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Deep learning has been widely applied and brought breakthroughs in speech 
recognition, computer vision, and many other domains. Deep neural network 
architectures and computational issues have been well studied in machine learning. 
But there lacks a theoretical foundation for understanding the approximation 
or generalization ability of deep learning methods generated by the network 
architectures such as deep convolutional neural networks. Here we show that a deep 
convolutional neural network (CNN) is universal, meaning that it can be used to 
approximate any continuous function to an arbitrary accuracy when the depth of the 
neural network is large enough. This answers an open question in learning theory. 
Our quantitative estimate, given tightly in terms of the number of free parameters to 
be computed, verifies the efficiency of deep CNNs in dealing with large dimensional 
data. Our study also demonstrates the role of convolutions in deep CNNs.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and main results

Deep learning provides various models and algorithms to process data as efficiently as biological nervous 
systems or neuronal responses in the human brain [16,11,14,9,15]. It is based on deep neural network archi-
tectures and those structures bring essential tools for obtaining data features and function representations 
in practical applications. A main concern about deep learning which has attracted much scientific attention 
and some criticism is its lack of theories supporting its practical efficiency caused by its network structures, 
though there have been some theoretical attempts from approximation theory viewpoints [3,19,21,26]. In 
particular, for deep CNNs having convolutional structures without fully connected layers, it is unknown 
which kinds of functions can be approximated. This paper provides a rigorous mathematical theory to 
answer this question and to illustrate the role of convolutions.

The deep CNNs considered in this paper have two essential ingredients: a rectified linear unit (ReLU) 
defined as a univariate nonlinear function σ given by
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σ(u) = (u)+ = max{u, 0}, u ∈ R (1.1)

and a sequence of convolutional filter masks w = {w(j)}j inducing sparse convolutional structures. Here a 
filter mask w = (wk)∞k=−∞ means a sequence of filter coefficients. We use a fixed integer filter length s ≥ 2
to control the sparsity, and assume that w(j)

k �= 0 only for 0 ≤ k ≤ s. The convolution of such a filter mask 
w with another sequence v = (v0, . . . , vD−1) is a sequence w∗v given by (w∗v)i =

∑D−1
k=0 wi−kvk. This leads 

to a (D + s) ×D Toeplitz type convolutional matrix T which has constant diagonals:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0 0 0 0 · · · 0
w1 w0 0 0 · · · 0
...

. . . . . . . . . . . .
...

ws ws−1 · · · w0 0 · · · 0
0 ws · · · w1 w0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

· · · · · · 0 ws · · · w0
· · · · · · · · · 0 ws · · · w1
...

. . . . . . . . . . . .
...

0 · · · · · · · · · · · · 0 ws ws−1
0 · · · · · · · · · · · · 0 ws

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.2)

Sparse matrices of this form induce deep CNNs which are essentially different from the classical neural 
networks involving full connection matrices. Note that the number of rows of T is s greater than that of 
columns. This leads us to take a sequence of linearly increasing widths {dj = d + js} for the network, which 
enables the deep CNN to represent functions of richer structures.

Definition 1. Starting with the action of T (1) on the input data vector x ∈ Rd, we can define a deep CNN 
of depth J as a sequence of J vectors h(j)(x) of functions on Rd given iteratively by h(0)(x) = x and

h(j)(x) = σ
(
T (j)h(j−1)(x) − b(j)

)
, j = 1, 2, . . . , J, (1.3)

where T (j) =
(
w

(j)
i−k

)
is a dj × dj−1 convolutional matrix, σ acts on vectors componentwise, and b is a 

sequence of bias vectors b(j).

Except the last iteration, we take b(j) of the form

[b1 . . . bs bs+1 bs+1 . . . bs+1 bdj−s+1 . . . bdj
]T (1.4)

with the dj − 2s repeated components in the middle. The sparsity of T (j) and the special form of b(j)
tell us that the j-th iteration of the deep CNN involves 3s + 2 free parameters. So in addition to the 
2dJ + s + 1 free parameters for b(J), c ∈ RdJ , w(J), the total number of free parameters in the deep CNN is 
(5s +2)J +2d −2s −1, much smaller than that in a classical fully connected multi-layer neural network with 
full connection matrices T (j) involving djdj−1 free parameters. It demonstrates the computational efficiency 
of deep CNNs.

