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DISTRIBUTED FILTERED HYPERINTERPOLATION FOR NOISY
DATA ON THE SPHERE∗

SHAO-BO LIN† , YU GUANG WANG‡ , AND DING-XUAN ZHOU§

Abstract. Problems in astrophysics, space weather research, and geophysics usually need to
analyze big noisy data on the sphere. This paper develops distributed filtered hyperinterpolation
for noisy data on the sphere, which assigns the data fitting task to multiple servers to find a good
approximation of the mapping of input and output data. For each server, the approximation is a
filtered hyperinterpolation on the sphere by a small proportion of quadrature nodes. The distributed
strategy allows parallel computing for data processing and model selection. It reduces computational
cost for each server while preserving the approximation capability compared to the filtered hyperin-
terpolation. We prove a quantitative relation between the approximation capability of distributed
filtered hyperinterpolation and the numbers of input data and servers. Numerical examples show the
efficiency and accuracy of the proposed method.
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1. Introduction. In cosmic microwave background analysis, global ionospheric
prediction of geomagnetic storms, climate change modeling, environmental governance
and meteorology, and remote sensing, data are collected on the sphere and usually big
and noisy [1, 13, 14, 32, 36, 41]. One of the critical tasks of big data analysis on the
sphere is to find an effective data fitting strategy to approximate the mapping between
input and output data. There have been many useful methods for fitting spherical
data, for example, approximations by spherical harmonics [37], spherical basis func-
tions [25, 26, 20, 39], spherical wavelets [13], spherical needlets [2, 38, 12, 22, 31, 47],
spherical kernel methods [11, 28], and spherical filtered hyperinterpolation [44]. When
noise is sufficiently small and decreases with the size of data, least squares regular-
ization can be used to reduce noise in learning representation; see, e.g., [25, 20]. This
method is, however, not suitable when the size of noisy data is big, as then the regu-
larization condition implies that noise must be close to zero. In this paper, we propose
a new strategy based on distributed learning—distributed filtered hyperintepolation,
which assigns the data fitting task to multiple servers, then synthesizes them as a
global prediction model.
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Spherical filtered hyperinterpolation, developed by Sloan [43] and Sloan and Wom-
ersley [44], is a constructive approach: Given degree L (which indicates the level of
precision), use N data on the sphere to find a filtered expansion of spherical harmonics
up to degree 2L. The filtering strategy uses an appropriate filter and the data at nodes
of a quadrature rule. When the quadrature rule that is a set of pairs of points on the
sphere and real weights is exact for numerical integration of polynomials up to degree
(c+ 1)L (see the definition of (2.4)), the filtered hyperinterpolation reaches the best
polynomial approximation [44, 45]. The computational cost is thus determined by
the number N of data, which has at least order O(L2) [19]. The cost becomes heavy
as degree L or the number of data increases. One way to reduce the computational
time is to distribute the approximation task to multiple servers, each of which works
on a fraction of the total computation using a small proportion of all data, and then
synthesize the computed fitting models of all servers to produce a global predictor.
To achieve that, we apply a distributed learning strategy [29, 30] to spherical filtered
hyperinterpolation, which leads to distributed filtered hyperinterpolation (DFH).

The proposed DFH can fit N noisy data yi = f∗(xi) + εi, i = 1, . . . , N for contin-
uous function f∗ on the sphere and independent bounded noises εi. We show that the
approximation error of DFH for such noisy data depends on the number of data and
the smoothness of the target function f∗. We also consider the DFH with indepen-
dent random interpolation points, which we call distributed filtered hyperinterpolation
with random sampling, and prove that for the distribution of random points satisfying
appropriate conditions, DFH has the same approximation capability as that with a
“deterministic” quadrature rule.

