
Theory of Deep Convolutional Neural Networks:
Downsampling

Ding-Xuan Zhou
School of Data Science and Department of Mathematics

City University of Hong Kong, Kowloon, Hong Kong
Email: mazhou@cityu.edu.hk

Abstract

Establishing a solid theoretical foundation for structured deep neural net-
works is greatly desired due to the successful applications of deep learning in
various practical domains. This paper aims at an approximation theory of deep
convolutional neural networks whose structures are induced by convolutions.
To overcome the difficulty in theoretical analysis of the networks with linear-
ly increasing widths arising from convolutions, we introduce a downsampling
operator to reduce the widths. We prove that the downsampled deep convolu-
tional neural networks can be used to approximate ridge functions nicely, which
hints some advantages of these structured networks in terms of approximation
or modelling. We also prove that the output of any multi-layer fully-connected
neural network can be realized by that of a downsampled deep convolutional
neural network with free parameters of the same order, which shows that in
general, the approximation ability of deep convolutional neural networks is
at least as good as that of fully-connected networks. Finally, a theorem for
approximating functions on Riemannian manifolds is presented, which demon-
strates that deep convolutional neural networks can be used to learn manifold
features of data.

Keywords: deep learning, convolutional neural networks, approximation theory, down-
sampling, filter masks

1 Introduction and Downsampling

Deep learning has provided powerful applications in many practical domains of sci-

ence and technology. It is based on structured deep neural networks with structures

or network architectures designed according to various purposes. As an important

family of structured deep neural networks with convolutional structures, deep con-

volutional neural networks (DCNNs) have been applied successfully to speeches,

1

images, and many other types of data [14, 9, 13, 7]. Empirical observations have led

to a belief that convolutions enable DCNNs to efficiently learn locally shift-invariant

features, and thereby to demonstrate their powers in speech and image processing.

Compared with their rapid developments in practical applications and under-

standing of some computational issues like backpropagation, stochastic gradient de-

scent, and error-correction tuning [7], modelling, approximation, or generalization

abilities of structured deep neural networks (structured nets) are not well understood

rigorously. In this paper we present an approximation theory for downsampled

DCNNs in which an operation of downsampling is applied to DCNNs and plays a

role of pooling in reducing widths of deep neural networks.

Before demonstrating differences between structured deep nets and the classical

fully-connected nets (multi-layer neural networks), we recall that a multi-layer neural

network for learning functions of input variable vector x = (xi)
d
i=1 ∈ Rd with ` hidden

layers of neurons {H(k) : Rd → Rnk}`k=1 with widths {nk} is defined iteratively by

H(k)(x) = σ
(
F (k)H(k−1)(x)− b̂(k)

)
, k = 1, 2, . . . , `, (1.1)

where σ : R→ R is an activation function acting componentwise on vectors, F (k) is

a nk × nk−1 matrix, b̂(k) ∈ Rnk is a bias vector, and H(0)(x) = x with width n0 = d.

The most crucial part in the above fully-connected nets is the full matrix F (k)

which involves nknk−1 free parameters to be trained and leads to huge computational

complexity in implementing the induced deep learning algorithms. In particular, the

classical shallow net corresponding to the 1-layer case J = 1 having N = n1 hidden

neurons needs to train a N × d full matrix F (1) = [t1 t2 . . . tN]T with N row vectors

{ti ∈ Rd}Ni=1. These row vectors together with a bias vector b̂ = (b̂i)
N
i=1 ∈ RN and

coefficients {ci}Ni=1 form N(d+2) free parameters to be trained in the output function

fN(x) =
N∑
i=1

ciσ(ti · x− b̂i). (1.2)

This number of free parameters is huge when the input data has a large dimension

d and/or the number N of hidden neurons is large to achieve good approximation

abilities. It leads to technical difficulty in implementing the fully-connected nets. A

large literature around the late 1980s [4, 10, 1, 15, 19] on function approximation by

fully-connected shallow or multi-layer neural networks compensates for the compu-

tational complexity. The most essential component in such an approximation theory

is the fully-connected nature of the full matrix F (k) in (1.1) or the complete freedom

of the feature vectors {ti} in (1.2).

DCNNs considered in this paper take a special form of multi-layer neural nets

(1.1), and their specialty lies in the special sparse network structures imposed

2

by convolutions. Instead of full matrices F (k) in (1.1), matrices in our DCNNs

of depth J are induced by convolutional filter masks {w(j) : Z → R}Jj=1 with

the restriction made throughout the paper that each filter mask w(j) is a sequence

supported in {0, 1, . . . , s(j)} for some s(j) ∈ N called filter length, involving only

s(j) + 1 free parameters. Such a filter mask w = (wk)
∞
k=−∞ supported in {0, 1, . . . , s}

for some s ∈ N satisfies wk = 0 for k 6∈ [0, s] and convoluting with it leads to a

Toeplitz type (D + s)×D convolutional matrix Tw := (wi−k)i=1,...,D+s,k=1,...,D for

D ∈ N given explicitly by

Tw =

w0 0 0 0 · · · · · · 0
w1 w0 0 0 · · · · · · 0
...

.
...

ws ws−1 · · · w0 0 · · · 0
0 ws · · · w1 w0 0 · · · 0
...

.
...

0 · · · 0 ws · · · w1 w0

0 · · · 0 0 ws · · · w1
...

.
...

0 0 0 0 · · · 0 ws

∈ R(D+s)×D. (1.3)

In [28, 29], we take convolutional matrices T (j) := Tw
(j)

(with D = dj−1 and s = s(j)),

and study a DCNN {h(j) : Rd → Rdj}Jj=1 with linearly increasing widths {dj = d+js}
and uniform filter length s(j) ≡ s as

h(j)(x) = AT (j),b(j) ◦ · · · ◦ AT (1),b(1)(x), j = 1, 2, . . . , J. (1.4)

Here AF,b : Rdj−1 → Rdj−1+s(j) is an activated affine mapping associated with a

(dj−1 + s(j))× dj−1 matrix F and a bias vector b ∈ Rdj−1+s(j) defined by

AF,b(u) = σ (Fu− b) , u ∈ Rdj−1 ,

and σ is the rectified linear unit (ReLU) activation function given by σ(u) = max{u, 0}.
Note that the last layer of the fully-connected net (1.1) can be expressed as

H(`)(x) = AF (`),b(`) ◦ · · · ◦ AF (1),b(1)(x) in terms of the mappings AF,b involving F (k),

with ”F” standing for ”full” matrices in the fully-connected nets, instead of T (j), with

”T” standing for ”Toeplitz” type matrices in DCNNs. We shall show in Theorem 2

below that H(`)(x) produced by a fully-connected net (1.1) with ` hidden layers can

be realized by the output h(J)(x) of a (downsampled) DCNN with J layers; while

the total number of free parameters in the DCNN is at most 8 times of that of (1.1),

the number J of layers of the DCNN is much larger than `, the number of layers of

(1.1).

