such features, including localized position information [3, 4], geometric structures34

of datasets [6, 29], and data sparsity [17, 15]. For this and other reasons, deep35

learning has recently received much attention, and has been successful in various
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application domains [8], such as computer vision, speech recognition, image classi-1

fication, fingerprint recognition and earthquake forecasting.2

Affine transformation-invariance, and particularly rotation-invariance, is an3

important data feature, prevalent in such areas as statistical physics [17], early4

warning of earthquakes [28], 3D point-cloud segmentation [27], and image render-5

ing [22]. Theoretically, neural networks with one hidden layer (to be called shallow6

nets) are incapable of embodying rotation-invariance features in the sense that7

its performance in handling these features is analogous to the failure of algebraic8

polynomials [13] in handling this task [14]. The primary goal of this paper is to con-9

struct neural networks with at least two hidden layers (called deep nets) to realize10

rotation-invariant features by deriving “fast” approximation and learning rates of11

radial functions as target functions.12

Recall that a function f defined on the d-dimensional ball, Bd(R) with radius13

R > 0 where d ≥ 2, is called a radial function, if there exists a univariate real-14

valued function g defined on the interval [0, R] such that f(x) = g(|x|2), for all15

x ∈ Bd(R). For convenience, we allow Bd(R) to include the Euclidian space Rd16

with R = ∞. Hence, all radial-basis functions (RBFs) are special cases of radial17

functions. In this regard, it is worthwhile to mention that the most commonly18

used RBFs are the multiquadric g(r) = (r2 + c)1/2 and Gaussian g(r) = e−cr
2
,19

where c > 0. For these and some other RBFs, existence and uniqueness of scattered20

data interpolation from the linear span of {f(x − xk) : k = 1, . . . , �}, for arbitrary21

distinct centers {x1, . . . ,x�} and for any � ∈ N, are assured. The reason for the22

popularity of the multiquadric RBF is fast convergence rates of the interpolants to23

the target function [1], and that of the Gaussian RBF is that it is commonly used as24

the activation function for constructing radial networks that possess the universal25

approximation property and other useful features (see [21, 25, 34, 38, 40, 9]) and26

references therein). The departure of our paper from constructing radial networks27

is that since RBFs are radial functions, they qualify to be target functions for our28

general-purpose deep nets with general activation functions. Hence, if the centers29

{x1, . . . ,x�} of the desired RBF have been chosen and the coefficients a1, . . . , a�30

have been pre-computed, then the target function31

�∑
k=1

akf(x − xk)

can be realized by using one extra hidden layer for the standard arithmetic oper-32

ations of additions and multiplications and an additional outer layer for the input33

of RBF centers and coefficients to the deep net constructed in this paper.34

The main results of this paper are three-fold. We will first derive a lower bound35

estimate for approximating radial functions by deep nets. We will then construct36

a deep net with four hidden layers to achieve this lower bound (up to a logarith-37

mic multiplicative factor) to illustrate the power of depth in realizing rotation-38

invariance. Finally, based on the prominent approximation ability of deep nets, we
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will show that implementation of the empirical risk minimization (ERM) algorithm1

in deep nets facilitates fast learning rates and is independent of dimensions. The2

presentation of this paper is organized as follows. Main results will be stated in3

Sec. 2, where near-optimal approximation order and learning rate of deep nets are4

established. In Sec. 3, we will establish our main tools for constructing deep nets5

with two hidden layers for approximation of univariate smooth functions. Proofs6

of the main results will be provided in Sec. 4. Finally, derivations of the auxiliary7

lemmas that are needed for our proof of the main results are presented in Sec. 5.8

2. Main Results9

Let Bd := Bd(1) denote the unit ball in Rd with center at the origin. Then any radial10

function f defined on Bd is represented by f(x) = g(|x|2) for some function g :11

[0, 1] → R. Here and throughout the paper, the standard notation of the Euclidean12

norm |x| := [(x(1))2 + · · · + (x(d))2]1/2 is used for x := (x(1), . . . , x(d)) ∈ Rd. In13

this section, we present the main results on approximation and learning of radial14

functions f .15

2.1. Deep nets with tree structure16

Consider the collection17

Sφ,n :=




n∑
j=1

ajφ(wj · x + bj) : aj , bj ∈ R,wj ∈ R
d


 (1)

of shallow nets with activation function φ : R → R, where x ∈ Bd. The deep nets18

considered in this paper are defined recursively in terms of shallow nets according19

to the tree structure, as follows.20

Definition 1. Let L,N1, . . . , NL ∈ N, N0 = d, and φk : R → R, k = 0, 1, . . . , L, be21

univariate activation functions. Set22

H�τ0,0(x) =
N0∑
j=1

aj,�τ0,0φ0(wj,�τ0,0x
(j) + bj,�τ0,0),

x = (x(1), . . . , x(d)), �τ0 ∈
L∏
i=1

{1, 2, . . . , Ni}.

Then a deep net with the tree structure of L layers can be formulated recursively by23

H�τk,k(x) =
Nk∑
j=1

aj,�τk,kφk(Hj,�τk−1,k−1(x) + bj,�τk,k), 1 ≤ k ≤ L,

�τk ∈
L∏

i=k+1

{1, 2, . . . , Ni},

art
Highlight
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where aj,�τk,k, bj,�τ,k, wj,�τ0,0 ∈ R for each j ∈ {1, 2, . . . , Nk}, �τk ∈ ∏L
i=k+1{1, 2, . . . ,1

Ni}, and k ∈ {0, 1, . . . , L}. Let Htree
L denote the set of output functions HL = H�τL,L2

for �τL ∈ ∅ at the Lth layer.3

Note that if the initial activation function is chosen to be φ0(t) = t and4

bj,�τ0,0 = 0, then Htree
1 is the same as the shallow net Sφ1,N1. Figure 1 exhibits5

the structure of the deep net defined in Definition 1, showing sparse and tree-based6

connections among neurons. Due to the concise mathematical formulation, this defi-7

nition of deep nets [5] has been widely used to illustrate its advantages over shallow8

nets. In particular, it was shown in [23] that deep nets with the tree structure can9

be constructed to overcome the saturation phenomenon of shallow nets; in [19] that10

deep nets, with two hidden layers, tree structure, and finitely many neurons, can be11

constructed to possess the universal approximation property; and in [12, 26] that12

deep nets with the tree structure are capable of embodying tree structures for data13

management. In addition, a deep net with the tree structure was constructed in [4]14

to realize manifold data.15

As a result of the sparse connections of deep nets with the tree structure, it16

follows from Definition 1 and Fig. 1 that there are a total of17

AL := 2
L∑
k=0

L−k∏
�=0

NL−� +
L∏
�=0

N� (2)

Fig. 1. Tree structure of deep nets with six layers.
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free parameters for HL ∈ Htree
L . For α,R ≥ 1, we introduce the notation1

Htree
L,α,R :=

{
HL ∈ Htree

L : |aj,�τk,k|, |bj,�τk,k|, |wj,�τ0,0| ≤ R(AL)α,

0 ≤ k ≤ L, 1 ≤ j ≤ Nk, �τk ∈
L∏

i=k+1

{1, 2, . . . , Ni}
}
. (3)

For functions in this class, the parameters of deep nets are bounded. This is2

indeed a necessary condition, since results in [19, 20] showed that there exists an3

h ∈ Htree
2,∞,∞ with finitely many free parameters but infinite capacity (measured by4

the pseudo-dimension). The objective of this paper is to construct deep nets of the5

form (3) for some α and R, for the purpose of approximating and learning radial6

functions.7

2.2. Lower bounds for approximation by deep nets8

In this subsection, we show the power of depth in approximating radial functions,9

by showing some lower bound results for approximation by deep nets under certain10

smoothness assumption on the radial functions.11

Definition 2. For A ⊂ R, c0 > 0 and r = s + v, with s ∈ N0 := {0} ∪ N and12

0 < v ≤ 1, let Lip(r,c0)
A

denote the collection of univariate s-times differentiable13

functions g : A → R, whose sth derivatives satisfy the Lipschitz condition14

|g(s)(t) − g(s)(t0)| ≤ c0|t− t0|v, ∀ t, t0 ∈ A. (4)

In particular, for A = I := [0, 1], let Lip(�,r,c0) denote the set of radial functions15

f(x) = g(|x|2) with g ∈ Lip(r,c0)
I

.16

We point out that the above Lipschitz continuous assumption is standard for17

radial basis functions (RBFs) in Approximation Theory, and was adopted in [13, 14]18

to quantify the approximation abilities of polynomials and ridge functions. For19

U, V ⊆ Lp(Bd) and 1 ≤ p ≤ ∞, we denote by20

dist(U, V, Lp(Bd)) := sup
f∈U

dist(f, V, Lp(Bd)) := sup
f∈U

inf
g∈V

‖f − g‖Lp(Bd)

the deviations of U from V in Lp(Bd). The following main result shows that shallow21

nets are incapable of embodying the rotation-invariance property.22

Theorem 1. Let d ≥ 2, n, L ∈ N, c1 > 0, R, α ≥ 1 and Htree
L,α,R be defined by (3)23

with ñ = AL free parameters, and AL be given by (2). Suppose that φj ∈ Lip(1,c1)
R

24

satisfies ‖φj‖L∞(R) ≤ 1 for every j ∈ {0, 1, . . . , L}. Then for c0 > 0, r = s+ v with

art
Highlight
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s ∈ N0 and 0 < v ≤ 1,1

dist(Lip(�,r,c0),Sφ1,n, L∞(Bd)) ≥ C∗
1 (d+ 2)n−r/(d−1), (5)

and2

dist(Lip(�,r,c0),Htree
L,α,R, L∞(Bd)) ≥ C∗

2 (L2ñ log2 ñ)−r, L ≥ 2, (6)

where (d+ 2)n is the number of parameters for the shallow net Sφ1,n and the con-3

stants C∗
1 and C∗

2 are independent of n, ñ or L.4

The proof of Theorem 1 is postponed to Sec. 4. Observe that Theorem 1 exhibits5

an interesting phenomenon in approximation of radial functions by deep nets, in6

that the depth plays a crucial role, by comparing (5) with (6). For instance, the7

lower bound (ñ log ñ)−r for deep nets is a big improvement of the lower bound8

ñ−r/(d−1) for shallow nets, for dimensions d > 2.9

2.3. Near-optimal approximation rates for deep nets10

In this subsection, we show that the lower bound (6) is achievable up to a logarith-11

mic factor by some deep net with L = 3 layers for certain commonly used activation12

functions that satisfy the following smoothness condition.13

Assumption 1. The activation function φ is assumed to be infinitely differentiable,14

with both ‖φ′‖L∞(R) and ‖φ‖L∞(R) bounded by 1, such that φ(j)(θ0) �= 0 for some15

