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Abstract

Distributed learning based on the divide and conquer approach is a powerful too for big data
processing. We introduce a distributed kernel gradient descent algorithm for the minimum error
entropy principle and analyze its convergence. We show that the L2 error decays at a minimax
optimal rate under some mild conditions. As a tool we establish some concentration inequalities
for U-statistics which play pivotal roles in our error analysis.
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1 Introduction

Distributed learning has received increasing attention in recent years for its power to handle big data.
Among many strategies of distributed learning, the divide and conquer approach has been shown
simple and effective. It starts with a data set that is stored distributively in local machines or dividing
the whole data set into multiple subsets that are distributed to local machines, then applies a base
algorithm to analyze each subset, and finally pools the information together by simple averaging.
This approach is computationally efficient by enabling parallel computing in the second stage and can
preserve data security and privacy by minimizing mutual information communications. Recently, it
was also shown to be consistent for several base algorithms and sometimes achieve optimal learning
rates. For instance, in [23], it was proved that the M-estimation of a fixed number of parameters by
a distributed method is first order equivalent to the estimation using the whole data set and thus
preserves statistical properties such as efficiency and robustness. In [33, 20], divide and conquer
method for regression analysis with kernel ridge regression was shown to achieve optimal learning
rates in a minimax sense provided that the number of subsets satisfies some constraints. Similar
results were also extended to the spectral algorithm [13, 15], the gradient descent algorithm [21],
and the bias correct regularization kernel network [14].

Minimum error entropy (MEE) was proposed as an alternative to the least square method in the
literature of adaptive systems [8]. It was motivated to minimize the information contained in the
prediction error to improve prediction accuracy. Recall that the least square regression is optimal for
Gaussian noise but suboptimal for non-Gaussian noise. MEE shows to be robust to deal with heavy
tailed or non-Gaussian impulse noises. Therefore, it has received considerable study in the literature
and is widely used for many learning tasks; see [7, 9, 12, 25, 26, 5, 16, 17, 10, 3, 4, 28, 24] and a vast
references therein. The MEE method is usually implemented by gradient descent algorithms and
their convergence has been proved in [5, 18, 19]. In this paper we are interested in the implementation
of MEE by a distributed gradient descent method in a big data setting. Note that the MEE loss
function involves a pair of observations and is non-convex. So its analysis is essentially different from
the least square method. Although existing works on distributed learning do shed some light on
the understanding of distributed MEE, they do not apply directly. Rigorous analysis of distributed
MEE is more involved and necessary to derive the consistency and learning rates.

The main contributions of this paper include the following. (i) We derive error bounds for the
distributed kernel gradient descent MEE algorithm and show the algorithm can achieve the minimax
optimal learning rate. This is a completely new result. (ii) As a byproduct, we prove that the kernel
gradient MEE algorithm on a single data set can achieve the minimax optimal rate, which improves
existing results in the literature. (iii) We establish some concentration inequalities for distributed
U-statistics. They play pivotal roles in our analysis of the distributed MEE algorithm in this paper
and could potentially apply to the analysis of other pairwise learning methods such as bipartite
ranking, gradient learning, and AUC maximization.

The rest of this paper is arranged as follows. In Section 2 we give some notations and assump-
tions used throughout the paper and present our main results. In Section 3 we prove some useful
concentration inequalities for distributed U-statistics. In Section 4 we present some useful lemmas
for the proof. The proof of the main results is given in Section 5. Simulations are done in Section 6
to illustrate our theory. We close with some further discussions in Section 7.

To make it easy to follow our presentation below, in Table 1 we summarize some notations that
are repeatedly used throughout this paper.
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Table 1: List of notations used throughout the paper
Notation Meaning of the notation

X the input variable
Y the response variable
X the sample space of X, a compact subset of a Euclidian space
Y the sample space of Y , a subset of R
Z the product space X × Y
ρ an unknown probability measure on Z
ρX marginal probability measure of ρ on X
ρ(·|x) conditional probability of Y give X = x
f a function on X
f̃ a function on X 2 induced from f by f̃(x, u) = f(x)− f(u)
fρ the mean regression function fρ(x) = E[Y |X = x]

f̃ρ the function on X 2 induced from fρ by f̃ρ(x, u) = fρ(x)− fρ(u)
xi the ith observation for the input variable X
yi the ith observation for the response variable Y
zi the paired observation (xi, yi)
N the total number of observations
D the collection of all observations D = {(x1, y1) . . . , (xN , yN )}
k the number of subsets that the whole data D is partitioned into
Dl the lth subset of D
m the sample size of each subset Dl, m = N

k assuming N is divisible by k
G loss function of MEE algorithm
K a producing kernel on X
K̃ a reproducing kernel on X 2 induced from K, defined in (2)

HK̃ the reproducing kernel Hilbert space associated to K̃

LK̃ integral operator associated to K̃
ft+1,D the function output by the kernel gradient descent MEE algorithm

with data D and kernel K after t iterations

f̃t+1,D the function output by pairwise kernel gradient descent MEE algorithm

with data D and kernel K̃ after t iterations

f̃t+1,Dl the function output by pairwise kernel gradient descent MEE algorithm

with data Dl and kernel K̃ after t iterations

f̃t+1,D the solution of distributed pairwise kernel gradient descent MEE algorithm

after t iterations, equal to the average of f̃t+1,Dl , l = 1, . . . , k
bN/4c the largest integer not exceeding N/4
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2 Main results

Throughout this paper, let X be the input variable of predictors and Y the response variable.
Assume they are linked by a regression model

Y = f∗(X) + ε

with ε a noise variable having conditional mean zero given X. Assume the sample space of X is a
compact subset X of Rn and the sample space of Y is a bounded subset Y of R. Denote by ρ the
joint probability measure of (X,Y ) on Z = X × Y. Let ρX be the marginal distribution of ρ on X
and ρ(·|x) the conditional distribution of ρ for given x ∈ X . The purpose of regression analysis is to
infer an estimated model fD from a sample D = {(xi, yi)}Ni=1 of N observations drawn independently
from ρ.

The MEE criterion was introduced for linear models in [8, 7] and extended to kernel models in
[17, 19]. We focus on the kernel models in this paper because linear models can be regarded as
special cases with linear kernels and are relatively easy to analyze. The Rényi quadratic entropy
based MEE method minimizes the empirical Rényi quadratic entropy

Ĥ2(f) = − log

 1

N2h

N∑
i=1

N∑
j=1

G

(
[(yi − f(xi))− (yj − f(xj))]

2

2h2

)
in a hypothesis space of functions, where G : R+ → R is a loss function. Since the log function is
monotone and does not affect the minimizer, the MEE method can be implemented by minimizing
the transformed empirical risk

RD(f) = − h2

N2

N∑
i=1

N∑
j=1

G

(
[(yi − f(xi))− (yj − f(xj))]

2

2h2

)
.

The kernel MEE method minimizesRD(f) in a reproducing kernel Hilbert space. A Mercer kernel
is a continuous, symmetric, and positive semidefinite function K : X × X → R. The linear span of
the function set {Kx = K(x, ·), x ∈ X} with the inner product induced by 〈Kx,Ky〉K = K(x, y)
forms a pre-Hilbert space. Its completion is a reproducing kernel Hilbert space HK . The reproducing
property is given by f(x) = 〈f,Kx〉K and implies ‖f‖∞ ≤ supx∈X

√
K(x, x)‖f‖K . The kernel MEE

method is usually solved by the gradient descent algorithm.
Definition 2.1. Given a sample D = {zi = (xi, yi)}Ni=1, the kernel gradient decent algorithm for
MEE is defined by f1,D = 0 and for t ≥ 2,

ft+1,D = ft,D − ηt ×

{
1

N2

N∑
i=1

N∑
j=1

−G′
(ξt(zi, zj)

2h2

)
ξt(zi, zj)(Kxj −Kxi)

}
, (1)

where ηt > 0 is the step size and ξt(zi, zj) = yi − ft(xi)− (yj − ft(xj)).
Similar to other kernel based gradient descent algorithms, early stopping is required to avoid

overfitting [29, 31]. Since the loss function of MEE is non-convex, the kernel gradient descent
algorithm for MEE can be even more complicated. In an earlier work [19] we proved its consistency
by a covering number based argument, which, however, did not provide the optimal learning rate.

