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In this paper we consider online mirror descent (OMD), a class of scalable online 
learning algorithms exploiting data geometric structures through mirror maps. 
Necessary and sufficient conditions are presented in terms of the step size sequence 
{ηt}t for the convergence of OMD with respect to the expected Bregman distance 
induced by the mirror map. The condition is limt→∞ ηt = 0, 

∑∞
t=1 ηt = ∞ in the case 

of positive variances. It is reduced to 
∑∞

t=1 ηt = ∞ in the case of zero variance for 
which linear convergence may be achieved by taking a constant step size sequence. 
A sufficient condition on the almost sure convergence is also given. We establish 
tight error bounds under mild conditions on the mirror map, the loss function, and 
the regularizer. Our results are achieved by some novel analysis on the one-step 
progress of OMD using smoothness and strong convexity of the mirror map and the 
loss function.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Analyzing and processing big data in various applications has raised the need of scalable learning al-
gorithms using geometric structures of data. One approach for scalability in learning theory is stochastic 
gradient descent and online learning. In this paper we are interested in online mirror descent, a class of 
scalable learning algorithms exploiting possible data geometric structures such as sparsity.

Mirror descent is a powerful extension of the classical gradient descent [3] by relaxing the Hilbert space 
structure and using a mirror map Ψ : W → R to capture geometric properties of data from a Banach space 
W. In this paper we consider W = R

d endowed with a norm ‖ · ‖ which might be a non-Euclidean norm, 
allowing us to capture non-Euclidean geometric structures of data from Rd. To introduce the mirror descent 
and online mirror descent, we assume that the mirror map Ψ is Fréchet differentiable and strongly convex. 
The Fréchet differentiability means the existence of a bounded linear operator ∇Ψ(w) : W → R at every 
w ∈ W satisfying Ψ(w + x) −Ψ(w) −∇Ψ(w)x = o(‖x‖). The strong convexity of Ψ means the existence of 
some σΨ > 0 such that
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DΨ(w̃, w) := Ψ(w̃) − Ψ(w) − 〈w̃ − w,∇Ψ(w)〉 ≥ σΨ

2 ‖w̃ − w‖2, ∀w̃, w ∈ W,

where 〈w̃−w, ∇Ψ(w)〉 is the linear operator ∇Ψ(w) acting on w̃−w ∈ W. With this number σΨ, we say Ψ
is σΨ-strongly convex (with respect to the norm ‖ · ‖), which we assume throughout the paper. The quantity 
DΨ(w̃, w) is called the Bregman distance between w̃ and w.

Given a differentiable and convex objective function F : W → R, a mirror descent algorithm approximates 
a minimizer of F by a sequence {wt}t∈N ⊂ W defined with an initial vector w1 ∈ W and the gradient descent 
method in terms of the gradient ∇F of F as

∇Ψ(wt+1) = ∇Ψ(wt) − ηt∇F (wt), t ∈ N, (1.1)

where {ηt}t is a sequence of positive numbers called the step size sequence. Here the gradient descent is 
performed in the dual (W∗ = R

d, ‖ · ‖∗) of the primal space (W, ‖ · ‖) since the map ∇Ψ : W → W∗ is 
well-defined, and invertible due to the strong convexity of Ψ. Useful instantiations [11] of the mirror map 
Ψ include the choice of p-norm divergence Ψ = Ψp with 1 < p ≤ 2 defined by Ψp(w) = 1

2‖w‖2
p where ‖ · ‖p

is the p-norm defined by ‖w‖p =
(∑d

i=1 |w(i)|p
)1/p

for w = (w(1), . . . , w(d)) ∈ R
d. The mirror descent 

algorithm with Ψ = Ψ2 recovers the gradient descent.
In machine learning, the objective function F is often the regularized risk F (w) = EZ [f(w, Z)] of the linear 

function x → 〈w, x〉 induced by the action of x ∈ W∗ on w ∈ W, where f(w, Z) = φ(〈w, X〉, Y ) + r(w)
is the regularized loss function induced by a loss function φ : R × R → R+ and a convex regularizer 
r : W → R+, and EZ denotes the expectation with respect to the random sample Z = (X, Y ) drawn from 
a Borel probability measure ρ on Z := X ×Y with an input space X ⊂ W∗ and an output space Y ⊂ R. In 
the remainder of this paper, we focus on F of the form F (w) = EZ [f(w, Z)] with f given in terms of φ and 
r.

In many machine learning applications, training examples {zt = (xt, yt) ∈ Z}t become available in a 
sequential manner. In such situations, instead of computing F (w), we use the sample zt at the t-th iteration 
of the mirror descent to compute the gradient ∇w[f(wt, zt)] of f(w, zt) with respect to the variable w at 
wt. This leads to the online mirror descent (OMD) which extends the classical online gradient descent 
algorithm by replacing Ψ2 with a mirror map Ψ to capture data geometric structures beyond Hilbert 
spaces. It generates a sequence {wt}t ⊂ W with an initial vector w1 ∈ W by performing the stochastic 
mirror descent in the dual space as

∇Ψ(wt+1) = ∇Ψ(wt) − ηt∇w[f(wt, zt)], t ∈ N. (1.2)

We always assume that the loss function φ is convex and differentiable with respect to the first variable 
(with the partial derivative φ′). When Ψ = Ψ2 and r(w) = λ‖w‖2

2 with λ ≥ 0, the OMD (1.2) becomes the 
classical online learning algorithm with the iteration wt+1 = wt − ηt[φ′(〈wt, xt〉, yt)xt + 2λwt] generated by 
the stochastic gradient descent method in the Hilbert space W∗ = W. The special choice φ(a, y) = 1

2 (a −y)2
of the unregularized least squares loss function with r = 0 corresponds to the general randomized Kaczmarz 
algorithm [9] given by

wt+1 = wt − ηt[〈wt, xt〉 − yt]xt, t ∈ N. (1.3)

It was shown in [22] that when infw∈W EZ

[
(Y − 〈w,X〉)2

]
> 0, the randomized Kaczmarz algorithm (1.3)

converges in expectation if and only if limt→∞ ηt = 0 and 
∑∞

t=1 ηt = ∞.
This paper presents necessary and sufficient conditions for the convergence of the OMD (1.2) with respect 

to the Bregman distance DΨ. It extends the results in [22,29] from Ψ2 to a general mirror map Ψ beyond 
the Hilbert space framework. Our conditions are stated in terms of the step size sequence {ηt}t, under some 
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mild assumptions on the mirror map Ψ, the regularized loss function f , and the probability measure ρ. 
Throughout the paper, we assume that the training examples {zt}t are sampled independently from the 
probability measure ρ on Z.

We illustrate our main results to be stated in the next section by presenting an example corresponding to 
the special choice of the unregularized least squares loss and a strongly smooth mirror map or the p-norm 
divergence Ψp (which, as shown in Proposition 7, is not strongly smooth). Here we say that Ψ is LΨ-strongly 
smooth (with respect to the norm ‖ ·‖) with LΨ > 0 if DΨ(w̃, w) ≤ LΨ

2 ‖w̃−w‖2 for any w, w̃ ∈ W. Examples 
of strongly smooth mirror maps include Ψ2 and a mirror map Ψ(ε,λ) with parameters ε > 0, λ > 0 defined 
in the literature of compressed sensing [7] as Ψ(ε,λ)(w) = λ 

∑d
i=1 gε(w(i)) + 1

2‖w‖2
2, where gε(ξ) = ξ2

2ε for 
|ξ| ≤ ε and |ξ| − ε

2 for |ξ| > ε. The mirror map Ψp plays an important role in the mirror descent method and 
it can be applied to capturing geometric structures of data for learning problems in huge dimensions. For 
example, the specific choice with p = 1 + 1

log d gives convergence bounds with only a logarithmic dependence 
on the dimension d, see [11]. The mirror map Ψp is strongly convex with σΨp

= p − 1 when the norm of W
takes the p-norm ‖ · ‖ = ‖ · ‖p (see [2]), and by the norm equivalence, σΨp

> 0 for other norms.
With the special choice of the unregularized least squares loss f(w, z) = 1

2 (〈w, x〉 − y)2, the OMD (1.2)
takes a special form

∇Ψ(wt+1) = ∇Ψ(wt) − ηt[〈wt, xt〉 − yt]xt, t ∈ N. (1.4)

The following result for this example will be proved in Section 6. Denote by X� the transpose of X ∈ W∗.

Theorem 1. Assume supx∈X ‖x‖∗ < ∞, EZ [Y 2] < ∞, and that the covariance matrix CX = EZ [XX�] is 
positive definite. Consider the OMD (1.4) and denote wρ = C−1

X EZ [XY ]. Let Ψ be either some p-norm 
divergence Ψ = Ψp with 1 < p ≤ 2 or a strongly smooth mirror map.

(a) Assume infw∈W EZ [|Y − 〈w,X〉| ‖X‖∗] > 0. Then limt→∞ Ez1,...,zt−1 [‖wρ − wt‖2] = 0 if and only if

lim
t→∞

ηt = 0 and
∞∑
t=1

ηt = ∞. (1.5)

Furthermore, if Ψ is strongly smooth and limt→∞ ηt = 0, then there exist some T̃1 ∈ N and C̃ > 0 such 
that Ez1,...,zT−1 [‖wρ − wT ‖2] ≥ C̃T−1 for T ≥ T̃1. If we take ηt = 4

(t+1)σ for some appropriate σ > 0
(given in the proof), then Ez1,...,zT−1 [‖wρ − wT ‖2] = O

(
T−1).

(b) Assume wρ 
= w1, EZ [|Y − 〈wρ, X〉| ‖X‖∗] = 0 and for some κ > 0, ηt ≤ σΨ
(2+κ)R2 . Then 

limt→∞ Ez1,...,zt−1 [‖wρ − wt‖2] = 0 if and only if 
∑∞

t=1 ηt = ∞. Furthermore, if Ψ is strongly smooth 
and ηt ≡ η1 < σΨ

2R2 , then there exist c̃1, ̃c2 ∈ (0, 1) such that for any T ∈ N,

(
c̃1
)T ‖wρ − w1‖2 ≤ Ez1,...,zT−1 [‖wρ − wT ‖2] ≤

(
c̃2
)T ‖wρ − w1‖2. (1.6)

(c) If the step size sequence satisfies

∞∑
t=1

ηt = ∞ and
∞∑
t=1

η2
t < ∞, (1.7)

then {‖wρ − wt‖2}t∈N converges to 0 almost surely.

Part (b) of Theorem 1 is for the case of zero variance with y = 〈wρ, x〉 almost surely, meaning that the 
sampling process has no noise and the target function (conditional mean) is linear. It asserts that the OMD 
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with a strongly smooth mirror map and a constant step size sequence may converge linearly in this case. 
Part (a) asserts that for the case of positive variances (either the sampling process has noise or the target 
function is nonlinear) the OMD with a strongly smooth mirror map can converge of at most order O( 1

T )
and this order may be achieved. This solves a conjecture raised in [22, page 3346] that a convergence rate of 
order O(T−θ) with 1 < θ ≤ 2 is impossible for the randomized Kaczmarz algorithm (with Ψ = Ψ2) in the 
noisy case. Theorem 1 also characterizes the convergence in expectation by means of the step size condition ∑∞

t=1 ηt = ∞ for the case of zero variance and the condition limt→∞ ηt = 0 and 
∑∞

t=1 ηt = ∞ for the case 
of positive variances.

Our analysis is based on a key identity on measuring the one-step progress of OMD by excess Bregman 
distances, from which lower and upper bounds on the one-step progress are established by using strong 
smoothness and convexity of the associated regularized loss functions as well as properties of the mirror 
map. These lower and upper bounds are then used to build necessary and sufficient conditions, as well as 
tight convergence rates.

This paper is organized as follows. In Section 2 we introduce some mild assumptions on the mirror map 
and the regularized risk. General results on convergence of the OMD for the cases with positive variances and 
zero variance are stated in subsection 2.1, and then exemplified with specific mirror maps and loss functions 
in subsections 2.2 and 2.3. We give some discussion and comparison with related work in subsection 2.4. 
In Section 3, we present a key identity on the one-step progress of the OMD and sketch the basic idea of 
our analysis. We prove the convergence results in the case of positive variances in Section 4, and results in 
the case of zero variance together with the almost sure convergence in Section 5. In Section 6, we prove 
the explicit results stated in Section 1, subsection 2.2 and subsection 2.3. Some simulations are given in 
Section 7 to validate our theoretical results.