θ0 ∈ R and all j ∈ N0, and that16

|φ(−t)| = O(t−1), |1 − φ(t)| = O(t−1), t→ ∞. (7)

It is easy to see that all of the logistic function: φ(t) = 1
1+e−t , the hyperbolic tangent17

function: φ(t) = 1
2 (tanh(t) + 1), the arctan function: φ(t) = 1

π arctan(t) + 1
2 , and18

the Gompertz function: φ(t) = e−e
−t

, satisfy Assumption 1, in which we essentially19

impose three conditions on the activation function φ, namely: infinite differentiabil-20

ity, non-vanishing of all derivatives at the same point, and the sigmoidal property21

(7). On the other hand, we should point out that such strong assumptions are22

stated only for the sake of brevity, but can be relaxed to Assumption 2. In par-23

ticular, the infinite differentiability condition on φ can be replaced by some much24

weaker smoothness property as that of the target function f . The following is our25

second main result, which shows that deep nets can be constructed to realize the26

rotation-invariance property of f by exhibiting a dimension-independent approxi-27

mation error bound, which is much smaller than that for shallow nets.28

Theorem 2. Let n ≥ 2, c0 > 0, and r = s + v with s ∈ N0 and 0 < v ≤ 1. Then29

under Assumption 1, for R, α ≥ 1,30

9−rC∗
2 (n logn)−r ≤ dist(Lip(�,r,c0),Htree

3,α,R, L∞(Bd)) ≤ C∗
3n

−r, (8)

where Htree
3,α,R is defined by (3) with L = 3, N0 = d,N1 = 6, N2 = s+3, N3 = 3n+3,31

α = 48(3 + r(r + 1) + r(s + 1)!7(r + 1)), and the constant C∗
3 is independent of n.32
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Note that the deep net in Theorem 2 has the number of free parameters1

satisfying2

6d(s+ 3)(3n+ 3) ≤ ñ = A3 ≤ 54d(s+ 3)(3n+ 3).

It follows from (8) that, up to a logarithmic factor, there exists a deep net with3

L = 3 and some commonly used activation functions that achieve the lower bound4

(6) established in Theorem 1.5

We would like to mention an earlier work [21] on approximating radial functions6

by deep ReLU networks, where it was shown that for each f ∈ Lip(�,1,c0), there exist7

a fully connected deep net HReLU
ñ with ReLU activation function, φ(t) = max{t, 0},8

and at least ñ parameters and at least O(log ñ) layers, such that9

‖f −HReLU
ñ ‖L∞(Bd) ≤ C∗

4 ñ
− 1

2

for some absolute constant  ≥ 1 and constant C∗
4 independent of ñ. The novelties10

of our results in this paper, as compared with those in [21], can be summarized11

as follows. First, noting that ñ− 1
2 � (ñ log ñ)−1 for  ≥ 1, we may conclude that12

only an upper bound (without approximation order estimation) was provided in13

[21], while both near-optimal approximation error estimates and achievable lower14

bounds are derived in this paper on the approximation of functions in Lip(�,r,c0).15

In addition, while fully connected deep nets were considered in [21], we construct a16

deep net with sparse connectivity in our paper. Finally, to achieve upper bounds for17

any r > 0 (as opposed to merely r = 1), non-trivial techniques, such as “product-18

gate” and approximation of smoothness functions by products of deep nets and19

Taylor polynomials are introduced in Sec. 3. It would be of interest to obtain similar20

results as Theorem 2 for deep ReLU nets, but this is not considered in this paper.21

2.4. Learning rate analysis for empirical risk minimization22

on deep nets23

Based on near-optimal approximation error estimates in Theorem 2, we shall deduce24

a near-optimal learning rate for the algorithm of ERM over Htree
3,α,R. Our anal-25

ysis will be carried out in the standard regression framework [7], with samples26

Dm = {(xi, yi)}mi=1 drawn independently according to an unknown Borel probabil-27

ity measure ρ on Z = X × Y, with X = Bd and Y ⊆ [−M,M ] for some M > 0.28

The primary objective is to learn the regression function fρ(x) =
∫
Y ydρ(y |x)29

that minimizes the generalization error E(f) :=
∫
Z(f(x) − y)2dρ, where ρ(y |x)30

denotes the conditional distribution at x induced by ρ. To do so, we consider the31

learning rate for the ERM algorithm32

fD,n,φ := arg min
f∈Htree

3,α,R

1
m

m∑
i=1

(f(xi) − yi)2. (9)

Here, n ∈ N is the parameter appearing in the definition of Htree
3,α,R. Since |yi| ≤33

M , it is natural to project the final output fD,n,φ to the interval [−M,M ] by34
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the truncation operator πMfD,n,φ(x) := sign(fD,n,φ(x))min{|fD,n,φ(x)|,M}. The1

following theorem is our third main result on a near-optimal dimension-independent2

learning rate for πMfD,n,φ.3

Theorem 3. Let fD,n,φ be defined by (9), and consider fρ ∈ Lip(�,r,c0) with c0> 04

and r = s + v with s ∈ N0, 0 < v ≤ 1, and n =
[
C∗

5m
1

2r+1
]
. Then under Assump-5

tion 1, for any 0 < δ < 1,6

E(πMfD,n,φ) − E(fρ) ≤ C∗
6m

− 2r
2r+1 log(m+ 1) log

3
δ

(10)

holds with confidence at least 1 − δ. Furthermore,7

C∗
7m

− 2r
2r+1 ≤ sup

fρ∈Lip(�,r,c0)
E{E(πMfD,n,φ) − E(fρ)} ≤ C∗

8m
− 2r

2r+1 log(m+ 1),

(11)

where, as usual, [a] denotes the integer part of a > 0 and the constants C∗
5 , C

∗
6 ,8

C∗
7 , C

∗
8 are independent of δ, m and n.9

We emphasize that the learning rate in (10) is independent of the dimension10

d, and is much better than the optimal learning rate m− 2r
2r+d for learning (r, c0)-11

smooth (but not necessarily radial) functions on Bd [10, 16, 18]. For shallow nets,12

it follows from (5) that to achieve a learning rate similar to (11), we need at least13

[m
d−1
2r+1 ] neurons to guarantee the O(m− 2r

2r+1 ) bias. For d ≥ 3, since m
d−1
2r+1 ≥ m

1
2r+1 ,14

the capacity of neural networks is large. Consequently, it is difficult to derive a15

satisfactory variance, so that derivation of a similar almost optimal learning rates16

as (11) for ERM on shallow nets is also difficult. Thus, Theorem 3 demonstrates17

that ERM on deep nets can embody the rotation-invariance property by deducing18

the learning rate of order m− 2r
2r+1 .19

3. Approximation by Deep Nets Without Saturation20

Construction of neural networks to approximate smooth functions is a classical and21

long-standing topic in approximation theory. Generally speaking, there are two22

approaches, one by constructing neural networks to approximate algebraic polyno-23

mials, and the other by constructing neural networks with localized approximation24

properties. The former usually requires extremely large norms of weights [24, 32]25

and the latter frequently suffers from the well-known saturation phenomenon [2, 3],26

in the sense that the approximation rate cannot be improved any further, when the27

regularity of the target function goes beyond a specific level. The novelty of our28

method is to adopt the ideas from both of the above two approaches to construct29

a deep net with two hidden layers with controllable norms of weights and with-30

out saturation, by considering the “exchange-invariance” between polynomials and31

shallow nets, the localized approximation of neural networks, a recently developed32

“product-gate” technique [33], and a novel Taylor formula. For this purpose, we33
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need to impose differentiability and the sigmoid property on activation functions,1

as follows.2

Assumption 2. Let c0 > 0, r0 = s0 + v0 with s0 ≥ 2 and 0 < v0 ≤ 1. Assume3

that φ ∈ Lip(r0,c0)
R

is a sigmoidal function with ‖φ′‖L∞(R), ‖φ‖L∞(R) ≤ 1, such that4

φ(j)(θ0) �= 0 for all j = 0, 1, . . . , s0, for some θ0 ∈ R.5

It is obvious that Assumption 2 is much weaker than the smoothness property6

of φ in Assumption 1. Furthermore, it removes the restriction (7) on the use of7

sigmoid functions as activation function, by considering only the general sigmoidal8

property:9

φ(−t) → 0, and φ(t) → 1, when t→ ∞.

In view of this property, we introduce the notation10

δφ(A) := sup
t≥A

max(|1 − φ(t)|, |φ(−t)|), (12)

where A ≥ 1, and observe that limA→∞ δφ(A) = 0.11

3.1. Exchange-invariance of univariate polynomials and shallow12

nets13

In this subsection, a shallow net with one neuron is constructed to replace a uni-14

variate homogeneous polynomial together with a polynomial of lower degree. It is15

shown in the following proposition that such a replacement does not degrade the16

polynomial approximation property.17

Proposition 1. Under Assumption 2 with c0 > 0, r0 = s0 + v0 and θ0 ∈ R, let18

k ∈ {0, . . . , s0} and pk(t) =
∑k

i=0 uit
i with uk �= 0. Then for an arbitrary ε ∈ (0, 1),19 ∣∣∣∣pk(t) − uk

k!
µkkφ

(k)(θ0)
φ(µkt+ θ0) − p∗k−1(t)

∣∣∣∣ ≤ ε, ∀ t ∈ [−1, 1], (13)

where20

µk := µk,ε :=




min
{

1,
ε|φ(k)(θ0)|(k + 1)

|uk|maxθ0−1≤t≤θ0+1 |φ(k+1)(t)|
}

if 0 ≤ k ≤ s0 − 1,

min

{
1,
[
ε|φ(s0)(θ0)|Γ(s0 + v0 + 1)

s0!Γ(v0 + 1)c0|us0 |
] 1

v0

}
if k = s0,

(14)

p∗−1(t) = 0 and21

p∗k−1(t) :=
k−1∑
i=0

u∗i t
i :=

k−1∑
i=0

(
ui − ukk!φ(i)(θ0)

φ(k)(θ0)µk−ik i!

)
ti. (15)

The proof of Proposition 1 requires the following Taylor representation which22

is an easy consequence of the classical Taylor formula23

ψ(t) =
�−1∑
i=0

ψ(i)(t0)
i!

(t− t0) +
1

(�− 1)!