In this paper we consider a setting that the data is big or arrives naturally in a distributed
manner so that the kernel gradient descent algorithm cannot be done by a single processor and a
distributed approach has to be used. We decompose the data set D into k disjoint subset {Dl}kl=1

of equal size so that each subset Dl = {z(l)
i = (x

(l)
i , y

(l)
i )}mi=1 has sample size |Dl| = m = N

k . Let
ft,Dl be the time t output of the kernel gradient descent algorithm (1) on Dl. The time t output of

the distributed kernel gradient descent algorithm for MEE is f̄t+1,D = 1
k

∑k
l=1 ft+1,Dl . However, we
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will not analyze this scheme directly. Instead, we will analyze an equivalent scheme by using some
advanced techniques that have been recently developed for pairwise learning [30]. For this purpose,

define the pairwise kernel K̃ : X 2 ×X 2 → R by

K̃((x1, x2), (u1, u2)) = K(x1, u1) +K(x2, u2)−K(x2, u1)−K(x1, u2)

= 〈Kx1 −Kx2 ,Ku1 −Ku2〉K . (2)

For each function f on X , denote the function f(x) − f(x′) by f̃(x, x′) : X × X → R. It is verified

that K̃ defines a reproducing kernel and 〈f̃ , K̃(x,x′)〉K̃ = f̃(x, x′) for all f̃ ∈ HK̃ . Define the integral
operator LK̃ : HK̃ → HK̃ by

LK̃(f̃) =

∫
X

∫
X

〈
f̃ , K̃(x,x′)

〉
K̃
K̃(x,x′)dρXdρX , f̃ ∈ HK̃ ,

and the empirical operator LK̃,D on HK̃ by

LK̃,D(f̃) =
1

N2

N∑
i=1

N∑
j=1

〈
f̃ , K̃(xi,xj)

〉
K̃
K̃(xi,xj),

=
1

|D|2
∑

x,x′∈D(x)

〈
f̃ , K̃(x,x′)

〉
K̃
K̃(x,x′), f̃ ∈ HK̃ .

Here and in the following |D| := N denotes the cardinal of the set D and D(x) := {xi}Ni=1 = {x :
there exists some y such that (x, y) ∈ D}. With these notations, we see that the algorithm (1) is
equivalent to

f̃t+1,D = f̃t,D − ηt ×

{
1

N2

N∑
i=1

N∑
j=1

−G′
(ξt(zi, zj)

2h2

)
ξt(zi, zj)K̃(xi,xj)

}

= f̃t,D −
ηt
|D|2

∑
(x,y),(x′,y′)∈D

−G′
(ξt(z, z′)

2h2

)
ξt(z, z′)K̃(x,x′), (3)

where ξt(z, z′) = y − y′ − f̃t,D(x, x′), z = (x, y) and z′ = (x′, y′). Correspondingly we have an
equivalent scheme for the distributed kernel gradient descent algorithm with output

f̃t+1,D =
1

k

k∑
l=1

f̃t+1,Dl .

The goal of this paper is to estimate the learning error between f̃t+1,D and f̃ρ in the L2
ρX×ρX -space.

For simplicity, in the sequel we will use ‖ · ‖ to denote the norm ‖ · ‖L2
ρX×ρX

with respect to the

L2
ρX×ρX space when the meaning is clear from the context.

Throughout the paper, we assume, without loss of generality, that

κ := sup
(x,x′)∈X 2

√
K̃((x, x′), (x, x′)) ≤ 1

and |y| ≤ Mρ for some Mρ > 0. It is easy to get that ‖f̃ρ‖∞ = sup
x,x′∈X

|fρ(x) − fρ(x′)| ≤ 2Mρ. We

assume that there exist some 0 < s ≤ 1 and C0 > 0 such that

N (λ) = Tr
[
LK̃(LK̃ + λI)−1

]
≤ C0λ

−s, ∀ λ > 0, (4)
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and

f̃ρ = Lr
K̃
g, for some r > 0 and g ∈ L2

ρX×ρX
. (5)

The assumption (4) measures the capacity of HK̃ by the effective dimension, that is, the trace of the
operator LK̃(LK̃ +λI)−1. Note it always holds with s = 1. For s < 1, it is almost equivalent to that

the eigenvalues σi of LK̃ decay at a rate i−
1
s . The smoother the kernel function K̃ is, the smaller

s and the smaller function space HK̃ . In particular, if K̃ ∈ C∞, then s can be arbitrarily small, as
is the case for Gaussian kernels. The assumption (5) measures the regularity of the target function.

It is the well known source condition. In general, f̃ρ is smoother if r is larger. Both conditions (4)
and (5) are widely used in the learning theory literature.

For the loss function used in MEE, we assume that G′(0) = −1, G′(x) < 0 for any x > 0,
supx∈R |G′(x)| ≤ CG, and there exists some cp > 0, p > 0 such that |G′(x)−G′(0)| ≤ cp|x|p for all
0 ≤ x ≤ 1.
Theorem 2.2. Assume that (4) and (5) hold for some r > 1

2 and 0 < s ≤ 1. Take ηt = ηt−θ with

0 < η ≤ min{ 1
CG
, 1} and 0 ≤ θ < 1. If T = bN/4c

1
(2r+s)(1−θ) and

k ≤ N
r− 1

2
2r+s

(logN)
5 , (6)

then with confidence at least 1− δ,

‖f̃T+1,D − f̃ρ‖ ≤ C∗
{
N−

r
2r+s +N

p+3
2

2r+sh−2p
}(

log
12

δ

)4

.

where C∗ is a constant depending on θ, r, p.
A direct implication of this theorem is that the kernel gradient descent MEE on a single data

set (i.e. k = 1) can achieve a convergence rate O(N−
r

2r+s ) if the bandwidth parameter h is chosen
to be large enough. This is minimax optimal for the regularized least square regression [1] when
r ≥ 1

2 . The convergence analyses in the MEE literature [5, 18, 19] always present results that are
worse than the regularized least square regression due to the pairwise feature of MEE algorithms.
We in this paper overcome this difficulty and the result shows MEE can achieve the same minimax
rate as the least square method.

In [30, 31] online pairwise learning with the least square loss or a general convex loss has been
investigated. Online learning is different from gradient descent algorithm in two aspects. First, at
each step t, online learning has only access to the sample (xi, yi), i = 1, . . . , t, while gradient descent
algorithm has access to all samples. Second, online learning has to complete T = N iterations to go
through all N samples while gradient descent algorithm can stop with T � N iterations to avoid
overfitting, which is the well known early stopping rule. To our best knowledge, in the analysis of
online learning, it is difficult, if not impossible, to study the impact of the capacity of reproducing
kernel Hilbert spaces. As a consequence, in [30, 31], under the assumption r = 1

2 so that f̃ρ ∈ HK̃
capacity independent rate O(N−

1
6 ) for the excess expected risk was obtained for online pairwise

learning with the least square loss and O(N−
1
5 ) was obtained when the loss function is convex and

has a bounded gradient. Our rate O(N−
1

2(1+s) ) for the kernel gradient descent MEE, either in the
single data set case or in the distributed case, is clearly faster.

For distributed regression with the regularized least square kernel method, the minimax optimal
rate has been verified in [33, 20, 13] under different restrictions on the number of local machines.
The most recent result in [13] states the restriction as

k ≤ Nmin{ 2
2r+s ,

2r−1
2r+s }. (7)

6



When the gradient descent algorithm is used the restriction obtained in [21] is

k ≤ N
r− 1

2
2r+s

(logN)
4

+ 1
. (8)

Note (7) suffers a saturation effect that the number of local machines cannot increase when r ≥ 3
2 .

The restriction in (8) is worse than (7) when r < 5
2 but better when r > 5

2 as an award for overcoming
the saturation effect. Our result for the distributed kernel gradient descent MEE algorithm is quite
similar to (8). They differ only up to a logarithmic term which has minimal effect and is caused by
the difficulty to handle the pairwise and non-convexity features of MEE algorithms.

3 Concentration inequalities for distributed U-statistics

In this section we prove some concentration inequalities for distributed U-statistics that will be used
in the proof of our main results. We need the following lemma whose proof follows some standard
techniques from [22] and will be given in the appendix.
Lemma 3.1. Let {dj}Nj=1 be a sequence of martingale differences with values in a Hilbert space

(H, ‖ · ‖) and d0 ≡ 0. Set the conditional expectation Ej−1‖dj‖2 := E(‖dj‖2|d1, · · · , dj−1). If∑N
j=1 Ej−1‖dj‖2 ≤ σ2 <∞ almost surely for some σ2 > 0 and sup

1≤j≤N
‖dj‖∞ ≤M for some M > 0,

then we have for any c > 0

E cosh

c
∥∥∥∥∥∥
N∑
j=1

dj

∥∥∥∥∥∥
 ≤ exp

{
(ecM − 1− cM)σ2

M2

}
.

Furthermore, for any ε > 0, we also have that

min
c>0

E cosh
(
c‖
∑N
j=0 dj‖

)
cosh(cε)

 ≤ 2 exp

{
− ε

M

{(
1 +

σ2

Mε

)
log
(

1 +
Mε

σ2

)
− 1

}}

≤ exp

{
− ε2

2(σ2 + 1
3Mε)

}
. (9)

Using Lemma 3.1 we can prove the following concentration inequality for distributed U-Statistics
of a Hilbert space valued bivariate random variable.
Theorem 3.2. Let ξ(·, ·) be a symmetric random variable defined on the probability space (Z ×
Z, ρZ × ρZ) with values in a Hilbert space (H, ‖ · ‖). Assume that ‖ξ‖∞ ≤ M almost surely and
a sample D = {zi}Ni=1 is drawn independently from (Z, ρ). Let D be decomposed randomly into k

disjoint subsets {Dl}kl=1 such that each subset Dl = {z(l)
i }mi=1 has the same sample size m = N

k ≥ 2.
Then, with confidence at least 1− δ, we have∥∥∥∥∥∥1

k

k∑
l=1

[ 1

m2

m∑
i=1

m∑
j=1

ξ(z
(l)
i , z

(l)
j )
]
− Eξ

∥∥∥∥∥∥ ≤ 2kM

N
+

2M log(2/δ)

bN/4c
+

√
2E‖ξ‖2 log(2/δ)

bN/4c
(10)

where bN/4c denotes the largest integer not exceeding N/4. In particular, if k = 1, we have with
confidence at least 1− δ,∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

