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Abstract

We study a learning algorithm for distribution regression with regularized least squares. This algorithm,
which contains two stages of sampling, aims at regressing from distributions to real valued outputs. The
first stage sample consists of distributions and the second stage sample is obtained from these distributions.
To extract information from samples, we embed distributions to a reproducing kernel Hilbert space (RKHS)
and use the second stage sample to form the regressor by a tool of mean embedding. We show error bounds
in the L2-norm and prove that the regressor is a good approximation to the regression function. We derive
a learning rate which is optimal in the setting of standard least squares regression and improve the existing
work. Our analysis is achieved by using a novel second order decomposition to bound operator norms.
Keywords: Distribution regression, reproducing kernel Hilbert space, mean embedding, integral operator,
optimal learning rate

1 Introduction

Explosion of information not only causes curse of dimensionality, but also generates various patterns of useful
data. Considering this perspective, classical regression may not be suitable to solve some problems such as those
dealing with functional data or matrix-valued data. A research problem has arisen recently, called distribution
regression, trying to make predictions dealing with data of probability measures. In the sense of regression,
input data are no longer vectors in Euclidean spaces but probability distributions on a compact metric space
X̃ on which a reproducing kernel k will be introduced below. Distinct from the standard regression setting,
distribution regression has two stages of sampling. For the first stage, we are given data D̃ = {(xi, yi)}li=1 ⊂
X × Y where X is the input space of probability distributions on X̃ and Y = R is the output space, that
is, each xi represents a distribution and yi is the corresponding label. For the second and essential stage, we

obtain samples
{
{xi,j}Nj=1

}l
i=1

from distributions {xi}li=1 accordingly, where each xi,j is a point in X̃.

To illustrate ideas of the above two-stages sampling process for distribution regression, we describe three
examples. The first one is for analysis of functional data where X is the set of probability density functions on
the interval X̃ = [0, 1] and, for each i, a sample {xi,j = xi(j/N)}Nj=1 is given by the values of the probability

density function xi at the sampling points {j/N}Nj=1. Our target here is to learn a functional from X to Y

through the sample
{(
{xi(j/N)}Nj=1 , yi

)}l
i=1
⊂ RN×Y instead of {(xi, yi)}li=1 ⊂ X×Y . The second example

on medical applications is borrowed from [24] where X is a pool of patients identified with a set of probability

distributions on X̃ = [0, 1] and for the ith patient xi in a sample {xi}li=1, {xi,j}Nj=1 is given by blood tests

made for xi periodically at moments {j/N}Nj=1. Here {yi}li=1 are the values of some health indicator of the
patients. Our goal is to learn a mapping from the set of blood tests to the health indicator by observations
on a large group of patients. The last example is a classical learning problem of multiple instance learning
[7, 8, 20] where each instance in one bag is an i.i.d. sample drawn from an unknown distribution related to
the bag.
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In this paper we are interested in a kernel method induced by an important tool called mean embedding [2]
to transform information. We embed the set of (probability) distributions to a reproducing kernel Hilbert space
H and then learn a functional relation from embeddings to outputs. Let (H = H(k), ‖ · ‖H) be a reproducing
kernel Hilbert space (RKHS) with a Mercer kernel k : X̃ × X̃ → R (meaning that k is symmetric, continuous
and positive semidefinite). Then the mean embedding of a (probability) distribution x on X̃ is defined to be
an element in the RKHS H given by

µx =

∫
X̃

k(·, s)dx(s) ∈ H.

Through this transformation, kernel methods for processing data on Euclidean spaces can be extended to those
on the space of probability measures. When k is a characteristic kernel (see [12] and references therein), this
transformation is injective meaning that for two distributions P and Q, ‖µP − µQ‖H = 0 if and only if P = Q.
Hence the mean embedding approach enables functional analysis of distribution regression. In particular, the
injectivity of mean embedding has been found to be very useful in many statistical applications that require
unique representations of distributions including homogeneity testing [12], independence testing [11, 14], and
dimensionality reduction [10]. Let X denote the set of Borel probability measures on X̃. We denote

Xµ = µ (X) = {µx : x ∈ X} ⊂ H (1)

the set of mean embeddings which is a separable compact set of continuous functions on X̃ [24]. Let ρ be a
Borel probability measure on Z = Xµ × Y . For a function f : Xµ → Y , f(µx) represents the prediction of y
based on µx. The least squares regression problem aims to find the minimizer of the expect risk

E(f) =

∫
Z

(f(µx)− y)2dρ (2)

over all measurable functions. This minimizer is referred to as the regression function defined by

fρ (µx) =

∫
Y

ydρ (y|µx) , µx ∈ Xµ (3)

with ρ (·|µx) being the conditional distribution of ρ induced at µx ∈ Xµ. Since ρ is unknown, we may

approximate fρ based on the first stage sample D = {(µxi , yi)}
l
i=1 (mean embeddings of D̃ = {(xi, yi)}li=1)

according to the least squares regression setting. The distribution regression setting considered in this paper
is different: the probability distributions {xi}li=1 are still unknown, each of them is approximately available

by a random sample {xi,j}Nj=1 of size N ∈ N. So the distribution regression aims to learn the regression

function fρ from the sample D̂ =
{(
{xi,j}Nj=1 , yi

)}l
i=1

. In this paper, we study the following least squares

regularization algorithm in a reproducing kernel Hilbert space (RKHS) (HK , ‖·‖K) associated with a Mercer
kernel K : Xµ ×Xµ → R, given by

fD̂,λ = arg min
f∈HK

{
1

l

l∑
i=1

(f(µx̂i)− yi)
2

+ λ ‖f‖2K

}
, (4)

where x̂i = 1
N

∑N
j=1 δxi,j is the empirical version of the distribution xi determined by the sample {xi,j}Nj=1

and µx̂i = 1
N

∑N
j=1 k (·, xi,j) is its mean embedding, λ > 0 is a regularization parameter.