2. Main results

In this section we state our main results on necessary and sufficient conditions for the convergence of 
OMD (1.2) to a minimizer w∗ = arg minw∈W F (w) of the regularized risk F which is assumed to exist 
throughout the paper.

Our discussion requires some mild assumptions on the mirror map Ψ and the regularized risk F . On 
the mirror map, for necessary conditions, we shall assume that ∇Ψ is continuous at w∗ and satisfies the 
following incremental condition at infinity.

Definition 1. We say that ∇Ψ satisfies an incremental condition (of order 1) at infinity if there exists a 
constant CΨ > 0 such that

‖∇Ψ(w)‖∗ ≤ CΨ(1 + ‖w‖), ∀w ∈ W. (2.1)

We shall show later that the p-norm divergence Ψp with 1 < p ≤ 2 and strongly smooth mirror maps 
satisfy this mild condition.

For the pair (Ψ, F ), we shall also assume the following condition measuring how the convexity of Ψ is 
controlled by that of F around w∗ with a convex function Ω. Recall that w∗ is a minimizer of F on W.

Definition 2. We say that the convexity of Ψ is controlled by that of F around w∗ with a convex function 
Ω : [0, ∞) → R+ satisfying Ω(0) = 0 and Ω(u) > 0 for u > 0 if the pair (Ψ, F ) satisfies

〈w∗ − w,∇F (w∗) −∇F (w)〉 ≥ Ω (DΨ(w∗, w)) , ∀w ∈ W. (2.2)

Typical choices of the convex function Ω include Ω(u) = Cuα with α ≥ 1 and C > 0. In particular, when 
F is strongly convex and Ψ is strongly smooth, condition (2.2) is satisfied with a linear (convex) function 
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Ω(u) = Cu for some C > 0. To see this, we notice from the definition of the Bregman distance that for a 
Fréchet differentiable and convex function g : Rd → R, there holds

Dg(w, w̃) + Dg(w̃, w) = 〈w − w̃,∇g(w) −∇g(w̃)〉, ∀w, w̃ ∈ W. (2.3)

So when F is σF -strongly convex with σF > 0, we have 〈w∗ − w, ∇F (w∗) − ∇F (w)〉 ≥ σF ‖w∗ − w‖2. It 
follows that (2.2) with Ω(u) = 2σF

LΨ
u is satisfied when Ψ is LΨ-strongly smooth.

2.1. Statements of general results

Our first main result, Theorem 2, states a necessary and sufficient condition for the convergence of the 
OMD for the case of positive variances meaning that infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0. It also states in Parts 
(a) and (b) respectively that in this case, the OMD cannot achieve convergence rates faster than O(T−1)
after T iterates, while the best rate O(T−1) may be achieved when Ω(u) = Cu in (2.2). This theorem is a 
consequence of Propositions 11 and 13 to be presented in Section 4.

Theorem 2. Assume infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 and that for some constant L > 0, f(·, z) is L-strongly 
smooth for almost every z ∈ Z. Suppose that ∇Ψ is continuous at w∗ and satisfies the incremental condition 
(2.1) at infinity, and that the pair (Ψ, F ) satisfies (2.2) around w∗ with a convex function Ω : [0, ∞) → R+

satisfying Ω(0) = 0 and Ω(u) > 0 for u > 0. Then for OMD (1.2), limt→∞ Ez1,...,zt−1 [DΨ(w∗, wt)] = 0 if 
and only if the step size sequence satisfies (1.5).

(a) If Ψ is strongly smooth and limt→∞ ηt = 0, then there exist some constants t0 ∈ N and C̃ > 0 such that

Ez1,...,zT−1 [DΨ(w∗, wT )] ≥ C̃

T − t0 + 1 , ∀T ≥ t0. (2.4)

(b) If there exists an σF > 0 such that

〈w∗ − w,∇F (w∗) −∇F (w)〉 ≥ σFDΨ(w∗, w), ∀w ∈ W, (2.5)

and the step size sequence takes the form ηt = 4
(t+1)σF

, then

Ez1,...,zT−1 [DΨ(w∗, wT )] = O

(
1
T

)
. (2.6)

We shall see from the proof of Proposition 11 given in Section 4 that the continuity of ∇Ψ at w∗ and 
the incremental condition (2.1) are only required for proving limt→∞ ηt = 0 of the necessity, they are not 
required for the sufficiency or for proving 

∑∞
t→∞ ηt = ∞ of the necessity. These conditions are satisfied 

when Ψ is strongly smooth, as shown in Proposition 5 below.
Our second main result, Theorem 3 to be proved in Section 5, states a necessary and sufficient condition 

for the convergence of the OMD for the case of zero variance in the sense that EZ [‖∇w[f(w∗, Z)]‖∗] = 0.

Theorem 3. Assume EZ [‖∇w[f(w∗, Z)]‖∗] = 0 and that for some constant L > 0, f(·, z) is L-strongly 
smooth for almost every z ∈ Z. Suppose that the pair (Ψ, F ) satisfies (2.2) around w∗ with a convex 
function Ω : [0, ∞) → R+ satisfying Ω(0) = 0 and Ω(u) > 0 for u > 0. Assume also w1 
= w∗ and that 
for some κ > 0, ηt ≤ σΨ

(2+κ)L for every t ∈ N. Then limt→∞ Ez1,...,zt−1 [DΨ(w∗, wt)] = 0 if and only if ∑∞
ηt = ∞. Furthermore, if (2.5) holds and ηt ≡ η1 < σΨ , then for any T ∈ N,
t=1 2L
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DΨ(w∗, w1)
(

1 − 2Lη1

σΨ

)T

≤ Ez1,...,zT−1 [DΨ(w∗, wT )] ≤ DΨ(w∗, w1)
(
1 − σF η1

2

)T
. (2.7)

Remark 1. Our results in Theorems 2 and 3 can be extended to the minibatch setting where a batch of 
examples {zt,1, . . . , zt,m} are independently drawn from the probability measure ρ at the t-th iteration. The 
associated OMD then takes the form

∇Ψ(wt+1) = ∇Ψ(wt) −
ηt
m

m∑
i=1

∇w

[
f(wt, zt,i)

]
, ∀t ∈ N.

In this setting, the variance of the stochastic gradients will decrease by a factor of m. The necessary and 
sufficient conditions in Theorem 2 and Theorem 3 also apply. For the case with positive variances, the 
right-hand side of both (2.4) and (2.6) are required to be divided by m due to the variance reduction effect. 
For the case with zero-variances, the inequality (2.7) remains the same since the stochastic gradient at w∗

does not change in the mini-batch setting.

Remark 2. The variance condition infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 is almost complementary to the variance 
condition EZ [‖∇w[f(w∗, Z)]‖∗] = 0. Indeed, if infw∈W EZ [‖∇w[f(w,Z)]‖∗] = 0 and we assume the infimum 
can be achieved at a point w̄ ∈ W, meaning that EZ [‖∇w[f(w̄, Z)]‖∗] = 0. Then we have ∇w[f(w̄, z)] = 0
almost surely and therefore w̄ is a minimizer of F . To see clearly these variance conditions, suppose the data 
are drawn according to the equation yt = 〈w∗, xt〉 + ε with w∗ ∈ W and ε following the normal distribution 
N(0, σ2). Consider the loss function f(w, z) = 1

2
(
〈w, x〉 − y

)2. We assume EX [‖X‖∗] > 0. It is clear that 
EZ [XX�w∗ −XY ] = 0 and therefore w∗ = arg minw∈W F (w). If σ = 0, then it is clear that

EZ [‖∇w[f(w∗, Z)]‖∗] = EZ [|〈w∗, X〉 − Y |‖X‖∗] = 0,

which corresponds to the case with zero variance. On the other hand, if σ > 0, then for any w ∈ W and 
x ∈ X we have

EY |X=x

[
‖∇w[f(w,Z)]‖∗

]
= ‖x‖∗EY |X=x

[
|〈w,X〉 − Y |

]
= ‖x‖∗EY |X=x

[
|〈w − w∗, X〉 − ε|

]
≥ σ‖x‖∗Pr

{∣∣〈w − w∗, X〉 − ε
∣∣ ≥ σ

∣∣X = x
}

= σ‖x‖∗
[
1 − Pr

{∣∣〈w − w∗, X〉 − ε
∣∣ ≤ σ

∣∣X = x
}]

≥ σ‖x‖∗
[
1 −
√

2/π
]
,

where the first inequality is due to the Markov inequality and the last inequality is due to following inequality 
(the density function of the normal distribution N(0, σ2) takes values in the interval [0, 1√

2πσ ])

Pr
{
|ε− a| ≤ σ

}
≤
√

2/π, ∀a ∈ R.

It then follows that

EZ

[
‖∇w[f(w,Z)]‖∗

]
≥ σ
[
1 −
√

2/π
]
EX [‖X‖∗] > 0, ∀w ∈ W.

That is, the case σ > 0 corresponds to exactly the case with positive variances.

Our last main result, Theorem 4 to be proved in Section 5, provides a sufficient condition for the almost 
sure convergence of the OMD by imposing a stronger condition with 

∑∞
η2
t < ∞.
t=1
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Theorem 4. Assume that for some constant L > 0, f(·, z) is L-strongly smooth for almost every z ∈ Z. 
Suppose that the pair (Ψ, F ) satisfies (2.2) around w∗ with a convex function Ω : [0, ∞) → R+ satisfying 
Ω(0) = 0 and Ω(u) > 0 for u > 0. If the step size sequence satisfies the condition (1.7), then we have 
limt→∞ DΨ(w∗, wt) = 0 almost surely.

2.2. Results with strongly smooth mirror maps and p-norm divergence

In this subsection, for two classes of mirror maps Ψ and strongly convex objective functions F , we state 
some results to be proved in Section 6 on the continuity of ∇Ψ at w∗ and the incremental condition (2.1)
at infinity for ∇Ψ, and the convexity condition (2.2) of (Ψ, F ).

The first class of mirror maps are strongly smooth ones.

Proposition 5. If Ψ is strongly smooth, then ∇Ψ is continuous everywhere and satisfies the incremental 
condition (2.1) at infinity. Furthermore, if F is strongly convex, (2.2) is satisfied for a linear convex function 
Ω(u) = CΨ,Lu with some CΨ,L > 0.

The second class of mirror maps are the p-norm divergence Ψ = Ψp with 1 < p ≤ 2. For the case p = 2, 
we have ∇Ψ2(w) = w, DΨ2(w̃, w) = 1

2‖w − w̃‖2
2 for w, w̃ ∈ W and Ψ2 is strongly smooth. So Proposition 5

applies.

Proposition 6. Consider the p-norm divergence Ψ = Ψp with 1 < p < 2. Then ∇Ψp is continuous everywhere 
and satisfies the incremental condition (2.1) with CΨp

= 1. Moreover, we have

‖∇Ψp(w)‖∗ = ‖w‖p, ∀w ∈ W (2.8)

and for any w̃, w ∈ W, there holds

DΨp
(w̃, w) ≤

(
(2‖w̃‖p)2−p + ‖w̃‖p−1

p + 1
)(

‖w̃ − w‖2
p + ‖w̃ − w‖min{p,3−p}

p

)
. (2.9)

Denote τp = 2
min{p,3−p} ∈ (1, 2]. For any w̃ ∈ W, we have

‖w̃ − w‖2
p ≥ BpΩp

(
DΨp

(w̃, w)
)
, ∀w ∈ W, (2.10)

where Ωp : [0, ∞) → [0, ∞) is the convex function depending on p defined by

Ωp (u) =
{

u + 1
τp

− 1, if u ≥ 1,
1
τp
uτp , if 0 ≤ u < 1,

(2.11)

and Bp is the constant depending on ‖w̃‖p and p given by

Bp = min
{(

2 (2‖w̃‖p)2−p + 2 ‖w̃‖p−1
p + 2

)−1
,

(
2 (2‖w̃‖p)2−p + 2 ‖w̃‖p−1

p + 2
)−τp

}
.

If F is σF -strongly convex with respect to the norm ‖ · ‖p, then the pair (Ψp, F ) satisfies (2.2) around w∗

with the convex function Ω : R+ → R+ given by

Ω(u) = σFBpΩp(u), u ∈ [0,∞).
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Fig. 1. Plots of the convex function Ωp with p = 4
3 (red line), p = 3

2 (blue line) and p = 2 (black line). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

We remark that the convex function Ω2 defined by (2.11) with p = 2 is a Huber loss [17]. Fig. 1 gives the 
plots of the function Ωp with p = 4

3 , p = 3
2 and p = 2.