3

In this paper we introduce a downsampling operation into DCNNs to control the

widths in (1.4). The ` downsamplings are introduced at layers J := {Jk}`k=1 with

1 < J1 ≤ J2 ≤ . . . ≤ J` = J . Our idea of applying downsampling operators is

motivated by the literature of wavelets [5, 18]. Denote the integer part of u ∈ R+ as

[u].

Definition 1. The downsampling operator Dm : RD → R[D/m] with a scaling param-

eter m ≤ D is defined by

Dm(v) = (vim)
[D/m]
i=1 , v ∈ RD. (1.5)

A downsampled DCNN with ` downsamplings at layers J and filter lengths

{s(j)}Jj=1 has widths {dj}Jj=0 defined iteratively by d0 = d and for k = 1, . . . , `,

dj =

{
dj−1 + s(j), if Jk−1 < j < Jk,[
(dj−1 + s(j))/dJk−1

]
, if j = Jk,

(1.6)

and is a sequence of function vectors
{
h(j)(x) : Rd → Rdj

}J
j=1

defined iteratively by

h(0)(x) = x and for k = 1, . . . , `,

h(j)(x) =

{
AT (j),b(j)

(
h(j−1)(x)

)
, if Jk−1 < j < Jk,

DdJk−1
◦ AT (j),b(j)

(
h(j−1)(x)

)
, if j = Jk.

(1.7)

Moreover, we require that the bias vectors b(j) ∈ Rdj−1+s(j) satisfy the restriction

b
(j)

s(j)+1
= b

(j)

s(j)+2
= . . . = b

(j)
dj−1

(1.8)

for j 6∈ J . We call the downsampled DCNN uniform with uniform filter lengths

S := {s[k] ∈ N}`k=1 if s(Jk−1+1) = . . . = s(Jk) = s[k] for every k ∈ {1, . . . , `}.

Remark 1. Acting the activated affine mapping AT (j),b(j) on h(j−1)(x) produces the

vector in (1.7) as

(
AT (j),b(j)

(
h(j−1)(x)

))
i

= σ

dj−1∑
r=1

w
(j)
i−r
(
h(j−1)(x)

)
r
− b(j)

i

 , 1 ≤ i ≤ dj−1 + s(j),

where
∑dj−1

r=1 w
(j)
·−r
(
h(j−1)(x)

)
r

is exactly the convolution w(j)∗h(j−1)(x) of the filter

mask w(j) with h(j−1)(x) viewed as a sequence supported in {1, . . . , dj−1}. Recall that

the convolution of sequence a supported in {0, . . . , s} and sequence b supported in

{0, . . . , D − 1} is a sequence a∗b supported in {0, . . . , D + s − 1} given by (a∗b)i =∑∞
r=−∞ ai−rbr. This illustrates the role of convolution in the definition of DCNNs

and the convolutional matrix (1.3).

The restriction (1.8) is satisfied by the vector produced by acting the convolutional

matrices T (w) on the constant 1 vector, so we impose this constraint on the bias vector

to reduce the number of free parameters.

4

In this paper we make the following contributions to the approximation theory

of DCNNs:

1. To introduce a downsampling operation into the DCNNs (1.4) so that the

widths can be reduced from the linearly increasing nature.

2. To present a theorem for approximating ridge functions of the form g(ξ ·x) with

ξ ∈ Rd and g : R → R, which demonstrates that for some classes of functions

on Rd with special strcutres, DCNNs may have better approximation ability

than fully-connected nets.

3. To prove that the last layer H(`) of a multi-layer fully-connected neural net-

work (1.1) can be realized by that of a uniform DCNN, which shows that in

general, the approximation ability of DCNNs is at least as good as that of

fully-connected nets.

4. To prove a theorem for approximating functions on Riemannian manifolds,

which demonstrates that DCNNs can be used to learn manifold features of

data.

All the DCNNs constructed in this paper are uniform.

2 Main Results

In terms of the sequences of filter masks w = {w(j)}Jj=1, bias vectors b =
{
b(j)
}J
j=1

,

and filter lengths s = {s(j)}Jj=1, we introduce a composed mapping Aq,pw,b for p ≤ q as

Aq,pw,b = AT (q),b(q) ◦ . . . ◦ AT (p+1),b(p+1) ◦ AT (p),b(p) : Rdp−1 → Rdq .

We omit index s for simplicity. Then the last layer in the downsampled DCNN with

` downsamplings at layers J defined in Definition 1 can be expressed explicitly as

h(J)(x) = DdJ`−1
◦ AJ,J`−1+1

w,b ◦ · · · ◦ DdJ1
◦ AJ2,J1+1

w,b ◦ Dd ◦ AJ1,1
w,b(x). (2.1)

The induced hypothesis space of functions on a bounded subset Ω of Rd is given by

Hw,b,J ,s =
{
c · h(J)(x) : c ∈ RdJ

}
. (2.2)

2.1 Approximating ridge functions

The first purpose of this paper is to show that DCNNs have a nice performance in

approximating ridge functions of the form

g(ξ · x), x ∈ Ω (2.3)

5

induced by the dot product ξ · x in Rd with an unknown feature vector ξ ∈ Rd and

an unknown univariate function g : R → R. We denote the norm of Rd as |x| and

the unit ball as B := {x ∈ Rd : |x| ≤ 1}. We assume for ridge approximation that

Ω ⊆ B. Denote due to be the smallest integer greater than or equal to u > 0.

The downsampled DCNN in the following approximation theorem, to be proved in

Section 4, has ` = 2 downsamplings at layers J = {J1 ≤ dd−1
s−1
e, J = J1 + 1}, uniform

filter lengths S = {s, 4N + 6} with s ∈ [2, d], the last filter mask {w(J)
i ≡ 1}4N+6

i=0 ,

and widths

dj =

d+ js, if j = 0, 1, . . . , J1 − 1,
1 or 2, if j = J1,
2N + 4, if j = J, dJ1 = 2,
4N + 7, if j = J, dJ1 = 1

(2.4)

for some parameter N ∈ N which determines the approximation accuracy. The last

bias vector b(J) is chosen as(
b(J)
)
i

=

{
dJ1B

(J1) + ti, for i = 1, 2, . . . , 2N + 3,
B(J1) + 1, for i ≥ 2N + 4,

(2.5)

where ti = ti,N := i−N−2
N

for i = 1, . . . , 2N + 3, and B(J1) is a parameter depending

on w.

For the regularity of the univariate function g : R→ R in (2.3), we assume that

for some 0 < α ≤ 1, g is Lipschitz-α meaning that for some constant Cg,α,

|g(u)− g(v)| ≤ Cg,α|u− v|α, ∀u, v ∈ R. (2.6)

Theorem 1. Let ξ ∈ B, 2 ≤ s ≤ d, and N ∈ N. If g is Lipschitz-α for some

0 < α ≤ 1, then there exists a uniform downsampled DCNN
{
h(j)(x)

}J
j=1

at layers

J = {J1 ≤ dd−1
s−1
e, J = J1 + 1}, uniform filter lengths S = {s, 4N + 6} with {w(J)

i ≡
1}4N+6

i=0 , and b =
{
b(j)
}J
j=1

satisfying (1.8) for j = 1, . . . , J − 1, b(J) given by (2.5) in

terms of N and a parameter B(J1), and coefficients {ci}2N+3
i=1 such that∥∥∥∥∥

2N+3∑
i=1

ci
(
h(J)(x)

)
i
− g(ξ · x)

∥∥∥∥∥
∞

≤ 2Cg,α
Nα

. (2.7)

To achieve the approximation accuracy ε ∈ (0, 1), we take N = d(2Cg,α/ε)1/αe and

require at most W ≤ 3d(d−1)
s−1

+ 2 (2Cg,α/ε)
1/α + 8 widths (computation units) and

N ≤ 8d+ 2 (2Cg,α/ε)
1/α free parameters.