The rest of the paper is organized as follows. In section 2, we introduce the filtered
kernel, the quadrature rule, and “ordinary” spherical filtered hyperinterpolation. In
section 3, we define distributed filtered hyperinterpolation with the “deterministic”
quadrature rule and give the relation of its approximation error and numbers of data
and servers. Section 4 defines the distributed filtered hyperinterpolation with random
sampling and gives its error estimate. Section 5 gives numerical examples of the
distributed filtered hyperinterpolation, where we study the impact of the numbers of
data, servers, and noise on approximation error. Section 6 gives the proofs for the
main results.

2. Filtered kernel, quadrature rule, and filtered hyperinterpolation. In
this section, we introduce the spherical filtered hyperinterpolation defined by filtered
kernels and the quadrature rule.

2.1. Filtered kernels. For d ≥ 2, let x · y be the inner product of two points
x,y in Rd+1 and the Euclidean norm |x| :=

√
x · x. Let Sd := {x ∈ Rd+1 : |x| = 1}

be the unit sphere of Rd+1. The Sd is a compact metric space with geodesic distance

dist(x,y) := arccos(x · y), x,y ∈ Sd,

as the metric. For 1 ≤ p < ∞, let Lp(Sd) be the real-valued Lp space on Sd with
Lebesgue measure ω := ωd and Lp norm ‖f‖Lp(Sd) := (

∫
Sd |f(x)|pdω(x))1/p for f ∈

Lp(Sd). In particular, L2(Sd) is a Hilbert space with inner product

〈f, g〉L2(Sd) :=

∫
Sd
f(x)g(x)dω(x), f, g ∈ Lp(Sd).

Denote by L∞(Sd) the space of all real-valued continuous functions on Sd with uniform

norm ‖f‖L∞ := maxx∈Sd |f(x)|. The volume of Sd is |Sd| := ωd(Sd) := 2π
d+1
2

Γ( d+1
2 )

.
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For ` ∈ N0 := {0, 1, . . . }, the restriction to Sd of a homogeneous harmonic poly-
nomial of degree ` is called a spherical harmonic of degree `. Let Hd` be the space
of all spherical harmonics of degree ` and, for L ∈ N0, Πd

L the space of all spherical

polynomials of degree up to L. Then Πd
L =

⊕L
`=0 Hd` . The dimension of Hd` is

Zd,` := dim Hd` =


2`+ d− 1

`+ d− 1

(
`+ d− 1

`

)
, ` ≥ 1,

1, ` = 0,

and then the dimension of Πd
L is

∑L
`=0 Zd,` = Zd+1,L�Ld. Here for two sequences a`

and b`, ` ∈ N0, a` � b` means that there exists constants c, c′ such that c′b` ≤ a` ≤ cb`
for all ` ∈ N0. The Laplace–Beltrami operator ∆∗ on Sd has the eigenfunctions Y`,m
and eigenvalues λ` := `(`+ d− 1), ` ∈ N0, m = 1, . . . , Zd,`: ∆∗Y`,m = λ`Y`,m.

Let P
(d+1)
` (t), t ∈ [−1, 1], be the normalized Gegenbauer polynomial which satis-

fies P
(d+1)
` (1) = 1 and the orthogonality relation∫ 1

−1

P
(d+1)
` (t)P

(d+1)
`′ (t)(1− t2)

d−2
2 dt =

|Sd|
|Sd−1|Zd,`

δ`,`′ ,

where δ`,`′ is the Kronecker symbol. Let η : [0,∞) → R be a filter with specified
smoothness κ ≥ 1 satisfying

(2.1) η ∈ Cκ(R+); supp η ⊆ [1/2, 2]; η(t)2 + η(2t)2 = 1 for t ∈ [1/2, 1].