ξ(zi, zj)− Eξ

∥∥∥∥∥∥ ≤ 2M

N
+

2M log(2/δ)

bN/4c
+

√
2E‖ξ‖2 log(2/δ)

bN/4c
. (11)
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Proof. We write∥∥∥∥∥∥1

k

k∑
l=1

[ 1

m2

m∑
i=1

m∑
j=1

ξ(z
(l)
i , z

(l)
j )
]
− Eξ

∥∥∥∥∥∥
≤ 1

m

∥∥∥∥∥[1

k

k∑
l=1

1

m

m∑
i=1

ξ(z
(l)
i , z

(l)
i )
]
− Eξ

∥∥∥∥∥+
m− 1

m

∥∥∥∥∥∥
[1

k

k∑
l=1

1

m(m− 1)

m∑
i=1

∑
j 6=i

ξ(z
(l)
i , z

(l)
j )
]
− Eξ

∥∥∥∥∥∥
≤ 2kM

N
+
m− 1

m

∥∥∥∥∥∥
[1

k

k∑
l=1

1

m(m− 1)

m∑
i=1

∑
j 6=i

ξ(z
(l)
i , z

(l)
j )
]
− Eξ

∥∥∥∥∥∥ . (12)

Since ξ is symmetric on Z × Z, we have

1

m(m− 1)

m∑
i=1

∑
j 6=i

ξ(z
(l)
i , z

(l)
j ) =

1

C2
m

∑
m,2

ξ(z
(l)
i1
, z

(l)
i2

),

where C2
m = m!

(m−2)!2! and the summation
∑
m,2 is taken over all two-tuples (i1, i2) of distinct positive

integers not exceeding m. For each l, define

U
(l)
i :=

1

[m/2]

[
ξ(z

(l)
i1
, z

(l)
i2

) + ξ(z
(l)
i3
, z

(l)
i4

) + · · ·+ ξ(z
(l)
i2[m/2]−1

, z
(l)
i2[m/2]

)
]
.

Then

1

m(m− 1)

m∑
i=1

∑
j 6=i

ξ(z
(l)
i , z

(l)
j ) =

1

C2
m

∑
m,2

ξ(z
(l)
i1
, z

(l)
i2

) =
1

m!

∑
m,m

U
(l)
i

and

1

k

k∑
l=1

1

m(m− 1)

m∑
i=1

∑
j 6=i

ξ(z
(l)
i , z

(l)
j ) =

1

k

k∑
l=1

[ 1

m!

∑
m,m

U
(l)
i

]
=

1

m!

∑
m,m

[1

k

k∑
l=1

U
(l)
i

]
where the summation

∑
m,m is taken over all permutations (i1, · · · , im) of the integers 1, · · · ,m.

Since U
(1)
i , · · · , U (k)

i are independent and each U
(l)
i , l = 1, · · · , k is a summation of [m/2] independent

random variables, we know that
[

1
k

∑k
l=1 U

(l)
i

]
is a summation of k[m/2] ≥ bN/4c independent

random variables. By Lemma 3.1 we have for any ε ≥ 0

min
c>0

E
[

cosh
(
c
∥∥∥[ 1

k

∑k
l=1 U

(l)
i − Eξ

]∥∥∥)]
cosh(cε)

 ≤ 2 exp

{
− ε2

2
(

E‖ξ‖2
k[m/2] + 1

3
2M

k[m/2]ε
)}

≤ 2 exp

{
− bN/4cε2

2(E‖ξ‖2 + 2
3Mε)

}
. (13)

By the convexity of cosh, we obtain

Prob

{∥∥∥1

k

k∑
l=1

[ 1

m(m− 1)

m∑
i=1

∑
j 6=i

ξ(z
(l)
i , z

(l)
j )
]
− Eξ

∥∥∥ ≥ ε}

= Prob

{∥∥∥ 1

m!

∑
m,m

[1

k

k∑
l=1

U
(l)
i − Eξ

]∥∥∥ ≥ ε}
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≤ min
c>0

E
[

cosh
(
c
∥∥∥ 1
m!

∑
m,m

[
1
k

∑k
l=1 U

(l)
i − Eξ

]∥∥∥)]
cosh(cε)


≤ 1

m!

∑
m,m

min
c>0

E
[

cosh
(
c
∥∥∥[ 1

k

∑k
l=1 U

(l)
i − Eξ

]∥∥∥)]
cosh(cε)


≤ 2 exp

{
− bN/4cε2

2(E‖ξ‖2 + 2
3Mε)

}
.

This implies that∥∥∥∥∥∥1

k

k∑
l=1

[ 1

m(m− 1)

m∑
i=1

∑
j 6=i

ξ(z
(l)
i , z

(l)
j )
]
− Eξ

∥∥∥∥∥∥ ≤ 2M log(2/δ)

bN/4c
+

√
2E‖ξ‖2 log(2/δ)

bN/4c
(14)

with confidence at least 1 − δ. Plugging the estimation (14) into (12) we obtain the the estimation
in (10).

The estimation in (11) is a direct corollary of (10) with k = 1.

It is worth remarking that if k = 1 we have m = N and hence kbm/2c = bN/2c. So we see (13)
still holds with bN/4c replaced by bN/2c. As a consequence we can improve the inequality (11) a
little bit by using bN/2c instead of bN/4c for the last two terms on the right hand side.

Recall that the definition of the operator LK̃,Dl on HK̃ for each subset Dl is

LK̃,Dl(f̃) =
1

m2

m∑
i=1

m∑
j=1

〈f̃ , K̃(xi,xj)〉K̃K̃(xi,xj)

=
1

|Dl|2
∑

x,x′∈Dl(x)

〈
f̃ , K̃(x,x′)

〉
K̃
K̃(x,x′), ∀ f̃ ∈ HK̃ .

Let I denote the identity operator. Consider the random variable

ξ(x, x′) = (LK̃ + λI)−
1
2

〈
·, K̃(x,x′)

〉
K̃
K̃(x,x′).

Then Eξ(x, x′) = (LK̃ + λI)−
1
2LK̃ and the corresponding distributed sampling average is

1

k

k∑
l=1

1

m2

m∑
i=1

m∑
j=1

ξ(x
(l)
i , x

(l)
j ) = (LK̃ + λI)−

1
2

1

k

k∑
l=1

LK̃,Dl .

By a similar procedure to that in [20], we obtain the following lemmas.
Lemma 3.3. With confidence at least 1− δ, we have∥∥∥∥∥(LK̃ + λI)−

1
2

(
LK̃ −

1

k

k∑
l=1

LK̃,Dl

)∥∥∥∥∥ ≤ 2AD,λ,k log
2

δ

where

AD,λ,k =
k

|D|
√
λ

+
1

[|D|/4]
√
λ

+

√
N (λ)

[|D|/4]
.

Particularly, with confidence at least 1− δ,∥∥∥(LK̃ + λI)−
1
2 (LK̃ − LK̃,D)

∥∥∥ ≤ 2AD,λ log
2

δ

9



and for each l = 1, · · · , k, with confidence at least 1− δ,∥∥∥(LK̃ + λI)−
1
2 (LK̃ − LK̃,Dl)

∥∥∥ ≤ 2ADl,λ log
2

δ
.

where AD,λ = AD,λ,1 and ADl,λ = ADl,λ,1.
Lemma 3.4. With confidence at least with 1− δ,∥∥∥(LK̃,D + λI)−1(LK̃ + λI)

∥∥∥ ≤ 2
(2AD,λ log 2

δ√
λ

)2

+ 2. (15)

Lemma 3.5. Assume that g(z, z′) is a measurable function defined on Z × Z with ‖g‖∞ ≤ M ′

almost surely for some M ′ > 0 and Dl = {z(l)
i }mi=1 = {(x(l)

i , y
(l)
i )}mi=1, 1 ≤ l ≤ k. With confidence at

least 1− δ,∥∥∥∥∥∥1

k

k∑
l=1

1

m2

m∑
i=1

m∑
j=1

(LK̃ + λI)−
1
2

[
g(z

(l)
i , z

(l)
j )K̃

(x
(l)
i ,x

(l)
j )
− LK̃g

]∥∥∥∥∥∥ ≤ 2M ′AD,λ,k log
2

δ
.

Specially, with confidence at least 1− δ, when k = 1, D = {zi}Ni=1 = {(xi, yi)}Ni=1,∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

(LK̃ + λI)−
1
2

[
g(zi, zj)K̃(xi,xj) − LK̃g

]∥∥∥∥∥∥ ≤ 2M ′AD,λ log
2

δ
.