Remark 2. From the proof of the theorem, we can see that we may take J1 = dd−1
s−1
e

to cancel the uncertain parameter J1 by setting the filter masks w(j) for j = J1 +

1, . . . , dd−1
s−1
e to be the delta sequence on Z in the case J1 < dd−1

s−1
e. The conclusion of

Theorem 1 still holds.

6

The dimension-free rates of approximation given by (2.7) demonstrate the nice

performance of DCNNs in approximating ridge functions. There has been some ev-

idence in the approximation theory literature that rates of approximation by fully-

connected nets might depend on the dimension. As an example, it was shown in [17]

that for approximating functions from the unit ball F = {f ∈ W r
∞(B) : ‖f‖W r

∞ ≤ 1}
of the Sobolev space W r

∞(B) with r ∈ N by the fully-connected shallow net (1.2),

the worse-case error depends on the dimension d as supf∈F infci,ti,b̂i ‖f − fN‖∞ ≥
cd,rN

−r/(d−1) with a positive constant cd,r independent of N ∈ N. Of course, this

worse-case behavior does not imply that the rate in approximating an individual ridge

function by the fully-connected net (1.2) must be dimension dependent. It would be

interesting to give concrete mathematical statements on advantages of deep CNNs

over fully-connected nets. In particular, we conjecture that there are some function

classes which can be approximated by DCNNs faster than fully-connected nets.

2.2 Representing fully-connected nets

Our second purpose of the paper is to show that output functions produced by any

deep fully-connected neural net associated with ReLU can be realized by downsam-

pled DCNNs. This extends our earlier work [29, 30] on shallow nets which has

recently been established for periodized deep CNNs in [21]. This more general result

confirms again that the approximation ability of DCNNs is at least as good as that

of fully-connected nets.

Theorem 2. Let {H(k) : Rd → Rnk}`k=1 be an `-layer fully connected neural network

satisfying (1.1) with connection matrices F (k), bias vector b̂(k) such that nknk−1 > 1

for each k ∈ {1, . . . , `}. Let s[k] ∈ [2, nknk−1] for each k. Then there is a uniform

downsampled DCNN
{
h(j)(x) : Rd → Rdj

}J
j=1

with ` downsamplings at layers {Jk =∑k
j=1 ∆j} with ∆j ≤ dnjnj−1−1

s[j]−1
e for each j, and uniform filter lengths S = {s[k]}`k=1,

together with bias vectors b(j) ∈ Rdj−1+s[k]
satisfying (1.8) for j 6∈ J such that

h(Jk)(x) = H(k)(x), ∀k ∈ {1, . . . , `}, x ∈ Ω. (2.8)

The total number of free parameters in the above net is at most 8
∑`

k=1 (nknk−1) and

is at most 8 times of that of the fully-connected net.

Remark 3. The number 8 seems too large to support the use of DCNNs. It would

be interesting to reduce this number to a much smaller level.

2.3 Approximating functions on Riemannian manifolds

Our last purpose is to apply Theorem 2 and show that rates of approximating func-

tions on Riemannian manifolds depend on the manifold dimension instead of that of

7

the ambient Euclidean space.

Theorem 3. Let Ω be a compact connected m-dimensional C∞ Riemannian manifold

without boundary embedded in Rd with d ≥ 2 and s ∈ [2, d]. If f is a twice continuous

differentiable function on Ω and has bounded Hessian, then for any N ∈ N, there is

a uniform downsampled DCNN
{
h(j)(x) : Rd → Rdj

}3

j=1
with 3 downsamplings and

uniform filter lengths {s(j) ≡ s}Jj=1 of depth

J ≤ C2
Ω(d+ 2N)(8mN + 5d)

s− 1
+ 3

with a constant CΩ ∈ N depending on the manifold, together with bias vectors b(j)

satisfying (1.8) for j 6∈ J such that

inf
c∈RJ

∥∥f(x)− c · h(J)(x)
∥∥
C(Ω)
≤ Af,Ω,m,dN

−2/m, (2.9)

where Af,Ω,m,d is a positive constant independent of N . The total number of free

parameters is at most 9C2
Ω(d+ 2N)(8mN + 5d).

To achieve the approximation accuracy ε ∈ (0, 1), we require a depth of order

O
(
(d+mε−m/2)2/s

)
and free parameters of order O

(
(d+mε−m/2)2

)
.

2.4 Comparison and Discussion

In this subsection we compare our results with those in the literature and give some

theoretical justifications for the success of DCNNs in terms of approximation rates.

Comparisons are made by means of the total number of free parameters N and the

total number of computation unitsW (widths, or hidden units) required for the same

approximation accuracy ε > 0.

A classical literature for approximation of functions by shallow or multi-layer ful-

ly connected nets was well developed around 1990. A series of results [4, 10, 15] are

about universality of this approximation for any non-polynomial locally bounded and

piecewise continuous activation function, which was recently developed for DCNNs

with ReLU in [29]. Quantitative results about rates of approximation were obtained

in [10, 1, 19, 3] and references therein for understanding efficiency of neural networks.

When a C∞ activation function satisfies limu→−∞ σ(u) = 0, limu→∞ σ(u) = 1 (sig-

moidal function) and f = F |[−1,1]d for some F ∈ L2(Rd) with the Fourier transform

F̂ satisfying |w|F̂ (w) ∈ L1(Rd), it was shown in [1] that for the shallow net (1.2)

and an arbitrary probability measure µ, there holds ‖fN − f‖L2
µ([−1,1]d) = O(1/

√
N).

This result was extended to the case with ReLU recently in [11]. Most results in

the classical literature about rates of approximation by fully connected nets were

8

obtained for continuous activation functions σ with two special assumptions: one is

that for some b ∈ R,

σ(i)(b) 6= 0, ∀i ∈ N ∪ {0}, (2.10)

and the other is that for some integer q 6= 1, there holds

lim
u→−∞

σ(u)/|u|q = 0 and lim
u→∞

σ(u)/uq = 1. (2.11)

Such a result was presented in [19] for shallow nets (1.2) as

‖fN − f‖C([−1,1]d) ≤ cf,d,rN
−r/d, ∀N ∈ N (2.12)

with a constant cf,d,r, under the condition that the approximated function f lies in

the space Cr([−1, 1]d) of r-th continuously differentiable functions on [−1, 1]d. For

the approximation accuracy ‖fN − f‖C([−1,1]d) ≤ ε, one needs

W = N ≥
(cf,d,r

ε

)d/r
, N ≥ (d+ 2)

(cf,d,r
ε

)d/r
. (2.13)

The ReLU activation function σ used in the recent deep learning literature and

considered in this paper does not satisfy the two special assumptions (2.10), (2.11).