∫ t

t0

ψ(�)(u)(t− u)(�−1)du
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with remainder in integral form, and using the formula
∫ t
t0

(t − u)�−1du = (t−t0)�

� .
1

To obtain the Taylor polynomial of degree k, this formula does not require ψ to be2

(k+1)-times differentiable. This observation is important throughout our analysis.3

Lemma 1. Let � ≥ 1 and ψ be �-times differentiable on R. Then for t, t0 ∈ R,4

ψ(t) = ψ(t0) +
ψ′(t0)

1!
(t− t0) + · · · + ψ(�)(t0)

�!
(t− t0)� + r�(t), (16)

where5

r�(t) =
1

(�− 1)!

∫ t

t0

[ψ(�)(u) − ψ(�)(t0)](t− u)�−1du. (17)

We are now ready to prove Proposition 1.6

Proof of Proposition 1. Since µk ∈ (0, 1] from its definition, we may apply7

Lemma 1 with t0 = θ0 and � = k to obtain8

φ(µkt+ θ0) =
k∑
i=0

φ(i)(θ0)
i!

(µkt)i + rk,µk
(t),

where r0,µ0 = φ(µkt+ θ0) − φ(θ0) and9

rk,µk
(t) :=

1
(k − 1)!

∫ µkt+θ0

θ0

[φ(k)(u) − φ(k)(θ0)](µkt+ θ0 − u)k−1du (18)

for k ≥ 1. It follows that10

tk =
k!

µkkφ
(k)(θ0)

φ(µkt+ θ0) + qk−1(t) − k!
µkkφ

(k)(θ0)
rk,µk

(t),

where11

qk−1(t) =
−k!

µkkφ
(k)(θ0)

k−1∑
i=0

φ(i)(θ0)
i!

(µkt)i,

so that12

pk(t) = uk
k!

µkkφ
(k)(θ0)

φ(µkt+ θ0) + p∗k−1(t) − uk
k!

µkkφ
(k)(θ0)

rk,µk
(t),

with p∗k−1 defined by (15). What is left is to estimate the remainder13

uk
k!

µk
kφ

(k)(θ0)
rk,µk

(t). To this end, we observe, for the case k = 0, from the defi-14

nition of µ0, that for any t ∈ [−1, 1],15 ∣∣∣∣u0
1

φ(θ0)
r0,µ0 (t)

∣∣∣∣ ≤ |u0|
|φ(θ0)| max

θ0−1≤τ≤θ0+1
|φ′(τ)|µ0|t| ≤ 1

|φ(θ0)|ε|φ(θ0)| = ε.

For 1 ≤ k ≤ s0 − 1, we may apply the estimate16

|φ(k)(µku+ θ0) − φ(k)(θ0)|
≤ max

θ0−1≤τ≤θ0+1
|φ(k+1)(τ)|µk |u|, ∀u ∈ [0, t], t ∈ [−1, 1]
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to compute, for any t ∈ [−1, 1],1 ∣∣∣∣uk k!
µkkφ

(k)(θ0)
rk,µk

(t)
∣∣∣∣

=
∣∣∣∣ kuk
φ(k)(θ0)

∫ t

0

[φ(k)(µku+ θ0) − φ(k)(θ0)](t− u)k−1du

∣∣∣∣
≤ k(k + 1)ε

∫ 1

0

u(1 − u)k−1du = k(k + 1)ε
Γ(2)Γ(k)
Γ(k + 2)

= ε.

Finally, for k = s0, we may apply the Lipschitz property of φ(s0) to obtain2

φ(s0)(µku+ θ0) − φ(s0)(θ0) ≤ c0|µku|v0 , ∀u ∈ [0, t], t ∈ [−1, 1],

so that for any t ∈ [−1, 1], we have3 ∣∣∣∣us0 s0!
µs0s0φ

(s0)(θ0)
rs0,µs0

(t)
∣∣∣∣

=
∣∣∣∣ s0us0
φ(s0)(θ0)

∫ t

0

[
φ(s0)(µs0u+ θ0) − φ(s0)(θ0)

]
(t− u)s0−1du

∣∣∣∣
≤ µv0s0c0s0|us0 |

|φ(s0)(θ0)|
∫ 1

0

uv0(1 − u)s0−1du ≤ µv0s0c0s0|us0 |
|φ(s0)(θ0)|

Γ(v0 + 1)Γ(s0)
Γ(s0 + 1 + v0)

≤ ε.

This completes the proof of Proposition 1.4

3.2. Approximation of univariate polynomials by neural networks5

and the product gate6

Our second tool, to be presented in the following proposition, shows that the7

approximation capability of shallow nets is not worse than that of polynomials8

of the same order (degree +1) as the cardinality of weights of the shallow nets.9

Proposition 2. Under Assumption 2 with r0 = s0 + v0 and θ0 ∈ R, let k ∈10

{0, . . . , s0} and pk(t) =
∑k

i=0 uit
i. Then for an arbitrary ε ∈ (0, 1), there exists a11

shallow net12

hk+1(t) :=
k+1∑
j=1

ajφ(wj · t+ θ0)

with 0 < wj ≤ 1 and13

|aj | ≤ C̃1




(
1 +

k∑
i=0

|ui|
)(k+1)!

ε−(k+1)! if 0 ≤ k ≤ s0 − 1,

(
1 +

s0∑
i=0

|ui|
)(1+s0/v0)s0!

ε−(1+s0/v0)s0! if k = s0,

(19)

for 1 ≤ j ≤ k + 1, such that14

|pk(t) − hk+1(t)| ≤ ε, ∀ t ∈ [−1, 1], (20)
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where C̃1 ≥ 1 is a constant depending only on φ, θ0, v0 and s0, to be specified1

explicitly in the proof of the derivation.2

We remark, however, that to arrive at a fair comparison with polynomial3

approximation, the polynomial degree k should be sufficiently large, so that the4

norm of weights of the shallow nets could also be extremely large. In the following5

discussion, we require k to be independent of ε in order to reduce the norm of the6

weights. Based on Proposition 2, we are able to derive the following proposition,7

which yields a “product-gate” property of deep nets.8

Proposition 3. Under Assumption 2 with r0 = s0 + v0 and θ0 ∈ R, for ε ∈ (0, 1),9

there exists a shallow net10

h3(t) :=
3∑
j=1

ajφ(wj · t+ θ0)

with11

0 < wj ≤ 1, |aj | ≤ C̃2

{
ε−6 if s0 ≥ 3,

ε−
6

v0 if s0 = 2
(21)

for j = 1, 2, 3, such that for any U,U ′ ∈ [−1, 1],12

|UU ′ − (2h3((U + U ′)/2) − h3(U)/2 − h3(U ′)/2)| ≤ ε, (22)

where C̃2 is a constant depending only on s0, v0, φ and θ0.13

Proof. For ε > 0, we apply Proposition 2 to the polynomial t2 to derive a shallow14

net15

h3(t) =
3∑
j=1

ajφ(wj · t+ θ0)

with 0 < wj ≤ 1 and16

|aj | ≤ C̃1

{
26ε−6 if s0 ≥ 3,

2
6

v0 ε−
6

v0 if s0 = 2
(23)

for j = 1, 2, 3, such that17

|t2 − h3(t)| ≤ ε, t ∈ [−1, 1]. (24)

Since18

UU ′ =
4
(
U + U ′

2

)2

− U2 − (U ′)2

2
and U,U ′ ∈ [−1, 1] implies (U + U ′)/2 ∈ [−1, 1], we have19

|h3((U + U ′)/2) − ((U + U ′)/2)2| ≤ ε, |h3(U) − U2| ≤ ε, |h3(U ′) − (U ′)2| ≤ ε.

This completes the proof of Proposition 3 by scaling ε to ε/3.20



Page Proof

August 6, 2019 21:12 WSPC/S0219-5305 176-AA 1940007

Deep neural networks for rotation-invariance approximation and learning 13

To end this subsection, we present the proof of Proposition 2.1

Proof of Proposition 2. Observe that 1
min{1,a} = max{1, 1

a} for a > 0 and2

max{1, |uk|
ε } ≤ max{1, ( |uk|

ε )1/v0}. For the case k = s0, the constant µk = µk,ε3

defined by (14) satisfies4

1
µk

≤ Cφ,s0 max

{
1,
( |uk|

ε

)1/v0
}
,

where Cφ,s0 is a constant depending on φ and s0 and given by5

Cφ,s0 = max

{
max

1≤k≤s0−1

‖φ(k+1)‖C[θ0−1,θ0+1]

|φ(k)(θ0)|(k + 1)
,

(
s0!Γ(v0 + 1)c0

|φ(s0)(θ0)|Γ(s0 + v0 + 1)

)1/v0
}
.

For 0 ≤ i ≤ k − 1, the ith coefficient of the polynomial p∗k−1 is bounded by6

|ui| + |uk|k!|φ(i)(θ0)|
|φ(k)(θ0)|i! Ck−iφ,s0

max

{
1,
( |uk|

ε

) k−i
v0

}

≤


1 +

k−1∑
i=0

|φ(i)(θ0)|

|φ(k)(θ0)| k!


 (1 + Cφ,s0)

k‖u‖1 max

{
1,
(‖u‖1

ε

) k
v0

}

≤ C̃k‖u‖1 max

{
1,
(‖u‖1

ε

) k
v0

}
,

where ‖u‖1 =
∑k

i=0 |ui| and the constant C̃k is given by7

C̃k =


1 +

k−1∑
i=0

|φ(i)(θ0)| + 1

|φ(k)(θ0)| k!


 (1 + Cφ,s0)

k.

Also, the coefficient of φ(µkt+ θ0) in (13) satisfies8 ∣∣∣∣uk k!
µkkφ

(k)(θ0)

∣∣∣∣ ≤ C̃k‖u‖1 max

{
1,
(‖u‖1

ε

) k
v0

}
.

Denote C′
s0 = max0≤k≤s0 C̃k(k+ 1)k/v0 . Then it follows from Proposition 1, with ε9

scaled to ε
k+1 , that10

max
−1≤t≤1

|pk(t) − a1φ(w1t+ θ0) − p∗k−1(t)| ≤
ε

k + 1
,

where p∗k−1(t) =
∑k−1

i=0 citi satisfies |ci| ≤ C′
s0‖u‖

k
v0

+1

1 ε−
k

v0 for i = 0, . . . , k − 1,11

w1 ∈ (0, 1] and |a1| ≤ C′
s0‖u‖

k
v0

+1

1 ε−
k

v0 . If the leading term of p∗k−1(t) is ci0ti0 with12
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0 ≤ i0 ≤ k − 1, then we may apply Proposition 1 with ε
k+1 and v0 = 1 again to1

obtain2

max
−1≤t≤1

|p∗k−1(t) − a2φ(w2t+ θ0) − p∗i0−1(t)| ≤
ε

k + 1
,

where w2 ∈ (0, 1], and a2 as well as the coefficient c∗i of p∗i0−1(t) =
∑i0−1

i=0 c∗i t
i are3

bounded above by4

C′
s0

(
kC′

s0‖u‖
k

v0
+1

1 ε−
k

v0

)i0+1

ε−i0 ≤ kk(C′
s0)

1+k‖u‖k
(

k
v0

+1
)

1 ε−
k2
v0

−k+1.