Following Proposition 6, a natural question to ask is whether the p-norm divergence is strongly smooth 
(that is, whether (2.10) holds with Ωp (u) = Cu for some C > 0). When d = 1, Ψp(w) = 1

2w
2 = Ψ2(w) is 

strongly smooth. When d > 1, the answer is negative, as shown in the following proposition to be proved 
in the appendix.

Proposition 7. For d > 1, the p-norm divergence Ψ = Ψp with 1 < p < 2 is not strongly smooth.

2.3. Explicit results with special loss functions for learning

In this subsection we state explicit results on the convergence of the OMD associated with the regularized 
loss function f(w, z) = φ(〈w, x〉, y) + λ‖w‖2

2 with λ > 0 and the norm ‖ · ‖ = ‖ · ‖2 when the loss function φ
has a Lipschitz continuous derivative. Common examples of such loss functions [17,8,30] include the least 
squares loss φ(a, y) = 1

2 (a − y)2, the logistic loss φ(a, y) = log(1 + exp(−ay)) or φ(a, y) = 1/(1 + eay), the 
2-norm hinge loss φ(a, y) = (max{0, 1 − ay})2, and the Huber loss Ω2 defined by (2.11) with p = 2.

The following explicit result will be proved in Section 6.

Theorem 8. Assume supx∈X ‖x‖∗ < ∞, ‖ · ‖ = ‖ · ‖2, and the derivative φ′ of the convex loss function 
φ : R × R → R+ satisfies the Lipschitz condition

�φ := sup
u 	=v∈R,y∈Y

|φ′(u, y) − φ′(v, y)|
|u− v| < ∞. (2.12)

Then the regularized loss function f(w, z) = φ(〈w, x〉, y) + λ‖w‖2
2 with some λ > 0 is 2(�φR2 + λ)-strongly 

smooth for every z ∈ Z. The objective function F is also 2(�φR2 + λ)-strongly smooth, and is 2λ-strongly 
convex. The conclusion of Theorem 1 with wρ replaced by w∗ holds for the OMD (1.2) with Ψ being either 
some p-norm divergence Ψ = Ψp with 1 < p ≤ 2 or a strongly smooth mirror map.

2.4. Comparison and discussion

In the special Hilbert space setting with Ψ = Ψ2, there is a large learning theory literature on the conver-
gence of stochastic gradient descent (SGD) or online gradient descent (OGD). We first review some related 
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work on conditions for the convergence in expectation. Convergence of SGD/OGD in reproducing kernel 
Hilbert spaces (RKHSs) was discussed in [28,32] for regression and [33,34] for classification. Under uniform 
boundedness assumptions of {wt}t, it was shown in [33] that a sufficient condition for the convergence of 
regularized SGD/OGD in expectation is the step size condition (1.5). Such a result was recently established 
for online regularized pairwise learning in [14]. For unregularized SGD/OGD applied to non-strongly convex 
and strongly smooth objective functions, it was shown in [34] that limT→∞ Ez1,...,zT−1 [F (wT )] = F (w∗) if 
the step size satisfies the condition (1.7). All the above mentioned discussions on SGD/OGD considered 
sufficient conditions for the convergence in expectation. As a comparison, we give necessary and sufficient 
conditions for the convergence of a more general OMD in the strongly convex setting. We then review 
some related work on convergence rates in expectation in the strongly convex setting. Under boundedness 
assumptions EZ [‖∇w[f(wt, Z)]‖2

2] ≤ B for a constant B > 0, it was shown in [19,26] that the T -th iterate of 
SGD/OGD satisfies Ez1,...,zT−1 [‖wT −w∗‖2

2] = O(1/T ). This convergence rate was also derived in [6] under 
a relaxed assumption on gradients as EZ [‖∇w[f(wt, Z)]‖2

2] ≤ A + B‖∇F (wt)‖2
2. As a comparison, we show 

that the same convergence rate can be achieved for the general OMD without any boundedness assumptions 
on gradients. Furthermore, we show this convergence rate is tight by presenting a matching lower bound 
up to a constant factor, which has not been established in the literature to our best knowledge. It should 
be mentioned that lower bounds for minimax errors were discussed for stochastic convex optimization [1], 
which consider the error rates of any stochastic convex optimization methods in the worst case. We now 
review some related work on the almost sure convergence. For SGD/OGD, under the assumption that the 
objective function F with a single minimizer w∗ satisfies

inf
‖w−w∗‖2

2>ε
〈w − w∗,∇F (w)〉 > 0, ∀ε > 0

and

EZ [‖∇f(w,Z)‖2
∗] ≤ A + B‖w − w∗‖2

2, ∀w ∈ W

for some constants A, B ≥ 0, it was shown [5] that {wt}t converges to w∗ almost surely if the step sizes 
satisfy (1.7). For regularized OGD in RKHSs associated with the specific least squares loss function, it was 
shown in [31] that {wt}t converges to w∗ almost surely for polynomially decaying step sizes ηt = η1t

−θ with 
θ ∈ (0, 1). We extend these results on the almost sure convergence to the OMD.

We remark that the SGD has also been well studied in the literature of optimization (see, e.g., [27,
24]) under some conditions on the noise sequence instead of conditions on the step size sequence. For the 
randomized Kaczmarz algorithm (1.3), the convergence in expectation has been studied in the literature 
of non-uniform sampling and compressed sensing, including the characterization of the convergence [22] by 
(1.5) in the noisy case with infw∈W EZ [(〈w, X〉 − Y )2] > 0, and the linear convergence [29] with a constant 
step size sequence in the noiseless case with y = 〈w∗, x〉 almost surely. Our work on the convergence of 
the OMD (1.2) with a general mirror map Ψ is motivated by these results on the randomized Kaczmarz 
algorithm (1.3) with the special mirror map Ψ2.

For the OMD (1.2) with a general mirror map Ψ, the only existing work to our best knowledge is some 
regret bounds in [11] and some convergence rates in [25]. In this paper we characterize the convergence in 
expectation by the step size condition (1.5) in the noisy case and by 

∑∞
t=1 ηt = ∞ in the noiseless case, 

derive the linear convergence with a constant step size sequence in the noiseless case, and verify the almost 
sure convergence by the step size condition (1.7). The main difficulty with the general mirror map Ψ is 
the lack of analysis for the one-step progress ‖wt+1 − w∗‖2

2 − ‖wt − w∗‖2
2 which was carried out in [22] by 

exploiting the Hilbert space structure and the special linearity caused by the least squares loss function. 
To overcome this difficulty due to the Banach space structure and the nonlinearity, we use the Bregman 
distance DΨ induced by the mirror map Ψ, which has been used in our recent work [20]. Our novelty here is a 
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key identity (3.1) measuring the one-step progress of the OMD with the general mirror map Ψ. Our analysis 
is then conducted by extensively using properties of the Bregman distance, the smoothness and convexity 
of regularized loss functions, and the convexity condition (2.2) involving a related convex function Ω.

Our contribution of this paper includes not only the novel convergence analysis for the OMD (1.2) with 
a general mirror map Ψ, but also some improvements of our earlier work [22] on the randomized Kaczmarz 
algorithm (1.3) with the special mirror map Ψ2. In particular, we confirm a conjecture raised in [22] on 
high order convergence rates for the randomized Kaczmarz algorithm. Furthermore, the analysis in [22] was 
carried out under the restriction 0 < ηt < 2 on the step size sequence which is removed here. It would be 
interesting to get explicit convergence rates when the mirror map is Ψp, and to extend our analysis to other 
learning frameworks [12,16,23,13].

3. A key identity and idea of analysis

Our analysis for the convergence of the OMD (1.2) will be carried out based on the following key 
identity which measures the one-step progress of the algorithm in terms of the excess Bregman distance 
DΨ(w∗, wt+1) −DΨ(w∗, wt).

Lemma 9. The following identity holds for t ∈ N

Ezt [DΨ(w∗, wt+1)] −DΨ(w∗, wt) = ηt〈w∗ − wt,∇F (wt)〉 + Ezt

[
DΨ(wt, wt+1)

]
. (3.1)

Proof. By the definition of the Bregman distance, we see the following identity

DΨ(w, v) + DΨ(v, u) −DΨ(w, u) = 〈w − v,∇Ψ(u) −∇Ψ(v)〉, ∀u, v, w ∈ W. (3.2)

Choosing v = wt+1 and u = wt yields

DΨ(w,wt+1) −DΨ(w,wt) = −DΨ(wt+1, wt) + 〈w − wt+1,∇Ψ(wt) −∇Ψ(wt+1)〉.

We now separate w − wt+1 into w − wt and wt − wt+1, use the iteration relation (1.2) of the OMD and 
apply (2.3) with g = Ψ to derive

DΨ(w,wt+1) −DΨ(w,wt)

= −DΨ(wt+1, wt) + 〈w − wt,∇Ψ(wt) −∇Ψ(wt+1)〉 + 〈wt − wt+1,∇Ψ(wt) −∇Ψ(wt+1)〉
= −DΨ(wt+1, wt) + ηt〈w − wt,∇w[f(wt, zt)]〉 + 〈wt − wt+1,∇Ψ(wt) −∇Ψ(wt+1)〉
= DΨ(wt, wt+1) + ηt〈w − wt,∇w[f(wt, zt)]〉.

Taking expectations Ezt on both sides, setting w = w∗ and noting that wt is independent of zt, we see the 
stated identity (3.1). The proof is complete. �

The necessity of the convergence will be derived by using the strong smoothness of F and the strong 
convexity of Ψ to bound 〈wt−w∗, ∇F (wt)〉 = 〈wt−w∗, ∇F (wt) −∇F (w∗)〉 by O(1)DΨ(w∗, wt), from which 
we can apply the identity (3.1) to get necessary conditions by the following inequality

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1 −O(ηt))Ez1,...,zt−1 [DΨ(w∗, wt)] + Ez1,...,zt

[
DΨ(wt, wt+1)

]
.

The sufficiency will be derived by using the strong smoothness of f and the duality DΨ(wt, wt+1) =
DΨ∗(∇Ψ(wt+1), ∇Ψ(wt)) to bound Ezt

[
DΨ(wt, wt+1)

]
in terms of 〈w∗ − wt, ∇F (w∗) − ∇F (wt)〉 and 

Ezt [‖∇f(w∗, zt)‖2
∗], from which we can apply the identity (3.1) again to get
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Ez1,...,zt [DΨ(w∗, wt+1)] ≤ Ez1,...,zt−1 [DΨ(w∗, wt)]

− ηt
2 Ez1,...,zt [〈w∗ − wt,∇F (w∗) −∇F (wt)〉] + O(η2

t )

and then use (2.2) for bounding −〈w∗ − wt, ∇F (w∗) −∇F (wt)〉 by −Ω (DΨ(w∗, wt)]) to obtain

Ez1,...,zt [DΨ(w∗, wt+1)] ≤ Ez1,...,zt−1 [DΨ(w∗, wt)] −
ηt
2 Ω
(
Ez1,...,zt−1 [DΨ(w∗, wt)]

)
+ O(η2

t ).

Here for a continuous convex function g : Rd → R, the Fenchel-conjugate g∗ is defined by

g∗(v) = sup
w∈W

[〈w, v〉 − g(w)], v ∈ R
d

and the duality (3.3) on the Bregman distances is stated (see, e.g., [4]) in the following lemma together with 
the duality between strong convexity and strong smoothness [18].

Lemma 10. Let g : Rd → R be continuous and convex. Let β > 0. Then g is β-strongly convex with respect 
to the norm ‖ · ‖ if and only if g∗ is 1

β -strongly smooth with respect to the dual norm ‖ · ‖∗.
If g is Fréchet differentiable and strongly convex, then there holds

Dg(w, w̃) = Dg∗(∇g(w̃),∇g(w)), ∀w, w̃ ∈ W. (3.3)

4. Convergence in the case of positive variances

In this section we prove Theorem 2 by deriving the necessary and sufficient condition from two proposi-
tions given below.

4.1. Necessary condition for convergence

The first proposition gives the necessity for the convergence of the OMD (1.2).

Proposition 11. Assume infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 and that F is strongly smooth. Assume also that 
∇Ψ satisfies the incremental condition (2.1) at infinity. If limt→∞ Ez1,...,zt−1 [DΨ(w∗, wt)] = 0 for some w∗

where ∇Ψ is continuous, then the step size sequence satisfies (1.5).
Furthermore, if Ψ is strongly smooth, then (2.4) holds with some constants t0 ∈ N and C̃ > 0.