Explicit rates of approximation by fully connected ReLU nets were obtained recently

in [11] for shallow nets, in [22] for nets with 3 hidden layers, and in [24, 25, 2, 20] for

nets with more layers. As an example, Theorem 1 of [25] asserts that for any r ∈ N,

f ∈ W r
∞([0, 1]d) can be approximated within an accuracy ε ∈ (0, 1) by a ReLU deep

net with at most c(log(1/ε) + 1) layers and at most cε−d/r(log(1/ε) + 1) computation

units with a constant c = c(d, r). But as we pointed out in [29], this constant may

increase very fast as d becomes large. To be more specific, the approach in [25] is to

first approximate f by a localized Taylor polynomial

f1(x) =
∑

m∈{0,1,...,N}d

∑
‖α‖1<r

Dαf(m/N)

α!
φm(x)(x−m/N)α, (2.14)

where the localization at scale 1/N with N ∈ N is made by means of trapezoid

functions φm(x) = Πd
i=1ϕ(3Nxi − mi) supported on m/N + [−2/N, 2/N]d defined

with a univariate trapezoid function ϕ(u) = σ(u+2)−σ(u+1)−σ(u−1)+σ(u−2).

Then for each basis function φm(x)(x−m/N)α in (2.14), a ReLU net of depth at least

c1(d + ‖α‖1) log(1/δ) was constructed in [25] to achieve an approximation accuracy

(d + r)δ for δ ∈ (0, 1) where c1 = c1(d, r) is a constant. Thus, to have an accuracy

ε ∈ (0, 1) for approximating f by a ReLU deep net, one takes N = d
(

2d+1dr

εr!

)1/r

e and

δ = ε
2d+1dr(d+r)

as in [25] and the depth of the net is at least C0d(log(1/ε)+d+r log d)

with an absolute constant C0 > 0 while the total number of free parameters for the

9

approximation and the number of computation units are more than the number of

coefficients Dαf(m/N)
α!

:

(N + 1)d
(
d+ r − 1

d

)
>

(
2d+1dr

εr!

)d/r
dr−1

(r − 1)!
> ε−d/r

(
2
d+1
r d

r

)d
dr−1

(r − 1)!
. (2.15)

This shows that for a fixed r, the constant c(d, r) in Theorem 1 of [25] increase very

fast as d becomes large.

While the rates of approximation by fully-connected deep nets presented in [25]

are valid for any smoothness index r ∈ N and for general f ∈ W r
∞([0, 1]d), our The-

orem 1 shows that for the special case of r = 1 and approximating ridge functions,

DCNNs may achieve the same accuracy with a much smaller number of free parame-

ters. To see this, take r = 1 in Theorem 1 when the Lipschitz parameter α is 1. Then

we can see that for achieving the same approximation accuracy ε ∈ (0, 1), the num-

ber of free parameters in the DCNN constructed in Theorem 1 is N ≤ 8d+ 4Cg,α/ε

which is much smaller than the lower bound ε−d
(
2d+1d

)d
stated in (2.15) when d is

large.

Using the rates of approximation derived in this paper, we may get generaliza-

tion error bounds for DCNN-based learning algorithms, as done for kernel-based

algorithms in [23, 6, 8, 26, 12] and distributed learning algorithms in [27, 16, 30].

The main expected difficulty arises from the hypothesis space (2.2) which depends

on the filter masks w and bias vectors b, and is different from a reproducing kernel

Hilbert space used in kernel methods.

3 Analysis of Convolutions in DCNNs

Before proving our main results, we analyze the role of convolutions in our down-

sampled DCNNs.

3.1 Convolutions in factorizations of matrices and filter masks

To understand the structure of the composed mapping AJk,Jk−1+1
w,b in (2.1), we first

consider the product T (Jk) · · ·T (Jk−1+2)T (Jk−1+1) of Toeplitz type matrices in the acti-

vated affine mappings. Here T (j) is a (dj−1 +s(j))×dj−1 matrix of the form (1.3) with

D = dj−1 and s = s(j). Observe that the sequence W (k) := w(Jk)∗ . . . ∗w(Jk−1+1) ob-

tained by convoluting the filter masks {w(j)}Jkj=Jk−1+1 is supported on {0, 1, . . . ,∆k}
where ∆k =

∑Jk
j=Jk−1+1 s

(j). We denote the Toeplitz type matrix (1.3) with D = dJk−1

and s = ∆k induced by this sequence as

T (Jk,Jk−1+1) :=
(
W

(k)
i−k

)
i=1,...,dJk−1

+∆k,k=1,...,dJk−1

.

10

It turns out that this matrix induced by th convoluted sequence W (k) is exactly

equal to the product T (Jk) · · ·T (Jk−1+1), which demonstrates the role of convolutions

in matrix factorizations and is proved in the appendix by methods from [30].

Lemma 1. For k = 1, . . . , `, we have

T (Jk,Jk−1+1) = T (Jk) · · ·T (Jk−1+2)T (Jk−1+1). (3.1)

The role of convolutions in filter mask decompositions can be seen from the

following lemma [29] for factorizing an arbitrary pre-assigned sequence W supported

in Z+ into convolutions w(p)∗ . . . ∗w(2)∗w(1) of a sequence {w(j)}pj=1.

Lemma 2. Let s ≥ 2 and W = (Wk)
∞
k=−∞ be a sequence supported in {0, . . . ,M}

with M ≥ 0. Then there exists a finite sequence of filter masks {w(j)}pj=1 each

supported in {0, . . . , s(j) = s} with p ≤ d M
s−1
e such that the following convolutional

factorization holds true

W = w(p)∗w(p−1)∗ . . . ∗w(2)∗w(1). (3.2)

3.2 Choosing bias vectors

To derive explicit expressions for h(j)(x), we need to choose the bias vectors according

to the special form of the convolutional matrices Tw.

For a function vector h : Ω→ RD, we denote

‖h‖∞ = max
i=1,...,D

sup
x∈Ω
|(h(x))i| .

Denote ‖w‖1 =
∑

k∈Z |wk| to be the `1-norm of a finitely supported sequence w

on Z. Then we see immediately from the definition of the convolutional matrices

T (j) = Tw
(j)

that for any h : Ω→ Rdj−1 ,∥∥T (j)h
∥∥
∞ ≤ ‖w

(j)‖1 ‖h‖∞ . (3.3)

We use some ideas from our previous study [29] on DCNNs without downsampling

and choose the biases to be small enough such that the vectors T (j)h(j−1)(x) − b(j)

have nonnegative entries. A special feature in our downsampled DCNNs is the matrix

representing the downsampling operator Dm(k) at layer Jk with k ∈ {1, . . . , `} given

by

M (k) =

0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · ·
0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 · · · 0 0 0 · · ·
...
. .