4 Lemmas

We provide some useful lemmas before moving to the proof of our main results. Let πti denote the
polynomial defined by πti(s) =

∏t
j=i(1 − ηjx) if i ≤ t and, for notation simplicity, let πtt+1(s) = 1

be the identity function. In our proof we need to deal with the polynomial operators πti(LK̃) and

πti(LK̃,D). For this purpose we introduce the conventional notation
∑T
j=T+1 := 1 the following

preliminary lemma.
Lemma 4.1. If 0 ≤ α < 1, 0 ≤ θ < 1,then for T ≥ 3,

T∑
i=1

i−(θ+α)

 T∑
j=i+1

j−θ

−1

≤ Cθ,αT−min{α,1−θ} log T, (16)

where Cθ,α is a constant depending only on θ and α, whose value is given in the proof. In particular,
if α = 0, we have

T∑
i=1

i−θ

 T∑
j=i+1

j−θ

−1

≤ 15 log T. (17)

The proof of Lemma 4.1 is given in the appendix. We now derive bounds for several operators
that are used in the proof of our main theorem.
Lemma 4.2. If ηt = ηt−θ with 0 < η < 1 and 0 ≤ θ < 1, then for 1 ≤ i ≤ T − 1,∥∥∥πti(LK̃,D)

∥∥∥ ≤ 1 (18)∥∥πti(LK̃)
∥∥ ≤ 1 (19)

10



∥∥∥LK̃,DπTi+1(LK̃,D)
∥∥∥ ≤ (eη T∑

j=i+1

j−θ

)−1

, (20)

∥∥LK̃πTi+1(LK̃)
∥∥ ≤ (eη T∑

j=i+1

j−θ

)−1

, (21)

∥∥∥ T∑
i=1

ηi
[
(LK̃,D + λI)πTi+1(LK̃,D)

]∥∥∥ ≤ 1 +
ηλ

1− θ
T 1−θ, (22)

∥∥∥ T∑
i=1

ηi
[
(LK̃ + λI)πTi+1(LK̃)

]∥∥∥ ≤ 1 +
ηλ

1− θ
T 1−θ. (23)

Proof. Since ‖LK̃,D‖ ≤ κ ≤ 1 and 0 < η < 1, we have for each 1 ≤ t ≤ T , the operator I − ηtLK̃,D
is positive with a operator norm bounded by 1. This implies (18). The conclusion (19) follows
analogously by noting ‖LK̃‖ ≤ 1.

Denote by Λ(LK̃,D) the eigenvalue set of the operator LK̃,D on HK̃. Since all eigenvalues of LK̃,D
is bounded by ‖LK̃,D‖ ≤ κ ≤ 1, we have∥∥∥(LK̃,D)πTi+1(LK̃,D)

∥∥∥ = sup
s∈Λ(L

K̃,D
)

∣∣∣sπTi+1(s)
∣∣∣ ≤ sup

0<s≤1
|sπTi+1(s)|

≤ sup
0<x≤1

s exp

{
− s

T∑
j=i+1

ηj

}
=

(
e

T∑
j=i+1

ηj

)−1

=

(
eη

T∑
j=i+1

j−θ

)−1

.

This proves (20). The conclusion (21) follows similarly.
To prove (22), note that

πTi (LK̃,D) = (I − ηiLK̃,D)πTi+1(LK̃,D) = πTi+1(LK̃,D)− ηiLK̃,Dπ
T
i+1(LK̃,D).

It follows that

T∑
i=1

ηiLK̃,Dπ
T
i+1(LK̃,D) = πTT+1(LK̃,D)− πT1 (LK̃,D) = I − πT1 (LK̃,D)

and ∥∥∥∥∥
T∑
i=1

ηiLK̃,Dπ
T
i+1(LK̃,D)

∥∥∥∥∥ =
∥∥∥I − πT1 (LK̃,D)

∥∥∥ ≤ 1.

Therefore,∥∥∥∥∥
T∑
i=1

ηi(LK̃,D + λ)πTi+1(LK̃,D)

∥∥∥∥∥ ≤
∥∥∥∥∥

T∑
i=1

ηiLK̃,Dπ
T
i+1(LK̃,D)

∥∥∥∥∥+ λ

∥∥∥∥∥
T∑
i=1

ηiπ
T
i+1(LK̃,D)

∥∥∥∥∥
≤ 1 + λ

T∑
i=1

ηi = 1 + ηλ

T∑
i=1

i−θ.

By Lemma 7.1 we obtain the desired bound in (22). The conclusion (23) follows in a similar way.
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Define a data-free gradient descent sequence for the least square method in HK̃ by f̃1 = 0 and

f̃t+1 = f̃t − ηt
∫
X

∫
X

(
f̃t(x, x

′)− f̃ρ(x, x′)
)
K̃(x, x′)dρXρX = (I − ηtLK̃)f̃t + ηtLK̃ f̃ρ. (24)

The difference f̃t+1−f̃ρ measures the step t optimization error of the kernel gradient descent sequence
for the least square method. It has been well investigated in the literature, e.g. [29]. Under the
assumption (5) with r > 1

2 , there hold

‖f̃t − f̃ρ‖ ≤ hρt−r(1−θ) (25)

and

‖f̃t − f̃ρ‖K̃ ≤ hρt
−(r− 1

2 )(1−θ), (26)

where hρ = max
{
‖g‖(2r/e)r, ‖g‖[(2r − 1)/e]r−

1
2

}
.

We will need the following estimations in the our proof.
Lemma 4.3. If ηt = ηt−θ with 0 < η < 1 and 0 ≤ θ < 1, then there is a constant Cρ,θ,r such that

T∑
i=1

ηi‖LK̃,Dπ
T
i+1(LK̃,D)‖‖f̃i − f̃ρ‖K̃ ≤ Cρ,θ,r (27)

and
T∑
i=1

ηi‖LK̃π
T
i+1(LK̃)‖‖f̃i − f̃ρ‖K̃ ≤ Cρ,θ,r (28)

Proof. By (26), Lemma 4.1, and Lemma 4.2 we have

T∑
i=1

ηi‖LK̃,Dπ
T
i+1(LK̃,D)‖‖f̃i − f̃ρ‖K̃ ≤ hρ

T∑
i=1

i−θ

 T∑
j=i+1

j−θ

−1

i−(r− 1
2 )(1−θ)

≤ hρCθ,(r− 1
2 )(1−θ)T

−min{1−θ,(r− 1
2 )(1−θ)} log T

≤ hρCθ,(r− 1
2 )(1−θ)

(
emin{1− θ, (r − 1

2 )(1− θ)}
)−1

,

where Cθ,(r− 1
2 )(1−θ) is defined in Lemma 4.1. This proves (27) with

Cρ,θ,r = hρCθ,(r− 1
2 )(1−θ)

(
emin{1− θ, (r − 1

2 )(1− θ)}
)−1

.

The estimate (28) follows analogously.

Lemma 4.4. If ηt = ηt−θ with 0 < η < 1 and 0 ≤ θ < 1, then there is a constant Dρ,θ,r such that

T∑
i=1

ηi‖f̃i − f̃ρ‖K̃ ≤ Dρ,θ,rT
1−θ (29)

Proof. By (26) we obtain

T∑
i=1

ηi‖f̃i − f̃ρ‖K̃ ≤ hρη
T∑
i=1

i−θ−(r− 1
2 )(1−θ).
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By Lemma 7.1, we know that

T∑
i=1

i−θ−(r− 1
2 )(1−θ) ≤


T (1−θ)( 3

2
−r)

(1−θ)( 3
2−r)

, if r < 3
2 ,

2, if r = 3
2 ,

θ+(r− 1
2 )(1−θ)

(1−θ)(r− 3
2 )

, if r > 3
2 .

The restriction r > 1
2 implies that ( 3

2 − r)(1− θ) ≤ (1− θ). Then

T∑
i=1

i−θ−(r− 1
2 )(1−θ) ≤ Dθ,rT

1−θ

where Dθ,r is defined by

Dθ,r =


1

(1−θ)( 3
2−r)

, if r < 3
2 ,

2, if r = 3
2 ,

θ+(r− 1
2 )(1−θ)

(1−θ)(r− 3
2 )

, if r > 3
2 .

Therefore the desired conclusion holds with Dρ,θ,r = hρDθ,r.

The last fact we would recall in this section is the isomorphism between HK̃ and L2
ρX×ρX , which

states that
‖F‖ = ‖L

1
2

K̃
F‖K̃ ≤ ‖(LK̃ + λI)

1
2F‖K̃ , ∀ F ∈ HK̃ . (30)

5 Proof

In this section we prove our main results. The estimation of the distributed solution path depends
on the estimation of solution paths for the subsets. So we will first investigate the properties of
the kernel gradient descent solution path on a single data set and then move to the analysis of the
distributed solution path.

5.1 Bounding the solution path for a single data set

We first establish some upper bounds for the solution path on a single data set.
Theorem 5.1. If the step size sequence satisfies 0 < ηt ≤ 1/CG, then we have the following bound

for the learning sequence {f̃t,D}:

‖f̃t,D‖K̃ ≤ 2Mρ

√√√√CG

t−1∑
i=1

ηi, t ∈ N.