Proof. We first show limt→∞ ηt = 0.
By the σΨ-strong convexity of Ψ, we have ‖w∗ − wt‖2 ≤ 2

σΨ
DΨ(w∗, wt). So the condition

limt→∞ Ez1,...,zt−1 [DΨ(w∗, wt)] = 0 implies limt→∞ Ez1,...,zt−1 [‖w∗ − wt‖2] = 0. Then we claim that

lim
t→∞

Ez1,...,zt−1 [‖∇Ψ(wt) −∇Ψ(w∗)‖∗] = 0. (4.1)

To prove our claim, we use the continuity of ∇Ψ at w∗ and know that for any ε > 0, there exists some 
0 < δ ≤ 1 such that ‖∇Ψ(w) −∇Ψ(w∗)‖∗ < ε whenever ‖w − w∗‖ < δ.

When ‖w − w∗‖ ≥ δ, we apply the incremental condition (2.1) and ‖w‖ ≤ ‖w − w∗‖ + ‖w∗‖ to find

‖∇Ψ(w) −∇Ψ(w∗)‖∗ ≤ CΨ(1 + ‖w‖) + ‖∇Ψ(w∗)‖∗ ≤ CΨ,w∗,δ‖w − w∗‖,

where CΨ,w∗,δ is the constant given by
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CΨ,w∗,δ = CΨ + CΨ + CΨ‖w∗‖ + ‖∇Ψ(w∗)‖∗
δ

.

Combining the above two cases, we know that

Ez1,...,zt−1 [‖∇Ψ(wt) −∇Ψ(w∗)‖∗] ≤ ε + CΨ,w∗,δEz1,...,zt−1 [‖wt − w∗‖].

But limt→∞ Ez1,...,zt−1 [‖w∗ − wt‖2] = 0 ensures the existence of some tε,δ ∈ N such that for t > tε,δ, 
there holds Ez1,...,zt−1 [‖wt −w∗‖2] < ε2

C2
Ψ,w∗,δ

which implies Ez1,...,zt−1 [‖wt −w∗‖] < ε
CΨ,w∗,δ

by the Schwarz 

inequality. So we have Ez1,...,zt−1 [‖∇Ψ(wt) −∇Ψ(w∗)‖∗] < 2ε for t > tε,δ, which verifies our claim (4.1).
Denote σ = infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0. From the iteration relation (1.2) of the OMD, we have 

ηt‖∇w[f(wt, zt)]‖∗ = ‖∇Ψ(wt) −∇Ψ(wt+1)‖∗. Taking expectations on both sides with respect to zt yields

ηtσ ≤ ηtEzt [‖∇w[f(wt, zt)]‖∗] ≤ ‖∇Ψ(wt) −∇Ψ(w∗)‖∗ + Ezt [‖∇Ψ(wt+1) −∇Ψ(w∗)‖∗]

and

ηtσ ≤ Ez1,...,zt−1 [‖∇Ψ(wt) −∇Ψ(w∗)‖∗] + Ez1,...,zt [‖∇Ψ(wt+1) −∇Ψ(w∗)‖∗].

Hence (4.1) confirms our first limit limt→∞ ηt = 0.
We now show 

∑∞
t=1 ηt = ∞. Assume that F is LF -strongly smooth for some LF > 0. From the identity 

(2.3) and the optimality condition ∇F (w∗) = 0, we have

DF (w∗, wt) + DF (wt, w
∗) = −〈w∗ − wt,∇F (wt)〉.

This is bounded by LF ‖w∗ − wt‖2 by the LF -strong smoothness of F . But the σΨ-strong convexity of Ψ
implies DΨ(w∗, wt) ≥ σΨ

2 ‖w∗ − wt‖2. Hence

〈w∗ − wt,∇F (wt)〉 ≥ −LF ‖w∗ − wt‖2 ≥ −2LF

σΨ
DΨ(w∗, wt).

Plugging this inequality into (3.1) and taking expectations on both sides give

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1 − aηt)Ez1,...,zt−1 [DΨ(w∗, wt)] + Ez1,...,zt [DΨ(wt, wt+1)], (4.2)

where a is the constant a = 2LFσ
−1
Ψ .

Since limt→∞ ηt = 0, we can find some integer t0 ∈ N such that ηt ≤ (3a)−1 for t ≥ t0. Applying the 
elementary inequality 1 −η ≥ exp(−2η) valid for η ∈ (0, 1/3], we know by noting Ez1,...,zt [DΨ(wt, wt+1)] ≥ 0
in (4.2) that

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ exp(−2aηt)Ez1,...,zt−1 [DΨ(w∗, wt)], ∀t ≥ t0. (4.3)

Applying this inequality iteratively for t = T, . . . , t0 + 1 then yields

Ez1,...,zT [DΨ(w∗, wT+1)] ≥
T∏

t=t0+1
exp(−2aηt)Ez1,...,zt0

[DΨ(w∗, wt0+1)]

= exp
(
− 2a

T∑
t=t0+1

ηt

)
Ez1,...,zt0

[DΨ(w∗, wt0+1)]. (4.4)

We claim that Ez1,...,zt [DΨ(w∗, wt0+1)] > 0. Otherwise, we would have

0
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Ez1,...,zt0−1 [DΨ(w∗, wt0)] = Ez1,...,zt0
[DΨ(w∗, wt0+1)] = 0

by (4.3), leading to Ez1,...,zt0−1 [‖w∗−wt0‖2] = Ez1,...,zt0
[‖w∗−wt0+1‖2] = 0 according to the strong convexity 

of Ψ. This would imply wt0+1 = wt0 = w∗ almost surely and thereby ∇w[f(w∗, zt0)] = 0 almost surely by 
(1.2), leading to EZ [‖∇w[f(w∗, Z)]‖∗] = 0, a contradiction to the assumption infw∈W EZ [‖∇w[f(w,Z)]‖∗] >
0.

By Ez1,...,zt0
[DΨ(w∗, wt0+1)] > 0 and limT→∞ Ez1,...,zT [DΨ(w∗, wT+1)] = 0, we see from (4.4) that ∑∞

t=1 ηt = ∞. This proves the necessary condition for the convergence of the OMD.
We now prove (2.4) under the LΨ-strong smoothness of Ψ for some LΨ > 0. Since Ψ is σΨ-strongly 

convex and LΨ-strongly smooth with respect to ‖ · ‖, we know from Lemma 10 that Ψ∗ is σ−1
Ψ -strongly 

smooth and L−1
Ψ -strongly convex with respect to ‖ · ‖∗ (note Ψ∗∗ = Ψ since Ψ is convex and differentiable). 

We also know from Lemma 10 that the duality relation (3.3) between Bregman distances holds for g = Ψ, 
which yields

DΨ(wt, wt+1) = DΨ∗(∇Ψ(wt+1),∇Ψ(wt)), ∀t ∈ N.

Combining this with the L−1
Ψ -strong convexity of Ψ∗ and (4.2), we know from the bound ηt ≤ (3a)−1 that 

for t ≥ t0,

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1 − aηt)Ez1,...,zt−1 [DΨ(w∗, wt)]

+ (2LΨ)−1
Ez1,...,zt

[
‖∇Ψ(wt) −∇Ψ(wt+1)‖2

∗
]
.

But ∇Ψ(wt) −∇Ψ(wt+1) = ηt∇w[f(wt, zt)] by the definition (1.2) of the OMD. So for t ≥ t0 we have

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1 − aηt)Ez1,...,zt−1 [DΨ(w∗, wt)]

+ (2LΨ)−1η2
tEz1,...,zt

[
‖∇w[f(wt, zt)]‖2

∗
]
.

By the Schwarz inequality,

Ez1,...,zt

[
‖∇w[f(wt, zt)]‖∗

]
≤
{
Ez1,...,zt

[
‖∇w[f(wt, zt)]‖2

∗
]}1/2

.

Hence

Ez1,...,zt

[
‖∇w[f(wt, zt)]‖2

∗
]
≥
{
Ez1,...,zt

[
‖∇w[f(wt, zt)]‖∗

]}2 ≥ σ2

and thereby

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1 − aηt)Ez1,...,zt−1 [DΨ(w∗, wt)] + (2LΨ)−1η2
t σ

2, ∀t ≥ t0.

Applying this inequality iteratively from t = T ≥ t0 to t = t0 yields (denote 
∏T

k=T+1(1 − aηk) = 1)

Ez1,...,zT [DΨ(w∗, wT+1)]

≥ Ez1,...,zt0−1 [DΨ(w∗, wt0)]
T∏

t=t0

(1 − aηt) + (2LΨ)−1σ2
T∑

t=t0

η2
t

T∏
k=t+1

(1 − aηk)

≥ (2LΨ)−1σ2
T∑

t=t0

η2
t

T∏
k=t+1

(1 − aηk).
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By the Schwarz inequality and the bound 0 < 1 − aηk ≤ 1 for k ≥ t0, we have

T∑
t=t0

ηt

T∏
k=t+1

(1 − aηk) ≤
{

T∑
t=t0

η2
t

T∏
k=t+1

(1 − aηk)
}1/2

(T − t0 + 1)1/2.

Hence

T∑
t=t0

η2
t

T∏
k=t+1

(1 − aηk) ≥
1

a2(T − t0 + 1)

(
T∑

t=t0

aηt

T∏
k=t+1

(1 − aηk)
)2

= 1
a2(T − t0 + 1)

(
T∑

t=t0

(
1 − (1 − aηt)

) T∏
k=t+1

(1 − aηk)
)2

= 1
a2(T − t0 + 1)

(
T∑

t=t0

[
T∏

k=t+1

(1 − aηk) −
T∏

k=t

(1 − aηk)
])2

= 1
a2(T − t0 + 1)

(
1 −

T∏
k=t0

(1 − aηk)
)2

≥ 1
a2(T − t0 + 1) (1 − (1 − aηt0))

2 =
η2
t0

T − t0 + 1 .

Therefore,

Ez1,...,zT [DΨ(w∗, wT+1)] ≥
η2
t0(2LΨ)−1σ2

T − t0 + 1 , ∀T ≥ t0.

This verifies (2.4) with C̃ = η2
t0(2LΨ)−1σ2 and completes the proof. �

4.2. Sufficient condition for convergence

We now turn to the second proposition giving the sufficiency for the convergence of the OMD (1.2). 
We need the following lemma, to be proved in appendix by some ideas from [34], which establishes the 
co-coercivity of gradients for convex functions enjoying some smoothness condition.

Lemma 12. Let α ∈ (0, 1] and g : W → R be a Fréchet differentiable and convex function. If there exists 
some constant L > 0 such that

Dg(w, w̃) ≤ L

1 + α
‖w − w̃‖1+α, ∀w, w̃ ∈ W,

then we have

2L− 1
αα

1 + α
‖∇g(w) −∇g(w̃)‖

1+α
α∗ ≤ 〈w − w̃,∇g(w) −∇g(w̃)〉, ∀w, w̃ ∈ W. (4.5)

Proposition 13. Assume that for some constant L > 0, f(·, z) is L-strongly smooth for almost every 
z ∈ Z. Suppose that the pair (Ψ, F ) satisfies (2.2) around w∗ with a convex function Ω : [0, ∞) → R+
satisfying Ω(0) = 0 and Ω(u) > 0 for u > 0. If the step size sequence satisfies (1.5), then we have 
limt→∞ Ez1,...,zt−1 [DΨ(w∗, wt)] = 0.



JID:YACHA AID:1267 /FLA [m3L; v1.236; Prn:30/05/2018; 8:47] P.15 (1-31)
Y. Lei, D.-X. Zhou / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 15
Furthermore, if (2.5) holds with some σF > 0 and the step size takes the form ηt = 4
(t+1)σF

, then (2.6)
holds.