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0 1 0 · · ·

 , (3.4)

11

where the entries 1 appear in columns dJk−1, 2dJk−1, . . . , [(dJk−1 + s(Jk))/dJk−1]dJk−1.

We denote the constant 1 vector in Rdj as 1dj and J0 = 0. The proof of the following

lemma will be given in the appendix.

Lemma 3. Let k ∈ {1, . . . , `}. Assume that for some positive number B and another

real number B̂ ∈ [−B,B], there holds∥∥∥h(Jk−1) − B̂1dJk−1

∥∥∥
∞
≤ B. (3.5)

If we take b(Jk−1+1) = B̂T (Jk−1+1)1dJk−1
−B‖w(Jk−1+1)‖11dJk−1+1

and

b(j) = B
(

Πj−1
p=Jk−1+1‖w

(p)‖1

)
T (j)1dj−1

−B
(

Πj
p=Jk−1+1‖w

(p)‖1

)
1dj−1+s(j) (3.6)

for j = Jk−1 + 2, . . . , Jk − 1, then for Jk−1 < j < Jk, (1.8) is satisfied and

h(j)(x) = T (j) · · ·T (Jk−1+1)
(
h(Jk−1)(x)− B̂1dJk−1

)
+B

(
Πj
p=Jk−1+1‖w

(p)‖1

)
1dj . (3.7)

If we choose b(Jk) by (3.6), then (1.8) is also satisfied for j = Jk and

h(Jk)(x) = M (k)T (Jk,Jk−1+1)
(
h(Jk−1)(x)− B̂1dJk−1

)
+B

(
ΠJk
p=Jk−1+1‖w

(p)‖1

)
1dJk .

(3.8)

4 Constructing DCNNs and Proving Theorems

In this section we prove our main results.

4.1 Approximating ridge functions by DCNNs

To prove Theorem 1 for approximating ridge functions, we apply the convolutional

factorization stated in Lemma 2 to the sequence supported in {0, 1, . . . , d− 1} given

by reversing the components of ξ as [Wd−1 Wd−2 . . .W0] = [ξ1 ξ2 . . . ξd] = ξT .

Proof of Theorem 1. We construct the first J1 layers and find h(J1)(x). Take W to

be the sequence supported in {0, 1, . . . , d−1} given by Wi = ξd−i for i = 0, . . . , d−1.

Applying Lemma 2 with M = d − 1, we know that there exists a sequence of filter

masks w = {w(j)}J1
j=1 supported in {0, . . . , s(j) = s} with J1 ≤ dd−1

s−1
e satisfying the

convolutional factorization W = w(J1)∗w(J1−1)∗ . . . ∗w(2)∗w(1).

Take ∆1 = J1s and d0 = d. Then by s ≤ d,

d+ J1s < d+

(
d− 1

s− 1
+ 1

)
s

= d+
s(d+ s− 2)

s− 1
= d+

2d(s− 1)− (d− s)(s− 2)

s− 1
< 3d.

12

Thus the (d+ ∆1)× d matrix T (J1,1) in (1.3) has its d-th row [Wd−1 Wd−2 . . .W0] =

[ξ1 ξ2 . . . ξd] = ξT and its 2d-th row [W2d−1 Wd−2 . . .Wd] being the zero row if J1s ≥ d.

So by Lemma 1, after the first downsampling of scale d, the width is dJ1 ∈ {1, 2},
the function vector M (1)T (J1,1)x has one row or two and equals ξTx = ξ ·x if dJ1 = 1,

and

[
ξTx = ξ · x

0

]
∈ R2 if dJ1 = 2.

The input layer h(0)(x) = x satisfies (3.5) with B̂ = 0 and B = 1 by our assump-

tion Ω ⊆ B. Take the bias vectors {b(j)}J1
j=1 as in (3.6), by Lemma 3, we have

h(J1)(x) = M (1)T (J1,1)x+B(J1)1dJ1
,

where B(J1) = ΠJ1
p=1‖w(p)‖1.

Then we construct the last layer with J = J2 = J1 + 1 and filter length s(J) =

4N + 6. It follows from dJ1 ∈ {1, 2} and the definition (1.6) of the downsampled

width that

dJ = [(dJ−1 + 4N + 6)/dJ1] =

{
4N + 7, if dJ1 = 1,
2N + 4, if dJ1 = 2.

Take the filter mask w(J) to be supported in {0, . . . , 4N + 6} with w
(J)
i = 1 for

i = 0, . . . , 4N + 6.

When dJ1 = 1, the (4N+7)×1 matrix T (J) given by (1.3) has all the 4N+7 rows

identical, having only one entry 1, which tells us that all the entries of T (J)h(J1)(x)

equals ξ · x+B(J1). We choose the bias vector b(J) by (2.5), that is,

b
(J)
i =

{
B(J1) + ti, for i = 1, 2, . . . , 2N + 3,
B(J1) + 1, for i = 2N + 4, . . . , 4N + 7.

Then
(
h(J)(x)

)
i

=
(
AT (J),b(J)

(
h(J−1)(x)

))
i

= σ (ξ · x− ti) for i = 1, 2, . . . , 2N+3 and(
h(J)(x)

)
i

= 0 for i ≥ 2N + 4.

When dJ1 = 2, the (4N + 8)×2 matrix T (J) given by (1.3) has the first row [1, 0],

last row [0, 1] and all the middle rows [1, 1]. Hence

(
T (J)h(J1)(x)

)
i

=

ξ · x+B(J1), if i = 1,
ξ · x+ 2B(J1), if i = 2, . . . , 4N + 7,
B(J1), if i = 4N + 8.

Choose the even entries of the bias vector b(J) by (2.5), that is,

b
(J)
2i =

{
2B(J1) + ti, for i = 1, 2, . . . , 2N + 3,
B(J1) + 1, for i = 2N + 4.

Then by (1.7) and the above identities on T (J)h(J1)(x) and b(J), we have(
h(J)(x)

)
i

=
(
AT (J),b(J)

(
h(J−1)(x)

))
2i

= σ (ξ · x− ti) , i = 1, 2, . . . , 2N + 3

13

and
(
h(J)(x)

)
2N+4

= 0.

What is left for approximation is to find the coefficients (cr)
2N+3
r=1 for a function

from the hypothesis space (2.2). For this purpose we need a well-known scheme in

approximation theory which can be found with a general form in [28]. In our setting,

we take t = {ti}2N+3
i=1 to be the 2N + 3 nodes and the approximation scheme Lt on

[t2, t2N+2] = [−1, 1] is defined by

Lt(g)(u) =
2N+2∑
i=2

g(ti)δi(u), u ∈ [−1, 1], g ∈ C[−1, 1], (4.1)

where the function δi ∈ C(R) with i ∈ {2, . . . , 2N + 2} is given by

δi(u) = Nσ(u− ti−1)− 2Nσ(u− ti) +Nσ(u− ti+1).