If ηt = ηt−θ with 0 < η ≤ 1/CG and 0 ≤ θ < 1, then

‖f̃t,D‖K̃ ≤ 2Mρt
1−θ
2 . (31)

Proof. We prove the conclusion by induction. First note the conclusion holds trivially for t = 1. Next,

suppose that ‖f̃t,D‖K̃ ≤ 2Mρ

√
CG
∑t−1
i=1 ηi holds. By the updating rule (3) and the reproducing

property, we have

‖f̃t+1,D‖2K̃ =‖f̃t,D‖2K̃ +
2ηt
N2

N∑
i=1

N∑
j=1

G′
(ξt(zi, zj)

2h2

)
ξt(zi, zj)f̃t,D(xi, xj)
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+
η2
t

N4

∥∥∥∥∥∥
N∑
i=1

N∑
j=1

G′
(ξt(zi, zj)

2h2

)
ξt(zi, zj)K̃(xi,xj)

∥∥∥∥∥∥
2

K̃

≤‖f̃t,D‖2K̃ +
2ηt
N2

N∑
i=1

N∑
j=1

G′
(ξt(zi, zj)

2h2

)
ξt(zi, zj)f̃t,D(xi, xj)

+
η2
t

N2

N∑
i=1

N∑
j=1

∣∣∣∣G′(ξt(zi, zj)2h2

)∣∣∣∣2 (ξt(zi, zj))2
=‖f̃t,D‖2K̃ +

ηt
N2

N∑
i=1

N∑
j=1

Qij , (32)

where

Qij =

[
ηt

∣∣∣∣G′(ξt(zi, zj)2h2

)∣∣∣∣2 + 2G′
(ξt(zi, zj)

2h2

)](
f̃t,D(xi, xj)

)2

− 2

(
G′
(ξt(zi, zj)

2h2

)
+ ηt

∣∣∣∣G′(ξt(zi, zj)2h2

)∣∣∣∣2
)

(yi − yj)f̃t,D(xi, xj)

+ ηt

∣∣∣∣G′(ξt(zi, zj)2h2

)∣∣∣∣2 (yi − yj)2.

The restriction ηt ≤ 1
CG

implies ηt|G′( ξ
t(i,j)
2h2 )|2 + 2G′( ξ

t(i,j)
2h2 ) < 0. By the property of quadratic

function, we have

Qij ≤ ηt

∣∣∣∣G′(ξt(zi, zj)2h2

)∣∣∣∣2 (yi − yj)2 −

(
G′(

ξt(zi,zj)
2h2 ) + ηt|G′( ξ

t(zi,zj)
2h2 )|2

)2

(yi − yj)2

ηt|G′( ξ
t(zi,zj)

2h2 )|2 + 2G′(
ξt(zi,zj)

2h2 )

=
|G′( ξ

t(zi,zj)
2h2 )|(yi − yj)2

2− ηt|G′( ξ
t(zi,zj)

2h2 )|
≤ 4M2

ρCG.

Plugging it into (32) we obtain

‖f̃t+1,D‖2K̃ ≤ ‖f̃t,D‖
2
K̃

+ 4M2
ρCGηt ≤ 4M2

ρCG

t∑
i=1

ηi.

This completes the proof.

We remark that, if 1
2 ≤ θ < 1, a bound ‖ft,D‖K ≤ Mρt

1−θ
2 has been proved in [19] and (31) is

an easy corollary. But the proof in [19] does not extend to 0 ≤ θ < 1
2 .

5.2 Error bound for kernel gradient descent MEE on a single data

We bound the learning error of the kernel gradient descent MEE algorithm by decomposing it into
two terms, ∥∥∥f̃t+1,D − f̃ρ

∥∥∥ ≤ ∥∥∥f̃t+1,D − f̃t+1

∥∥∥+ ‖f̃t+1 − f̃ρ‖. (33)

As we have mentioned in Section 3, the second term is the step t optimization error of the kernel
gradient descent sequence for the least square method and can be bounded by (25) under the
assumption (5) with r > 1

2 .
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The first term on the right hand side of (33) involves two errors: the sample error caused by
approximating the population gradient by sample gradient and the error caused by the deviation of
the non-convex MEE loss from the convex square loss. We bound it by the following theorem.
Theorem 5.2. Define {f̃t} by (24). Assume that (5) holds for some r > 1

2 . Let ηt = ηt−θ with
0 < η ≤ min{ 1

CG
, 1} and 0 ≤ θ < 1. For λ > 0, there hold

‖f̃T+1,D − f̃T+1‖ ≤ C ′r,θ,p
[
BD,λ(CD,λ + GD,λ)(1 + λT 1−θ) + T (1−θ)(p+ 3

2 )h−2p
]
, (34)

and

‖f̃T+1,D − f̃T+1‖K̃ ≤ C
′
r,θ,p

[
BD,λ(CD,λ + GD,λ)(1 + λT 1−θ)/

√
λ+ T (1−θ)(p+ 3

2 )h−2p
]
, (35)

where

BD,λ =‖(LK̃,D + λI)−1(LK̃ + λI)‖,

CD,λ =‖(LK̃ + λI)−
1
2 (LK̃ − LK̃,D)‖,

GD,λ =‖(LK̃ + λI)−
1
2 (LK̃ f̃ρ − f̂ρ,D)‖K̃ ,

f̂ρ,D =
1

N2

N∑
i=1

N∑
j=1

(yi − yj)K̃(xi,xj) =
1

|D|2
∑

z,z′∈D
(y − y′)K̃(x,x′), (36)

and C ′r,θ,p is given in the proof, depending on r, θ, p.

Proof. By the definition of f̃t,D in (3) and the definition of f̃t in (24), we have

f̃t+1,D − f̃t+1 = [I − ηtLK̃,D](f̃t,D − f̃t) + ηt[LK̃ − LK̃,D]f̃t + ηt[f̂ρ,D − LK̃(f̃ρ)] + ηtEt,D, (37)

where f̂ρ,D is defined in (36) and

Et,D =
1

N2

N∑
i=1

N∑
j=1

(
G′
(ξt(zi, zj)

2h2

)
−G′(0)

)(
f̃t,D(xi, xj)− yi + yj

)
K̃(xi, xj),

Applying (37) iteratively from t = 1 to T, we obtain

f̃T+1,D − f̃T+1 = I1 + I2 + I3 + I4 (38)

where

I1 =

T∑
i=1

ηiπ
T
i+1(LK̃,D)[LK̃ − LK̃,D](f̃i − f̃ρ),

I2 =

T∑
i=1

ηiπ
T
i+1(LK̃,D)[LK̃ − LK̃,D](f̃ρ),

I3 =

T∑
i=1

ηiπ
T
i+1(LK̃,D)[f̂ρ,D − LK̃(f̃ρ)],

I4 =

T∑
i=1

ηiπ
T
i+1(LK̃,D)Ei,D.
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For I1, by (30), Lemma 4.3 and Lemma 4.4,

‖I1‖ =

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λI)
1
2πTi+1(LK̃,D)[LK̃ − LK̃,D](f̃i − f̃ρ)

∥∥∥∥∥
K̃

≤
T∑
i=1

{
ηi

∥∥∥(LK̃ + λI)
1
2 (LK̃,D + λI)−

1
2

∥∥∥∥∥∥(LK̃,D + λI)πTi+1(LK̃,D)
∥∥∥

×
∥∥∥(LK̃,D + λI)−

1
2 (LK̃ + λI)

1
2

∥∥∥∥∥∥(LK̃ + λI)−
1
2 [LK̃ − LK̃,D]

∥∥∥ ‖f̃i − f̃ρ‖K̃}
≤ BD,λCD,λ

(
T∑
i=1

ηi‖LK̃,Dπ
T
i+1(LK̃,D)‖‖f̃i − f̃ρ‖K̃ + λ

T∑
i=1

ηi‖f̃i − f̃ρ‖K̃

)
≤ BD,λCD,λ

(
Cρ,θ,r +Dρ,θ,rλT

1−θ
)
. (39)

For I2, by (30), Lemma 4.2, and the fact ‖f̃ρ‖∞ ≤ 2Mρ, we have

‖I2‖ =

∥∥∥∥∥
T∑
i=1

ηiπ
T
i+1(LK̃,D)[LK̃ − LK̃,D](f̃ρ)

∥∥∥∥∥
≤

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λI)
1
2πTi+1(LK̃,D)[LK̃ − LK̃,D](f̃ρ)

∥∥∥∥∥
K̃

≤
∥∥∥(LK̃ + λI)

1
2 (LK̃,D + λI)−

1
2

∥∥∥∥∥∥∥∥
T∑
i=1

ηi(LK̃,D + λI)πTi+1(LK̃,D)

∥∥∥∥∥
×
∥∥∥(LK̃,D + λI)−

1
2 (LK̃ + λI)

1
2

∥∥∥∥∥∥(LK̃ + λI)−
1
2 [LK̃ − LK̃,D]

∥∥∥∥∥∥f̃ρ∥∥∥
K̃

≤ 2Mρ

(
1 +

λT 1−θ

1− θ

)
BD,λCD,λ. (40)

Similarly, we can bound I3 as

I3 ≤
(

1 +
λT 1−θ

1− θ

)
BD,λGD,λ. (41)

For I4, first note that by the bound (31) of {ft,D}, we see∥∥∥∥(G′(ξt(zi, zj)2h2

)
−G′(0)

)
(f̃t,D(xi, xj)− yi + yj)K̃(xi, xj)

∥∥∥∥
K̃

≤ cp
(2Mρ + 2‖f̃t,D‖K̃)2p+1

2ph2p
≤ cp

23p+2

h2p
‖f̃t,D‖2p+1

K̃

≤ cp2
5p+2M2p+1

ρ t
(1−θ)(2p+1)

2 h−2p

This implies that

‖Et,D‖K̃ ≤ cp2
5p+2M2p+1

ρ t
(1−θ)(2p+1)

2 h−2p. (42)

This together with the estimate ‖πti+1(LK̃,D)‖ ≤ 1 gives

‖I4‖ ≤
T∑
i=1

ηi‖Ei,D‖K̃ ≤ cp2
5p+2M2p+1

ρ η

T∑
i=1

i
(1−θ)(2p+1)

2 −θh−2p
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≤
cp2

5p+2M2p+1
ρ

(1− θ)(p+ 3
2 )
T (1−θ)(p+ 3

2 )h−2p. (43)

Combining the estimates in (40), (41), (43) and (39) we obtain (34) with

C ′r,θ,p = Cρ,θ,r +Dρ,θ,r +
2Mρ

1− θ
+
cp2

5p+2M2p+1
ρ

(1− θ)(p+ 3
2 )
.