For the one stage sampling setting for algorithm (4), that is, the least squares regularization, or called the

kernel ridge regression in statistics, is well studied in learning theory, e.g., [4, 21]. In this case, {xi}li=1 are
vectors in Euclidean space, mininmax rates are derived recently by a novel integral operator approach [18].
General regularization algorithms [1] are also investigated which include kernel ridge regression as a special
example, and can avoid the saturation phenomenon if the target function has enough regularity. Minimax
learning rates are also established [3, 15, 17]. However, error analysis for the two stage sampling setting is
more challenging. In [19], consistency for distribution regression algorithm (4) is derived via kernel density
estimation. Recently, theoretical studies in [24] show that learning rates can be established under certain
conditions on the target function and on the kernel K. We will compare our results with those in [24] in
Section 3.

Our goal of this paper is to present minimax optimal learning rates for algorithm (4) under some mild
conditions. The paper is organized as follows. We first state our main results in Section 2. In Section 3, we
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compare our results with those in the literature. Section 4 includes the error decomposition and our novel
error analysis of bounding norms by second order decomposition. Proofs of main results are given in Section
5 and the appendix includes the proof of a lemma.

2 Main Results

Throughout the paper we assume that there exists a constant M > 0 such that |y| ≤ M almost surely. Also,
kernels K and k are bounded, that is, the following two constants κ and Bk are finite

κ = sup
µa∈Xµ

√
K(µa, µa), Bk = sup

u∈X̃
k(u, u).

Let h ∈ (0, 1] and L > 0. We assume the mapping K(·) : Xµ → HK defined as K(µx) = K(µx, ·) is (h, L)
Hölder continuous, that is

‖Kµa −Kµb‖HK ≤ L ‖µa − µb‖
h
H , ∀(µa, µb) ∈ Xµ ×Xµ. (5)

Let L2
ρXµ

be the Hilbert space of square-integrable functions with respect to ρXµ from Xµ to Y , where ρXµ is

the marginal distribution of ρ on Xµ. Denote by ‖ · ‖ρ the corresponding norm of L2
ρXµ

induced by the inner

product 〈f, g〉ρXµ =
∫
Xµ

f(s)g(s)dρXµ(s). For the kernel K : Xµ ×Xµ → R, an integral operator LK on L2
ρXµ

is defined as

LK(f) =

∫
Xµ

Kµxf(µx)dρXµ , f ∈ L2
ρXµ

.

Since Xµ is compact and K is continuous, symmetric and positive semidefinite, LK is compact and positive
on L2

ρXµ
, and its rth power LrK is well defined for any r > 0.

Our error analysis is based on the following regularity condition imposed for the regression function

fρ = LrK (gρ) for some gρ ∈ L2
ρXµ

, r > 0. (6)

It means fρ lies in the range of LrK and the special case fρ ∈ HK corresponds to the choice r = 1
2 .

We use the effective dimension N (λ) to measure the complexity of HK with respect to ρXµ , which is

defined to be the trace of the operator LK (LK + λI)
−1

as

N (λ) = Tr
(
LK (LK + λI)

−1
)
, ∀λ > 0.

We assume throughout the paper that D = {(µxi , yi)}
l
i=1 is a sample independently drawn according to ρ,

and {xi,j}Nj=1 is a sample independently drawn according to xi for i = 1, · · · , l. In this section, we state our

main results on the difference between fD̂,λ and fρ with respect to L2-norm in expectation taken for D and

D̂, to be proved in Section 4.

Theorem 1. Assume |y| ≤ M almost surely and the regularity condition (6) with some 1
2 ≤ r ≤ 1 and the

mapping K(·) : Xµ → HK is (h, L) Hölder continuous with h ∈ (0, 1] and L > 0. Then we have

E

[∥∥∥fD̂,λ − fρ∥∥∥
ρ

]
≤
√

3(2 +
√
π)

1
2L

2
h
2B

h
2

k

λ
1
2N

h
2

{
κ
√
N (λ)√
lλ

+ 2κL
(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λN
h
2

+ 1

}

×

{
M + 50M

(
Bl,λ√
λ

+ 1

)
Bl,λ√
λ

+ 8κλr−
1
2 ‖gρ‖ρ

(
Bl,λ√
λ

+ 1

)2r−1

+ 2
√

3κr+
1
2 ‖gρ‖ρ

}

+ 30

(
Bl,λ√
λ

+ 1

)2
M

κ
Bl,λ + (4 + log 2)λr ‖gρ‖ρ

(
Bl,λ√
λ

+ 1

)2r

,

(7)

where Bl,λ = 2κ√
l

(
κ√
lλ

+
√
N (λ)

)
.
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To derive explicit learning rates, we assume a capacity assumption that for some α > 1
2 and c > 0,

N (λ) ≤ cλ− 1
2α , ∀λ > 0. (8)

By taking λ = l−
2α

4αr+1 and N = l
2α(1+2r)
h(4αr+1) , we get the following minimax optimal learning rates for the

distribution regression algorithm (4).