It can be found from Lemma 6 of [28] that from the Lipschitz-α continuity of g, we

have

‖Lt(g)− g‖C[−1,1] = sup
u∈[−1,1]

|Lt(g)(u)− g(u)| ≤ 2Cg,α
Nα

. (4.2)

Since |ξ| ≤ 1 and |x| ≤ 1 for every x ∈ Ω, the above approximation estimate yields

sup
x∈Ω

∣∣∣∣∣g(ξ · x)−
2N+2∑
i=2

g(ti)δi(ξ · x)

∣∣∣∣∣ ≤ 2Cg,α
Nα

.

Moreover,

2N+2∑
i=2

g(ti)δi(ξ · x) ∈ span {σ (ξ · x− ti)}2N+3
i=1 = span

{(
h(J)(x)

)
i

}2N+3

i=1
.

This proves the bound (2.7) for the approximation error.

The total number of required computation units or widths W is

W =

J1−1∑
j=1

(d+ js) + dJ1 + 2N + 4 ≤ 3d(d− 1)

s− 1
+ 2N + 6.

The total number of free parameters N is the sum of J1(s + 1) contributed by w,

J1(2s+ 1) + 1 by b, and 2N + 3 by the coefficients {ci} and can be bounded as

N ≤ J1(3s+ 2) + 2N + 4 ≤ dd− 1

s− 1
e(3s+ 2) + 2N + 4.

Since dd−1
s−1
e < d−1

s−1
+ 1, we know that (s − 1)dd−1

s−1
e < d − 1 + (s − 1) which implies

(s− 1)dd−1
s−1
e ≤ d+ s− 3 and

N ≤ d+ s− 3

s− 1
(3s+ 2) + 2N + 4 = 3d+ 2N + 3s+

5(d− 2)

s− 1
.

14

Observe that the function 3s+ 5(d−2)
s−1

of the variable s on the interval [2, d] is convex.

So its maximum value is achieved at one of the two endpoints and we have

3s+
5(d− 2)

s− 1
≤ max

{
6 + 5(d− 2), 3d+

5(d− 2)

d− 1

}
≤ 5d− 2.

Hence

N ≤ 8d+ 2N − 2.

To achieve the approximation accuracy ε ∈ (0, 1), we take N = d(2Cg,α/ε)1/αe
and require the total width of W ≤ 3d(d−1)

s−1
+ 2 (2Cg,α/ε)

1/α + 8 and the parameter

number N ≤ 8d+ 2 (2Cg,α/ε)
1/α. This completes the proof of Theorem 1.

Remark 4. From our proof, we can see that we may take J1 = dd−1
s−1
e by taking the

additional filter masks w(j) for j = J1 + 1, . . . , dd−1
s−1
e to be the delta sequence on Z.

With this choice,

d+ J1s = d+ dd− 1

s− 1
es ≥ d+

(
d− 1

s− 1

)
s ≥ 2d,

so dJ1 = 2.

The gap between dd−1
s−1
e and J1 can be large when ξ has some sparse properties. It

would be interesting to study better performance of approximating ridge functions by

DCNNs when this sparsity is used.

4.2 Realizing fully-connected networks by deep CNNs

In this subsection we turn to representing output functions from fully-connected

nets by deep CNNs. In the proof of Theorem 1, we take a sequence W supported

on {0, . . . , d − 1} by reversing the components of the feature vector ξ in the ridge

function (2.3) and make a convolutional factorization. If we view the inner product

ξ ·x as the matrix-vector product ξTx, then we can stack the reversed row vectors of

the nk×nk−1 full connection matrix F (k) in (1.1) and form a sequence W supported

on {0, . . . , nknk−1 − 1} for a convolutional factorization. This is the key idea in the

next proof.

Proof of Theorem 2. We present our construction by induction, starting from the

input layer H(0)(x) = x with k = 1 of width n0 = d. Suppose that for some

k ∈ {1, . . . , `}, the filter masks {w(j)}Jk−1

j=1 and the bias vectors {b(j)}Jk−1

j=1 with (3.7)

valid have been constructed such that the Jk−1-th layer h(Jk−1)(x) is equal to the

(k − 1)-th layer H(k−1)(x) of width dJk−1
= nk−1 of the fully connected net. We now

show how to construct the DCNN layers
{
h(j)(x) : Rd → Rdj

}Jk
j=Jk−1+1

for realizing

the k-th layer H(k)(x) of the fully connected net. To this end, we define a sequence

15

W supported on {0, . . . , nknk−1 − 1} by stacking the reversed row vectors of the

nk × nk−1 matrix F (k) in (1.1) as

Wi+(r−1)nk−1
=
(
F (k)

)
r,nk−1−i

, r = 1, 2, . . . , nk, i = 0, 1, . . . , nk−1 − 1. (4.3)

An essential point for the above definition of W is the identity[
Wnk−1−1+(r−1)nk−1

Wnk−1−2+(r−1)nk−1
. . .W(r−1)nk−1

]
=
[(
F (k)

)
r,·

]T
(4.4)

which is the r-th row of the full matrix F (k) and is exactly the rnk−1-th row of the

convolutional matrix (1.3) with D = nk−1 and s = nknk−1 − 1.

Applying Lemma 2 to the sequence W withM = nknk−1−1 and s[k] ∈ [2, nknk−1],

we know that there exists a sequence of filter masks {w(j)}Jkj=Jk−1
, of equal filter length

s[k], with Jk ≤ Jk−1 + dnknk−1−1

s[k]−1
e such that the sequence W has the convolutional

factorization w(Jk)∗w(J1−1)∗ . . . ∗w(Jk−1+1).

Then we construct the bias vectors {b(j)}Jk−1
j=Jk−1+1 as in Lemma 3 with B =∥∥h(Jk−1)

∥∥
∞ =

∥∥H(k−1)
∥∥
∞ and B̂ = 0. Obviously, (3.5) is satisfied and, when

Jk > Jk−1 + 1, by Lemma 3, for j = Jk−1 + 1, . . . , Jk − 1, (1.8) is satisfied and

h(Jk−1)(x) = T (Jk−1) · · ·T (Jk−1+1)H(k−1)(x) +
∥∥H(k−1)

∥∥
∞

(
ΠJk−1
p=Jk−1+1‖w

(p)‖1

)
1dJk−1

.

(4.5)

At the end, we choose b(Jk) as

b(Jk) =

{ ∥∥H(k−1)
∥∥
∞

(
ΠJk−1
p=Jk−1+1‖w(p)‖1

)
T (Jk)1dJk−1

+ θ(k), when Jk > Jk−1 + 1,

θ(k), when Jk = Jk−1 + 1,

where θ(k) ∈ RdJk−1+s[k]

is an arbitrary vector satisfying DdJk−1
θ(k) = b̂(k), then we

have

h(Jk)(x) = DdJk−1
σ
(
T (Jk) · · ·T (Jk−1+1)H(k−1)(x)− θ(k)

)
. (4.6)

By Lemma 1,

T (Jk) · · ·T (Jk−1+1) = T (Jk,Jk−1+1) = TW = (Wq−i)q=1,...,dJk−1
+nknk−1−1,i=1,...,dJk−1

.