Then our conclusion follows by mathematical induction with the constant C̃1 given5

by C̃1 = kk+1(C′
s0 )

kk

. The case k ≤ s0 − 1 can be easily verified with the same6

procedure. This completes the proof of Proposition 2.7

3.3. Approximating smooth functions by products of polynomials8

and neural networks9

In this subsection, we discuss the approximation of continuous functions on J :=10

[0, 1/2] by sums of the products of Taylor polynomials and shallow nets. Let n ∈ N11

and tj = j
2n with j = 0, 1, . . . , n be the equally spaced points on J. For an arbitrary12

t ∈ J, there is some j0, such that tj0 ≤ t < tj0+1 (tn−1 ≤ t ≤ tn when t = 1/2).13

Recalling A ≥ 1, since14

−4An(t− tj) +A ≤ −A for j = 0, 1, . . . , j0 − 1,

and15

−4An(t− tj) +A > A for j = j0 + 1, j0 + 2, . . . , n,

we may derive from (12) the following localized approximation property:16 

|φ(−4An(t− tj) + A)| ≤ δφ(A) if j ≤ j0 − 1,

|φ(−4An(t− tj) + A) − 1| ≤ δφ(A) if j0 + 1 ≤ j ≤ n.

(25)

For a purpose of approximation theory, we need the following error estimate of the17

Taylor expansion which is an easy consequence of Lemma 1.18

Lemma 2. Let ψ ∈ Lip(r,c′0)
J

with r = s+ v, s ∈ N0, 0 < v ≤ 1 and c′0 > 0. Define19

Ts,ψ,t̃(t) :=
s∑
j=0

ψ(j)(t̃)
j!

(t− t̃)j .

Then20

|ψ(t) − Ts,ψ,t̃(t)| ≤
c′0
s!
|t− t̃|r, ∀ t, t̃ ∈ J. (26)
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With the localized approximation property (25) and Lemma 2, for each g ∈1

Lip(r,c′0)
J

, we now define2

Φn,s,g,A(t) :=
n∑
j=0

Ts,g,tj (t)bA,j(t), (27)

where3

bA,0(t) := φ(−4Ant+A),

and4

bA,j(t) := φ(−4An(t− tj) +A) − φ(−4An(t− tj−1) +A), 1 ≤ j ≤ n.

Note that each term in the approximant (27) is the product of a Taylor polynomial5

and a shallow neural network function, with the special case of s = 0 already con-6

sidered in [2]. We provide an error estimate for Φn,s,g,A in the following proposition.7

Proposition 4. If g ∈ Lip(r,c′0)
J

with r = s+ v, s ∈ N0, 0 < v ≤ 1, c′0 > 0 and φ is8

a bounded sigmoidal function, then9

|g(t) − Φn,s,g,A(t)| ≤ C̃3(nδφ(A) + n−r), ∀ t ∈ J,

where C̃3 := 2( c
′
0+c

′
0‖φ‖L∞(R)

s! + ‖g‖L∞(J)).10

Proof. For t ∈ J, let j0 be the integer that satisfies tj0 ≤ t < tj0+1 for 0 ≤ j0 ≤11

n− 2, and tj0 ≤ t ≤ tj0+1 for j0 = n− 1, while tn−1 ≤ t ≤ tn if t = 1/2. Then by12

separating
∑n
j=0 into

∑j0
j=0 +

∑n
j0+1, it follows from (27) that13

Φn,s,g,A(t) =
j0∑
j=0

(Ts,g,tj (t) − Ts,g,tj+1(t))φ(−4An(t− tj) +A)

+
n−1∑

j=j0+1

(Ts,g,tj (t) − Ts,g,tj+1(t))(φ(−4An(t − tj) +A) − 1)

+Ts,g,tn(t)(φ(−4An(t − tn) +A) − 1) + Ts,g,tj0+1(t),

where the last term appears because the term Ts,g,tj0+1(t)bA,j0+1(t) is separated in14

(27) into the above summations. It follows by considering the term with j = j015

from the first summation that16

|g(t) − Φn,s,g,A(t)|

≤
j0−1∑
j=0

|Ts,g,tj (t) − Ts,g,tj+1(t)||φ(−4An(t− tj) +A)|

+
n−1∑

j=j0+1

|Ts,g,tj (t) − Ts,g,tj+1(t)||φ(−4An(t − tj) +A) − 1|
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+ |Ts,g,tn(t)||φ(−4An(t − tn) + A) − 1| + |Ts,g,tj0+1(t) − g(t)|
+ |Ts,g,tj0 (t) − g(t) + g(t) − Ts,g,tj0+1(t)||φ(−4An(t− tj0) +A)|.

Noting (25) and Lemma 2, we have1

|g(t) − Φn,s,g,A(t)| ≤ (2n− 1) max
0≤j≤n

|Ts,g,tj (t)|δφ(A) +
c′0
s!

(1 + 2‖φ‖L∞(R))n−r.

On the other hand, since (26) implies2

max
0≤t≤1,0≤j≤n

|Ts,g,tj (t)| ≤
c′0
s!

+ ‖g‖L∞(J),

we have3

|g(t) − Φn,s,g,A(t)| ≤ (2n− 1)
(
c′0
s!

+ ‖g‖L∞(J)

)
δφ(A) +

c′0
s!

(1 + 2‖φ‖L∞(R))n−r.

This completes the proof of Proposition 4.4

3.4. Approximation of univariate functions by neural networks5

with two hidden layers6

Based on Propositions 2–4, we prove the following theorem on the construction7

of deep nets with two hidden layers for the approximation of univariate smooth8

functions.9

Theorem 4. Let g ∈ Lip(r,c′0)
J

with c′0 > 0, r = s + v, s ∈ N0, 0 < v ≤ 1. Then10

under Assumption 2 with c0 > 0, r0 = s0 + v0, 0 < v0 ≤ 1, and s0 ≥ max{s, 2}, for11

an arbitrary 0 < ε ≤ 1, there exists a deep net of the form12

H3(n+3),s+3,A(t) =
3n∑
j=1

a∗jφ

(
s+3∑
i=1

a∗j,iφ(w∗
j,it+ θ∗j,i) + θ∗j

)
, t ∈ J (28)

that satisfies |θ∗j |, |θ∗j,i| ≤ 1 + 3An+ |θ0|, |w∗
j,i| ≤ 4An and13

|a∗j |, |a∗j,i| ≤ C̃4




ε−7(s+1)! if s0 ≥ 3, s0 > s,

ε−
7

v0
(s+1)! if s0 ≥ 3, s0 = s,

ε−
v0+6

v0
(s+1)! if s0 = 2, s0 > s,

ε
− v0+6

v2
0

(s+1)!
if s0 = 2, s0 = s

(29)

such that14

|g(t) −H3n+3,s+3,A(t)| ≤ C̃4(nδφ(A) + n−r + nε), ∀ t ∈ J, (30)

for some constant C̃4 independent of ε, n or A.15
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The main novelty of the above theorem is that (30) holds for an arbitrary1

0 < r ≤ r0 and the parameters of the deep net (28) are controllable, provided2

that the activation function satisfies Assumption 2. This deviates Theorem 4 from3

the classical results in [2, 3, 24, 32, 35], in which either 0 < r ≤ 1 is required or4

extremely large parameters are needed. We remark that since the goal of this paper5

is to approximate radial functions, we only need error estimates for approximation6

of univariate functions, though the approach in this paper can be extended to the7

realization of more general multivariate functions by using the similar methods as8

this paper.9

Proof of Theorem 4. The proof of this theorem is divided into three steps: first10

to decouple the product, then to approximate the Taylor polynomials, and finally to11

deduce the approximation errors, by applying Propositions 3, 2, and 4, respectively.12

Step 1: Decoupling products. From Assumption 2, the definition of bA,j , and13

Lemma 2, we observe that14

|bA,j(t)| ≤ 2, |Ts,g,tj (t)| ≤ ‖g‖L∞(J) + c′0, ∀ t, tj ∈ J.

By denoting15

B1 := 4(‖g‖L∞(J) + c′0 + 2)

we have, for an arbitrary t ∈ J, bA,j(t)/B1, Ts,g,tj (t)/B1 ∈ [−1/4, 1/4]. It then16

follows from Proposition 3 with U = bA,j(t)/B1 and U ′ = Ts,g,tj (t)/B1 that a17

shallow net18

h3(t) :=
3∑
j=1

ajφ(wj · t+ θ0)

can be constructed to satisfy the conditions 0 < wj ≤ 1 and the bound (21) for aj19

that depends only on ε, such that20 ∣∣∣∣Ts,g,tj (t)bA,j(t) −B2
1

(
2h3

(
Ts,g,tj (t) + bA,j(t)

2B1

)

−
h3

(
bA,j(t)
B1

)
2

−
h3

(
Ts,g,tj (t)
B1

)
2



∣∣∣∣∣∣∣∣
≤ B2

1ε. (31)

Furthermore, it follows from (21) and ‖φ′‖L∞(R) ≤ 1 that for any τ, τ ′ ∈ J,21

|h3(τ) − h3(τ ′)| ≤
3∑
j=1

|aj||τ − τ ′| ≤ 3C̃2|τ − τ ′|


ε−6 if s0 ≥ 3,

ε−
6

v0 if s0 = 2.
(32)

Step 2: Approximating Taylor polynomials. Since t, tj ∈ J, we have t− tj ∈ [−1, 1].22

Let ε1 ∈ (0, 1/4] to be determined later. Then, for any fixed j ∈ {1, 2, . . . , n}, it23
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follows from Proposition 2 with ps(t − tj) = Ts,g,tj (t)/B1 =
∑s

i=0
g(i)(tj)
i!B1

(t − tj)i1

that there exists a shallow net2

hs+1,j(t) :=
s+1∑
i=1

ai,jφ(wi,j · t− wi,jtj + θ0) (33)

with 0 < wi,j ≤ 1 and3

|ai,j | ≤ C̃5



ε
−(s+1)!
1 if s0 > s,

ε
−(s0/v0+1)s0!
1 if s0 = s,

(34)

where C̃5 := C̃1(1 +
∑s
i=0(

‖g(i)‖L∞(J)

i!B1
))(s0/v0+1)s0!, such that4

|Ts,g,tj (t)/B1 − hs+1,j(t)| ≤ ε1, 1 ≤ j ≤ n, ∀ t ∈ J. (35)

Step 3: Construction of deep nets with error bounds. Define5

H3n+3,s+3,A(t) :=
n∑
j=0

HA,j(t) (36)

with6

HA,j(t) := B2
1


2h3

(
hs+1,j(t)

2
+
bA,j(t)
2B1

)
− h3(hs+1,j(t))

2
−
h3

(
bA,j(t)
B1

)
2


.