The filtered kernel Kn(x · x′), n ≥ 1, is then given by

(2.2) Kn(x · x′) =

∞∑
`=0

η

(
`

n

)
Zd,`
|Sd|

P
(d+1)
` (x · x′);

see [38]. The approximation property of the filtered kernel depends on the smoothness
of the filter η. We refer the reader to, e.g., [44, p. 101] and [47] for examples of filtered
kernels satisfying (2.1). Since the support of η is in [1/2, 2], Kn(x ·y) is a polynomial
of either x or y of degree up to 2n− 1. Here, we give an example of filter η, which is
in C5(R+) and defined by a piecewise polynomial. For 0 ≤ t ≤ 1, η(t) = 1; for t ≥ 2,
η(t) = 0; and for 1 < t < 2,

η(t) = 1 + (t− 1)6
[
−462 + 1980(t− 1)− 3465(t− 1)2 + 3080(t− 1)3

− 1386(t− 1)4 + 252(t− 1)5
]
.

We will use this example in the experiment in section 5.

2.2. Spherical quadrature rules. The geometric properties of a finite set
XN := {x1, . . . ,xN}, N ≥ 2, of points on Sd can be described by mesh norm, sep-
aration radius, and mesh ratio, as we introduce now. The mesh norm (or covering
radius) of XN is

h(XN ) := max
x∈Sd

min
xi∈XN

dist(x,xi).

The mesh norm is the minimal radius with which the caps with centers at points of
XN cover Sd. The separation radius of XN is

δ(XN ) :=
1

2
min
j 6=k

dist(xj ,xk).
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This is half the smallest geodesic distance between any pair of points in XN . The
mesh ratio of XN is the minimum of distances between points of XN ,

ρ(XN ) :=
h(XN )

δ(XN )
≥ 1,

which measures how uniformly the points of XN are distributed on Sd. We say a
sequence of point sets {XN}∞N=2 τ -quasi uniform if there is a constant τ ≥ 2 such
that ρ(XN ) ≤ τ for all N ≥ 2. The existence of a τ -quasi uniform sequence of point
sets is proved in [39]. Assume the sequence of point sets {XN}∞N=2 is τ -quasi uniform.
Then

(2.3) h(XN ) ≤ τδ(XN ) ≤ τ

2N1/d
.

It then follows from (2.3) and [27, Lemma 2] that

Sd ⊆
⋃

xi∈XN

C(xi, τ/(2N1/d)) and max
xi∈XN

∣∣∣XN

⋂
C(xi, τ/(2N1/d))

∣∣∣ ≤ 2πd−1τd,

where |A| is the cardinality of the finite set A and C(x, r) := {y ∈ Sd : dist(x,y) ≤ r}
the spherical cap with center x and radius r, r > 0.

We say a set QN := {(wi,xi) : wi ∈ R and xi ∈ Sd, i = 1, . . . , N}, N ≥ 2, a
quadrature rule on Sd, where wi are called weights of QN . For n ≥ 0, a quadrature
rule QN is said to be exact for polynomials of degree up to n if

(2.4)

∫
Sd
P (x)dω(x) =

N∑
i=1

wiP (xi) ∀P ∈ Πd
n.

The following lemma gives a sequence of polynomial-exact quadrature rules whose
point sets are τ -quasi uniform; see [7, Theorem 3.1] and [35, 38, 18, 23, 33].

Lemma 2.1 ([7, 35, 38]). If {XN}∞N=2 is τ -quasi uniform, then for N ≥ 2, there
exist positive weights wi, i = 1, . . . , N , such that 0 ≤ wi ≤ c2N−1 and∫

Sd
P (x)dω(x) =

∑
xi∈XN

wiP (xi) ∀P ∈ Πd
c3N1/d ,

where c2 and c3 are constants depending only on τ and d.

For 1 ≤ p < ∞, let Lp,µ := Lp(Sd, µ) be the Lp space on Sd with respect to
a probability measure µ, endowed with norm ‖f‖p,µ := (

∫
Sd |f(x)|pdµ(x))1/p. The

following theorem shows that ifXN = {xi}Ni=1 ⊂ Sd is a set of i.i.d. random points with
distribution µ, then with high probability, the quadrature rule is exact for polynomials
with a specific degree. We postpone the proof of Theorem 2.2 until section 6.