Theorem 2. Assume |y| ≤ M almost surely, the regularity condition (6) holds with 1
2 ≤ r ≤ 1, the capacity

assumption (8) holds with α > 1
2 and the mapping K(·) : Xµ → HK is (h, L) Hölder continuous with h ∈ (0, 1]

and L > 0. Then by taking λ = l−
2α

4αr+1 and N = l
2α+4αr
h(4αr+1) , we have

E

[∥∥∥fD̂,λ − fρ∥∥∥
ρ

]
≤ Cl−

2αr
4αr+1 , (9)

where the constant C is independent of l or N and will be given explicitly in the proof.

3 Comparison and Discussion

In this section, we compare our results with those in the existing literature. Analysis for minimax learning rates
has been well established for the standard regularized least squares regression. For distribution regression,
to the best of our knowledge, [24] is the only existing work containing learning rates for algorithm (4). In
[24], consistency of the two stage sampling setup has been proved and probabilistic error bounds and explicit
learning rates are also provided for algorithm (4). Let {λi} be the positive eigenvalues of LK arranged in
a decreasing order, if the eigenvalues λi satisfy λi ≈ i−2α with α > 1

2 , and regression function satisfies the

regularity condition (6) with 1
2 < r ≤ 1, then Theorem 5 in [24], asserts that with N = l

2α+4αr
h(4αr+1) log l and

λ = l−
2α

4αr+1 , ∥∥∥fD̂,λ − fρ∥∥∥2
ρ

= Op
(
l−

4αr
4αr+1

)
, (10)

which reaches optimal minimax rates for one stage regression setup [4] when 1
2 < r ≤ 1.

Theorem 9 in [24] states that under the regularity condition (6) for r = 1
2 and by taking N = l

6
5h log l,∥∥∥fD̂,λ − fρ∥∥∥2

ρ
= Op

(
l−

2
5

)
. (11)

However this convergence rate (11) is suboptimal. Actually in our analysis, the capacity assumption is always

true with α = 1
2 and c = κ2. Since the eigenvalues of operator LK (LK + λI)

−1
are

{
λi

λi+λ

}
i
, the trace of

this operator can be bounded by N (λ) =
∑
i

λi
λi+λ

≤
∑
i
λi
λ = Tr(LK)

λ ≤ κ2λ−1. With the choice of r = 1
2 and

α = 1
2 , and by taking N = l

1
h , the optimal learning rate can be reached to

E

[∥∥∥fD̂,λ − fρ∥∥∥2
ρ

]
= O

(
l−

1
2

)
. (12)

Theorem 1 and Theorem 2 show that our results hold for 1
2 ≤ r ≤ 1 and we obtain the minimax rates for

algorithm (4) for 1
2 ≤ r ≤ 1 by a novel integral operator approach, which covers the case with r = 1

2 (fρ ∈ HK).
Another contribution of this paper is that we successfully remove a logarithmic term log l in error bounds

in [24] as a logarithmic factor appearing in the classical regression setting in [4], which is also crucial to our
analysis. Benefitting from the removal of this logarithmic term log l in Theorem 1, we eliminate a logarithmic

term log l in the restriction on N for reaching the optimal minimax rates, that is, we only require N = l
2α+4αr
h(4αr+1) .

It would be interesting to extend our analysis on distribution regression to other learning algorithms such
as those in deep learning [25, 26].

4 Bounding Operator Norms by Second Order Decomposition

Our analysis is carried out by the following error decomposition∥∥∥fD̂,λ − fρ∥∥∥
ρ

=
∥∥∥fD̂,λ − fD,λ + fD,λ − fρ

∥∥∥
ρ
≤
∥∥∥fD̂,λ − fD,λ∥∥∥

ρ
+ ‖fD,λ − fρ‖ρ , (13)
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where fD,λ is the minimizer of the regularized least squares regularization scheme based on the first stage
sample D (after mean embedding), that is,

fD,λ = arg min
f∈HK

{
1

l

l∑
i=1

(f(µxi)− y)
2

+ λ ‖f‖2K

}
. (14)

We analyze the error for the distribution regression algorithm by an integral operator approach. The Hölder
continuity of the kernel K is only applied to the first term of (13) and this explains why N is related to h.
Detailed estimate of the first term will be presented in Section 5. For the second term of (13), we successfully
extend the range for r and maintain the optimal rate by using a novel second order decomposition of operators
which was first introduced in [18]. It is crucial to our analysis and we also apply it to estimating the first term
of (13).

We approximate the integral operator LK by its first stage empirical version LK,D(x) defined as

LK,D(x)(f) =
1

l

l∑
i=1

f(µxi)Kµxi
=

1

l

l∑
i=1

〈
f,Kµxi

〉
K
Kµxi

f ∈ HK , (15)

and it is conceivable that when l is large enough these two operators should be close. We define the sampling
operator SD : HK → Rl as

SDf = (f(µx1), · · · , f(µxl))
T
, f ∈ HK (16)

and its dual operator S∗D : Rl → HK is given by

S∗Dc =

l∑
i=1

ciKµxi
, ∀c ∈ Rl. (17)

Then by denoting the vector y = (yi)
l
i=1 ∈ Rl, fD,λ has the following explicit form

fD,λ =
(
LK,D(x) + λI

)−1 1

l
S∗Dy. (18)

Improvements are based on the following second order decomposition for operators [15], which is applied for
bounding the operator norms.