Proof. According to the key identity (3.1) for the one-step progress of the OMD and the duality relation (3.3)
of the Bregman distances, we have

Ezt [DΨ(w∗, wt+1)] −DΨ(w∗, wt)

= ηt〈w∗ − wt,∇F (wt)〉 + Ezt

[
DΨ∗(∇Ψ(wt+1),∇Ψ(wt))

]
. (4.6)

By Lemma 10, the σΨ-strong convexity of Ψ implies the σ−1
Ψ -strong smoothness of Ψ∗. It follows from the 

definition (1.2) of the OMD that

Ezt

[
DΨ∗(∇Ψ(wt+1),∇Ψ(wt))

]
≤ 1

2σΨ
Ezt

[
‖∇Ψ(wt+1) −∇Ψ(wt)‖2

∗
]

= η2
t

2σΨ
Ezt

[
‖∇w[f(wt, zt)]‖2

∗
]
. (4.7)

We bound 
[
‖∇w[f(wt, zt)]‖2

∗
]

by 2
[
‖∇w[f(wt, zt)] −∇w[f(w∗, zt)]‖2

∗
]
+2
[
‖∇w[f(w∗, zt)]‖2

∗
]
. Then we apply 

Lemma 12 with w = w∗, w̃ = wt, g = f(·, zt) and α = 1. By the L-strong smoothness of f(·, z), we know 
that

Ezt

[
‖∇w[f(wt, zt)] −∇w[f(w∗, zt)]‖2

∗

]
≤ LEzt

[〈
wt − w∗,∇w[f(wt, zt)] −∇w[f(w∗, zt)]

〉]
= L〈w∗ − wt,∇F (w∗) −∇F (wt)〉, (4.8)

where the interchange of the expectation and the gradient is valid due to the strong smoothness. Then we 
have

Ezt [DΨ(w∗, wt+1)] −DΨ(w∗, wt) ≤ −
(

1 − Lηt
σΨ

)
ηt〈w∗ − wt,∇F (w∗) −∇F (wt)〉

+ η2
t

σΨ
Ezt

[
‖∇w[f(w∗, zt)]‖2

∗
]
.

Since limt→∞ ηt = 0, there exists some t1 ∈ N such that L
σΨ

ηt ≤ 1
2 for t ≥ t1 which implies

Ezt [DΨ(w∗, wt+1)] −DΨ(w∗, wt) ≤ −ηt
2 〈w∗ − wt,∇F (w∗) −∇F (wt)〉

+ η2
t

σΨ
Ezt

[
‖∇w[f(w∗, zt)]‖2

∗
]
. (4.9)

Now we apply the relation (2.2) on the convexity to obtain

−〈w∗ − wt,∇F (w∗) −∇F (wt)〉 ≤ −Ω (DΨ(w∗, wt)) . (4.10)

It follows that

Ezt [DΨ(w∗, wt+1)] ≤ DΨ(w∗, wt) −
ηt
2 Ω (DΨ(w∗, wt)) + bη2

t , (4.11)

where b is the constant b = 1
EZ

[
‖∇w[f(w∗, Z)]‖2

∗
]
. Since Ω is convex, by Jensen’s inequality, we have
σΨ
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Ω
(
Ez1,...,zt−1 [DΨ(w∗, wt)]

)
≤ Ez1,...,zt−1 [Ω (DΨ(w∗, wt))] .

Therefore, by taking expectations over z1, . . . , zt−1 and denoting a sequence {At}t by

At = Ez1,...,zt−1 [DΨ(w∗, wt)] ,

we have

At+1 ≤ At −
ηt
2 Ω (At) + bη2

t , ∀t ≥ t1. (4.12)

To prove limt→∞ At = 0, we let 0 < γ < 1 be an arbitrarily chosen number. The convexity of Ω : [0, ∞) →
R+ tells us that for u ≥ γ, there holds

Ω(γ) = Ω
(
(1 − γ

u
) · 0 + γ

u
u
)
≤ (1 − γ

u
)Ω (0) + γ

u
Ω(u) = γ

u
Ω(u)

which yields

Ω(u) ≥ Ω(γ)
γ

u, ∀u ≥ γ. (4.13)

Since limt→∞ ηt = 0, we know that there exists some integer tγ ≥ t1 such that

ηt ≤ min
{

Ω(γ)
4b ,

√
γ

}
, ∀t ≥ tγ . (4.14)

We claim that

sup {t ∈ N : At ≤ γ} = ∞. (4.15)

If (4.15) is not true, we can find some t′γ ≥ tγ such that

At > γ, ∀t ≥ t′γ .

Combining this with (4.13), (4.14) and (4.12) tells us that for t ≥ t′γ ,

At+1 ≤ At − ηt
Ω(γ)
2γ At + bη2

t ≤ At −
Ω(γ)
2γ ηtAt + Ω(γ)

4γ ηtAt = At −
Ω(γ)
4γ ηtAt ≤ At −

Ω(γ)
4 ηt,

which implies by iteration

At+1 ≤ At′γ − Ω(γ)
4

t∑
k=t′γ

ηk → −∞ (as t → ∞).

This is a contradiction, which verifies our claim (4.15).
By (4.15) there exists some positive integer t′′γ > tγ such that At′′γ ≤ γ. We now show by induction that

At ≤ γ + b max
t′′γ≤�≤t−1

η2
� , ∀t ≥ t′′γ . (4.16)

The case t = t′′γ is true (where we denote maxt′′γ≤�≤t′′γ−1 η
2
� = 0) since At′′γ ≤ γ. Supposes the statement 

(4.16) holds for t = k ≥ t′′γ . Note that t′′γ > tγ and γ < 1. To prove the statement for t = k + 1, we discuss 
in two cases. If Ak ≤ γ, we see directly from (4.12) that
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Ak+1 ≤ γ + bη2
k ≤ γ + b max

t′′γ≤�≤k
η2
� .

If Ak > γ, we apply (4.13), (4.14) and (4.12) again and find

Ak+1 ≤ Ak − ηk
Ω(γ)
2γ Ak + bη2

k ≤ Ak − Ω(γ)
4γ ηkAk ≤ Ak ≤ γ + b max

t′′γ≤�≤k−1
η2
� ,

where we have used the induction hypothesis in the last inequality. This verifies the statement (4.16) for 
t = k + 1 and completes the induction procedure.

Applying (4.14), (4.16) and noting t′′γ > tγ , we know that

At ≤ (1 + b)γ, ∀t ≥ t′′γ .

Since γ is an arbitrary number on (0, 1), this proves

lim
t→∞

At = lim
t→∞

Ez1,...,zt−1 [DΨ(w∗, wt)] = 0.

We now prove (2.6) under condition (2.5) and the choice ηt = 4
(t+1)σF

of the step size sequence. Eq. (2.5)
implies that (2.2) holds with Ω(u) = σFu. The estimate (4.12) then becomes

At+1 ≤ At −
2

t + 1At + 16b
(t + 1)2σ2

F

, ∀t ≥ t1.

Multiplying both sides by t(t + 1) gives

t(t + 1)At+1 ≤ (t− 1)tAt + 16b
σ2
F

, ∀t ≥ t1.

Applying this relation iteratively, we obtain

(T − 1)TAT ≤ (t1 − 1)t1At1 + 16b(T − t1)
σ2
F

, ∀T ≥ t1,

from which we see

Ez1,...,zT−1 [DΨ(w∗, wT )] ≤
(t1 − 1)t1Ez1,...,zt1−1 [DΨ(w∗, wt1)]

(T − 1)T + 16b
Tσ2

F

, ∀T ≥ t1.

This yields (2.6). The proof is complete. �
Remark 3. Equation (2.6) gives convergence rates for Ez1,...,zT−1 [DΨ(w∗, wT )] under an assumption on the 
strong convexity of F measured by the Bregman distance. It should be noticed that DΨ(w∗, wT ) provides 
different geometric distance measures between w∗ and wT for different mirror maps. For example, if Ψ =
Ψp, then Equation (2.6) together with the (p − 1)-strong convexity of Ψp w.r.t. ‖ · ‖p implies the rate 
Ez1,...,zT−1 [‖wT − w∗‖2

p] = O(1/T ) for the ‖ · ‖p convergence. The case p = 2 corresponds to the Euclidean 
distance while the case 1 < p < 2 corresponds to a distance in a Banach space. Furthermore, if w∗ is sparse 
and admits small ‖w∗‖1, then we can choose p to be close to 1 to make sure wT also attains a small �1-norm: 
Ez1,...,zT−1 [‖wT ‖1] ≤ Ez1,...,zT−1 [‖wT − w∗‖1] + ‖w∗‖1. In this case, wT also enjoys some sparsity.

Let us clarify the role of the mirror map in the case when (2.2) around w∗ is not imposed for the pair 
(Ψ, F ). Take w1 = 0 and ηt ≤ σΨ/(2L) for all t ∈ N (in this case t1 for (4.9) can be taken as 1). Since the 
derivation of (4.9) does not depend on (2.2), we use the convexity of F and ∇F (w∗) = 0 in (4.9) to derive
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Ezt [DΨ(w∗, wt+1)] −DΨ(w∗, wt) ≤
ηt
[
F (w∗) − F (wt)

]
2 +

EZ

[
‖∇w[f(w∗, Z)]‖2

∗
]
η2
t

σΨ
.

Taking a summation from t = 1 to T , we derive

Ez1,...,zT [DΨ(w∗, wT+1)] −DΨ(w∗, w1) ≤
1
2

T∑
t=1

ηt
[
F (w∗) − F (wt)

]
+

EZ

[
‖∇w[f(w∗, Z)]‖2

∗
]∑T

t=1 η
2
t

σΨ
.

According to the convexity of F , it further follows that

F (w̄T ) − F (w∗) ≤ 2DΨ(w∗, w1)∑T
t=1 ηt

+
2
[
EZ‖∇w[f(w∗, Z)]‖2

∗
]∑T

t=1 η
2
t

σΨ
∑T

t=1 ηt
,

where w̄T =
∑T

t=1 ηtwt∑T
t=1 ηt

is a weighted average of the first T iterates. If we consider the mirror map Ψ = Ψp

and ηt = η1t
− 1

2 with η1 = σΨ/(2L), then from w1 = 0 we get

F (w̄T ) − F (w∗) ≤
‖w∗‖2

p

η1
∑T

t=1 t
− 1

2
+

2η1EZ

[
‖∇w[f(w∗, Z)]‖2

∗
]∑T

t=1 t
−1

σΨ
∑T

t=1 t
− 1

2

= O
( ‖w∗‖2

p

(p− 1)
√
T

+
EZ

[
‖∇w[f(w∗, Z)]‖2

∗
]
log T√

T

)
,

where we have used the (p − 1)-strong convexity of Ψp w.r.t. ‖ · ‖p. If we choose p = 1 + 1
log d , then it follows 

from ‖∇w[f(w∗, Z)]‖∗ = ‖∇w[f(w∗, Z)]‖1+log d ≤ e‖∇w[f(w∗, Z)]‖∞ that

F (w̄T ) − F (w∗) = O
(‖w∗‖2

1 log d + EZ

[
‖∇w[f(w∗, Z)]‖2

∞
]
log T√

T

)
. (4.17)

As a comparison, if we choose p = 2, the expression takes the form

F (w̄T ) − F (w∗) = O
(‖w∗‖2

2 + EZ

[
‖∇w[f(w∗, Z)]‖2

2
]
log T√

T

)
. (4.18)

The bound in (4.17) would be significantly smaller than that in (4.18) in the case when w∗ is sparse 
and ‖∇w[f(w∗, z)]‖2 is close to 

√
d‖∇w[f(w∗, z)]‖∞ (meaning ∇w[f(w∗, z)] is dense). In this case, the 

bound (4.17) enjoys a logarithmic dependency on the dimension [11], while the bound (4.18) enjoys a 
square-root dependency. It should be noticed that the discussion in [11] requires a nontrivial assumption 
‖∇w[f(w∗, z)]‖∗ ≤ G with a constant G > 0, which is removed in this remark.

Remark 4. Some of our results can be extended to projected OMD applied to non-differentiable objective 
functions. For any convex function g : Rd → R, we use g′(w) to denote a subgradient of g at w satisfying 
g(w̃) ≥ g(w) + 〈w̃ − w, g′(w)〉 for all w̃. We assume that there exist A and B > 0 such that

‖f ′(w, z)‖2
∗ ≤ Af(w, z) + B, ∀w ∈ W, z ∈ Z. (4.19)

This assumption was considered in the literature [35], and is satisfied by many (nondifferentiable) regularized 
loss functions wisely used in the machine learning community, including hinge loss and all strongly smooth 
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loss functions. Let W̃ ⊂ W and ηt ≤ σΨ/A. We consider the following projected OMD where a mirror 
descent step is followed by a Bregman projection at each iteration:⎧⎨⎩∇Ψ(wt+ 1

2
) = ∇Ψ(wt) − ηtf

′(wt, zt),

wt+1 = arg min
w∈W̃

DΨ(w,wt+ 1
2
).

We denote w∗ = arg min
w∈W̃

F (w). We can replace wt+1 with wt+ 1
2

in (3.1) to get (by definition one can 
show F ′(wt) =: EZ [f ′(wt, Z)] is a subgradient of F at wt)

Ezt [DΨ(w∗, wt+ 1
2
)] −DΨ(w∗, wt) = ηt〈w∗ − wt, F

′(wt)〉 + Ezt [DΨ(wt, wt+ 1
2
)]

= ηt〈w∗ − wt, F
′(wt)〉 + Ezt [DΨ∗(∇Ψ(wt+ 1

2
),∇Ψ(wt))]

≤ ηt〈w∗ − wt, F
′(wt)〉 + η2

t

2σΨ
Ezt [‖f ′(wt, zt)‖2

∗], (4.20)

where the second identity is due to (3.3) and the last inequality is due to the σ−1
Ψ -strong smoothness of Ψ∗. 