The hypothesis space of a learning algorithm is the set of all possible functions that can be represented 
or produced by the algorithm.

Definition 2. For the deep CNN of depth J considered here, the hypothesis space is a set of functions defined 
by
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Hw,b
J =

{
dJ∑
k=1

ckh
(J)
k (x) : c ∈ RdJ

}
. (1.5)

This hypothesis space and its approximation ability depend completely on the sequence of convolutional 
filter masks w = {w(j)}Jj=1 and the sequence of bias vectors b = {b(j)}Jj=1. Observe that each function in 

the hypothesis space Hw,b
J is a continuous piecewise linear function (linear spline) on any compact subset 

Ω of Rd.
Our first main result verifies the universality of deep CNNs, asserting that any function f ∈ C(Ω), the 

space of continuous functions on Ω with norm ‖f‖C(Ω) = supx∈Ω |f(x)|, can be approximated by Hw,b
J to 

an arbitrary accuracy when the depth J is large enough.

Theorem 1. Let 2 ≤ s ≤ d. For any compact subset Ω of Rd and any f ∈ C(Ω), there exist sequences w of 
filter masks, b of bias vectors and fw,b

J ∈ Hw,b
J such that

lim
J→∞

‖f − fw,b
J ‖C(Ω) = 0.

Our second main result presents rates of approximation by deep CNNs for functions in the Sobolev space 
Hr(Ω) with an integer index r > 2 + d/2. Such a function f is the restriction to Ω of a function F from 
the Sobolev space Hr(Rd) on Rd meaning that F and all its partial derivatives up to order r are square 
integrable on Rd.

Theorem 2. Let 2 ≤ s ≤ d and Ω ⊆ [−1, 1]d. If J ≥ 2d/(s − 1) and f = F |Ω with F ∈ Hr(Rd) and an 
integer index r > 2 + d/2, then there exist w, b and fw,b

J ∈ Hw,b
J such that

‖f − fw,b
J ‖C(Ω) ≤ c ‖F‖

√
log J (1/J)

1
2+ 1

d , (1.6)

where c is an absolute constant and ‖F‖ denotes the Sobolev norm of F ∈ Hr(Rd).

According to Theorem 2, if we take s = 	1 + dτ/2
 and J = 	4d1−τ
L with 0 ≤ τ ≤ 1 and L ∈ N, where 
	u
 denotes the smallest integer not smaller than u, then we have

‖f − fw,b
J ‖C(Ω) ≤ c ‖F‖

√
(1 − τ) log d + logL + log 5

4d1−τL
,

while the widths of the deep CNN are bounded by 12Ld and the total number of free parameters by

(5s + 2)J + 2d− 2s− 1 ≤ (73L + 2)d.

We can even take L = 1 and τ = 1/2 to get a bound for the relative error

‖f − fw,b
J ‖C(Ω)

‖F‖ ≤ c

2d
− 1

4

√
log(5

√
d)

achieved by a deep CNN of depth 	4
√
d
 and at most 75d free parameters, which decreases as the dimension 

d increases. This interesting observation is new for deep CNNs, and does not exist in the literature of fully 
connected neural networks. It explains the strong approximation ability of deep CNNs.

A key contribution in our theory of deep CNNs is that an arbitrary pre-assigned sequence W = (Wk)∞−∞
supported in {0, . . . , M} can be factorized into convolutions of a mask sequence {w(j)}Jj=1. It is proved 
by the same argument as in [30] for the case with the special restriction W0 �= 0. Convolutions are closely 
related to translation-invariance in speeches and images [3,6,27], and also in some learning algorithms [25,8].
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Theorem 3. Let s ≥ 2 and W = (Wk)∞−∞ be a sequence supported in {0, . . . , M} with M ≥ 0. Then there 
exists a finite sequence of filter masks {w(j)}Jj=1 supported in {0, . . . , s} with J < M

s−1 + 1 such that the 
convolutional factorization W = w(J)∗ . . . ∗w(2)∗w(1) holds true.