Lemma 3. Let A and B be invertible operators on a Banach space. Then we have

BA−1 = (B −A)B−1 (B −A)A−1 + (B −A)B−1 + I. (19)

Applying this lemma to operators A = LK,D(x) + λI and B = LK + λI on HK , we can present a sharp

bound for the term
∥∥∥(LK + λI)

(
LK,D(x) + λI

)−1∥∥∥, which is essential in estimating ‖fD,λ − fρ‖ρ and will be

proved in the appendix. For convenience, we use ‖·‖ to represent the operator norm. Denote the Gamma
function by Γ(u).

Lemma 4. Let D be a sample drawn independently according to ρ. We have for d ≥ 0,

E

[∥∥∥(LK + λI)
(
LK,D(x) + λI

)−1∥∥∥d] ≤ (2Γ(2d+ 1) + log2d 2
)(Bl,λ√

λ
+ 1

)2d

. (20)

and for d ≥ 1

E

[∥∥∥∥(LK + λI)
− 1

2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥d
]
≤
(

2Γ (d+ 1) + logd 2
)(2M

κ
Bl,λ

)d
. (21)

Now we give the following estimate for the second term of (13).

Proposition 5. Assume |y| ≤ M almost surely and the regularity condition (6) holds for some 1
2 ≤ r ≤ 1.

Then the following estimate holds

E
[
‖fD,λ − fρ‖ρ

]
≤ 30

(
Bl,λ√
λ

+ 1

)2
M

κ
Bl,λ + (4 + log 2)λr ‖gρ‖ρ

(
Bl,λ√
λ

+ 1

)2r

. (22)
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Proof. We separate ‖fD,λ − fρ‖ρ into two terms

‖fD,λ − fρ‖ρ =

∥∥∥∥L 1
2

K

{(
LK,D(x) + λI

)−1 1

l
S∗Dy −

(
LK,D(x) + λI

)−1 (
LK,D(x) + λI

)
fρ

}∥∥∥∥
K

≤
∥∥∥∥L 1

2

K

(
LK,D(x) + λI

)−1(1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

+ λ
∥∥∥L 1

2

K

(
LK,D(x) + λI

)−1
LrKgρ

∥∥∥
K
,

(23)

where we used the fact that for g ∈ L2
ρXµ

, ‖g‖ρ =
∥∥∥L 1

2

Kg
∥∥∥
K

.

For the first term of (23), by using the bound
∥∥∥L 1

2

K (LK + λI)
− 1

2

∥∥∥ ≤ 1, we have∥∥∥∥L 1
2

K

(
LK,D(x) + λI

)−1(1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

=

∥∥∥∥L 1
2

K (LK + λI)
− 1

2 (LK + λI)
1
2
(
LK,D(x) + λI

)−1
(LK + λI)

1
2 (LK + λI)

− 1
2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

≤
∥∥∥(LK,D(x) + λI

)−1
(LK + λI)

∥∥∥∥∥∥∥(LK + λI)
− 1

2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

,

(24)

where we have used the fact found in [3] that for positive operators L1 and L2 on a Hilbert space and s ∈ [0, 1],
‖Ls1Ls2‖ ≤ ‖L1L2‖s with s = 1

2 and the identity ‖L1L2‖ = ‖L2L1‖.
Similarly, for the second term of (23), we get

λ
∥∥∥L 1

2

K

(
LK,D(x) + λI

)−1
LrKgρ

∥∥∥
K

≤λ
∥∥∥L 1

2

K (LK + λI)
− 1

2

∥∥∥∥∥∥(LK + λI)
1
2
(
LK,D(x) + λI

)− 1
2

∥∥∥∥∥∥(LK,D(x) + λI
)− 1

2
(
LK,D(x) + λI

)r− 1
2

∥∥∥∥∥∥(LK,D(x) + λI
)−r+ 1

2 (LK + λI)
r− 1

2

∥∥∥∥∥∥(LK + λI)
−r+ 1

2 L
r− 1

2

K

∥∥∥∥∥∥L 1
2

Kgρ

∥∥∥
K

≤λr
∥∥∥(LK,D(x) + λI

)−1
(LK + λI)

∥∥∥r ‖gρ‖ρ ,
(25)

where we have used bounds
∥∥∥L 1

2

K (LK + λI)
− 1

2

∥∥∥ ≤ 1,
∥∥∥(LK,D(x) + λI

)− 1
2
(
LK,D(x) + λI

)r− 1
2

∥∥∥ ≤ λr−1 and

‖Ls1Ls2‖ ≤ ‖L1L2‖s with s = 1
2 and s = r − 1

2 respectively.
Combining (24) and (25), and using the Schwarz inequality, we get

E
[
‖fD,λ − fρ‖ρ

]
≤
{
E

[∥∥∥(LK,D(x) + λI
)−1

(LK + λI)
∥∥∥2]} 1

2

×

{
E

[∥∥∥∥(LK + λI)
− 1

2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥2
K

]} 1
2

+λr ‖gρ‖ρ
[
E
∥∥∥(LK,D(x) + λI

)−1
(LK + λI)

∥∥∥r] .
(26)

By applying Lemma 4 and the identity ‖L1L2‖ = ‖L2L1‖, we have

E
[
‖fD,λ − fρ‖ρ

]
≤ 30

(
Bl,λ√
λ

+ 1

)2
M

κ
Bl,λ + (4 + log 2)λr ‖gρ‖ρ

(
Bl,λ√
λ

+ 1

)2r

.

This completes the proof of Proposition 5.