By the first-order condition in the definition wt+1 above, we derive

〈w∗ − wt+1,∇Ψ(wt+1) −∇Ψ(wt+ 1
2
)〉 ≥ 0,

from which and (3.2) we derive

DΨ(w∗, wt+1) −DΨ(w∗, wt+ 1
2
) = −DΨ(wt+1, wt+ 1

2
) − 〈w∗ − wt+1,∇Ψ(wt+1) −∇Ψ(wt+ 1

2
)〉 ≤ 0.

Plugging the above inequality back into (4.20) and using (4.19), we derive

Ezt [DΨ(w∗, wt+1)] −DΨ(w∗, wt) ≤ ηt〈w∗ − wt, F
′(wt)〉 + η2

t

2σΨ

[
AEzt [f(wt, zt)] + B

]
. (4.21)

According to the definition of subgradient, we know

Ezt [f(wt, zt)] = F (wt) − F (w∗) + F (w∗) ≤ 〈wt − w∗, F ′(wt)〉 + F (w∗).

This together with (4.21) gives

Ezt [DΨ(w∗, wt+1)] −DΨ(w∗, wt)

≤ ηt〈w∗ − wt, F
′(wt)〉

(
1 − ηtA

2σΨ

)
+ η2

t [AF (w∗) + B]
2σΨ

≤ ηt〈w∗ − wt, F
′(wt) − F ′(w∗)〉

(
1 − ηtA

2σΨ

)
+ η2

t [AF (w∗) + B]
2σΨ

,

where in the last step we have used 〈w∗−wt, −F ′(w∗)〉 ≥ 0 due to the first-order condition in the definition 
of w∗. If we impose an assumption similar to (2.2) as 〈w∗ − w, F ′(w∗) − F ′(w)〉 ≥ Ω(DΨ(w∗, w)) for all 
w ∈ W and use ηt ≤ σΨ/A, then we derive

Ezt [DΨ(w∗, wt+1)] ≤ DΨ(w∗, wt) −
ηt
2 Ω (DΨ(w∗, wt)) + b′η2

t ,

where b′ = AF (w∗)+B
2σΨ

. The above inequality takes the same form as (4.11), from which we can derive exactly 
the same sufficient condition for the convergence and upper bounds on convergence rates. Our analysis may 
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not be used to get necessary conditions or lower bounds for either projected OMD or non-differentiable 
objective functions. Indeed, the derivation of (4.2) is based on an identity on the one-step progress which 
may not hold for the projected algorithm, and the LF -strong smoothness of F which does not hold for 
non-differentiable loss functions.

5. Convergence in the case of zero variance and almost sure convergence

In this section we prove Theorem 3 for the convergence in the case of zero variance and Theorem 4 for 
the almost sure convergence.

Proof of Theorem 3. Necessity. For any w, w̃ ∈ W, we know

DF (w, w̃) = F (w) − F (w̃) − 〈w − w̃,∇F (w̃)〉

= Ez

[
f(w, z) − f(w̃, z) − 〈w − w̃,∇f(w̃, z)

]
≤

LEz

[
‖w − w̃‖2]

2 = L‖w − w̃‖2

2 ,

where the inequality follows from the L-strong smoothness of f(·, z) for almost every z ∈ Z. Hence F is 
L-strongly smooth w.r.t. ‖ · ‖. Notice that we do not require the increment condition (2.1) nor the variance 
condition in the derivation of (4.2). Indeed, we only use the LF -strong smoothness of F and σΨ-strong 
convexity of Ψ there. Therefore, (4.2) holds, from which we derive

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ (1 − 2Lσ−1
Ψ ηt)Ez1,...,zt−1 [DΨ(w∗, wt)]. (5.1)

We now need the assumption 0 < ηt ≤ σΨ
(2+κ)L with κ > 0 on the step size sequence. Denote the constant 

ã = 2+κ
2 log 2+κ

κ and apply the elementary inequality (see e.g., [20])

1 − x ≥ exp(−ãx), ∀ 0 < x ≤ 2
2 + κ

.

We know from (5.1) that

Ez1,...,zt [DΨ(w∗, wt+1)] ≥ exp
(
− 2ãLσ−1

Ψ ηt
)
Ez1,...,zt−1 [DΨ(w∗, wt)].

Applying this inequality iteratively for t = 1, . . . , T then gives

Ez1,...,zT [DΨ(w∗, wT+1)] ≥
T∏

t=1
exp
(
− 2ãLσ−1

Ψ ηt
)
DΨ(w∗, w1)

= exp
{
−2ãLσ−1

Ψ

T∑
t=1

ηt

}
DΨ(w∗, w1).

From the assumption w∗ 
= w1, we have DΨ(w∗, w1) > 0. The convergence limt→∞ Ez1,...,zt−1 [DΨ(w∗, wt)] =
0 then implies 

∑∞
t=1 ηt = ∞.

Sufficiency. Here we use the estimate (4.12) derived in the proof of Proposition 13. But in our case of 
zero variance, b = 1

σΨ
EZ

[
‖∇w[f(w∗, Z)]‖2

∗
]

= 0. So (4.12) takes the form (note that we can choose t1 = 1
in deriving (4.9))

At+1 ≤ At −
ηtΩ (At) , ∀t ∈ N. (5.2)
2
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This implies that for any 0 < γ < 1, there must exist some integer t̃γ ∈ N such that At̃γ ≤ γ, since otherwise 
At > γ for every t ∈ N, which by (4.13) and (5.2) leads to a contradiction:

At+1 ≤ At −
ηtΩ(γ)

2γ At ≤ At −
ηt
2 Ω(γ) ≤ At̃γ − Ω(γ)

2

t∑
k=t̃γ

ηk → −∞ (as t → ∞).

But (5.2) also tells us that the sequence {At}t∈N of nonnegative numbers is decreasing. Hence At̃γ ≤ γ for 
every t ≥ t̃γ . This proves the limit

lim
t→∞

Ez1,...,zt−1 [DΨ(w∗, wt)] = lim
t→∞

At = 0.

We now turn to prove (2.7) under the special choice of the constant step size sequence ηt ≡ η1. It follows 
from (5.1) that AT+1 ≥ (1 − 2Lσ−1

Ψ η1)TA1. Furthermore, assumption (2.5) means that (2.2) holds with 
Ω(u) = σFu. So (5.2) translates to

At+1 ≤ (1 − 2−1η1σF )At,

from which we find AT+1 ≤ (1 − 2−1η1σF )TA1 by iteration. This verifies (2.7) and completes the proof of 
Theorem 3. �

The proof of Theorem 4 for the almost sure convergence is based on the following Doob’s forward 
convergence theorem (see, e.g., [10] on page 195).

Lemma 14. Let {X̃t}t∈N be sequences of nonnegative random variables and let {Ft}t∈N be a sequence of 
random variable sets with Ft ⊂ Ft+1 for every t ∈ N. Suppose that E[X̃t+1|Ft] ≤ X̃t almost surely for every 
t ∈ N. Then the sequence {X̃t} converges to a nonnegative random variable X̃ almost surely.

Proof of Theorem 4. We follow the proof of Proposition 13 and apply (4.9). Since 〈w∗ − wt, ∇F (w∗) −
∇F (wt)〉 ≥ 0, (4.9) implies

Ezt [DΨ(w∗, wt+1)] ≤ DΨ(w∗, wt) + η2
t

σΨ
EZ

[
‖∇w[f(w∗, Z)]‖2

∗
]
, ∀t ≥ t1. (5.3)

The condition 
∑∞

t=1 η
2
t < ∞ enables us to define a stochastic process {X̃t}t by

X̃t = DΨ(w∗, wt) + 1
σΨ

EZ

[
‖∇w[f(w∗, Z)]‖2

∗
] ∞∑
�=t

η2
� .

By (5.3), we know that Ezt [X̃t+1] ≤ X̃t for t ≥ t1. Also, X̃t ≥ 0. So the stochastic process {X̃t}t≥t1 is a 
supermartingale. Then by the supermartingale convergence theorem, Lemma 14, we know that the sequence 
{X̃t}t≥t1 converges to a non-negative random variable X̃ almost surely. According to Fatou’s Lemma and 
the limit limt→∞ E[DΨ(w∗, wt)] = 0 proved by Proposition 13, we get

E[X̃] = E
[

lim
t→∞

DΨ(w∗, wt)
]
≤ lim inf

t→∞
E[DΨ(w∗, wt)] = 0.

But X̃ is a non-negative random variable, so we have X̃ = 0 almost surely. It follows that {DΨ(w∗, wt)}t∈N

converges to 0 almost surely. The proof of Theorem 4 is complete. �
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6. Proving explicit results

In this section we prove the propositions stated in subsection 2.2 on some properties of special mirror 
maps, and Theorems 1 and 8 on necessary and sufficient conditions for the convergence, as well as tight 
convergence rates.

Proof of Proposition 5. If Ψ is LΨ-strongly smooth, then the condition in Lemma 12 is satisfied with g =
Ψ, L = LΨ and α = 1. So by Lemma 12, there holds

‖∇Ψ(w) −∇Ψ(w̃)‖2
∗ ≤ LΨ〈w − w̃,∇Ψ(w) −∇Ψ(w̃)〉, ∀w, w̃ ∈ W.

By the Schwarz inequality 〈w − w̃, ∇Ψ(w) −∇Ψ(w̃)〉 ≤ ‖w − w̃‖‖∇Ψ(w) −∇Ψ(w̃)‖∗, this implies

‖∇Ψ(w) −∇Ψ(w̃)‖∗ ≤ LΨ‖w − w̃‖, ∀w, w̃ ∈ W. (6.1)

So the function ∇Ψ is Lipschitz, and hence is continuous everywhere.
Setting w̃ = 0 in (6.1) also yields

‖∇Ψ(w)‖∗ ≤ ‖∇Ψ(0)‖∗ + LΨ‖w‖ ≤ (‖∇Ψ(0)‖∗ + LΨ) (1 + ‖w‖), ∀w ∈ W.

This establishes the incremental conditional (2.1) at infinity with CΨ = ‖∇Ψ(0)‖∗ + LΨ.
If F is σF -strongly convex, by the identity (2.3), we have

〈w − w̃,∇F (w) −∇F (w̃〉 = DF (w, w̃) + DF (w̃, w) ≥ σF ‖w − w̃‖2, ∀w, w̃ ∈ W.

But DΨ(w̃, w) ≤ LΨ
2 ‖w − w̃‖2. So we have

〈w − w̃,∇F (w) −∇F (w̃〉 ≥ σF ‖w − w̃‖2 ≥ 2σF

LΨ
DΨ(w̃, w), ∀w, w̃ ∈ W.

Hence (2.2) is satisfied for a linear convex function Ω(u) = 2σF

LΨ
u. This proves Proposition 5. �

For proving Proposition 6, we need the following inequalities which follow easily from the elementary 
inequalities

|aβ − bβ | ≤ |a− b|β , (a + b)β ≤ aβ + bβ ≤ 21−β(a + b)β , ∀a, b ≥ 0, β ∈ (0, 1].

Lemma 15. Let 0 < β ≤ 1. Then we have

|sgn(a)|a|β − sgn(b)|b|β | ≤ 21−β |a− b|β , ∀a, b ∈ R, (6.2)∣∣‖w̃‖βp − ‖w‖βp
∣∣ ≤ ∣∣‖w̃‖p − ‖w‖p

∣∣β ≤ ‖w̃ − w‖βp , ∀w, w̃ ∈ W, (6.3)

where we denote the sign of a ∈ R by sgn(a) = 1 if a > 0, −1 if a < 0, and 0 if a = 0.

Proof of Proposition 6. Let p∗ = p
p−1 > 2 be the dual number of p satisfying 1

p + 1
p∗ = 1. Then the dual 

norm ‖ · ‖∗ is exactly the p∗-norm ‖ · ‖p∗ , and the gradient of Ψp at w ∈ W equals

∇Ψp(w) = ‖w‖2−p
p ŵ, (6.4)

where ŵ ∈ W∗ is the vector depending on w given by
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ŵ =
(
sgn(w(j))|w(j)|p−1)d

j=1.