2. Discussion

The classical shallow neural networks associated with an activation function σ : R → R produce functions 
of the form

fN (x) =
N∑

k=1

ckσ(αk · x− bk) (2.1)

with αk ∈ Rd, bk, ck ∈ R. A mathematical theory for approximation of functions by shallow neural networks 
(2.1) was well developed three decades ago [5,12,1,20,17,23] and was extended to fully connected multi-layer 
neural networks shortly afterwards [12,20,4].

The first type of results obtained in the late 1980s are about universality, asserting that any continuous 
function f on any compact subset Ω of Rd can be approximated by some fN to an arbitrary accuracy 
when the number of hidden neurons N is large enough. Such results were given in [5,12,1] when σ is a 
sigmoidal function, meaning that σ is a continuous strictly increasing function satisfying limu→−∞ σ(u) = 0
and limu→∞ σ(u) = 1. A more general result with a locally bounded and piecewise continuous activation 
function σ asserts [17,23] that universality holds if and only if σ is not a polynomial.

The second type of results obtained in the early 1990s are about rates of approximation. When σ is a 
C∞ sigmoidal function and f = F |[−1,1]d for some F ∈ L2(Rd) with the Fourier transform F̂ satisfying 
|w|F̂ (w) ∈ L1(Rd), rates of type ‖fN − f‖L2

μ([−1,1]d) = O(1/
√
N) were given in [1] where μ is an arbitrary 

probability measure μ. Analysis was conducted in [20] for shallow neural networks (2.1) with more general 
continuous activation functions σ satisfying a special condition with some b ∈ R that σ(k)(b) �= 0 for any 
nonnegative integer k and a further assumption with some integer � �= 1 that limu→−∞ σ(u)/|u|� = 0 and 
limu→∞ σ(u)/u� = 1. The rates there are of type ‖fN − f‖C([−1,1]d) = O(N−r/d) for f ∈ Cr([−1, 1]d). Note 

that the ReLU activation function considered in this paper does not satisfy the condition with σ(k)(b) �= 0
or the special assumption with � �= 1. To achieve the approximation accuracy ‖fN − f‖C([−1,1]d) ≤ ε, when 

r = 	d+1
2 + 2
 with d/r ≈ 2, the number of hidden neurons N ≥ (cf,d,�/ε)d/r and the total number of free 

parameters is at least (cf,d,�/ε)d/r d, where the constant cf,d,� depends on the dimension d and might be 
very large.

To compare with our result, we take the filter length s = 	1 + d/2
 and depth J = 4L with L ∈ N. We 
know from Theorem 2 that the same approximation accuracy ‖f − fw,b

J ‖C(Ω) ≤ ε with 0 < ε ≤ c ‖F‖ can 
be achieved by the deep CNN of depth J = 4	 1

ε2 log 1
ε2 
 having at most 	75

ε2 log 1
ε2 
d free parameters, which 

does not depend on the dimension d. Though a logarithmic term is involved, this dimension independence 
gives evidence for the power of deep CNNs.

A multi-layer neural network is a sequence of function vectors h(j)(x) satisfying an iterative relation

h(j)(x) = σ
(
T (j)h(j−1)(x) − b(j)

)
, j = 1, 2, . . . , J. (2.2)

Here T (j) is a full connection matrix without special structures. So a deep CNN is a special multi-layer neural 
network with sparse convolutional matrices. This sparsity gives difficulty in developing a mathematical 
theory for deep CNNs, since the techniques in the literature of fully connected shallow or multi-layer neural 
networks do not apply. Our novelty to overcome the difficulty is to factorize an arbitrary finitely supported 
sequence into convolutions of filter masks {w(j)}Jj=1 supported in {0, 1, . . . , s}. Our method can be applied 
to distributed learning algorithms [18,10].
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Recently there have been quite a few papers [28,7,29,24,2,22] on approximation and representation of 
functions by deep neural networks and benefit of depth, but all these results are for fully connected networks 
without pre-specified structures, not for deep CNNs. In particular, it was shown in [2,22] that the rate of 
approximation of some function classes by multi-layer fully connected neural networks (2.2) may be achieved 
by networks with sparse connection matrices T (j), but the locations of the sparse connections are unknown. 
This sparsity of unknown pattern is totally different from that of deep CNNs, the latter enables computing 
methods like stochastic gradient descent to learn values of the free parameters efficiently.