Following a similar process we can obtain the bound in (35).

5.3 Error bound for distributed approach

Now we turn to bound the error of the distributed kernel gradient descent MEE. For this purpose

we decompose the error ‖f̃T+1,D − f̃ρ‖ into two parts as

‖f̃T+1,D − f̃ρ‖ ≤ ‖f̃T+1 − f̃ρ‖+ ‖f̃T+1,D − f̃T+1‖.

The following theorem provides a bound for the first term.
Theorem 5.3. Take λ = T−(1−θ). There is a constant C ′′r,θ,p such that

‖f̃T+1,D − f̃T+1‖ ≤ C ′′r,θ,p

[
FD,λ +DD,λ + λ−

1
2 log T sup

1≤l≤k
CDl,λBDl,λ(CDl,λ + GDl,λ)

+ h−2pT (1−θ)(p+ 3
2 )
(

1 + log T sup
1≤l≤k

CDl,λ
)]
, (44)

where

DD,λ =
∥∥1

k

k∑
l=1

(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ]

∥∥,
FD,λ =

∥∥1

k

k∑
l=1

(LK̃ + λ)−
1
2 [f̂ρ,Dl − LK̃(f̃ρ)]

∥∥
K̃
.

Proof. For each subset Dl and each 1 ≤ t ≤ T we have

f̃T+1,Dl − f̃T+1 = [I − ηtLK̃ ](f̃T,Dl − f̃t) + ηT [LK̃ − LK̃,D]f̃T,Dl + ηT [f̂ρ,Dl − LK̃(f̃ρ)] + ηTET,Dl .

It implies that

f̃T+1,Dl − f̃T+1 =

T∑
i=1

ηiπ
T
i+1(LK̃)[LK̃ − LK̃,Dl ]f̃i,Dl

+

T∑
i=1

ηiπ
T
i+1(LK̃)[f̂ρ,Dl − LK̃(f̃ρ)]

+

T∑
i=1

ηiπ
T
i+1(LK̃)Ei,Dl

and therefore

‖f̃T+1,D − f̃T+1‖ =

∥∥∥∥∥1

k

k∑
l=1

(
f̃T+1,Dl − f̃T+1

)∥∥∥∥∥
17



≤

∥∥∥∥∥
T∑
i=1

ηiπ
T
i+1(LK̃)

1

k

k∑
l=1

[LK̃ − LK̃,Dl ]f̃i,Dl

∥∥∥∥∥
+

∥∥∥∥∥
T∑
i=1

ηiπ
T
i+1(LK̃)

1

k

k∑
l=1

[f̂ρ,Dl − LK̃(f̃ρ)]

∥∥∥∥∥
+

∥∥∥∥∥1

k

k∑
l=1

T∑
i=1

ηiπ
T
i+1(LK̃)Ei,Dl

∥∥∥∥∥
:= J1 + J2 + J3.

We first estimate J2. By (30), Lemma 4.2, and the choice λ = T−(1−θ), we obtain

J2 ≤

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λ)πTi+1(LK̃)
1

k

k∑
l=1

(LK̃ + λ)−
1
2 [f̂ρ,Dl − LK̃(f̃ρ)]

∥∥∥∥∥
K̃

≤
(

1 +
λT 1−θ

1− θ

)∥∥∥∥∥1

k

k∑
l=1

(LK̃ + λ)−
1
2 [f̂ρ,Dl − LK̃(f̃ρ)]

∥∥∥∥∥
K̃

≤ 2Mρ

1− θ
(
1 + λT 1−θ)FD,λ

:=
4Mρ

1− θ
FD,λ. (45)

For J3, by (43) we have

J3 ≤ sup
1≤l≤k

∥∥∥∥∥
T∑
i=1

ηiπ
T
i+1(LK̃)Ei,Dl

∥∥∥∥∥ ≤ cp2
5p+2M2p+1

ρ η

(1− θ)(p+ 3
2 )

T (1−θ)(p+ 3
2 )h−2p. (46)

The estimation of J1 is much more complicated. We decompose it further into three parts,

J1 ≤

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λ)πTi+1(LK̃)
1

k

k∑
l=1

(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ]f̃i,Dl

∥∥∥∥∥
K̃

≤

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λ)πTi+1(LK̃)
1

k

k∑
l=1

(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ](f̃i,Dl − f̃i)

∥∥∥∥∥
K̃

+

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λ)πTi+1(LK̃)
1

k

k∑
l=1

(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ](f̃i − f̃ρ)

∥∥∥∥∥
K̃

+

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λ)πTi+1(LK̃)
1

k

k∑
l=1

(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ](f̃ρ)

∥∥∥∥∥
K̃

:= J11 + J12 + J13.

By Lemma 4.3, Lemma 4.4 and the fact λT 1−θ = 1, we obtain

J12 ≤ DD,λ

(
T∑
i=1

∥∥ηiLK̃πTi+1(LK̃)
∥∥ ‖f̃i − f̃ρ‖K̃ + λ

T∑
i=1

ηi‖f̃i − f̃ρ‖K̃

)
≤ DD,λ

(
Cρ,θ,r +Dρ,θ,r

)
.
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For J13, by (23), we have

J13 ≤

∥∥∥∥∥
T∑
i=1

ηi(LK̃ + λ)πTi+1(LK̃)

∥∥∥∥∥
∥∥∥∥∥1

k

k∑
l=1

(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ]

∥∥∥∥∥∥∥∥f̃ρ∥∥∥K̃
≤ 2Mρ

(
1 +

λT 1−θ

1− θ

)
DD,λ =

4Mρ

1− θ
DD,λ.

Now we turn to J11. We have

J11 ≤
T∑
i=1

∥∥ηi(LK̃ + λ)πTi+1(LK̃)
∥∥ ∥∥∥∥∥1

k

k∑
l=1

(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ](f̃i,Dl − f̃i)

∥∥∥∥∥
K̃

≤
T∑
i=1

∥∥ηi(LK̃ + λ)πTi+1(LK̃)
∥∥ sup

1≤l≤k

∥∥∥(LK̃ + λ)−
1
2 [LK̃ − LK̃,Dl ](f̃i,Dl − f̃i)

∥∥∥
K̃

≤
T∑
i=1

ηi

[( T∑
j=i+1

ηj

)−1

+ λ
]

sup
1≤l≤k

CDl,λ
∥∥∥f̃i,Dl − f̃i∥∥∥

K̃
. (47)

By Theorem 5.2 and the choice λ = T−(1−θ), for 1 ≤ i ≤ T , there holds that λi(1−θ) ≤ 1 and∥∥∥f̃i,Dl − f̃i∥∥∥
K̃
≤ C ′r,θ,p

[
BDl,λ(CDl,λ + GDl,λ)(1 + λi1−θ)/

√
λ+ i(1−θ)(p+

3
2 )h−2p

]
≤ C ′r,θ,p

[
2BDl,λ(CDl,λ + GDl,λ)/

√
λ+ T (1−θ)(p+ 3

2 )h−2p
]
.

Plugging it into (47) we obtain

J11 ≤ C ′r,θ,p sup
1≤l≤k

CDl,λ
[
2BDl,λ(CDl,λ + GDl,λ)/

√
λ+ T (1−θ)(p+ 3

2 )h−2p
] T∑
i=1

ηi

[( T∑
j=i+1

ηj

)−1

+ λ
]

By Lemma 7.1 and 4.1 , we see that

T∑
i=1

ηi

[( T∑
j=i+1

ηj

)−1

+ λ
]
≤ 15 log T +

ηλT 1−θ

1− θ
= 15 log T +

1

1− θ
≤
(

15 +
1

1− θ

)
log T.

So we have

J11 ≤ C ′r,θ,p
(

15 +
1

1− θ

)
log T sup

1≤l≤k
CDl,λ

[
2BDl,λ(CDl,λ + GDl,λ)/

√
λ+ T (1−θ)(p+ 3

2 )h−2p
]

Combining the estimations for J11, J12 and J13 we obtain

J1 ≤
( 4Mρ

1− θ
+ Cρ,θ,r +Dρ,θ,r

)
DD,λ

+ 2C ′r,θ,p

(
15 +

1

1− θ

)
λ−

1
2 log T sup

1≤l≤k
CDl,λBDl,λ(CDl,λ + GDl,λ)

+ C ′r,θ,p

(
15 +

1

1− θ

)
h−2pT (1−θ)(p+ 3

2 ) log T sup
1≤l≤k

CDl,λ. (48)

Now the desired bound for ‖f̄T+1,D − f̃T+1‖ in (44) follows by combining the estimations for J1,
J2, and J3 and the constant is given by

C ′′r,θ,p :=
(8Mρθ

1− θ
+ Cρ,θ,r +Dρ,θ,r

)
+ 3C ′r,θ,p

(
15 +

1

1− θ

)
+
cp2

5p+2M2p+1
ρ η

(1− θ)(p+ 3
2 )

.