It follows that ∇Ψp is continuous everywhere, and by calculating the norm 
∥∥ŵ∥∥

p∗ directly that

‖∇Ψp(w)‖∗ = ‖w‖2−p
p

∥∥ŵ∥∥
p∗ = ‖w‖2−p+ p

p∗
p = ‖w‖p.

This proves the identity (2.8) and the incremental condition (2.1) with CΨp
= 1.

To bound the Bregman distance DΨp
(w̃, w), we apply the identity (2.3) and find that for any w, w̃ ∈ W,

DΨp
(w̃, w) ≤ DΨp

(w̃, w) + DΨp
(w, w̃) ≤ ‖w̃ − w‖p

∥∥∇Ψp(w̃) −∇Ψp(w)
∥∥
p∗ . (6.5)

We use the expression (6.4) and write ∇Ψp(w̃) −∇Ψp(w) as

∇Ψp(w̃) −∇Ψp(w) = ‖w̃‖2−p
p

ˆ̃w − ‖w‖2−p
p ŵ = ‖w̃‖2−p

p

( ˆ̃w − ŵ
)

+
(
‖w̃‖2−p

p − ‖w‖2−p
p

)
ŵ.

Applying (6.2) to the j-th components of ˆ̃w − ŵ and β = p − 1 ∈ (0, 1), we have

∣∣sgn(w̃(j))|w̃(j)|p−1 − sgn(w(j))|w(j)|p−1∣∣ ≤ 22−p |w̃(j) − w(j)|p−1
, j = 1, . . . , d.

So for the first term, we have

∥∥ ˆ̃w − ŵ
∥∥
p∗ ≤

⎧⎨⎩
d∑

j=1
2p

∗(2−p) |w̃(j) − w(j)|p
∗(p−1)

⎫⎬⎭
1/p∗

= 22−p ‖w̃ − w‖
p
p∗
p = 22−p ‖w̃ − w‖p−1

p . (6.6)

For the second term, we apply (6.3) with β = 2 − p and find

∥∥(‖w̃‖2−p
p − ‖w‖2−p

p

)
ŵ
∥∥
p∗ ≤ ‖w̃ − w‖2−p

p ‖ŵ‖p∗ = ‖w̃ − w‖2−p
p ‖w‖p−1

p .

Applying (6.3) with β = p − 1 yields

‖w‖p−1
p ≤ ‖w̃‖p−1

p + ‖w̃ − w‖p−1
p .

Hence

∥∥(‖w̃‖2−p
p − ‖w‖2−p

p

)
ŵ
∥∥
p∗ ≤ ‖w̃‖p−1

p ‖w̃ − w‖2−p
p + ‖w̃ − w‖p.

Combining this with (6.6) gives

∥∥∇Ψp(w̃) −∇Ψp(w)
∥∥
p∗ ≤ (2‖w̃‖p)2−p ‖w̃ − w‖p−1

p + ‖w̃‖p−1
p ‖w̃ − w‖2−p

p + ‖w̃ − w‖p.

Putting this bound into (6.5), we obtain

DΨp
(w̃, w) ≤ (2‖w̃‖p)2−p ‖w̃ − w‖pp + ‖w̃‖p−1

p ‖w̃ − w‖3−p
p + ‖w̃ − w‖2

p.

Since 1 < 3 − p < 2, we have
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DΨp
(w̃, w) ≤

⎧⎨⎩
(
(2‖w̃‖p)2−p + ‖w̃‖p−1

p + 1
)
‖w̃ − w‖2

p, when ‖w̃ − w‖p ≥ 1,(
(2‖w̃‖p)2−p + ‖w̃‖p−1

p + 1
)
‖w̃ − w‖min{p,3−p}

p , when ‖w̃ − w‖p < 1.

Then our desired estimate (2.9) for DΨp
(w̃, w) follows.

Let w̃ ∈ W and denote the constant C‖w̃‖p,p =
(
(2‖w̃‖p)2−p + ‖w̃‖p−1

p + 1
)−1

. We know from (2.9)

‖w̃ − w‖2
p + ‖w̃ − w‖min{p,3−p}

p ≥ C‖w̃‖p,pDΨp
(w̃, w). (6.7)

When DΨp
(w̃, w) ≥ 1, we have Ωp

(
DΨp

(w̃, w)
)

= DΨp
(w̃, w) + 1

τp
− 1 ≤ DΨp

(w̃, w) and see from (6.7)
that either

‖w̃ − w‖2
p ≥ 1 =⇒ ‖w̃ − w‖2

p ≥ 1
2

(
‖w̃ − w‖2

p + ‖w̃ − w‖min{p,3−p}
p

)
≥

C‖w̃‖p,p

2 Ωp

(
DΨp

(w̃, w)
)

or ‖w̃ − w‖2
p < 1 which implies

‖w̃ − w‖min{p,3−p}
p ≥

C‖w̃‖p,p

2 DΨp
(w̃, w) ≥

C‖w̃‖p,p

2

by our assumption DΨp
(w̃, w) ≥ 1, and thereby

‖w̃ − w‖2
p = ‖w̃ − w‖min{p,3−p}

p ‖w̃ − w‖2−min{p,3−p}
p

≥
{
C‖w̃‖p,p

2 DΨp
(w̃, w)

}(
C‖w̃‖p,p

2

) 2−min{p,3−p}
min{p,3−p}

.

Hence

‖w̃ − w‖2
p ≥ min

{
C‖w̃‖p,p

2 ,

(
C‖w̃‖p,p

2

)τp}
Ωp

(
DΨp

(w̃, w)
)
.

When DΨp
(w̃, w) < 1, we have Ωp

(
DΨp

(w̃, w)
)

= 1
τp

(
DΨp

(w̃, w)
)τp . Again, from (6.7), we have either

‖w̃ − w‖2
p < 1 =⇒ ‖w̃ − w‖min{p,3−p}

p ≥
C‖w̃‖p,p

2 DΨp
(w̃, w)

=⇒ ‖w̃ − w‖2
p ≥ τp

(
C‖w̃‖p,p

2

)τp

Ωp

(
DΨp

(w̃, w)
)

or ‖w̃ − w‖2
p ≥ 1 which implies

‖w̃ − w‖2
p ≥

C‖w̃‖p,p

2 DΨp
(w̃, w) ≥

τpC‖w̃‖p,p

2 Ωp

(
DΨp

(w̃, w)
)

by our assumption DΨp
(w̃, w) < 1. Therefore,

‖w̃ − w‖2
p ≥ min

{
τp

C‖w̃‖p,p

2 , τp

(
C‖w̃‖p,p

2

)τp}
Ωp

(
DΨp

(w̃, w)
)
.

Combining the above two cases and noting τp > 1, we see (2.10) holds.
The last statement follows immediately from the identity (2.3), the definition of σF -strong convexity, and 

(2.10). The proof is complete. �



JID:YACHA AID:1267 /FLA [m3L; v1.236; Prn:30/05/2018; 8:47] P.25 (1-31)
Y. Lei, D.-X. Zhou / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 25
Proof of Theorem 1. Denote supx∈X ‖x‖∗ = R > 0. The Hessian matrix of f(·, z) = 1
2 (〈·, x〉 − y)2 for every 

z is ∇2
w[f(w, z)] = xx�, from which we know that f(·, z) and F are R2-strongly smooth. Moreover, we have

∇F (w) = EZ [XX�w −XY ] = CXw − EZ [XY ].

So we know from the positive definiteness of the covariance matrix CX that the only minimizer w∗ is 
w∗ = wρ. For any w, w̃ ∈ W, there holds

DF (w, w̃) = 1
2EZ

[(
〈w,X〉 − 〈w̃,X〉 + 〈w̃,X〉 − Y

)2]
− 1

2EZ

[(
〈w̃,X〉 − Y

)2]− 〈w − w̃,∇F (w̃)〉

= 1
2EZ

[(
〈w − w̃,X〉

)2]+ EZ

[〈
w − w̃, 〈w̃,X〉X −XY

〉]
− 〈w − w̃,∇F (w̃)〉

= 1
2(w − w̃)�CX(w − w̃) ≥ λmin

2 ‖w − w̃‖2
2,

where λmin > 0 is the smallest eigenvalue of the positive definite covariance matrix CX . But the norms ‖ · ‖2
and ‖ ·‖ on Rd are equivalent. So there exist two positive numbers b1 ≤ b2 such that b1‖w‖2 ≤ ‖w‖2

2 ≤ b2‖w‖2

for w ∈ R
d. It follows that

DF (w, w̃) ≥ λminb1
2 ‖w − w̃‖2, ∀w, w̃ ∈ W.

This verifies the λminb1-strong convexity of F . So by Propositions 5 and 6, the conditions of Theorems 2, 
3 and 4 are satisfied. Moreover,

EZ [‖∇w[f(w,Z)]‖∗] = EZ [‖(Y − 〈w,X〉)X‖∗] = EZ [|Y − 〈w,X〉| ‖X‖∗] .

So the assumption infw∈W EZ [‖∇w[f(w,Z)]‖∗] > 0 in Theorem 2 is the same as the assumption 
infw∈W EZ [|Y − 〈w,X〉| ‖X‖∗] > 0 in Theorem 1, and from Theorem 2 we know that if we replace ‖wρ−wt‖2

by DΨ(wρ, wt), our statement (a) holds true and the constant σ can be taken as σ = 2λminb1
LΨ

in the case 
of an LΨ-strongly smooth mirror map Ψ. To get the statement for the norm square ‖wρ − wt‖2, we notice 
first from the strong convexity of Ψ that σΨ

2 ‖wρ − wt‖2 ≤ DΨ(wρ, wt).
When Ψ is strongly smooth satisfying DΨ(wρ, wt) ≤ LΨ

2 ‖wρ − wt‖2, we know that our statement (a) 
holds true. When Ψ = Ψp for some 1 < p ≤ 2, we use (2.10) with w̃ = wρ and Jensen’s inequality to get 
from the convexity of Ω

Ez1,...,zt−1 [‖wρ − wt‖2] ≥ B′
pΩp

(
Ez1,...,zt−1 [DΨp

(wρ, wt)]
)
,

where B′
p is a constant depending on p, ‖wρ‖, and a constant cp such that cp‖w‖p ≤ ‖w‖ holds for every w ∈

W. Combining this relation with the explicit formula (2.11) for Ωp, we know that limt→∞ Ez1,...,zt−1 [‖wρ −
wt‖2] = 0 implies limt→∞ Ez1,...,zt−1 [DΨp

(wρ, wt)] = 0. Hence our statement (a) also holds true for Ψ = Ψp.
Note that the assumption EZ [‖∇w[f(w∗, Z)]‖∗] = 0 in our statement (b) of Theorem 3 is the same as the

assumption EZ [|Y − 〈wρ, X〉| ‖X‖∗] = 0 in Theorem 1. So our statement (b) can be proved from Theorem 3
by the same argument for dealing with the norm square ‖wρ − wt‖2 from DΨ(wρ, wt) as we did for our 
statement (a).

Our statement (c) follows from Theorem 4 and the strong convexity of Ψ. The proof of Theorem 1 is 
complete. �
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Proof of Theorem 8. Recall that for the regularizer r given by r(w) = λ‖w‖2
2, there holds Dr(w̃, w) =

λ‖w̃ − w‖2
2 for w̃, w ∈ W. So we know that F is 2λ-strongly convex for every z ∈ Z.

For the Bregman distance induced by the loss function

Dφ(〈·,x〉,y)(w̃, w) = φ(〈w̃, x〉, y) − φ(〈w, x〉, y) − 〈w̃ − w, φ′(〈w, x〉, y)x〉,

we apply the mean value theorem to find

φ(〈w̃, x〉, y) − φ(〈w, x〉, y) = φ′(ξ, y) (〈w̃, x〉 − 〈w, x〉) = 〈w̃ − w, φ′(ξ, y)x〉,

where ξ is a number between 〈w̃, x〉 and 〈w, x〉. We can write

ξ = (1 − θ)〈w̃, x〉 + θ〈w, x〉 = 〈(1 − θ)w̃ + θw, x〉

for some θ ∈ (0, 1). It follows that

Dφ(〈·,x〉,y)(w̃, w) = 〈w̃ − w, (φ′(〈(1 − θ)w̃ + θw, x〉, y) − φ′(〈w, x〉, y))x〉

and

Dφ(〈·,x〉,y)(w̃, w) ≤ ‖w̃ − w‖‖x‖∗ |φ′(〈(1 − θ)w̃ + θw, x〉, y) − φ′(〈w, x〉, y)| .

Then we apply the Lipschitz condition (2.12) and obtain

Dφ(〈·,x〉,y)(w̃, w) ≤ ‖w̃ − w‖‖x‖∗�φ |〈(1 − θ)w̃ + θw, x〉 − 〈w, x〉| ≤ ‖w̃ − w‖2‖x‖2
∗�φ.