When the activation function is ReLU, explicit rates of approximation by fully connected neural networks 
were obtained recently in [13] for shallow nets, in [24] for nets with 3 hidden layers, and in [29,2,22] for 
nets with more layers. In particular, it was shown in Theorem 1 of [29] that for f ∈ Cr([0, 1]d), the 
approximation accuracy ε ∈ (0, 1) can be achieved by a ReLU deep net with at most c(log(1/ε) + 1)
layers and at most cε−d/r(log(1/ε) + 1) weights and computation units with a constant c = c(d, r). To 
compare this result with ours when d is large, we need to derive an explicit lower bound for the number of 
parameters in the above net from the analysis in [29] which is based on Taylor polynomials of f and trapezoid 
functions defined by σ. With an integer parameter N ∈ N, for m ∈ {0, 1, . . . , N}d, the Taylor polynomial 
at m/N is 

∑
‖α‖1<r

Dαf(m/N)
α! (x − m/N)α, where α! = Πd

i=1αi! and (x − m/N)α = Πd
i=1(xi − mi/N)αi

for α = (αi)di=1 ∈ Zd
+. The trapezoid functions take the form φm(x) = Πd

i=1ϕ(3Nxi −mi), where ϕ is the 
univariate trapezoid function ϕ(u) = σ(u + 2) − σ(u + 1) − σ(u − 1) + σ(u − 2) supported on [−2, 2], equal 
to 1 on [−1, 1], and linear on [−2, −1] ∪ [1, 2]. The functions {φm(x) : m ∈ {0, 1, . . . , N}d} form a partition 
of unity with 

∑
m∈{0,1,...,N}d φm(x) ≡ 1 on [0, 1]d, so f can be approximated by

∑
m∈{0,1,...,N}d

∑
‖α‖1<r

Dαf(m/N)
α! φm(x)(x−m/N)α (2.3)

with an accuracy 2ddr

r! N−r. By a key construction in [29], each basis function φm(x)(x − m/N)α in (2.3)
can be approximated with an accuracy (d + r)δ by a ReLU net of depth at least c1(d + ‖α‖1) log(1/δ) with 
a constant c1 = c1(d, r) bounded from below by an absolute constant C0 > 0. Thus, to achieve an accuracy 

ε ∈ (0, 1) for approximating f by a ReLU deep net, one takes N = 	
(

2d+1dr

εr!

)1/r

 and δ = ε

2d+1dr(d+r) as in 

[29] and know that the depth of the net is at least C0d
2 (log(1/ε) + (d + 1) log 2 + r log d + log(d + r)), and 

the total number of parameters for the net is more than the number of coefficients D
αf(m/N)

α! which is

(N + 1)d
(
d + r − 1

d

)
>

(
2d+1dr

εr!

)d/r

> ε−d/r

(
2 d+1

r d

r

)d

.

If we take r = 	d+1
2 + 2
 as in our previous discussion, we see that for d ≥ 6, the deep net constructed 

in Theorem 1 of [29] for achieving an accuracy ε ∈ (0, 1) for approximating f ∈ Cr([0, 1]d) has at least 
2dε−d/r free parameters and at least C0d

4 (log(1/ε) + d) layers. When d is large and ε is fixed, this number 
of free parameters with an exponential factor 2d is much larger than that of the deep CNN derived from 
Theorem 2.