Recall that dJk−1
= nk−1 and thereby DdJk−1

= Dnk−1
. So for r ∈ {1, . . . , nk}, the

rnk−1-th row of the matrix T (Jk) · · ·T (Jk−1+1) equals[
Wrnk−1−1 Wrnk−1−2 . . .Wrnk−1−nk−1

]
which is exactly the r-th row

[(
F (k)

)
r,·

]T
of the full matrix F (k) according to (4.4).

Combining this with (4.6) yields

h(Jk)(x) = σ
(
F (k)H(k−1)(x)− b̂(k)

)
,

16

which verifies h(Jk)(x) = H(k)(x). Since the vector T (Jk)1dJk−1
satisfies (1.8), we know

that the total number of free parameters in realizing H(k)(x) from H(k−1)(x) is at

most

(3s[k] + 2)dnknk−1 − 1

s[k] − 1
e ≤ 8nknk−1 − 6 ≤ 8nknk−1,

where we have used the argument in the proof of Theorem 1 for bounding the num-

ber (3s[k] + 2)dnknk−1−1

s[k]−1
e. This completes the induction procedure and the proof of

Theorem 2.

4.3 Approximation on Riemannian manifolds by DCNNs

We are in a position to use Theorem 2 and a result from [22] to prove Theorem 3.

Proof of Theorem 3. According to Theorem 5.1 of [22], with an atlas of size CΩ ∈ N
for the manifold Ω, to approximate the function f , one can construct a 3-layer neural

network {H(k) : Rd → Rnk}3
k=1 of widths n1 = dCΩ, n2 = 8m

∑CΩ

i=1Ni + 4CΩ(d−m),

n3 = 2
∑CΩ

i=1 Ni, where Ni is the number of wavelet terms used on the i-th chart.

Moreover, it was proved on page 549 there that if one chooses all wavelet terms up

to scale K ∈ N, the integer part of logN
log 2
− 1, then 2K+1 ≤ N ,

∑CΩ

i=1Ni ≤ CΩN and

the widths satisfy 4d ≤ n2 ≤ 8mCΩN + 4CΩ(d −m) and 2 ≤ n3 ≤ 2CΩN , and the

approximation error can be bounded as

inf
c∈Rn3

∥∥f(x)− c ·H(3)(x)
∥∥
C(Ω)
≤ Af,Ω,m,dN

−2/m, (4.7)

where Af,Ω,m,d is a positive constant independent of N .

Now for the given integer s ∈ [2, d] and the layer number ` = 3 of the above

network {H(k) : Rd → Rnk}3
k=1, we take the uniform filter lengths S = {s[k]}3

k=1

to be identical to s, and apply Theorem 2. Then we know that there is a uniform

downsampled DCNN
{
h(j)(x) : Rd → Rdj

}J
j=1

with 3 downsamplings and uniform

filter lengths {s[k] ≡ s}3
k=1, together with bias vectors b(j) satisfying (1.8) for j 6∈ J

such that h(J)(x) = H(3)(x) for x ∈ Ω. Combining this with (4.7), we know that

there is some c ∈ RJ such that∥∥f(x)− c · h(J)(x)
∥∥
C(Ω)
≤ Af,Ω,m,dN

−2/m.

Moreover, the downsampling layers J = {Jk}3
k=1 are given by Jk =

∑k
j=1 ∆j with

∆j ≤ dnjnj−1−1

s−1
e satisfying

∆1 ≤ dn1n0 − 1

s[1] − 1
e ≤ dd

2CΩ − 1

s− 1
e,

∆2 ≤ ddC
2
Ω(8mN + 4d− 4m)− 1

s− 1
e,

∆3 ≤ d2C
2
ΩN(8mN + 4d− 4m)− 1

s− 1
e,

17

which implies J =
∑3

j=1 ∆j ≤
C2

Ω(d+2N)(8mN+5d)

s−1
+3. The total number of free param-

eters can be bounded as

N ≤ 8
3∑

k=1

(nknk−1) + n3 ≤ 9C2
Ω(d+ 2N)(8mN + 5d).

To achieve the approximation accuracy ε ∈ (0, 1), we require the total network

width of order O
(
(d+mε−m/2)2/s

)
and the total number of free parameters of order

O
(
(d+mε−m/2)2

)
. This proves Theorem 3.

Appendix

In this appendix, we prove two lemmas stated in Section 3.

Proof of Lemma 1. For 1 ≤ p ≤ Jk − Jk−1, we denote

W (k,p) := w(Jk−1+p)∗ . . . ∗w(Jk−1+2)∗w(Jk−1+1).

It is a sequence supported on {0, 1, . . . ,∆k,p} where ∆k,p =
∑Jk−1+p

j=Jk−1+1 s
(j). Its asso-

ciated Toeplitz type matrix (1.3)

T (Jk−1+p,Jk−1+1) :=
(
W

(k,p)
i−k

)
i=1,...,dJk−1

+∆k,p,k=1,...,dJk−1

satisfies
(
T (Jk−1+p,Jk−1+1)

)
i,t

= W
(k,p)
i−t = 0 when i− t > ∆k,p.

We prove by induction that T (Jk−1+p,Jk−1+1) = T (Jk−1+p) · · ·T (Jk−1+2)T (Jk−1+1) for

1 ≤ p ≤ Jk − Jk−1. The case p = 1 is trivial by definition.

Suppose that the identity holds for p = q < Jk−Jk−1. That is, T (Jk−1+q,Jk−1+1) =

T (Jk−1+q) · · ·T (Jk−1+1) ∈ R(dJk−1
+∆k,q)×dJk−1 . Consider T (Jk−1+q+1)T (Jk−1+q,Jk−1+1), the

product with the (dJk−1
+∆k,q+1)× (dJk−1

+∆k,q) matrix T (Jk−1+q+1). The entry with

1 ≤ i ≤ dJk−1
+ ∆k,q+1 and 1 ≤ j ≤ dJk−1

is given by

(
T (Jk−1+q+1)T (Jk−1+q,Jk−1+1)

)
i,j

=

dJk−1
+∆k,q∑

r=1

(
T (Jk−1+q+1)

)
i,r

(
T (Jk−1+q,Jk−1+1)

)
r,j

=

dJk−1
+∆k,q∑

r=1

w
(Jk−1+q+1)
i−r W

(k,q)
r−j .

This equals
∑

r∈Zw
(Jk−1+q+1)
i−r W

(k,q)
r−j , because for r ∈ (−∞, 0] ∪ [dJk−1

+ ∆k,q + 1,∞),

we have r− j ∈ (−∞,−1]∪ [∆k,q + 1,∞) which implies W
(k,q)
r−j = 0 from the support

of W (k,q). Thus,(
T (Jk−1+q+1)T (Jk−1+q,Jk−1+1)

)
i,j

=
∑
r∈Z

w
(Jk−1+q+1)
i−r W

(k,q)
r−j =

(
w(Jk−1+q+1)∗ . . . ∗w(Jk−1+1)

)
i−j

18

which is exactly
(
T (Jk−1+q+1,Jk−1+1)

)
i,j

. This together with our induction hypothesis

verifies the desired identity for p = q + 1, and completes the induction procedure.

The last identity with p = Jk − Jk−1 is the equality (3.1).