(37)

Then it follows from (27) and (31) that7

|H3n+3,s+3,A(t) − Φn,s,g,A(t)|

≤
n∑
j=0

|HA,j(t) − Ts,g,tj (t)bA,j(t)|

≤
n∑
j=0

∣∣∣∣∣∣∣∣
HA,j(t) −B2

1


2h3

(
Ts,g,tj (t) + bA,j(t)

2B1

)
−
h3

(
bA,j(t)
B1

)
2

−
h3

(
Ts,g,tj (t)
B1

)
2



∣∣∣∣∣∣∣∣
+ (n+ 1)B2

1ε. (38)

Also, since 0 < ε1 ≤ 1/4 and Ts,g,tj (t)/B1 ≤ 1/4, it follows from (35) and (32) that8

|h3(hs+1,j(t)) − h3(Ts,g,tj (t)/B1)| ≤ 3C̃2ε1



ε−6 if s0 ≥ 3,

ε−
6

v0 if s0 = 2,
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and1 ∣∣∣∣h3

(
hs+1,j(t)

2
+
bA,j(t)
2B1

)
− h3

(
Ts,g,tj (t) + bA,j(t)

2B1

)∣∣∣∣
≤ 3C̃2

2
ε1



ε−6 if s0 ≥ 3,

ε−
6

v0 if s0 = 2.

Therefore, plugging the above two estimates into (38), we obtain for any t ∈ J2

|H3n+3,s+3,A(t) − Φn,s,g,A(t)|

≤ (n+ 1)B2
1ε+

9C̃2B
2
1

2
ε1



ε−6 if s0 ≥ 3,

ε−
6

v0 if s0 = 2.
(39)

From the above argument, we may set ε1 =




1
4ε

7 if s0 ≥ 3,

1
4ε

1+ 6
v0 if s0 = 2

so that (39)3

implies that for any t ∈ J4

|H3n,s+3,A(t) − Φn,s,g,A(t)| ≤ (n+ 1)
(
B2

1 +
9
8
C̃2B

2
1

)
ε.

Applying this together with Proposition 4, we may conclude, for any t ∈ J, that5

|g(t) −H3n,s+3,A(t)| ≤ |g(t) − Φn,s,g,A(t)| + |Φn,s,g,A(t) −H3n,s+3,A(t)|
≤ (C̃3 +B2

1 + 9C̃2B
2
1/8)((n+ 1)δφ(A) + n−r + (n+ 1)ε).

What is left is to find bounds of the parameters in H3n,s+3,A. This can be done by6

applying (36), (37), (33), the definition of bA,j , (21) and (34) to yield7

H3n+3,s+3,A(t) =
3n+3∑
j=1

a∗jφ

(
s+3∑
i=1

a∗j,iφ(w∗
j,it+ θ∗j,i) + θ∗j

)
,

by considering |θ∗j |, |θ∗j,i| ≤ 1+3An+ |θ0|, |w∗
j,i| ≤ 4An, with a∗j , a

∗
j,i to satisfy (29)8

for the constant C̃4 := C̃3 +B2
1 + 9C̃2B

2
1/8 + 1, which is independent of ε, n or A.9

This completes the proof of Theorem 4.10

4. Proofs of Main Results11

This section is devoted to proving our main results, to be presented in three subsec-12

tions, namely: Proof of Theorem 1, Proofs of Theorem 2, and Proof of Theorem 3,13

respectively.14
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4.1. Proof of Theorem 11

Our proof of Theorem 1 will require two mathematical tools on relationships among2

covering numbers [36, 37], lower bounds of approximation, and an upper bound3

estimate for the covering number of Htree
L,α,R. It is well-known that the approximation4

capability of a class of functions depends on its “capacity” (see, for example, [20]). In5

the following lemma, we will establish some relationship between covering numbers6

and lower bound of approximation, when the target function is radial.7

Lemma 3. Let N ∈ N and V ⊆ L∞(Bd). If8

N (ε, V ) ≤ C′
1

(
C′

2N
β

ε

)N
, ∀ 0 < ε ≤ 1 (40)

with β,C′
1, C

′
2 > 0, then9

dist(Lip(�,r,c0), V, L∞(Bd)) ≥ C′
3[N log2(N + C′

4)]
−r, (41)

where N (ε, V ) denotes the ε-covering number of V in L∞(Bd), which is the least10

number of elements in an ε-net of V, C′
3 = c0

8 (β + 2r + 4)−r and C′
4 = 2C′

1 +11

4C′
2c

−1
0 (β + 2r + 4)r.12

The proof of Lemma 3 is motivated by [20], where a relation between the pseudo-13

dimension and lower bounds of approximating smooth functions was established.14

We postpone its proof to Sec. 5. The second relationship is a tight bound for covering15

numbers [5].16

Lemma 4. Let L ∈ N, c1 > 0, and assume that φj ∈ Lip(1,c1)
R

to satisfy17

‖φj‖L∞(Bd) ≤ 1, for j = 0, . . . , L. Then for any 0 < ε ≤ 1,18

N (ε,Htree
L,α,R) ≤

(
2L+5/2c

L+3/2
1 AL+1

R,α,L

ε

)2AL

, (42)

where AR,α,L := R(AL)α and AL is defined by (2).19

We are now ready to prove Theorem 1 by applying the above two lemmas.20

Proof of Theorem 1. In view of Lemma 4, condition (40) is satisfied by V =21

Htree
L,α,R with C̃1 = 1, N = 2AL, β = α(L+ 1), and C̃2 = 2L+5/2c

L+3/2
1 RL+1. Then22

it follows from (41) that23

dist(Lip(�,r,c0),Htree
L,α,R, L∞(Bd))

≥ c0
8

(αL + α+ 2r + 4)−r × [2AL log2(2AL + 2

+ 2L+9/2c−1
0 c

L+3/2
1 RL+1(αL + α+ 2r + 4)r)]−r.
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Noting that1

log2(2AL + 2 + 2L+9/2c−1
0 c

L+3/2
1 RL+1(αL+ α+ 2r + 4)r)

≤ log2(4AL + 8c−1
0 (2α+ 2r + 4)r(2c1R)L+3/2Lr)

≤ [1 + log2(4 + 8c−1
0 (2α+ 2r + 4)r)]log2(AL + (2c1R)L+3/2Lr),

we may conclude that2

dist(Lip(�,r,c0),Htree
L,α,R, L∞(Bd)) ≥ C̃′

1[LAL log2(AL + (2c1R)L+3/2Lr)]−r,

(43)

where3

C̃′
1 =

c08−r(α + r + 2)−r

8
[1 + log2(4 + 8c−1

0 (2α+ 2r + 4)r)]−r.

Next, for a > 0 and ñ ≥ 2, it follows from direct computation that4

log2(ñ+ a) ≤ log2[ñ(1 + a)] ≤ [1 + log2(1 + a)]log2ñ,

which together with a = (2c1R)L+3/2Lr and ñ = AL, yields5

log2[ñ+ (2c1R)L+3/2Lr] ≤ [1 + log2((2c1R)L+3/2Lr + 1)]log2ñ

≤ log2 ñ+ (L+ 3/2)log2(2c1R + 1)log2ñ+ r log2 L log2 ñ

≤ [1 + log2(2c1R + 1) + r](L + 3)log2ñ

≤ 4[1 + r + log2(2c1R + 1)]L log2 ñ.

So, we have from (43) that6

dist(Lip(�,r,c0),Htree
L,α,R, L∞(Bd)) ≥ C∗

2 (L2ñ log2 ñ)−r, (44)

where C∗
2 := C̃′

1[4[1 + r + log2(2c1R + 1)]]−r. This completes the proof of (6).7

The proof (5) is easier. Let Sd−1 denote the unit sphere in Rd, and consider the8

manifold9

Mn :=

{
n∑
i=1

aiφi(ξi · x) : ξi ∈ S
d−1, φi ∈ L2([−1, 1]), ai ∈ R

}

of ridge functions. It is easy to see that Sφ1,n ⊂ Mn. Then it follows from [13,10

Theorem 4] there exist an integer C̃′
2 and some positive real number C̃′

3, such that11

for any f ∈ Lip(�,r,c0),12

dist(f,Sφ1,n, L2(Bd)) ≥ dist(f,Mnd−1 , L2(Bd)) ≥ C̃′
3dist(f,PC̃′

2n
(Bd), L2(Bd)),

where Ps(Bd) denotes the set of algebraic polynomials defined on Bd of degrees not13

exceeding s. But it was also proved in [14, Theorem 1] (with a scaling of constants14
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in [14, p. 105]), that1

dist(Lip(�,r,c0),PC̃′
2n

1/(d−1)(Bd), L2(Bd)) ≥ C̃′
4n

−r/(d−1),

where C̃′
4 is a constant depending only on C̃′

2, c0, d and r. Therefore, we have2

dist(Lip(�,r,c0),Sφ1,n, L∞(Bd)) ≥ dist(Lip(�,r,c0),Sφ1,n, L2(Bd)) ≥ C∗
1−ñ−r/(d−1)

with C∗
1 := C̃′

3C̃
′
4/(d+2) by noting ñ = (d+2)n. This establishes (5) and completes3

the proof of Theorem 1.4

4.2. Proof of Theorem 25

We shall show that based on Assumption 2, Theorem 2 is a consequence of the6

following more general result, which we will first establish.7

Theorem 5. Let A ≥ 1. Under Assumption 2 with r0 = s0 + v0, s0 ≥ 2 and8

0 < v0 ≤ 1. Then for any f ∈ Lip(�,r,c0) with r ≤ r0 and any n ∈ N, there is a deep9

net10

H3n+3,s+3,6,d,A =
3n+3∑
j=1

a∗jφ

(
s+3∑
i=1

a∗j,iφ

(
6∑

k=1

a∗k,j,iφ

(
d∑
�=1

a∗k,�,j,iφ

× (w∗
k,�,j,ix

(�) + θ∗k,�,j,i
)

+ θ∗k,j,i

)
+ θ∗j,i

)
+ θ∗j

)
.