Deep CNNs are often combined with pooling, a small number of fully connected layers, and some other 
techniques for improving the practical performance of deep learning. Our purpose to analyze purely convo-
lutional networks is to demonstrate that convolution makes full use of shift-invariance properties of speeches 
and images for extracting data features efficiently. Also, for processing an image, convolutions based on the 
2-D lattice Z2 are implemented by taking inner products of (s + 1) × (s + 1) filter matrices with shifted 
patches of the image. Though we do not consider such deep learning algorithms in this paper, some of 
our ideas can be used to establish mathematical theories for more general deep neural networks involving 
convolutions.
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3. Proof of main results

For approximation in C(Ω) we can only consider those Sobolev spaces which can be embedded into the 
space of continuous functions, that is, those spaces with the regularity index r > d

2 . To establish rates of 
approximation we require r > d

2 +2 in Theorem 2. In this case, the set Hr(Ω) is dense in C(Ω), so Theorem 1
follows from Theorem 2 by scaling.

Proof of Theorem 2. Let J ≥ 2d
s−1 and m be the integer part of (s−1)J

d −1 ≥ 1. In our assumption, f = F |Ω for 
some function F ∈ Hr(Rd) with the Fourier transform F̂ (ω) giving the norm ‖F‖ =

∥∥∥(1 + |ω|2
)r/2

F̂ (ω)
∥∥∥
L2

. 

By the Schwarz inequality and the condition r > d
2 + 2, vF,2 :=

∫
Rd ‖ω‖2

1

∣∣∣F̂ (ω)
∣∣∣ dω ≤ cd,r ‖F‖ where cd,r is 

the finite constant 
∥∥∥‖ω‖2

1
(
1 + |ω|2

)−r/2
∥∥∥
L2

. Then we apply a recent result from [13] on ridge approximation 

to F |[−1,1]d and know that there exists a linear combination of ramp ridge functions of the form

Fm(x) = β0 + α0 · x + v

m

m∑
k=1

βk (αk · x− tk)+

with βk ∈ [−1, 1], ‖αk‖1 = 1, tk ∈ [0, 1], β0 = F (0), α0 = ∇F (0) and |v| ≤ 2vF,2 such that

‖F − Fm‖C([−1,1]d) ≤ c0vF,2 max
{√

logm,
√
d
}
m− 1

2− 1
d

for some universal constant c0 > 0.
Now we turn to the key step of constructing the filter mask sequence w. Define a sequence W supported 

in {0, . . . , (m + 1)d − 1} by stacking the vectors α0, α1, . . . , αm (with components reversed) by

[
W(m+1)d−1 . . . W1 W0

]
=
[
αT
m . . . αT

1 αT
0
]
.

We apply Theorem 3 to the sequence W with support in {0, 1, . . . , (m + 1)d} and find a sequence 
of filter masks w = {w(j)}Ĵj=1 supported in {0, 1, . . . , s} with Ĵ < (m+1)d

s−1 + 1 such that W =
w(Ĵ)∗w(Ĵ−1)∗ . . . ∗w(2)∗w(1). The choice of m implies (m+1)d

s−1 ≤ J . So Ĵ ≤ J and by taking w(Ĵ+1) =
. . . = w(J) to be the delta sequence, we have W = w(J)∗w(J−1)∗ . . . ∗w(2)∗w(1). This tells us [30] that

T (J) . . . T (1) = TW

where TW is the dJ ×d matrix given by [W�−k]�=1,...,dJ ,k=1,...,d. Observe from the definition of the sequence 
W that for k = 0, 1, . . . , m, the (k+1)d-th row of TW is exactly the transpose of αk. Also, since Js ≥ (m +1)d, 
we have WJs = 0 and the last row of TW is a zero row.

Then we construct b. Denote ‖w‖1 =
∑∞

k=−∞ |wk|, B(0) = maxx∈Ω maxk=1,...,d |xk| and B(j) =
‖w(j)‖1 . . . ‖w(1)‖1B

(0) for j ≥ 1. Then we have∥∥∥(T (j) . . . T (1)x
)
k

∥∥∥
C(Ω)

≤ B(j), ∀k = 1, . . . , dj .

Take b(1) = −B(1)1d1 := −B(1)(1, . . . , 1)T , and

b(j) = B(j−1)T (j)1dj−1 −B(j)1dj
, j = 1, . . . , J − 1.