Theorem 2.2. Let XN = {xi}Ni=1 be i.i.d. random points on Sd with distribution
µ, which satisfies

(2.5) ‖f‖L1(Sd) ≤ c4‖f‖1,µ ∀f ∈ L1(Sd) ∩ L1,µ

for a positive absolute constant c4. Then, for integer N satisfying N/n2d > c for a
sufficiently large constant c, there exists a quadrature rule QN := {(wi,n,xi)}Ni=1 such
that ∫

Sd
Pn(x)dµ(x) =

N∑
i=1

wi,nPn(xi) ∀Pn ∈ Πd
n
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holds, and
∑N
i=1 |wi,n|2 ≤

2
N and wi,n ≥ 0 for all i = 1, . . . , N , with confidence at

least 1− 4 exp
{
−CN/nd

}
, where C is a constant depending only on c4 and d.

The confidence level in Theorem 2.2 is an exponential of n and N , which is differ-
ent from the polynomial confidence level given by [24, Theorem 4.1]. This exponential
relation plays a crucial role in the error estimation for distributed filtered hyperinter-
polation with spherical noisy data. It is also different from [28] in that the established
quadrature rule with positive weights satisfies (2.5). The condition in (2.5) describes
the distortion of distribution µ from the uniform distribution on Sd (which is also
the spherical Lebesgue measure). The probabilistic quadrature rule in Theorem 2.2
is critical to our construction of distributed filtered hyperinterpolation with random
sampling. We will study the details in section 4.2.

2.3. Spherical filtered hyperinterpolation approximation. Using the fil-
tered kernel and the quadrature rule, we define the spherical filtered hyperinterpola-
tion as follows.

Definition 2.3 ([44]). Let d ≥ 2 and 1 ≤ p ≤ ∞. For f ∈ Lp(Sd), the filtered
hyperinterpolation (approximation) with a quadrature rule QN := {(wi,xi)}Ni=1 is

(2.6) Vn,N (f ; x) :=

N∑
i=1

wif(xi)Kn(xi · x), n ≥ 1.

The approximation property of the filtered hyperinterpolation depends on the
smoothness of the function space. For r ∈ R+, let br` := (1 + λ`)

r/2 � (1 + `)r. Let
{Y`,m : ` = 0, 1, . . . , m = 1, . . . , Zd,`} be an orthonormal basis for the space L2(Sd)
and

f̂`m := 〈f, Y`,m〉L2(Sd) :=

∫
Sd
f(x)Y`m(x)dω(x)

the Fourier coefficients of f ∈ L2(Sd). For d ≥ 2, 1 ≤ p ≤ ∞, and r ∈ R+, the Sobolev

space Wr
p(Sd) is the space of functions f satisfying

∑∞
`=0 b

r
` f̂`mY`,m ∈ Lp(Sd), endowed

with the norm ‖f‖Wr
p(Sd) := ‖

∑∞
`=0 b

r
` f̂`mY`,m‖Lp(Sd).

The following lemma, which is proved by Wang and Sloan [45], shows the rela-
tion of the approximation error of the filtered hyperinterpolation approximation Vn,N
and the smoothness of the function space under the condition that the associated
quadrature rule is exact for polynomials of degree up to 3n− 1.

Lemma 2.4 ([45]). Let d ≥ 2, 1 ≤ p ≤ ∞, and r > d/p. Let Vn,N be the filtered
hyperinterpolation in (2.6) with quadrature rule QN exact for polynomials of degree
up to 3n− 1 and with the filter η in Cκ(R+), κ ≥ bd+3

2 c. Then, for f ∈Wr
p(Sd),

(2.7) ‖f − Vn,N (f)‖Lp(Sd) ≤ c5 n−r‖f‖Wr
p(Sd),

where c5 depends only on d, p, r, and η. The order n−r in (2.7) is optimal.