Proof of Lemma 3. We first verify (1.8) from (3.6) for j = Jk−1 + 1, . . . , Jk . For

i = s(j) + 1, . . . , dj−1, we have

(
T (j)1dj−1

)
i

=

dj−1∑
p=1

(
T (j)

)
i,p

=

dj−1∑
p=1

w
(j)
i−p.

Observe that w(j) is supported in {0, . . . , s(j)}. So for p ∈ (−∞, 0] ∪ [dj−1 + 1,∞),

we have i− p ∈ [s(j) + 1,∞) ∪ (∞,−1] which implies w
(j)
i−p = 0. Thus,

(
T (j)1dj−1

)
i

=
∞∑

p=−∞

w
(j)
i−p =

∞∑
p=−∞

w(j)
p , ∀i = s(j) + 1, . . . , dj−1.

This verifies (1.8).

Then we prove (3.7) by induction. For j = Jk−1 + 1, we have

T (Jk−1+1)h(Jk−1)(x)−b(Jk−1+1) = T (Jk−1+1)
(
h(Jk−1)(x)− B̂1dJk−1

)
+B‖w(Jk−1+1)‖11dJk−1+1

.

By (3.3) and (3.5), each component of the above function vector takes nonnegative

values. But the ReLU σ is the same as the identity function on [0,∞), hence

h(Jk−1+1)(x) = T (Jk−1+1)
(
h(Jk−1)(x)− B̂1dJk−1

)
+B‖w(Jk−1+1)‖11dJk−1+1

,

which verifies (3.7) for j = 1.

Suppose that (3.7) holds for j ≥ Jk−1 + 1 with j ≤ Jk − 1. Then dj−1 + s(j) = dj.

By the induction hypothesis and the choice (3.6) of the bias vector, we have

h(j)(x) = σ
(
T (j)T (j−1) · · ·T (Jk+1)

(
h(Jk−1)(x)− B̂1dJk−1

)
+B

(
Πj
p=Jk−1+1‖w

(p)‖1

)
1dj

)
.

By (3.3) and (3.5) again, each component of the above function vector takes nonneg-

ative values, so (3.7) holds true for j. This completes the induction procedure and

verifies (3.7).

What is left is to prove (3.8) when b(Jk) is given by by (3.6). Here

T (Jk)h(Jk−1)(x)− b(Jk) = T (Jk) · · ·T (Jk−1+1)
(
h(Jk−1)(x)− B̂1dJk−1

)
+B

(
ΠJk
p=Jk−1+1‖w

(p)‖1

)
1d

dJk−1+s(Jk)
.

Once again, we apply (3.3) and (3.5), and find that each component of the above

function vector takes nonnegative values. So σ
(
T (Jk)h(Jk−1)(x)− b(Jk)

)
equals the

above expression, which implies (3.8) by the linearity of the downsampling operator.

The proof of the lemma is complete.

19

Acknowledgments

The work described in this paper is supported partially by the Research Grants

Council of Hong Kong [Project No. CityU 11306617].

References

[1] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal func-
tion, IEEE Trans. Inform. Theory 39 (1993), 930–945.

[2] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen, Optimal approximation with
sparsely connected deep neural networks, SIAM Journal on Mathematics of Data
Science 1 (2019), 8–45.

[3] C. K. Chui, X. Li, H. N. Mhaskar, Limitations of the approximation capabilities of
neural networks with one hidden layer, Adv. Comput. Math. 5 (1996), 233-243.

[4] G. Cybenko, Approximations by superpositions of sigmoidal functions, Math. Control,
Signals, and Systems 2 (1989), 303-314.

[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

[6] J. Fan, T. Hu, Q. Wu and D. X. Zhou, Consistency analysis of an empirical minimum
error entropy algorithm, Appl. Comput. Harmonic Anal. 41 (2016), 164-189.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.

[8] Z. C. Guo, D. H. Xiang, X. Guo, and D. X. Zhou, Thresholded spectral algorithms
for sparse approximations, Anal. Appl. 15 (2017), 433–455.

[9] G. E. Hinton, S. Osindero, Y. W. Teh, A fast learning algorithm for deep belief nets,
Neural Comput. 18 (2006), 1527-1554.

[10] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are uni-
versal approximators, Neural networks 2 (1989), 359366.

[11] J. Klusowski and A. Barron, Approximation by combinations of ReLU and squared
ReLU ridge functions with `1 and `0 controls, IEEE Transactions on Information
Theory 64 (2018), 7649–7656.

[12] M. Kohler, A. Krzyżak, Adaptive regression estimation with multilayer feedforward
neural networks, J. Nonparametric Statis. 17 (2005), 891-913.

[13] A. Krizhevsky, I. Sutskever, and G. Hinton G, Imagenet classification with deep con-
volutional neural networks, NIPS (2012): 2097-1105.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86 (1998), 2278-2324.

20

[15] M. Leshno, Y. V. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward network-
s with a non-polynomial activation function can approximate any function, Neural
Networks 6 (1993), 861-867.

[16] S. B. Lin and D. X. Zhou, Distributed kernel gradient descent algorithms, Constructive
Approximation 47 (2018), 249-276.

[17] V. Maiorov, On best approximation by ridge functions in the uniform norm, Con-
structive Approximation 18 (2002), 61-85.

[18] S. Mallat, Understanding deep convolutional networks, Phil. Trans. Royal Soc. A
374:20150203.

[19] H. N. Mhaskar, Approximation properties of a multilayered feedforward artificial neu-
ral network, Adv. Comput. Math. 1 (1993), 61-80.

[20] P. Petersen and V. Voigtlaender, Optimal approximation of piecewise smooth functions
using deep ReLU neural networks, Neural Networks 108 (2018), 296–330.

[21] P. Petersen and F. Voigtlaender, Equivalence of approximation by convolutional neu-
ral networks and fully-connected networks, Proc. Amer. Math. Soc., in press. arX-
iv:1809.00973, 2018.

[22] U. Shaham, A. Cloninger, and R. Coifman, Provable approximation properties for deep
neural networks, Applied and Computational Harmonic Analysis 44 (2018), 537–557.

[23] I. Steinwart and A. Christmann, Support Vector Machines, Springer, New York, 2008.

[24] M. Telgarsky, Benefits of depth in neural networks. 29th Annual Conference on Learn-
ing Theory PMLR 49 (2016): 1517–1539.

[25] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural
Networks 94 (2017), 103–114.

[26] Y. Ying and D. X. Zhou, Unregularized online learning algorithms with general loss
functions, Appl. Comput. Harmonic Anal. 42(2017), 224–244.

[27] Y. C. Zhang, J. Duchi, and M. Wainwright, Divide and conquer kernel ridge regression:
A distributed algorithm with minimax optimal rates, J. Mach. Learn. Res. 16 (2015),
3299-3340.

[28] D. X. Zhou, Deep distributed convolutional neural networks: universality, Anal. Appl.
16 (2018), 895–919.

[29] D. X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Har-
monic Anal., in press. arXiv:1805.10769v2

[30] D. X. Zhou, Distributed approximation with deep convolutional neural networks, sub-
mitted, 2018.

21