Then for j = 1, . . . , J − 1, we have
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h(j)(x) = T (j) . . . T (1)x + B(j)1dj

and b(j)� = B(j−1)∑s
k=0 w

(j)
k −B(j) = b

(j)
s+1 for � = s +1, . . . , dj−s. Hence the bias vectors are of the required 

form (1.4).
Finally, we take the bias vector b(J) by setting b(J)

� to be⎧⎪⎨⎪⎩
B(J−1)(T (J)1dJ−1)� −B(J), if � = d, d + Js,

B(J−1)(T (J)1dJ−1)� + tk, if � = (k + 1)d, 1 ≤ k ≤ m,

B(J−1)(T (J)1dJ−1)� + B(J), otherwise.

Substituting this bias vector and the expression for h(J−1)(x) into the iterative relation of the deep CNN, 
we see from the identity T (J) . . . T (1) = TW and the definition of the sequence W that the �-th component 
h

(J)
� (x) of h(J)(x) equals ⎧⎪⎪⎪⎨⎪⎪⎪⎩

α0 · x + B(J), if � = d,

B(J), if � = d + Js,

(αk · x− tk)+ , if � = (k + 1)d, 1 ≤ k ≤ m,

0, otherwise.

Thus, we can take fw,b
J = Fm|Ω ∈ span{h(J)

k (x)}dJ

k=1 = Hw,b
J and know that the error ‖f − fw,b

J ‖C(Ω) ≤
‖F − Fm‖C([−1,1]d) can be bounded as

‖f − fw,b
J ‖C(Ω) ≤ c0vF,2 max

{√
logm,

√
d
}
m− 1

2− 1
d .

But 1
2 (s − 1)J ≤ md < (s − 1)J and 2r − d − 4 ≥ 1. By a polar coordinate transformation, cd,rd1+ 1

d ≤√
d6πd/2

Γ( d
2 +1)

(
1 + 1√

2r−d−4

)
which can be bounded by an absolute constant c′ := max�∈N 2

√
�6π�/2/Γ( �

2 + 1). 
Therefore,

‖f − fw,b
J ‖C(Ω) ≤ 2c0c′ ‖F‖

√
log JJ− 1

2− 1
d .

This proves Theorem 2 by taking c = 2c0c′.

Convolutional factorizations have been considered in our recent work [30] for sequences W supported in 
{0, 1, . . . , S} with S ≥ d under the special restrictions W0 > 0 and WS �= 0. Theorem 3 gives a more general 
result by improving the bound for J in [30] and removing the special restrictions on W0 and WS .

Proof of Theorem 3. We apply a useful concept from the literature of wavelets [6], the symbol w̃ of a sequence 
w finitely supported in the set of nonnegative integers, defined as a polynomial on C by w̃(z) =

∑∞
k=0 wkz

k. 
The symbol of the convoluted sequence a∗b is given by ã∗b(z) = ã(z)̃b(z). Notice that the symbol W̃
of the sequence W supported in {0, . . . , M} is a polynomial of degree M with real coefficients for some 
0 ≤ M ≤ M. So we know that complex roots zk = xk + iyk of W̃ with xk �= 0 appear in pairs and by 
(z − zk)(z − zk) = z2 − 2xkz +

(
x2
k + y2

k

)
, the polynomial W̃ (z) can be completely factorized as

W̃ (z) = WMΠK
k=1
{
z2 − 2xkz +

(
x2
k + y2

k

)}
ΠM

k=2K+1(z − xk),

where 2K is the number of complex roots with multiplicity, and M − 2K is the number of real roots 
with multiplicity. By taking groups of up to s/2 quadratic factors (or (s − 1)/2 quadratic factors with a 

linear factor) and s linear factors in the above factorization, we get W̃ (z) = w̃(J)(z) . . . w̃(2)(z)w̃(1)(z), a 
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factorization of W̃ into polynomials of degree up to s, which yields a desired convolutional factorization 
W = w(J)∗w(J−1)∗ . . . ∗w(2)∗w(1) and proves Theorem 3.
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