3. Distributed filtered hyperinterpolation with deterministic sampling.

A data set D = {(xi, yi)}|D|i=1 on Sd is a set of pairs of points ΛD := {xi}|D|i=1 on
the sphere and real numbers yi. Elements of D are called data. The points xi of
ΛD are called the sampling points of D. To distinguish the quadrature rule with
random points, which we will investigate later, we say a data set D has deterministic
sampling for (fixed) sampling points. In this section, we introduce a new filtered
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hyperinterpolation for which distributed learning can be used. The data yi are the
values of a function f∗ on Sd plus noise, that is,

(3.1) yi = f∗(xi) + εi, E[εi] = 0, |εi| ≤M ∀i = 1, . . . , |D|.

The D satisfying (3.1) is then called noisy data set associated with f∗.

3.1. Filtered hyperinterpolation for noisy data: Deterministic sam-
pling. We first study the performance of the filtered hyperinterpolation for a noisy
data set D whose data are stored on a “big enough” machine.

Definition 3.1. For s ∈ N0 and {xi}|D|i=1, let Q|D| be the quadrature rule given by
Lemma 2.1, which is exact for polynomials of degree up to s and has positive weights

{wi,s,D}|D|i=1 satisfying 0 ≤ wi,s,D ≤ c2|D|−1. The filtered hyperinterpolation for noisy
data associated with a function f∗ on Sd is

(3.2) f�D,n(x) :=

|D|∑
i=1

wi,s,D yiKn(xi · x),

where Kn is a filtered kernel in (2.2) for η ∈ Cκ(R+) with κ ≥ bd+3
2 c and n ≤ s.

The kernel Kn provides a smoothing method for the function f∗ using data D.
As we shall see below, the approximation error of this filtered hyperinterpolation has
the convergence rate depending on the smoothness of function f∗.

If ΛD is τ -quasi uniform, it then follows from Lemma 2.1 that s = c3N
1/d.

We do not assume the magnitude of the noise to be extremely small; the filter η
of the filtered kernel Kn shall then be chosen properly to minimize the impact of
noise on interpolation. It is a problem similar to “model selection” in statistical and
machine learning [9]. To say it precisely, if the support n is too large, then the filtered
hyperinterpolation f�D,n will have precise approximation at the data set {(xi, yi)}Di=1,
but f�D,n may not be a good approximation of f∗ due to the noise. If the support is too
small, the performance of the filtered hyperinterpolation f�D,n(xi) is not good, even at
the interpolation points. It is then preferable to set n as a parameter in the training
process. For ΛD, the quadrature rule in Definition 3.1 (which is from Lemma 2.1)
is valid for n sufficiently large. The parameter selection thus needs only a few steps
of computation, while the filtered hyperinterpolation in Definition 3.1 allows us to
handle massive noisy spherical data. This property of filtered hyperinterpolation is
different from other methods, such as regularized least squares [20]. The latter needs
to compute the inverse of the kernel matrix for each regularization parameter.

The following theorem shows that the filtered hyperinterpolation f�D,n can ap-
proximate f∗ well provided that the support of the filtered kernel is appropriately
tuned and the sampling point set ΛD is τ -quasi uniform for τ ≥ 2.

Theorem 3.2. Let d ≥ 2 and r > d/2. Assume that the sampling point set ΛD of
the data set D is τ -quasi uniform for τ ≥ 2 and that c36 |D|

1/(2r+d) ≤ n ≤ c3
3 |D|

1/(2r+d)

for constant c3 in Lemma 2.1. Then the filtered hyperinterpolation f�D,n for noisy data

set D with target function f∗ ∈Wr
2(Sd) satisfies

(3.3) E
{
‖f�D,n − f∗‖2L2(Sd)

}
≤ C1|D|−2r/(2r+d),

where C1 is a constant independent of |D| and n.
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Remark 3.3. Here the condition r > d/2 is the embedding condition such that
any function in Wr

2(Sd) has a representation of a continuous function on Sd. The
numerical computation of the filtered hyperinterpolation then makes sense.