5 Proofs of Main Results

For the sake of simplicity, let Ezl [·] denote the expectation with respect to zl := {zi := (µxi , yi)}
l
i=1 and let

ExN,l|zl [·] denote the conditional expectation with respect to
{
{xi,j}Nj=1

}l
i=1

, given z1, · · · , zl, that is

Ezl = E{(µxi ,yi)}
l
i=1
, ExN,l|zl = E{{xi,j}Nj=1}li=1|{zi}li=1

. (27)
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The Hölder continuity is only applied to the first term of (13), and the second order decomposition approach
is also crucial for the analysis of the first term. We have the following bound for the first term of (13).

Proposition 6. Assume |y| ≤ M almost surely and the regularity condition (6) holds with some 1
2 ≤ r ≤ 1,

and the mapping K(·) : Xµ →,HK is (h, L) Hölder continuous with h ∈ (0, 1] and L > 0. Then following
estimate holds

E

[∥∥∥fD̂,λ − fD,λ∥∥∥
ρ

]
≤
√

3(2 +
√
π)

1
2L

2
h
2B

h
2

k

λ
1
2N

h
2

{
κ
√
N (λ)√
lλ

+ 2κL
(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λN
h
2

+ 1

}

×

{
M + 50M

(
Bl,λ√
λ

+ 1

)
Bl,λ√
λ

+ 8κλr−
1
2 ‖gρ‖ρ

(
Bl,λ√
λ

+ 1

)2r−1

+ 2
√

3κr+
1
2 ‖gρ‖ρ

}
.

(28)

Before proving Proposition 6, we first give the bound for ‖fD,λ‖K in expectation.

Proposition 7. Assume |y| ≤ M almost surely and the regularity condition (6) holds with some 1
2 ≤ r ≤ 1.

Then we have{
Ezl

[
‖fD,λ‖2K

]} 1
2 ≤

(
Bl,λ√
λ

+ 1

)2r−1
{

25M

κ

Bl,λ√
λ

(
Bl,λ√
λ

+ 1

)2−2r

+ 4λr−
1
2 ‖gρ‖ρ

}
+
√

3κr−
1
2 ‖gρ‖ρ . (29)

Proof. We first bound ‖fD,λ‖K by the following two terms

‖fD,λ‖K ≤ ‖fD,λ − fρ‖K + ‖fρ‖K . (30)

For ‖fD,λ − fρ‖K , by the definition of fD,λ and the regularity condition (6) with some 1
2 ≤ r ≤ 1, we have

‖fD,λ − fρ‖K =

∥∥∥∥(LK,D(x) + λI
)−1 1

l
S∗Dy −

(
LK,D(x) + λI

)−1 (
LK,D(x) + λI

)
fρ

∥∥∥∥
K

≤
∥∥∥∥(LK,D(x) + λI

)−1(1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

+ λ
∥∥∥(LK,D(x) + λI

)−1
LrKgρ

∥∥∥
K
.

(31)

For the first term of (31), we apply ‖Ls1Ls2‖ ≤ ‖L1L2‖s to get∥∥∥∥(LK,D(x) + λI
)−1(1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

≤
∥∥∥(LK,D(x) + λI

)− 1
2

∥∥∥∥∥∥(LK,D(x) + λI
)− 1

2 (LK + λI)
1
2

∥∥∥∥∥∥∥(LK + λI)
− 1

2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

≤ 1√
λ

∥∥∥(LK,D(x) + λI
)−1

(LK + λI)
∥∥∥ 1

2

∥∥∥∥(LK + λI)
− 1

2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥
K

.

In the same way, for the second term of (31), we have

λ
∥∥∥(LK,D(x) + λI

)−1
LrKgρ

∥∥∥
K

≤λ
∥∥∥(LK,D(x) + λI

)−1 (
LK,D(x) + λI

)r− 1
2

∥∥∥∥∥∥(LK,D(x) + λI
)−r+ 1

2 (LK + λI)
r− 1

2

∥∥∥
×
∥∥∥(LK + λI)

−r+ 1
2 L

r− 1
2

K

∥∥∥∥∥∥L 1
2

Kgρ

∥∥∥
K

≤λr− 1
2

∥∥∥(LK,D(x) + λI
)−1

(LK + λI)
∥∥∥r− 1

2 ‖gρ‖ρ .
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By combining the above bounds with (30) and (31), we have

Ezl

[
‖fD,λ‖2K

]
≤ 3

λ
Ezl

[∥∥∥(LK,D(x) + λI
)−1

(LK + λI)
∥∥∥∥∥∥∥(LK + λI)

− 1
2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥2
K

]

+ 3λ2r−1Ezl

[∥∥∥(LK,D(x) + λI
)−1

(LK + λI)
∥∥∥2r−1 ‖gρ‖2ρ]+ 3 ‖fρ‖2K

≤ 3

λ

{
Ezl

[∥∥∥(LK,D(x) + λI
)−1

(LK + λI)
∥∥∥2]} 1

2

{
Ezl

[∥∥∥∥(LK + λI)
− 1

2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥4
K

]} 1
2

+ 3λ2r−1Ezl

[∥∥∥(LK,D(x) + λI
)−1

(LK + λI)
∥∥∥2r−1] ‖gρ‖2ρ + 3 ‖fρ‖2K .

Finally, the desired result holds by applying (20) with d = 2 and d = 2r − 1 respectively and (21) with
d = 4

Ezl

[
‖fD,λ‖2K

]
≤
(
576 + 12 log4 2

)
M2

κ2

(
Bl,λ√
λ

+ 1

)2 B2l,λ
λ

+(6Γ(4r − 1)λ2r−1 + 3 log4r−2 2) ‖gρ‖2ρ

(
Bl,λ√
λ

+ 1

)4r−2

+ 3 ‖fρ‖2K .