with |w∗
k,�,j,i| ≤ 1, |θ∗k,�,j,i|, |θ∗k,j,i|, |θ∗j,i|, |θ∗j | ≤ 1+3An+ |θ0| and |a∗j |, |a∗j,i|, |a∗k,j,i|,11

|a∗k,�,j,i| bounded by12

C̄1




(An2)48n48r(r+1)(1+7(s+1)!) if s0 ≥ 3, s0 > s,

(An2)48n48(r+1)(1+ 7
v0

)(s+1)! if s0 = s ≥ 3,

(An2)
6v0+42

v0 n
(6v0+42)(r+1)

v0
(1+

v0+6
v0

(s+1)!) if s0 = 2, s0 > s,

(An2)
6v0+42

v0 n
(6v0+42)(r+1)

v0
(1+

v0+6
v2
0

(s+1)!)
if s0 = s = 2,

such that13

‖f −H3n,s+3,6,d,A‖L∞(Bd) ≤ C̄2(nδφ(A) + n−r), (45)

where δφ(A) is defined by (12) and C̄1, C̄2 are constants independent of n or A.14

Proof. We divide the proof into four steps: first to approximate |x|2, next to unify15

the activation function, then to construct the deep net, and finally to derive bounds16

of the parameters.17
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Step 1: Approximation of |x|2. Since f ∈ Lip(�,r,c0), there exists some g∗ ∈ Lip(r,c0)
I

1

such that f(x) = g∗(|x|2). Set g(·) := g∗(2·). Then f(x) = g(|x|2/2) with g ∈2

Lip(2rc0,r)
J

. By Theorem 4, for any 0 < ε ≤ 1, there is a deep net of form (28) such3

that4

|f(x) −H3n+3,s+3,A(|x|2/2)| ≤ C̃4(nδφ(A) + n−r + nε), ∀x ∈ B
d. (46)

We will first treat components x(�) of x = (x(1), . . . , x(d)) separately. Let 0 < ε1 ≤5

1
d+2 to be determined below, depending on ε. By Proposition 2 applied to the6

quadratic polynomial t2, there exists a shallow net7

h3(t) :=
3∑

k=1

akφ(wk · t+ θ0)

with 0 < wk ≤ 1 and |ak| ≤ C̃1

{
26ε−6

1 if s0 ≥ 3,

2
6

v0 ε
− 6

v0
1 if s0 = 2

such that8

|t2 − h3(t)| ≤ ε1, ∀ t ∈ I. (47)

Hence, by setting9

h3d(x) :=
d∑
�=1

h3(x(�))/2 =
3∑

k=1

(
d∑
�=1

ak
2
φ(wk · x(�) + θ0)

)
, (48)

it follows from (47) that10

‖x|2/2 − h3d(x)| ≤ dε1/2, ∀x ∈ B
d. (49)

Hence, by the assumption ‖φ‖L∞(R) ≤ 1, we have, for x ∈ Bd,11

∣∣∣∣∣
d∑
�=1

ak
2
φ(wk · x(�) + θ0)

∣∣∣∣∣ ≤ 1
2

d∑
�=1

|ak| ≤ C̃1d




26ε−6
1 if s0 ≥ 3,

2
6

v0 ε
− 6

v0
1 if s0 = 2.

(50)

In the following, we denote the above bound by B and note that B ≥ 1.12

Step 2: Unifying the activation function. From (48), we note that h3d is a deep13

net with one hidden layers. In this step, we will apply Proposition 2 to unify the14

activation functions. For any ε2 ∈ (0, 1) to be determined, it follows from Proposi-15

tion 2 applied to the linear function t, with k = 1 and s0 ≥ 2, that there exists a16

shallow net17

h∗2(t) :=
2∑

k′=1

ak′φ(wk′ · t+ θ0)
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with1

0 < wk′ ≤ 1, and |ak′ | ≤ 4C̃1ε
−6
2 , (51)

such that2

|t− h∗2(t)| ≤ ε2, ∀ t ∈ [−1, 1]. (52)

Inserting t =
Pd

�=1
ak
2 φ(wk·x(�)+θ0)

B into (52), we have, for x ∈ Bd,3 ∣∣∣∣∣∣∣∣∣∣∣
d∑
�=1

ak
2
φ(wk · x(�) + θ0) − Bh∗2




d∑
�=1

akφ(wk · x(�) + θ0)

2B




∣∣∣∣∣∣∣∣∣∣∣
≤ Bε2. (53)

Write4

h6,d(x) =
3∑

k=1

2∑
k′=1

Bak′φ


wk′

d∑
�=1

akφ(wk · x(�) + θ0)

2B + θ0




=:
6∑

k=1

a′kφ

(
d∑
�=1

a′′kφ(w′
k · x(�) + θ0) + θ0

)
. (54)

It then follows from (51) and (50) that 0 < w′
k ≤ 1,5

|a′k| ≤ dC̃2
1ε

−6
2




26ε−6
1 if s0 ≥ 3,

2
6

v0 ε
− 6

v0
1 if s0 = 2,

and |a′′k| ≤
|ak|
2

≤ C̃1




25ε−6
1 if s0 ≥ 3,

2
6

v0
−1ε

− 6
v0

1 if s0 = 2.

Furthermore, (53) together with (50) yields the following bound valid uniformly for6

x ∈ Bd
7

|h3d(x) − h6,d(x)|

=

∣∣∣∣∣∣∣∣∣∣∣
3∑

k=1




d∑
�=1

ak
2
φ(wk · x(�) + θ0) − Bh∗2




d∑
�=1

akφ(wk · x(�) + θ0)

2B







∣∣∣∣∣∣∣∣∣∣∣
≤ 3Bε2 = 3C̃1dε2




25ε−6
1 if s0 ≥ 3,

2
6

v0
−1ε

− 6
v0

1 if s0 = 2.
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Setting ε2 = 2−
6

v0 1
3dC̃1



ε71 if s0 ≥ 3,

ε
6+v0

v0
1 if s0 = 2,

the above estimate yields1

|h3d(x) − h6,d(x)| ≤ ε1, ∀x ∈ B
d, (55)

and the parameters of h6,d(x) satisfy2

0 < w′
k ≤ 1, |a′k|, |a′′k| ≤ C̄4



ε−48
1 if s0 ≥ 3,

ε
− 6v0+42

v0
1 if s0 = 2,

(56)

where C̄4 is a constant depending only on v0, C̃1 and d. Based on (49) and (55),3

we obtain4

‖x|22/2 − h6,d(x)| ≤ d+ 2
2

ε1, ∀x ∈ B
d. (57)

Since ε1 ≤ 1
d+2 , we have5

‖h6,d‖L∞(Bd) ≤ 1. (58)

Step 3: Constructing the deep net. Based on (54) and (28), we define6

H3n+3,s+3,6,d,A := H3n+3,s+3,A ◦ h6,d(x)

=
3n+3∑
j=1

a∗jφ

(
s+3∑
i=1

a∗j,iφ

(
6∑

k=1

a∗k,j,iφ

(
d∑
�=1

a∗∗k,j,iφ

× (w∗
k,j,ix

(�) + θ0) + θ0

)
+ θ∗j,i

)
+ θ∗j

)
. (59)

In view of (46), we get7

|f(x) −H3n+3,s+3,6,d,A(x)|
≤ C̃4(nδφ(A) + n−r + nε)

+ |H3n+3,s+3,A(|x|2/2)−H3n+3,s+3,A(h6,d(x))|, ∀x ∈ B
d. (60)

Recalling (35) with ε1 = 1 and |bA,tj (t)/B1| ≤ 1/4, we have8

|hs+1,j(t)| ≤ 1, and
∣∣∣∣hs+1,j(t)

2
+
bAj ,t

2b1

∣∣∣∣ ≤ 2, t ∈ J.

This together with (37) implies9 ∣∣∣∣∣
s+3∑
i=1

a∗j,iφ(w∗
j,it+ θ∗j,i)

∣∣∣∣∣ ≤ 2.
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Thus, from Theorem 4, we have, for 0 < t ≤ 1/2,1 ∣∣∣∣∣
s+3∑
i=1

a∗j,iφ(w∗
j,it+ θ∗j,i) + θ∗j

∣∣∣∣∣ ≤ 3 + 3An+ |θ0|, |w∗
j,it+ θ∗j,i| ≤ 5An+ |θ0| + 1.

(61)

Thus, for 0 < ε < 1, 0 < ε1 < 1
d+2 and x ∈ Bd, (58), (61), (29), (57) and2

‖φ′‖L∞(R) ≤ 1 yield3

|H3n+3,s+3,A(|x|2/2) −H3n+3,s+3,A(h6,d(x))|

=

∣∣∣∣∣∣
3n+3∑
j=1

a∗jφ

(
s+3∑
i=1

a∗j,iφ(w∗
j,i|x|2/2 + θ∗j,i) + θ∗j

)

−
3n+3∑
j=1

a∗jφ

(
s+3∑
i=1

a∗j,iφ(w∗
j,ih6,d(x) + θ∗j,i) + θ∗j

)∣∣∣∣∣∣
≤

3n+3∑
j=1

|a∗j |
∣∣∣∣∣
s+3∑
i=1

a∗j,iφ(w∗
j,i|x|2/2 + θ∗j,i) −

s+3∑
i=1

a∗j,iφ(w∗
j,ih6,d(x) + θ∗j,i)

∣∣∣∣∣
≤

3n+3∑
j=1

|a∗j |
s+3∑
i=1

|a∗j,iw∗
j,i|‖x|2/2 − h6,d(x)|

≤ C̄5An
2ε1




ε−7(s+1)! if s0 ≥ 3, s0 > s,

ε
− 7

v0
(s+1)! if s0 = s ≥ 3,

ε
− v0+6

v0
(s+1)! if s0 = 2, s0 > s,

ε
− v0+6

v2
0

(s+1)!
if s0 = s = 2,

where C̄5 ≥ 1 is a constant independent of ε, ε1, n or A. Now we determine ε1 by4

ε1 =
1

C̄5(d+ 2)An2




ε1+7(s+1)! if s0 ≥ 3, s0 > s,

ε
1+ 7

v0
(s+1)! if s0 = s ≥ 3,

ε1+
v0+6

v0
(s+1)! if s0 = 2, s0 > s,

ε
1+

v0+6
v2
0

(s+1)!
if s0 = s = 2

≤ 1
(d+ 2)

, (62)

we have5

|H3n+3,s+3,A(|x|2) −H3n+3,s+3,A(h6,d(x))| ≤ ε, ∀x ∈ B
d. (63)
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Inserting (63) into (60) and setting ε = n−r−1, we get1

|f(x) −H3n+3,s+3,6,d,A(x)| ≤ C̄2(nδφ(A) + n−r), ∀x ∈ B
d,

where C̄2 is a constant independent of n or A.2

Step 4: Bounding parameters. Theorem 4 with ε = n−r−1 shows that |θ∗j |, |θ∗j,i| ≤3

1 + 3An+ |θ0|, and4

|a∗j |, |a∗j,i| ≤ C̃4




n7(r+1)(s+1)! if s0 ≥ 3, s0 > s,

n
7(r+1)

v0
(s+1)! if s0 = s ≥ 3,

n
(v0+6)(r+1)

v0
(s+1)! if s0 = 2, s0 > s,

n
(v0+6)(r+1)

v2
0

(s+1)!
if s0 = s = 2.