We give the proof of Theorem 3.2 in section 6. As mentioned above, since ΛD is τ -
quasi uniform, the quadrature rule for the filtered hyperinterpolation in Definition 3.1
is exact for Πd

s with s = c|D|1/d. As we choose n ≤ c|D|1/(2r+d) ≤ s in Theorem 3.2,
f�D,n reproduces polynomials in Πd

s . Theorem 3.2 illustrates that if the scattered data
ΛD have good geometric property, for example, τ -quasi uniformity and the support
of the filter η is appropriately chosen, then the spherical filtered hyperinterpolation
for the noisy data set D can approximate a sufficiently smooth target function on the
sphere with high precision in a probabilistic sense. By [17], the rate |D|−2r/(2r+d)

in (3.3) cannot be essentially improved in the scenario of (3.1). Thus, Theorem 3.2
provides a feasibility analysis of the spherical filtered hyperinterpolation for spherical
data with random noise.

3.2. Distributed filtered hyperinterpolation: Deterministic sampling.
We say a large data set D is distributively stored on m local machines if for j =
1, . . . ,m, m ≥ 2, the jth machine contains a subset Dj of D and there is no common
data between any pair of machines, that is, Dj ∩Dj′ = ∅ for j 6= j′ and D = ∪mj=1Dj .
The data sets D1, . . . , Dm are called distributed data sets of D. In this case, the filtered
hyperinterpolation f�D,n which needs access to the entire data set D, is infeasible.
Instead, in this section, we construct a distributed filtered hyperinterpolation for the
distributed data sets {Dj}mj=1 of D by the divide-and-conquer strategy [29].

Definition 3.4. The distributed filtered hyperinterpolation f�D,n for distributed

data sets {Dj}mj=1 of a noisy data set D associated with function f∗ on Sd is a syn-
thesized estimator of local estimators f�Dj ,n, j = 1, 2, . . . ,m, each of which is the

spherical filtered hyperinterpolation (3.2) for noisy data set Dj:

(3.4) f�({Dj}mj=1, n; x) := f�D,n(x) :=

m∑
j=1

|Dj |
|D|

f�Dj ,n(x), x ∈ Sd.

The synthesis here is a process when the local estimators communicate to a central
processor to produce the global estimator f�D,n.

The following theorem shows that the distributed filtered hyperinterpolation f�D,n
has similar approximation performance as f�D,n if the number of local machines is not
large.

Theorem 3.5. Let d ≥ 2, r > d/2, m ≥ 2, and D be a noisy data set sat-
isfying (3.1). Let {Dj}mj=1 be m distributed data sets of D. For j = 1, . . . ,m,
the sampling point set ΛDj of D is τ -quasi uniform for τ ≥ 2. If the distributed

filtered hyperinterpolation f�D,n for {Dj}mj=1 satisfies that the target function f∗ is

in Wr
2(Sd), c3

6 |D|
1/(2r+d) ≤ n ≤ c3

3 |D|
1/(2r+d) for constant c3 in Lemma 2.1 and

minj=1,...,m |Dj | ≥ |D|
d

2r+d , then,

(3.5) E
{
‖f�D,n − f

∗‖2L2(Sd)

}
≤ C2|D|−2r/(2r+d),

where C2 is a constant independent of |D|, |D1|, . . . , |Dm| and n.

Remark 3.6. The condition minj=1,...,m |Dj | ≥ |D|
d

2r+d has a close connection to
the number m of local machines. In particular, if |D1| = · · · = |Dm|, since each Dj is

τ -quasi uniform, minj=1,...,m |Dj | ≥ |D|
d

2r+d is equivalent to m ≤ |D|
2r

2r+d .
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The proof of Theorem 3.5 is postponed until section 6. Theorem 3.5 illustrates

that if minj=1,...,m |Dj | ≥ |D|
d

2r+d , then with the same assumption as Theorem 3.2, the
distributed filtered hyperinterpolation will have the same approximation performance
as the filtered hyperinterpolation that treats all the distributed data sets as a whole
“big enough” machine.