This proves the theorem.
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5.4 Optimal rate analysis

Now we can prove Theorem 2.2.

Proof. Firstly, note that with the choice T = bN/4c
1

(2r+s)(1−θ) and λ = T−(1−θ), and under the
restriction (6) on k, we have

AD,λ,k ≤ 5
1

4r+2sN−
r+s
2r+s + bN/4c−1+ 1

4r+2s +
√
C0bN/4c−

1
2 + s

4r+2s

≤ 5
1

4r+2sN−
r+s
2r+s + (

√
C0 + 1)bN/4c−

r
2r+s

≤
√

5(
√
C0 + 2)N−

r
2r+s ,

Therefore,

ADl,λ = ADl,λ,1 = m−1bN/4c
1

4r+2s + [m/4]−1bN/4c
1

4r+2s +
√
C0[m/4]−

1
2 bN/4c

s
4r+2s

≤ kN
1

4r+2s−1 + 5kN
1

4r+2s−1 +
√

5C0k
1
2N−

r
2r+s

≤ (6 +
√

5C0)k
1
2N−

r
2r+s

and

ADl,λ√
λ
≤ (6 +

√
5C0)k

1
2N−

r
2r+s bN/4c

1
4r+2s ≤ (6 +

√
5C0).

Applying Lemma 3.3, Lemma 3.4 and Lemma 3.5, for any 1 ≤ l ≤ k, we have with confidence at
least 1− δ

6k ,

BDl,λ ≤ 2
(2ADl,λ log 12k

δ√
λ

)2

+ 2, CDl,λ ≤ 2ADl,λ log
12k

δ
, GDl,λ ≤ 4ADl,λMρ log

12k

δ
.

Consequently these bounds hold simultaneously with confidence at least 1 − δ
2 . This implies that

with confidence at least 1− δ
2 , there hold

λ−
1
2 log T sup

1≤l≤k
CDl,λBDl,λ(CDl,λ + GDl,λ)

≤ 26(Mρ + 1) log T
[(ADl,λ√

λ

)2

+ 1
]A2

Dl,λ√
λ

(
log

12k

δ

)4

≤ 26(Mρ + 1)
[(

6 +
√

5C0

)2

+ 1
]2
kN−

2r− 1
2

2r+s log T

(
log

12k

δ

)4

≤ 210(Mρ + 1)
[(

6 +
√

5C0

)2

+ 1
]2
kN−

2r− 1
2

2r+s log T (log k)
4

(
log

12

δ

)4

≤
210(Mρ + 1)

[(
6 +
√

5C0

)2

+ 1
]2

(2r + s)(1− θ)
kN−

2r− 1
2

2r+s (logN)
5

(
log

12

δ

)4

≤
210(Mρ + 1)

[(
6 +
√

5C0

)2

+ 1
]2

(2r + s)(1− θ)
N−

r
2r+s

(
log

12

δ

)4

(49)

and

h−2pT (1−θ)(p+ 3
2 )

(
1 + (log T ) sup

1≤l≤k
CDl,λ

)
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≤ 2h−2pT (1−θ)(p+ 3
2 )

(
1 + (log T )ADl,λ log

12k

δ

)
≤ 2h−2pN

p+3
2

2r+s

(
1 +

12 + 2
√

5C0

(2r + s)(1− θ)
(logN)k

1
2N−

r
2r+s log k log

12

δ

)
≤ 2h−2pN

p+3
2

2r+s

(
1 +

12 + 2
√

5C0

(2r + s)(1− θ)
k

1
2N−

r
2r+s (logN)2 log

12

δ

)
≤ 2h−2pN

p+3
2

2r+s

(
1 +

12 + 2
√

5C0

(2r + s)(1− θ)

)
log

12

δ
. (50)

By Lemma 3.3, we have with confidence at least 1− δ
4 ,

DD,λ ≤ 2AD,λ,k log
8

δ
≤ 2
√

5(
√
C0 + 2)N−

r
2r+s log

12

δ
. (51)

By Lemma 3.5 with g(z, z′) = y − y′ we have with confidence at least 1− δ
4 ,

FD,λ ≤ 4MρAD,λ,k log
8

δ
≤ 4
√

5Mρ(
√
C0 + 2)N−

r
2r+s log

12

δ
. (52)

Plugging the estimates (49), (50), (51)) and (52) into (44), we obtain with confidence at least 1− δ,

‖f̃T+1,D − f̃T+1‖ ≤ C
(
N−

r
2r+s + h−2pN

p+3
2

2r+s

)(
log

12

δ

)4

where

C = C ′′r,θ,p

[
4Mρ(5

r
2r+s )(

√
C0 + 2) + 2

√
5(
√
C0 + 2)

+
210(Mρ + 1)

[(
6 +
√

5C0

)2

+ 1
]2

(2r + s)(1− θ)
+ 2

(
1 +

12 + 2
√

5C0

(2r + s)(1− θ)

)]
.

This together with the bound

‖f̃T+1 − f̃ρ‖ ≤ hρT−r(1−θ) ≤
√

5hρN
− r

2r+s .

leads to the desired conclusion with C∗ = C +
√

5hρ.

6 Simulations

We further discuss and demonstrate our theory by an illustrative example. Consider the model
f∗(x) = min{x, 1 − x} with x∼Uniform[0, 1] and the noise ε∼N(0, σ2) with σ2 = 1

5 . This model
was used to illustrate distributed kernel ridge regression in [33]. Let K(x, t) = 1 + min{x, t}.
Then f∗ ∈ HK and ‖f∗‖K = 1. We apply the distributed kernel gradient descent MEE with N ∈
{1024, 2048, 4096, 8192} and k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. Note that m = 1 corresponds to
the kernel gradient descent MEE without using distributed techniques. It serves as a baseline for
the comparison. For each value N and each value k we run the experiment 20 times. The mean
square errors with an optimal number T of iterations are plotted in Figure 1 (a). We see when
k ≤ 32 the distributed methods are comparable with the baseline. When k ≥ 64, the performance of
distributed method for N = 1024 and N = 2048 becomes poor. But the performance for N = 4096
and N = 8192 is still good. This coincides with our theory that the distributed kernel gradient
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(a) (b)

Figure 1: (a) Optimal mean square errors for N ∈ {1024, 2048, 4096, 8192} as k varies. (b) Mean
square errors for N = 4096 and k ∈ {1, 4, 16, 64} as T varies.

descent MEE is asymptotically rate equivalent to learning with the whole data set directly if k does
not increase too fast as a function of N .

We next discuss how the performance changes as the number of iterations increases. We plot in
Figure 1 (b) the mean square errors for N = 4096 and different values of k when T varies. We see
that the optimal T for different k values are quite similar. This phenomenon is also observed for
other N values. It indicates that k is irrelevant to the choice of T and is consistent with our theory
that the choice of T depends on the size of the whole data set, not on the size of each subset.

7 Conclusions and Discussions

We have studied the convergence of a distributed kernel gradient descent MEE algorithm. We first
derived error bounds of the kernel gradient descent MEE algorithm for the single data case. Then,
by the aid of a concentration inequality for distributed U-statistics, we derived error bounds and
minimax optimal rates for the distributed case under certain regularity condition for the target
regression function and capacity condition for the reproducing kernel. Our analysis shows that the
error bound for the distributed case is larger due to additional error caused by loss of information
from interactions between samples of different subsets. But this additional error is of the same
magnitude as the error for single data set case if the parameters are selected appropriately. As a
consequence, the distributed kernel gradient MEE algorithm has the same minimax optimal rates
as the single data set case. This phenomenon has also been observed for other distributed learning
algorithms.

Several related questions are worthwhile for future research. First, our analysis provides very
useful insights on the application of distributed kernel gradient MEE algorithms. It tells that the
number of iterations should be selected according to the total sample size instead of the sample
size on each local machine. The simulation is also consistent to our theory. However, the optimal
parameters should be selected according to capacity of the kernel space and the regularity of the
target function which are unknown in practice. It is necessary to develop empirically applicable
parameter selection strategies for optimal performance.

Second, non-convexity of the MEE loss function is one of the major challenges we need to
overcome in the error analysis. In the literature the study of MEE algorithms has focused on the
use of Gaussian kernel density estimators. For this special situation, it was proved in [27] that the
loss function is invex and may lead to better optimization properties than general nonconvex loss
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functions. In this paper we allowed a general density estimator to be used in the distributed kernel
gradient MEE algorithm. Invexity is not necessarily true. Furthermore, our error bounds already
imply minimax optimal rates. It is yet unknown to us whether invexity can be incorporated in the
error analysis and if yes, it is interesting to know what benefits it can bring in.

Third, our distributed kernel gradient MEE algorithms are based on the divide and conquer
approach. No information communications are needed between local machines. This not only makes
the algorithm easy to implement but also is particularly important to the scenarios where data
have to be stored and analyzed locally for privacy concerns. Recently, averaging stochastic gradient
descent algorithms were developed in the context of deep machine learning where mutual information
communications are used between local machines and a master machine to speed up the convergence
[32, 2]. The techniques may also be applied to the distributed MEE for better performance if data
privacy is not a concern.