This completes the proof.

Some notations and useful results are needed for proving Proposition 6. We define the empirical version of
LK,D(x) by using the second stage sample D̂ as follows

LK,D̂(x)(f) =
1

l

l∑
i=1

f(µx̂i)Kµx̂i
=

1

l

l∑
i=1

〈
f,Kµx̂i

〉
K
Kµx̂i

f ∈ HK . (32)

Another sampling operator ŜD : HK → Rl associated with the second stage sample is defined as follows

ŜDf = (f(µx̂1
), · · · , f(µx̂l))

T
, f ∈ HK , (33)

and its dual operator Ŝ∗D : Rl → HK is given by

Ŝ∗Dc =

l∑
i=1

ciKµx̂i
, c ∈ Rl. (34)

For each i ∈ {1, · · · , l}, the difference µx̂i − µxi ∈ H can be estimated by considering the random variable

ζ on
(
X̃, xi

)
with values in H given by ζ(s) = k(·, s) for s ∈ X̃ which has mean µxi and empirical mean µx̂i

and satisfies ‖ζ‖H ≤
√
Bk almost surely. In fact, from Section A.1.10 in [23], we know that for each 1 ≤ i ≤ l,

P{xi,j}Nj=1|xi

(
‖µx̂i − µxi‖H ≤

√
2Bk√
N

+ ε
)
≥ 1− e−

ε2N
2Bk , or

‖µx̂i − µxi‖H ≤
√

2Bk√
N

+

√
2θBk√
N

=
(1 +

√
θ)
√

2Bk√
N

(35)

with probability at least 1− e−θ. Now we let ξ = ‖µx̂i − µxi‖
2h
H with h ∈ (0, 1] which satisfies 0 ≤ ξ ≤ 22hBhk

almost surely. By applying the formula E [ξ] =
∫∞
0

P{xi,j}Nj=1|xi
(ξ > t) dt =

∫ 22hBhk
0

P{xi,j}Nj=1|xi
(ξ > t) dt =∫ 22hBhk

0
P{xi,j}Nj=1|xi

(
‖µx̂i − µxi‖H > t

1
2h

)
dt, we can bound the probability by 1 on the interval

[
0,
(
2Bk
N

)h]
and make a change of variable t =

(
2Bk
N

)h (
1 +
√
θ
)2h

on the interval
((

2Bk
N

)h
, 22hBhk

]
to get the estimate

E{xi,j}Nj=1|xi

[
‖µx̂i − µxi‖

2h
H

]
≤
(
2 +
√
π
) 2hBhk
Nh

. (36)
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Further by applying equation (36) under the assumption of (h, L) Hölder continuity of K(·), we have the
following estimation, {

ExN,l|zl

[∥∥∥∥1

l
Ŝ∗Dy −

1

l
S∗Dy

∥∥∥∥2
K

]} 1
2

≤
(
2 +
√
π
) 1

2 LM
2
h
2B

h
2

k

N
h
2

. (37)

Also, combining the result in Section A.1.11 in [23] with (36), we can derive{
ExN,l|zl

[∥∥∥LK,D(x) − LK,D̂(x)

∥∥∥2]} 1
2

≤ κL
(
2 +
√
π
) 1

2
2
h+2
2 B

h
2

k

N
h
2

. (38)

The following result is also key for the proof of Proposition 6.

Lemma 8. Let D be a sample drawn independently according to ρ and {xi,j}Nj=1 be a sample drawn inde-

pendently according to xi for i = 1, · · · , l respectively, and the mapping K(·) : Xµ → HK is (h, L) Hölder
continuous with h ∈ (0, 1] and L > 0. Then we have{

ExN,l|zl

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1∥∥∥∥2
]} 1

2

≤
√

3

{
ΞD
λ

+ 2κL
(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λ
3
2N

h
2

+
1√
λ

}
, (39)

where ΞD is a quantity given by

ΞD =
∥∥∥(LK + λI)

− 1
2
(
LK − LK,D(x)

)∥∥∥ .
Proof. First we divide

∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1∥∥∥∥ into two terms∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1∥∥∥∥ ≤ ∥∥∥∥L 1
2

K

{(
LK,D̂(x) + λI

)−1
− (LK + λI)

−1
}∥∥∥∥+

∥∥∥L 1
2

K (LK + λI)
−1
∥∥∥ . (40)

For the first term in (40), we have the decomposition∥∥∥∥L 1
2

K

{(
LK,D̂(x) + λI

)−1
− (LK + λI)

−1
}∥∥∥∥

=

∥∥∥∥L 1
2

K (LK + λI)
−1
(
LK − LK,D(x) + LK,D(x) − LK,D̂(x)

)(
LK,D̂(x) + λI

)−1∥∥∥∥ .
By the bounds

∥∥∥L 1
2

K (LK + λI)
− 1

2

∥∥∥ ≤ 1,

∥∥∥∥(LK,D̂(x) + λI
)−1∥∥∥∥ ≤ 1

λ and
∥∥∥(LK + λI)

− 1
2

∥∥∥ ≤ 1√
λ
, we have∥∥∥∥L 1

2

K

{(
LK,D̂(x) + λI

)−1
− (LK + λI)

−1
}∥∥∥∥ ≤ 1

λ

∥∥∥(LK + λI)
− 1

2
(
LK − LK,D(x)

)∥∥∥+
1

λ
3
2

∥∥∥LK,D(x) − LK,D̂(x)

∥∥∥ .
Putting the above estimate back into (40), and by (38), we have

ExN,l|zl

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1∥∥∥∥2
]
≤ 3Ξ2

D

λ2
+

3

λ3
ExN,l|zl

[∥∥∥LK,D(x) − LK,D̂(x)

∥∥∥2]+ 3
∥∥∥L 1

2

K (LK + λI)
−1
∥∥∥2

≤ 3Ξ2
D

λ2
+ 12κ2L2

(
2 +
√
π
)

2hBhk
1

λ3Nh
+

3

λ
.