Furthermore, (59), (56), (54), (62) and ε = n−r−1 shows that |w∗
k,j,i| ≤ 1 and5

|a∗k,j,i|, |a∗∗k,j,i| can be bounded by6

C̄1




(An2)48n48r(r+1)(1+7(s+1)!) if s0 ≥ 3, s0 > s,

(An2)48n48(r+1)(1+ 7
v0

)(s+1)! if s0 = s ≥ 3,

(An2)
6v0+42

v0 n
(6v0+42)(r+1)

v0
(1+

v0+6
v0

(s+1)!) if s0 = 2, s0 > s,

(An2)
6v0+42

v0 n
(6v0+42)(r+1)

v0
(1+

v0+6
v2
0

(s+1)!)
if s0 = s = 2,

where C̄1 is a constant independent ofA or n.This completes the proof of Theorem 57

for θ∗k,j,i, θ
∗
k,�,j,i = θ0, wk,�,j,i = w∗

k,j,i and a∗k,�,j,i = a∗∗k,j,i.8

To prove Theorem 2 we may apply Theorem 5, as follows.9

Proof of Theorem 2. The lower bound is obvious in view of Theorem 1. To prove10

the upper bound, we observe that under Assumption 1, a constant C̄6 depending11

only on φ exists such that12

δφ(A) ≤ C̄6A
−1, ∀A ≥ 1.

Set A = nr+1. Then Assumption 1 implies Assumption 2 with s0 ≥ max{3, s+ 1}.13

Hence, it follows from Theorem 5 that there exists a deep net H3n+3,s+3,6,d,A with14

|w∗
k,�,j,i| ≤ 1, |θ∗k,�,j,i|, |θ∗k,j,i|, |θ∗j,i|, |θ∗j | ≤ 1 + 3nr+2 + |θ0|, and15

|a∗j |, |a∗j,i|, |a∗k,j,i|, |a∗k,�,j,i| ≤ C̄1n
48(3+r(r+1)+r(s+1)!7(r+1)),

such that16

‖f −H3n+3,s+3,6,d,A‖L∞(Bd) ≤ C̄2(n−r + n−r).

This completes the proof of Theorem 2 with C∗
3 = 2C̄2, R = max{|θ0|+ 4, C̄1} and17

α = 48(3 + r(r + 1) + r(s+ 1)!7(r + 1)).18
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4.3. Proof of Theorem 31

To prove Theorem 3, we need the following well-known oracle inequality that was2

proved in [5].3

Lemma 5. Let ρX be the marginal distribution of ρ on X and (L2
ρ

X
, ‖ · ‖ρ) denote4

the Hilbert space of square-integrable functions on X with respect to ρX . Set5

ED(f) := 1
m

∑m
i=1(f(xi) − yi)2, let H be a collection of continuous functions on6

X and define7

fD,H = arg min
f∈H

ED(f). (64)

Suppose there exist constants n′,U > 0, such that8

logN (ε,H) ≤ n′ log
U
ε
, ∀ ε > 0. (65)

Then for any h∗ ∈ H and ε > 0,9

Prob{‖πMfD,H − fρ‖2
ρ > ε+ 2‖h∗ − fρ‖2

ρ} ≤ exp
{
n′ log

16UM
ε

− 3mε
512M2

}

+ exp

{
−3mε2

16(3M + ‖h∗‖L∞(X ))2
(
6‖h∗ − fρ‖2

ρ + ε
)
}
.

Now we apply Lemmas 5, 4, and Theorem 2 to prove Theorem 3.10

Proof of Theorem 3. Let H = Htree
3,α,R be the class of deep nets given in The-

11
orem 2. Then, there are totally A3 = C̄7n free parameters in H = Htree

3,α,R. Since12

|y| ≤ M almost surely, we have ‖fρ‖L∞(Bd) ≤ M. Then, for fρ ∈ Lip(�,r,c0), it13

follows from Theorem 2 that there exists a h ∈ Htree
3,α,R such that14

‖fρ − h‖L∞(Bd) ≤ C̄8n
−r,

where C̄7, C̄8 are constants independent of n and ε. It follows that15

‖h‖L∞(Bd) ≤M + C̄8.

By considering n′ = 2(log2 e)C̄7n, U = 2
13
2 R5(C̄7n)5α, we see from (42) with L = 3,16

AL = C̄7n and c1 = 1 in Lemma 4 that17

logN (ε,Htree
3,α,R) ≤ n′ log

U
ε
.

Next take C̄9 := max{6C̄2
8 , 2

21/2MR5(C̄7)5α} and C̄10 :=
(

3C̄9
2048M2C̄7(5α+2r) log2 e

) 1
2r+1.18

Note19

2‖h− fρ‖2
ρ ≤ 2‖h− fρ‖2

L∞(Bd) ≤ 2C̄2
8n

−2r ≤ C̄9n
−2r logn.

Then by setting n =
[
C̄10m

1
2r+1
]
, it follows from Lemma 5 with h∗ = h that for20

ε ≥ C̄9n
−2r logn ≥ 2‖h− fρ‖2

ρ, (66)
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we have1

Prob{‖πMfD,n,φ − fρ‖2
ρ > 2ε}

≤ Prob{‖πMfD,n,φ − fρ‖2
ρ > ε+ 2‖h− fρ‖2

ρ}

≤ exp

{
2(log2 e)C̄7n log

M2
21
2 R5(C̄7n)5α

ε
− 3mε

512M2

}

+ exp

{
−3mε2

16(4M + C̄8)2
(
6C̄2

8n
−2r + ε

)
}

≤ exp
{

2(log2 e)C̄7(5α+ 2r)n log n− 3mε
512M2

}
+ exp

{ −3mε
32(4M + C̄8)2

}

≤ exp
{
− 3mε

1024M2

}
+ exp

{
− −3mε

32(4M + C̄8)2

}
≤ 2 exp

{
− 3mε

64(4M + C̄8)2

}

≤ 3 exp

{
− 3m

2r
2r+1 ε

2[64(4M + C̄8)2 + 3C̄9(C̄10)−2r]log(n+ 1)

}
. (67)

Then setting2

3 exp

{
− 3m

2r
2r+1 ε

2[64(4M + C̄8)2 + 3C̄9(C̄10)−2r]log(n+ 1)

}
= δ,

we obtain3

ε =
2
3
[64(4M + C̄8)2 + 3C̄9(C̄10)−2r]m− 2r

2r+1 log(n+ 1) log
3
δ
,

which satisfies (66). Thus, it follows from (67) that with confidence at least 1 − δ,4

we have5

‖πMfD,n,φ − fρ‖2
ρ ≤ C∗

5m
− 2r

2r+1 log(n+ 1)log
3
δ
≤ C∗

5m
− 2r

2r+1 log(m+ 1)log
3
δ
,

where C∗
5 := 8

3 [64(4M + C̄8)2 + 3C̄9(C̄10)−2r]. This proves (10) by noting the well-6

known relation7

E(f) − E(fρ) = ‖f − fρ‖2
ρ. (68)

To prove the upper bound of (11), we may apply the formula8

E[ξ] =
∫ ∞

0

Prob[ξ > t]dt (69)
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with ξ = E(πMfD,n,φ) − E(fρ). From (66), (67) and (69), we have1

E {E(πMfD,n,φ) − E(fρ)}

=
∫ ∞

0

Prob[E(πMfD,n,φ) − E(fρ) > ε]dε

=

(∫ C̄9n
−2r logn

0

+
∫ ∞

C̄6n−2r logn

)
Prob[E(πMfD,n,φ) − E(fρ) > ε]dε

≤ C̄9n
−2r logn

+ 3
∫ ∞

C̄9n−2r logn

exp

{
− 3m

2r
2r+1 ε

2[64(4M + C̄8)2 + 3C̄9(C̄10)−2r]log(n+ 1)

}
dε

≤ C̄9n
−2r logn+ 6[64(4M + C̄8)2 + 3C̄9(C̄10)−2r]m− 2r

2r+1 log(n+ 1)

×
∫ ∞

0

e−tdt ≤ C∗
7m

− 2r
2r+1 log(m+ 1),

where2

C∗
7 = 6[64(4M + C̄8)2 + 3C̄9(C̄10)−2r] + C̄9[(C̄10)−2r + 1].

Finally, to prove the lower bound of (11), we note that since x1, . . . ,xm are inde-3

pendent random variables, so are |x1|2, . . . , |xm|2. Thus, the dataset {(|xi|2, yi)}mi=14

is independently drawn according to some distribution ρ defined on I× [−M,M ].5

From [10, Theorem 3.2], there exists some ρ′0 with the regression function gρ ∈6

Lip(r,c0)
I

, such that the learning rates of all estimates based on m sample points are7

not smaller than C∗
6m

− 2r
2r+1 . Setting fρ(x) = gρ(|x|2), we may conclude that the8

lower bound of (11) holds. This completes the proof of Theorem 3.9

5. Proof of Lemma 310

The proof of Lemma 3 depends on the following two lemmas. They involve the11

ε-packing number of V defined by12

M(ε, V ) := max{s : ∃ f1, . . . , fs ∈ V, ‖fi − fj‖L∞(Bd) ≥ ε, ∀ i �= j}.

The first lemma which can be found in [10, Lemma 9.2]) establishes a trivial relation13

between N (ε, V ) and M(ε, V ).14

Lemma 6. For ε > 0 and V ⊆ L∞(Bd), we have15

M(2ε, V ) ≤ N (ε, V ) ≤ M(ε, V ).