Last, it is worth mentioning that a large bandwidth parameter is necessary for our convergence
analysis. In practice, however, a moderate choice of the bandwidth parameter may be sufficient
for the algorithm to have tolerable small error. But a too small bandwidth parameter may lead to
theoretical inconsistency. In [10] a counterexample is given to show that mean regression function
is not necessarily the minimizer of the Renyi quadratic entropy and hence MEE fails to converge
to the mean regression function if h → 0. In a recent work [11] learning with correntropy loss was
related to modal regression. It would be interesting to investigate whether MEE with h → 0 can
also be interpreted by modal regression. This is beyond the scope of this paper and will be left for
our future research.
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Appendix

We now prove Lemma 3.1 and Lemma 4.1.

Proof of Lemma 3.1. For any two elements f, g ∈ H, define a function H on [0, 1] by H(t) :=
‖f + tg‖. As a function of t ∈ [0, 1], H is differentiable, |H ′(t)| ≤ ‖g‖ and (H2(t))′′ ≤ 2‖g‖2, and
(coshH)′′ = (H ′)2 coshH +H ′′ sinhH. If H ′′ > 0, then we see that

(coshH)′′ = (H ′)2 coshH +H ′′ sinhH ≤ ((H ′)2 +H ′′H) coshH =
1

2
(H2)′′ coshH ≤ ‖g‖2 coshH.

If H ′′ ≤ 0, then (coshH)′′ ≤ (H ′)2 coshH ≤ ‖g‖2 coshH. So, the inequality (coshH)′′ ≤ ‖g‖2 coshH
always holds.

Let W (t) = Ej−1 cosh(H(t)) with c > 0, f = c
∑j−1
k=1 dk and g = cdj , that is,

W (t) = Ej−1 cosh

(
c

∥∥∥∥∥
j−1∑
k=1

dk + tdj

∥∥∥∥∥
)
, t ∈ R.

We have for all t ∈ [0, 1],

W ′′(t) ≤ c2Ej−1‖dj‖2 cosh

(
c

∥∥∥∥∥
j−1∑
k=1

dk + tdj

∥∥∥∥∥
)
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≤ c2Ej−1‖dj‖2 cosh

(
c

∥∥∥∥∥
j−1∑
k=1

dk

∥∥∥∥∥+ ct‖dj‖

)

≤ c2Ej−1‖dj‖2ect‖dj‖ cosh

(
c

∥∥∥∥∥
j−1∑
k=1

dk

∥∥∥∥∥
)
,

where the last inequality follows from the the elementary inequality cosh(a + b) ≤ ea cosh(b) for
all a, b > 0. Since {di} is a sequence of martingale differences, then Ej−1dj = 0 and W ′(0) = 0.
Therefore,

Ej−1 cosh

(
c

∥∥∥∥∥
j∑

k=1

dk

∥∥∥∥∥
)

= W (1) = W (0) +

∫ 1

0

(1− t)W ′′(t)dt

= cosh

(
c

∥∥∥∥∥
j−1∑
k=1

dk

∥∥∥∥∥
)

+

∫ 1

0

(1− t)W ′′(t)dt

≤ (1 + ej) cosh

(
c

∥∥∥∥∥
j−1∑
k=1

dk

∥∥∥∥∥
)
, (53)

where ej = Ej−1(ec‖dj‖ − 1− c‖dj‖).
Define a sequence {Gj}Nj=0 with G0 = 1 and

Gj =
cosh

(
c‖
∑j
k=1 dk‖

)
∏j
i=1(1 + ei)

, j ≥ 1.

The inequality (53) implies that {Gj}Nj=0 is a positive supermartingale and

EGN = E

cosh
(
c‖
∑N
k=1 dk‖

)
∏N
i=1(1 + ei)

 ≤ 1 = EG0. (54)

For each ej , by the bound sup
1≤j≤N

‖dj‖ ≤M and Taylor expansion,

ej =Ej−1

(
ec‖dj‖ − 1− c‖dj‖

)
= 1 + cEj−1‖dj‖+

∞∑
l=2

clEj−1(‖dj‖l)
l!

− 1− cEj−1‖dj‖

≤
∞∑
l=2

clM l−2Ej−1(‖dj‖2)

l!
≤ Ej−1(‖dj‖2)

M2
(ecM − 1− cM).

This together with the assumption
∑N
j=1 Ej−1‖dj‖2 ≤ σ2 gives

N∏
j=1

(1 + ej) ≤ exp

 N∑
j=1

ej

 ≤ exp

{
σ2

M2

(
ecM − 1− cM)

)}
.

Plugging it into (54), we obtain

E cosh

c
∥∥∥∥∥∥
N∑
j=1

dj

∥∥∥∥∥∥
 ≤ exp

{
σ2

M2

(
ecM − 1− cM)

)}
.

24



This prove the first part of the lemma.
Since cosh t ≥ et

2 , for any c > 0 and ε > 0, we have that

E cosh
(
c‖
∑N
j=1 dj‖

)
cosh(cε)

≤ 2 exp

{
−cε+

σ2

M2

(
ecM − 1− cM

)}
.

Taking c = 1
M log(1+Mε

σ2 ), the minimizer of the bound on the right hand side, we get the first desired
inequality in (9). The second one can be deduced easily by some basic mathematical analysis, which
can be found in some classical books, see e.g. [6].

To prove Lemma 4.1 we need the following lemma whose proof is trivial and hence is omitted.
Lemma 7.1. For any 0 ≤ θ < 1 and j ≥ 1,

(T + 1)1−θ − j1−θ

1− θ
≤

T∑
t=j

t−θ ≤ T 1−θ − (j − 1)1−θ

1− θ
≤ T 1−θ

1− θ
.

For θ = 1, if T ≥ 3, then

T∑
t=1

t−1 ≤ 2 log T.

For θ > 1,

T∑
t=1

t−θ ≤ θ

θ − 1
.

Proof of Lemma 4.1. We decompose the summation on the left of (16) into three parts,

Υ1 =
∑

1≤i<T
2

i−(θ+α)

 T∑
j=i+1

j−θ

−1

,

Υ2 =
∑

T
2 ≤i<T−1

i−(θ+α)

 T∑
j=i+1

j−θ

−1

,

Υ3 =

T∑
i=T−1

i−(θ+α)

 T∑
j=i+1

j−θ

−1

.

For Υ1, when α+ θ < 1, by Lemma 7.1, we obtain

Υ1 ≤ (1− θ)
∑

1≤i<T
2

i−(θ+α)[(T + 1)1−θ − (i+ 1)1−θ]−1

≤ [1− 2−(1−θ)]−1(1− θ)T−(1−θ)
∑

1≤i<T
2

i−(θ+α)

≤ 2−α[1− 2−(1−θ)]−1

1− α− θ
T−α.

When α+ θ = 1,

Υ1 ≤[1− 2−(1−θ)]−1(1− θ)T−(1−θ)
∑

1≤i<T
2

i−1 ≤ 2[1− 2−(1−θ)]−1(1− θ)T−α log T.

25



When α+ θ > 1,

Υ1 ≤ [1− 2−(1−θ)]−1(1− θ)T−(1−θ)
∑

1≤i<T
2

i−(θ+α) ≤ [1− 2−(1−θ)]−1(1− θ)(α+ θ)

θ + α− 1
T−(1−θ)

Thus, Υ1 ≤ C ′θ,αT−min{1−θ,α} log T with

C ′θ,α =


2−α[1−2−(1−θ)]−1(1−θ)

1−α−θ , if α+ θ < 1,

2[1− 2−(1−θ)]−1(1− θ), if α+ θ = 1,
[1−2−(1−θ)]−1(1−θ)(α+θ)

θ+α−1 , if α+ θ > 1.

For Υ2, by Lemma 7.1 again,

Υ2 ≤ (1− θ)2αT−α
∑

T
2 ≤i<T−1

i−θ[(T + 1)1−θ − (i+ 1)1−θ]−1

= (1− θ)2αT−α
∑

T
2 ≤i<T−1

∫ i

i−1

i−θ[(T + 1)1−θ − (i+ 1)1−θ]−1dx

≤ (1− θ)2αT−α
∑

T
2 ≤i<T−1

∫ i

i−1

x−θ[(T + 1)1−θ − (x+ 2)1−θ]−1dx

≤ 3θ(1− θ)2αT−α
∫ T−2

T
2 −1

(x+ 2)−θ[(T + 1)1−θ − (x+ 2)1−θ]−1dx

= 3θ(1− θ)2αT−α
∫ T−2

T
2 −1

[(T + 1)1−θ − (x+ 2)1−θ]−1d(x+ 2)1−θ

≤ 3θ(1− θ)2α+1T−α log[(T + 1)1−θ − (
T

2
+ 1)1−θ]

≤ 3θ2α+2(1− θ)2T−α log T.

For Υ3, it is easy to check that

Υ3 = (T − 1)−(α+θ)T−α + T−(α+θ) ≤ T−α.

Combining the above bounds of Υ1, Υ2 and Υ3, we get the desired conclusion (16). The inequality
(17) can be deduced from (16) easily.
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