This completes the proof.

Now we are ready to prove Proposition 6.
Proof of Proposition 6. First we use the explicit forms of fD̂,λ and fD,λ to express the difference as

fD̂,λ − fD,λ =
(
LK,D̂(x) + λI

)−1 1

l
Ŝ∗Dy −

(
LK,D(x) + λI

)−1 1

l
S∗Dy

=
(
LK,D̂(x) + λI

)−1(1

l
Ŝ∗Dy −

1

l
S∗Dy

)
+

{(
LK,D̂(x) + λI

)−1
−
(
LK,D(x) + λI

)−1} 1

l
S∗Dy

=
(
LK,D̂(x) + λI

)−1(1

l
Ŝ∗Dy −

1

l
S∗Dy

)
+
(
LK,D̂(x) + λI

)−1 (
LK,D(x) − LK,D̂(x)

)
fD,λ,
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the last equality holds due to the identities(
LK,D̂(x) + λI

)−1
−
(
LK,D(x) + λI

)−1
=
(
LK,D̂(x) + λI

)−1 (
LK,D(x) − LK,D̂(x)

) (
LK,D(x) + λI

)−1
and fD,λ =

(
LK,D(x) + λI

)−1 1
l S
∗
Dy.

Since for g ∈ L2
ρXµ

, we have ‖g‖ρ =
∥∥∥L 1

2

Kg
∥∥∥
K
, it follows that∥∥∥fD̂,λ − fD,λ∥∥∥

ρ
=

∥∥∥L 1
2

K

(
fD̂,λ − fD,λ

)∥∥∥
K

≤
∥∥∥∥L 1

2

K

(
LK,D̂(x) + λI

)−1(1

l
Ŝ∗Dy −

1

l
S∗Dy

)∥∥∥∥
K

+

∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1 (
LK,D(x) − LK,D̂(x)

)
fD,λ

∥∥∥∥
K

. (41)

Now we estimate the two terms of (41). For the first term, by using the Schwarz inequality

E

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1(1

l
Ŝ∗Dy −

1

l
S∗Dy

)∥∥∥∥
K

]

≤

{
E

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1∥∥∥∥2
]} 1

2
{
E

[∥∥∥∥1

l
Ŝ∗Dy −

1

l
S∗Dy

∥∥∥∥2
K

]} 1
2

.

Further by applying Lemma 8, and (37), we have

E

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1(1

l
Ŝ∗Dy −

1

l
S∗Dy

)∥∥∥∥
K

]

≤
√

3Ezl

[
ΞD
λ

+ 2κL
(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λ
3
2N

h
2

+
1√
λ

] (
2 +
√
π
) 1

2 LM
2
h
2B

h
2

k

N
h
2

≤
√

3

{
κ
√
N (λ)√
lλ

+ 2κL
(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λN
h
2

+ 1

}
(2 +

√
π)

1
2LM

2
h
2B

h
2

k

λ
1
2N

h
2

, (42)

where we have used the Schwarz inequality Ezl [ΞD] ≤
√
Ezl [Ξ2

D] and the following bound from [18]

Ezl
[
Ξ2
D

]
≤ κ2N (λ)

l
.

For the second term of (41), it is easy to derive

E

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1 (
LK,D(x) − LK,D̂(x)

)
fD,λ

∥∥∥∥
K

]
≤Ezl

[
ExN,l|zl

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1∥∥∥∥∥∥∥LK,D(x) − LK,D̂(x)

∥∥∥] ‖fD,λ‖K]

≤Ezl

{ExN,l|zl

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1∥∥∥∥2
]} 1

2 {
ExN,l|zl

[∥∥∥LK,D(x) − LK,D̂(x)

∥∥∥2]} 1
2

‖fD,λ‖K

 .
By Lemma 8, (38) and the Schwarz inequality, we get

E

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1 (
LK,D(x) − LK,D̂(x)

)
fD,λ

∥∥∥∥
K

]

≤
√

3Ezl

[(
ΞD
λ

+ 2κL
(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λ
3
2N

h
2

+
1√
λ

)(
κL
(
2 +
√
π
) 1

2
2
h+2
2 B

h
2

k

N
h
2

)
‖fD,λ‖K

]

≤
√

3

({
Ezl

[
Ξ2
D

λ

]} 1
2 {

Ezl

[
‖fD,λ‖2K

]} 1
2

+ Ezl
[
‖fD,λ‖K

](
2κL

(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λN
h
2

+ 1

))

× κL
(
2 +
√
π
) 1

2
2
h+2
2 B

h
2

k

λ
1
2N

h
2

.
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But Ezl
[
‖fD,λ‖K

]
≤
{
Ezl

[
‖fD,λ‖2K

]} 1
2

and Ezl
[
Ξ2
D

]
≤ κ2N (λ)

l . So we can apply Proposition 7 to get

E

[∥∥∥∥L 1
2

K

(
LK,D̂(x) + λI

)−1 (
LK,D(x) − LK,D̂(x)

)
fD,λ

∥∥∥∥
K

]
≤
√

3

{(
Bl,λ√
λ

+ 1

)
25M

κ

Bl,λ√
λ

+ 4λr−
1
2 ‖gρ‖ρ

(
Bl,λ√
λ

+ 1

)2r−1

+
√

3κr−
1
2 ‖gρ‖ρ

}

×

(
κ
√
N (λ)√
lλ

+ 2κL
(
2 +
√
π
) 1

2 (2Bk)
h
2

1

λN
h
2

+ 1

)
κL
(
2 +
√
π
) 1

2
2
h+2
2 B

h
2

k

λ
1
2N

h
2

.