If we denote supx∈X ‖x‖∗ = R > 0, then we have

Dφ(〈·,x〉,y)(w̃, w) ≤ �φR
2‖w̃ − w‖2, ∀w̃, w ∈ W.

Therefore, f(·, z) is 2(�φR2 +λ)-strongly smooth for every z ∈ Z, and the statements on the strong smooth-
ness of F follows. Our desired statement on the convergence follows from Theorems 2, 3 and 4, as we have 
done in the proof of Theorem 1. The proof of Theorem 8 is complete. �
7. Simulations

In this section, we present some numerical simulations to validate our theoretical results. We use the 
AIR toolbox [15] to create a CT-measurement matrix A ∈ R

n×d and an N × N sparse image represented 
by a vector w† ∈ R

d with d = N2. Our objective is to recover the image w† based on a sequence of 
noisy measurements {(xt, yt)}t∈N. In our experiment, we consider the measurement vector xt = A�

it

‖Ait‖2
and 

yt = 〈w†, xt〉 + st, where Ait is the it-th row of A with the index it randomly drawn from the uniform 
distribution over {1, . . . , n} and st is a Gaussian random variable with mean 0 and standard deviation 
σ|〈w†, xt〉|. We set N = 128 and n = 92160.

We apply the following online version of a modified linearized Bregman iteration [7] to recover the image 
w† from noisy measurements {(xt, yt)}t∈N
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Fig. 2. Relative error of algorithm (7.1) with different step sizes. Panel (a) shows the relative error in the case with positive variances
for the polynomially decaying step sizes with θ = 0 (blue line), θ = 1

2 (red line) and θ = 1 (black line). Panel (b) shows the relative 
error in the case with zero variance for the polynomially decaying step sizes with θ = 0 (blue line), θ = 2 (red line) and θ = 1
(black line).

{
vt+1 = vt − ηt

(
〈wt, xt〉 − yt

)
xt,

wt+1 = Tλ,ε(vt+1),
(7.1)

where Tλ,ε : Rd → R
d is defined component-wisely in terms of the function Tλ,ε : R → R given by

Tλ,ε(v) =
{

vε
λ+ε , if |v| ≤ λ + ε,

sgn(v)(|v| − λ), otherwise.

Here we set w1 = v1 = 0 ∈ R
d. This is a specific instantiation of the OMD with f(w, z) = 1

2
(
〈w, x〉 − y

)2
and Ψ = Ψ(ε,λ) defined [21] in Section 1. We choose λ = 1 and, as suggested in [7], ε = 10−8 here. We 
consider several step size sequences of the form ηt =

(
1 + tσmin(CX)

)−θ with θ ≥ 0, where σmin(CX) is the 
smallest positive eigenvalue of the covariance matrix CX . We repeat the experiments 8 times and report the 
average of experimental results in this section.

We first consider the noisy case with σ > 0, which, as suggested in Remark 2, corresponds to the case 
with positive variances. We plot in panel (a) of Fig. 2, the relative error errr(wt) := 100‖wt − w†‖2/‖w†‖2

versus the number of iterations for polynomially decaying step sizes with exponents θ ∈ {0, 12 , 1}. The blue 
line is a plot for θ = 0, which verifies the divergence of the algorithm since the step sizes do not satisfy 
the necessary condition limt→∞ ηt = 0 for the convergence of (7.1). The red and black lines are the plots 
for θ = 1

2 and θ = 1, respectively. It is clear that both of these step size sequences satisfy the sufficient 
condition (1.5) for the convergence of the algorithm, which explains the convergence of (7.1) in the setting 
with positive variances. It can also be seen that a faster convergence rate is achieved by setting θ = 1 as 
compared to θ = 1/2, which verifies Theorem 2 on tight convergence rates with θ = 1.

We now consider the noiseless case with σ = 0, which, as clarified in Remark 2, corresponds to the 
case with zero variance. In panel (b) of Fig. 2, we report the relative error as a function of the number of 
iterations for the step size sequences with θ = 0 (blue line), θ = 2 (red line) and θ = 1 (black line). The 
step size sequence with θ = 2 does not satisfy the necessary condition 

∑∞
t=1 ηt = ∞ for the convergence, 

which is well consistent with the divergence behavior of the algorithm as shown in panel (b). Both the step 
size sequences with θ = 1 and θ = 0 satisfy the sufficient condition 

∑∞
t=1 ηt = ∞, implying the convergence 

behavior of the algorithm (7.1). It is also clear that (7.1) with θ = 0 achieves a faster convergence rate than 
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that with θ = 1, which is also consistent with the linear convergence rate established in (2.7) corresponding 
to θ = 0.
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Appendix A

This appendix provides the proofs of the co-coercivity of gradients stated in Lemma 12 and Proposition 7
together with a remark on variances involving stochastic gradients.

To prove Lemma 12, we need the following lemma on the Fenchel-conjugate of some norm power functions 
which is of independent interest.

Lemma 16. Let κ > 1. The Fenchel-conjugate of f = 1
κ‖ · ‖κ is given by f∗(v) = κ−1

κ ‖v‖
κ

κ−1
∗ .

Proof. According to Young’s inequality ab ≤ 1
κa

κ + κ−1
κ a

κ
κ−1 , we have for v ∈ W∗,

f∗(v) = sup
w∈W

[
〈w, v〉 − 1

κ
‖w‖κ

]
≤ sup

w∈W

[
‖w‖‖v‖∗ −

1
κ
‖w‖κ

]
≤ sup

w∈W

[ 1
κ
‖w‖κ + κ− 1

κ
‖v‖

κ
κ−1
∗ − 1

κ
‖w‖κ

]
= κ− 1

κ
‖v‖

κ
κ−1
∗ .

Since W = W∗∗, for v ∈ W∗, there exists some w ∈ W = W∗∗ such that 〈w, v〉 = ‖v‖∗ and ‖w‖ = 1. Taking 

the vector ‖v‖
1

κ−1
∗ w in the definition of f∗ gives

f∗(v) ≥ 〈‖v‖
1

κ−1
∗ w, v〉 − 1

κ
‖w‖κ‖v‖

κ
κ−1
∗ = ‖v‖

1
κ−1
∗ ‖v‖∗ −

1
κ
‖v‖

κ
κ−1
∗ = κ− 1

κ
‖v‖

κ
κ−1
∗ .

Combining the above two inequalities yields the stated result. �
Proof of Lemma 12. We use some ideas from [34]. Fix a w ∈ W. Define h : W → R by h(w̄) = g(w̄) −
〈w̄, ∇g(w)〉. It is clear that h satisfies the condition

Dh(w̄, w̃) = Dg(w̄, w̃) ≤ L

1 + α
‖w̄ − w̃‖1+α, ∀w̄, w̃ ∈ W.

Since h is convex and ∇h(w) = 0, we know that h attains its minimum at w. So for w̃ ∈ W, we have

h(w) = min
w̄∈W

h(w̄) ≤ min
w̄∈W

[
h(w̃) + 〈w̄ − w̃,∇h(w̃)〉 + L

1 + α
‖w̃ − w̄‖α+1

]
= h(w̃) − L max

w̄∈W

[
〈w̃ − w̄, L−1∇h(w̃)〉 − 1

1 + α
‖w̃ − w̄‖α+1

]
= h(w̃) − L max

w̄∈W

[
〈w̄, L−1∇h(w̃)〉 − 1

1 + α
‖w̄‖α+1

]
.
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According to the definition of Fenchel-conjugate and Lemma 16 with κ = α + 1, we know

max
w̄∈W

[
〈w̄, L−1∇h(w̃)〉 − 1

1 + α
‖w̄‖α+1

]
=
( 1

1 + α
‖ · ‖α+1

)∗
(L−1∇h(w̃))

= α

1 + α

∥∥L−1∇h(w̃)
∥∥ 1+α

α

∗ .

Combining the above discussions yields

h(w) ≤ h(w̃) − L− 1
αα

1 + α

∥∥∇h(w̃)
∥∥ 1+α

α

∗ , ∀w̃ ∈ W.

The above inequality can be equivalently written as

g(w̃) ≥ g(w) + 〈w̃ − w,∇g(w)〉 + L− 1
αα

1 + α
‖∇g(w̃) −∇g(w)‖

1+α
α∗ .

Switching w and w̃ also shows

g(w) ≥ g(w̃) + 〈w − w̃,∇g(w̃)〉 + L− 1
αα

1 + α
‖∇g(w) −∇g(w̃)‖

1+α
α∗ .

Summing up the above two inequalities gives the stated inequality (4.5) and completes the proof. �
Now we turn to the proof of Proposition 7.

Proof of Proposition 7. Recall the dual number p∗ = p
p−1 > 2 of p given in the proof of Proposition 6

satisfying 1
p + 1

p∗ = 1. Take the norm ‖ · ‖ = ‖ · ‖p.
Suppose to the contrary that Ψp is L-strongly smooth for some L > 0. Then we know from the inequality 

(6.1) derived in the proof of Proposition 5 that

‖∇Ψp(w) −∇Ψp(w̃)‖∗ ≤ L‖w − w̃‖, ∀w, w̃ ∈ W. (A.1)

Let a ≥ 1 and define two vectors w, w̃ ∈ R
d as

w =
{

(a + 1, a− 1, . . . , a + 1, a− 1), if d is even,
(a + 1, a− 1, . . . , a + 1, a− 1, a), if d is odd,

and

w̃ =
{

(a− 1, a + 1, . . . , a− 1, a + 1), if d is even,
(a− 1, a + 1, . . . , a− 1, a + 1, a), if d is odd.

By the elementary inequality (a + 1)p + (a − 1)p ≥ 2ap, we find

‖w‖p = ‖w̃‖p =

⎧⎨⎩
[
d
2 (a + 1)p + d

2 (a− 1)p
] 1

p ≥ d
1
p a, if d is even,[

d−1
2 (a + 1)p + d−1

2 (a− 1)p + ap
] 1

p ≥ d
1
p a, if d is odd.

Combining this with the expression of ∇Ψp given in (6.4) yields
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‖∇Ψp(w) −∇Ψp(w̃)‖∗ = ‖w‖2−p
p

∥∥(|w(j)|p−1 − |w̃(j)|p−1)d
j=1

∥∥
∗

≥ ‖w‖2−p
p [(a + 1)p−1 − (a− 1)p−1](d− 1)

1
p∗

≥ (d− 1)
1
p a2−p[(a + 1)p−1 − (a− 1)p−1].

But

‖w − w̃‖ =
{

2d1/p, if d is even,
2(d− 1)1/p < 2d1/p, if d is odd.

It follows that

‖∇Ψp(w) −∇Ψp(w̃)‖∗ ≥ 1
2

(
d− 1
d

) 1
p

a2−p[(a + 1)p−1 − (a− 1)p−1]‖w − w̃‖.

Since d ≥ 2, we have d−1
d ≥ 1

2 . Therefore we apply the inequality (A.1) to obtain

L‖w − w̃‖ ≥ 1
4a

2−p[(a + 1)p−1 − (a− 1)p−1]‖w − w̃‖.

This is a contradiction to the limit lima→∞ a2−p[(a +1)p−1−(a −1)p−1] = ∞. So Ψp is not strongly smooth. 
The proof of Proposition 7 is complete. �

At the end, we give the following remark on the conditions on the variances.

Proposition 17. If F is Fréchet differentiable, then the following two statements hold.

(a) If there exists a w∗ ∈ W with EZ [‖∇w[f(w∗, Z)]‖∗] = 0, then we have EZ [‖∇w[f(w∗, Z)] −∇F (w∗)‖2
∗] =

0.
(b) If infw∈W EZ [‖∇w[f(w, Z)]‖∗] > 0, then we have EZ [‖∇w[f(w∗, Z)] −∇F (w∗)‖2

∗] > 0 for any minimizer 
w∗ of F .

Proof. For the statement (a), the condition EZ [‖∇w[f(w∗, Z)]‖∗] = 0 amounts to saying that ∇w[f(w∗, Z)]
= 0 holds almost surely, from which it follows that ∇F (w∗) = 0 and therefore EZ [‖∇w[f(w∗, Z)] −
∇F (w∗)‖2

∗] = 0.
The statement (b) follows from the optimality condition ∇F (w∗) = 0 and the Schwarz inequality 

EZ [‖∇w[f(w∗, Z)]‖∗] ≤
{
EZ [‖∇w[f(w∗, Z)]‖2

∗]
}1/2. �
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