To state the second lemma, for N∗ ∈ N, consider the set EN
∗

of all vectors16

ε := (ε1, . . . , εN∗) for ε1, . . . , εN∗ = ±1, so that the cardinality |EN∗ | of the set EN
∗

17

satish
Highlight

satish
Text Box
Opening bracket missing. Please check.
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is given by1

|EN∗ | = 2N
∗
. (70)

Let g̃ be a real-valued compactly supported function that vanishes outside2

(−1/2, 1/2) and satisfies both maxt∈[−1/2,1/2] |g̃(t)| = c0/2 and g̃ ∈ Lip(r,c02
v−1)

R
.3

Also, partition the unit interval I as the union of N∗ pairwise disjoint sub-intervals4

Aj of equal length 1/N∗ and centers at {ξj} for j = 1, . . . , N∗. Consider the5

dilated/scaled functions g̃j(t) := (N∗)−r g̃(N∗(t − ξj)) defined on I. Then based6

on the set7

GE :=


g∗(t) =

N∗∑
j=1

εj g̃j(t) : ε = (ε1, . . . , εN∗) ∈ EN
∗


 (71)

of univariate functions, we introduce the collection8

FE := {f(x) = g(|x|2) : g ∈ GE} (72)

of radial functions defined on the Bd.9

Lemma 7. Let N∗ ∈ N. Then10

FE ⊂ Lip(�,r,c0). (73)

In addition, for any f �= f1 ∈ FE ,11

‖f − f1‖L∞(Bd) ≥ c0(N∗)−r. (74)

Proof. To prove (73), observe that since12

|N∗(t− ξj) −N∗(t− ξj′ )| = N∗|ξj − ξj′ | ≥ 1, ∀ j �= j′,

it is not possible for both N∗(t − ξj) and N∗(t − ξj′) to be in (−1/2, 1/2). Hence,13

it follows from the support assumption supp(g̃) ⊂ (−1/2, 1/2) of g̃ that for an14

arbitrary t ∈ I, there is at most one j0 ∈ {1, 2, . . . , N∗} such that (g̃j0)(s)(t) �= 0.15

Then the justification of (73) can be argued in two separate cases.16

First, for an arbitrary g∗ ∈ GE , if t, t′ ∈ Aj1 for some j1 ∈ {1, 2, . . . , N∗}, then17

in view of supp(g̃) ⊂ (−1/2, 1/2), r = s + v, |εj | = 1, and g̃ ∈ Lip(r,c02
−1+v)

R
, we18

have19

(g̃)(s)(N∗(t− ξj)) = (g̃)(s)(N∗(t′ − ξj)) = 0, ∀ j �= j1

and20

|(g∗)(s)(t) − (g∗)(s)(t′)|

=

∣∣∣∣∣∣
N∗∑
j=1

εj[(g̃j)(s)(t) − (g̃j)(s)(t′)]

∣∣∣∣∣∣
≤ (N∗)−r+s

∣∣∣∣∣∣
N∗∑
j=1

εj [(g̃)(s)(N∗(t− ξj)) − (g̃)(s)(N∗(t′ − ξj))]

∣∣∣∣∣∣
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= (N∗)−r+s|εj1 [(g̃)(s)(N∗(t− ξj1 )) − (g̃)(s)(N∗(t′ − ξj1))]|
≤ (N∗)−r+sc02−1+v|N∗(t− ξj1) −N∗(t′ − ξj1)|v ≤ c0|t− t′|v.

Next, if t ∈ Aj2 and t′ ∈ Aj3 with j2 �= j3, then1

(g̃)(s)(N∗(t− ξj)) = (g̃)(s)(N∗(t− ξj′ )) = 0, ∀ j �= j2, j
′ �= j3.

We may choose the endpoints ηj2 ∈ Aj2 and ηj3 ∈ Aj3 so that ηj2 and ηj3 are on the2

segment between t and t′. This together with supp(g̃) ⊂ [−1, 2, 1/2] implies that3

|t− ηj2 | + |t′ − ηj3 | ≤ |t− t′|
and4

(g̃)(s)(N∗(ηj2 − ξj2)) = (g̃)(s)(N∗(ηj3 − ξj3 )) = 0.

Thus, it follows from r = s+ v, |εj| = 1, g̃ ∈ Lip(r,c02
−1+v) and Jensen’s inequality5

that6

|(g∗)(s)(t) − (g∗)(s)(t′)|

=

∣∣∣∣∣∣
N∗∑
j=1

εj[(g̃j)(s)(t) − (g̃j)(s)(t′)]

∣∣∣∣∣∣
= (N∗)−r+s

∣∣∣∣∣∣
N∗∑
j=1

εj [(g̃)(s)(N∗(t− ξj)) − (g̃)(s)(N∗(t′ − ξj))]

∣∣∣∣∣∣
≤ (N∗)−r+s|(g̃)(s)(N∗(t− ξj2 ))| + (N∗)−r+s|(g̃)(s)(N∗(t′ − ξj3))|
= (N∗)−r+s|(g̃)(s)(N∗(t− ξj2 )) − (g̃)(s)(N∗(ηj2 − ξj2 ))|

+ (N∗)−r+s|(g̃)(s)(N∗(t′ − ξj3 )) − (g̃)(s)(N∗(ηj3 − ξj3 ))|

≤ c02v−1[|t− ηj2 |v + |t′ − ηj3 |v] = c02v
[ |t− ηj2 |v + |t′ − ηj3 |v

2

]

≤ c02v
[ |t− ηj2 | + |t′ − ηj3 |

2

]v
≤ c02v

[ |t− t′|
2

]v
= c0|t− t′|v.

From the above arguments, we know that (73) holds in view of (72).7

Finally, to prove (74), let f, f1 ∈ FE be two different functions. Then there exist8

ε, ε′ ∈ EN
∗

with ε �= ε′ such that9

f(x) − f1(x) =
N∗∑
j=1

εj g̃j(|x|2) −
N∗∑
j=1

ε′j g̃j(|x|2)

= (N∗)−r
N∗∑
j=1

(εj − ε′j)g̃(N
∗(|x|2 − ξj)).
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Therefore, we have1

‖f − f1‖L∞(Bd) = (N∗)−r max
x∈Bd

∣∣∣∣∣∣
N∗∑
j=1

(εj − ε′j)g̃(N
∗(|x|2 − ξj))

∣∣∣∣∣∣
= (N∗)−r max

t∈I

∣∣∣∣∣∣
N∗∑
j=1

(εj − ε′j)g̃(N
∗(t− ξj))

∣∣∣∣∣∣
= (N∗)−r max

j′=1,2,...,N∗
max
t∈Aj′

∣∣∣∣∣∣
N∗∑
j=1

(εj − ε′j)g̃(N
∗(t− ξj))

∣∣∣∣∣∣
= (N∗)−r max

j′=1,2,...,N∗ max
t∈Aj′

|(εj′ − ε′j′)g̃(N
∗(t− ξj′ ))|

= (N∗)−r max

{
max

j′:εj′−ε′j′=2
max
t∈Aj′

|2g̃(N∗(t− ξj′ ))|,

max
j′:εj′−ε′j′=−2

max
t∈Aj′

|−2g̃(N∗(t− ξj′ ))|
}
.

Noting that {t = N∗(τ − ξj) : τ ∈ Aj} = [−1/2, 1/2] for each j ∈ {1, . . . , N∗} and2

maxt∈[−1/2,1/2] |g̃(t)| = c0/2, we obtain3

‖f − f1‖L∞(Bd) = 2(N∗)−r max
t∈[−1/2,1/2]

|g̃(t)| = c0(N∗)−r.

Thus, (74) holds. This completes the proof of Lemma 7.4

We now return to the proof of Lemma 3.5

Proof of Lemma 3. Let ν > 0 to be determined later, and denote6

δ := δν := dist(FE , V, L∞(Bd)) + ν. (75)

For every f ∈ FE , choose a function Pf ∈ V, so that7

‖f − Pf‖L∞(Bd) ≤ δ. (76)

Observe that Pf is not necessarily unique. Define SE := {Pf : f ∈ FE} ⊆ V. Then8

for f∗ = Pf and f∗
1 = Pf1 with f �= f1 ∈ FE , we have9

‖f∗ − f∗
1 ‖L∞(Bd) = ‖Pf − Pf1‖L∞(Bd) = ‖Pf − f + f − f1 + f1 − Pf1‖L∞(Bd)

≥ ‖f − f1‖L∞(Bd) − ‖Pf − f‖L∞(Bd) − ‖Pf1 − f1‖L∞(Bd),

which together with (74) implies10

‖f∗ − f∗
1 ‖L∞(Bd) ≥ c0(N∗)−r − 2δ. (77)

We claim that δ > c0
4 (N∗)−r, where N∗ is given by11

N∗ = [(β + 2r + 4)N log2(2C
′
1 + 4C′

2(β + 2r + 4)r/c0 +N)]. (78)
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To prove the claim, suppose to the contrary that1

δ ≤ c0
4

(N∗)−r. (79)

Then (77) implies2

‖f∗ − f∗
1 ‖L∞(Bd) ≥

c0
2

(N∗)−r.

That is, Pf �= Pf1 is consequence of f �= f1, so that in view of (70),3

|SE | = |FE | = |EN∗ | = 2N
∗
.

Consider ε0 = c0
2 (N∗)−r. Then we obtain4

M(ε0, V ) ≥ 2N
∗
.

On the other hand, since SE ⊆ V, it follows from (40) and Lemma 6 that5

M(ε0, V ) ≤ N (ε0/2, V ) ≤ C′
1

(
2C′

2N
β

ε0

)N
= C′

1(4C
′
2N

β(N∗)r/c0)N .

Combining the above two inequalities, we have6

2N
∗ ≤ C′

1(4C
′
2N

β(N∗)r/c0)N . (80)

The choice of N∗ in (78) tells us that (80) holds, but it implies that7

(β + 2r + 4)N log2(2C
′
1 + 4C̃2(β + 2r + 4)r/c0 +N)

≤ N log2(4C
′
2(β + 2r + 4)r/c0)

+ log2(2C
′
1) +N(β + r) log2N

+ rN log2 log2((2C
′
1 + 4C′

2(β + 2r + 4)r/c0 +N))

≤ (β + 2r + 3)N log2(2C
′
1 + 4C′

2(β + 2r + 4)r/c0 +N),

which is a contradiction. This verifies our claim, so8

δ >
c0(N∗)−r

4
=
c0
4

[(β + 2r + 4)N log2(2C
′
1 + 4C′

2(β + 2r + 4)r/c0 +N)]−r.

Now, we determine ν by ν = dist(FE , V, L∞(Bd)). Then ν = δ
2 by (75), and we9

obtain10

dist(FE , V, L∞(Bd)) =
δ

2
>
c0
8

[(β + 2r + 4)N log2

× (2C′
1 + 4C′

2(β + 2r + 4)r/c0 +N)]−r.

In view of (73), we have11

dist(Lip(�,r,c0), V, L∞(Bd)) ≥ dist(FE , V, L∞(Bd)) ≥ C′
3[N log2(N + C′

4)]
−r

with C′
3 = c0

8 (β + 2r + 4)−r and C′
4 = 2C′

1 + 4C′
2c

−1
0 (β + 2r + 4)r. This completes12

the proof of Lemma 3.13
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