(43)

We complete the proof of Proposition 6 by combining this bound with (42).
Now we are in a position to prove the main results. Theorem 1 follows immediately from Propositions 5

and 6 and (13).

Proof of Theorem 2. From our choice of N = l
2α+4αr
h(4αr+1) , λ = l−

2α
4αr+1 we have the bounds√

N (λ)√
lλ

≤
√
cλ−

1
4α

√
lλ

=
√
cl−

1
2λ−

1
4α−

1
2 =
√
cl
α(1−2r)
4αr+1 ≤

√
c,

1

λN
h
2

= l
2α

4αr+1 l−
α(1+2r)
4αr+1 ≤ 1,

and
Bl,λ√
λ

+ 1 =
2κ√
lλ

(
κ√
lλ

+
√
N (λ)

)
+ 1 ≤ 2κ

(
κ

lλ
+

√
N (λ)√
lλ

)
+ 1 ≤ 2κ

(
κ+
√
c
)

+ 1.

Putting the above bounds back into (7) in Theorem 1, we get

E

[∥∥∥fD̂,λ − fρ∥∥∥
ρ

]
≤ Cl−

2αr
4αr+1 , (44)

where C is the constant independent of l or N given by

C =
√

3(2 +
√
π)

1
2L(2Bk)

h
2

{
κ
√
c+ 2κL

(
2 +
√
π
) 1

2 (2Bk)
h
2 + 1

}
×
{
M + 100M

(
2κ
(
κ+
√
c
)

+ 1
)
κ
(
κ+
√
c
)

+ 8κ ‖gρ‖ρ
(
2κ
(
κ+
√
c
)

+ 1
)2r−1

+ 2
√

3κr+
1
2 ‖gρ‖ρ

}
+
(

60M
(
κ+
√
c
)

+ (4 + log 2) ‖gρ‖ρ
) (

2κ
(
κ+
√
c
)

+ 1
)2
.

Acknowledgements. The work described in this paper is partially supported by the Research Grants Council
of Hong Kong [Project No. CityU 11338616] and by National Natural Science Foundation of China [Projects
No. 11531013 and No. 11671307].
Appendix
Proof of Lemma 4. We first prove (20). By Proposition 4.4 in [16] (see the same bound with an additional
factor 2 in [15]), we know that for λ > 0 and 0 < δ < 1

P

(∥∥∥(LK + λI)
(
LK,D(x) + λI

)−1∥∥∥ ≤ (Bl,λ log 2
δ√

λ
+ 1

)2
)
≥ 1− δ, (45)

which implies for 0 < δ < 2

P

(∥∥∥(LK + λI)
(
LK,D(x) + λI

)−1∥∥∥ ≤ (Bl,λ√
λ

+ 1

)2

log2 4

δ

)
≥ 1− δ

2
.

Define a random variable ξ =
∥∥∥(LK + λI)

(
LK,D(x) + λI

)−1∥∥∥d and make a variable change in the above

probability bound t =
(
Bl,λ√
λ

+ 1
)2d

log2d 4
δ with d > 0, we know that for t >

(
Bl,λ√
λ

+ 1
)2d

log2d 2

P (ξ > t) = P
(
ξ

1
d > t

1
d

)
≤ δ

2
= 2 exp

− t
1
2d

Bl,λ√
λ

+ 1

.
11



Now we apply the formula

E [ξ] =

∫ ∞
0

P (ξ > t) dt

to estimate the expectation of
∥∥∥(LK + λI)

(
LK,D(x) + λI

)−1∥∥∥d as

E [ξ] ≤
(
Bl,λ√
λ

+ 1

)2d

log2d 2 +

∫ ∞(Bl,λ√
λ

+1
)2d

log2d 2

2 exp

− t
1
2d

Bl,λ√
λ

+ 1

dt
≤
(
Bl,λ√
λ

+ 1

)2d

log2d 2 + 4d

(
Bl,λ√
λ

+ 1

)2d ∫ ∞
log 2

e−xx2d−1dx ≤
(

2Γ(2d+ 1) + log2d 2
)(Bl,λ√

λ
+ 1

)2d

.

Thus we know that

E

[∥∥∥(LK + λI)
(
LK,D(x) + λI

)−1∥∥∥d] ≤ (2Γ(2d+ 1) + log2d 2
)(Bl,λ√

λ
+ 1

)2d

.

This proves (20).
To see (21), we apply Lemma 3 in [15] which asserts that for 0 < δ < 1

P
(∥∥∥∥(LK + λI)

− 1
2

(
1

l
S∗Dy − LK,D(x)fρ

)∥∥∥∥ ≤ 2M

κ
Bl,λ log

2

δ

)
≥ 1− δ.

Then we can prove (21) by the similar technique as in the proof of (20).
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