4. Distributed filtered hyperinterpolation with random sampling. We
say a data set D has random sampling if its sampling points are i.i.d. random points on
Sd. In this section, we construct a filtered hyperinterpolation for noisy data satisfying
(3.1) with random sampling points.

4.1. Filtered hyperinterpolation for noisy data: Random sampling. The
filtered hyperinterpolation for noisy data with random sampling can be constructed

as follows. Let D = {(xi, yi)}|D|i=1 and n ∈ N. Let the quadrature rule Q|D| :=

{(w∗i,n,D,xi)}
|D|
i=1 as given by Theorem 2.2, which is exact for polynomials of degree

n. For m ≥ 2, let

(4.1) wi,n,D =

 w∗i,n,D, if

|D|∑
i=1

|w∗i,n,D|2 ≤ 2/m,

0, otherwise,

∀i = 1, . . . , |D|.

Definition 4.1. The filtered hyperinterpolation for noisy data D := {(xi, yi)}|D|i=1

with random sampling points {xi}|D|i=1 is

(4.2) fD,n(x) :=

|D|∑
i=1

wi,n,D yiKn(xi · x).

The following theorem gives the approximation error of the filtered hyperinterpo-
lation in Definition 4.1 for sufficiently smooth functions.

Theorem 4.2. Let d ≥ 2 and r > d/2. Let the noisy data set D with i.i.d.
random sampling points on Sd and distribution µ satisfying (2.5). For integer n
satisfying c3

6 |D|
1/(2r+d) ≤ n ≤ c3

3 |D|
1/(2r+d) with constant c3 in Lemma 2.1, the

filtered hyperinterpolation fD,n for noisy data set D with target function f∗ ∈Wr
2(Sd)

has the approximation error

(4.3) E
{
‖fD,n − f∗‖2L2(Sd)

}
≤ C3|D|−2r/(2r+d),

where C3 is a constant independent of |D|.
We give the proof of Theorem 4.2 in section 6. Theorems 3.2 and 4.2 show that the

filtered hyperinterpolation approximations with random sampling and deterministic
sampling achieve the same optimal convergence rate.

4.2. Distributed filtered hyperinterpolation: Random sampling. The
distributed filtered hyperinterpolation with random sampling is a weighted average
of filtered hyperinterpolation approximations for data on local machines. Here the
weight for a local machine is the proportion of the data used by the machine to all
data. Let fDj ,n be the filtered hyperinterpolation for data Dj . Similar to (3.4), the

global estimator fD,n is defined as follows.
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Table 1
Computational steps and time for distributed and nondistributed learning by filtered hyperin-

terpolation. N is the total data number, m is the number of servers.

Nondistributed Distributed

Total steps O (N) O (N)

Real time O (N) O (N/m)

Definition 4.3. Let d ≥ 2 and D be a noisy data set satisfying (3.1). The sam-
pling points of D are i.i.d. random points on Sd. For m ≥ 2, let {Dj}mj=1 be m
distributed data sets of D, and for j = 1, . . . ,m, let fDj ,n be the filtered hyperinter-
polation for Dj given by Definition 4.1. The distributed filtered hyperinterpolation for
distributed data sets {Dj}mj=1 of D is

(4.4) fD,n :=

m∑
j=1

|Dj |
|D|

fDj ,n.

The f∗ in (3.1) is called a target function to fD,n.

The following theorem gives an upper bound of approximation error for distrib-
uted filtered hyperinterpolation with random sampling.

Theorem 4.4. Let d ≥ 2, r > d/2, m ≥ 2, and D be a noisy data set satisfying
(3.1). The sampling points are i.i.d. random points on Sd with distribution µ in (2.5).
If the target function f∗ ∈ Wr

2(Sd), c3
6 |D|

1/(2r+d) ≤ n ≤ c3
3 |D|

1/(2r+d) with constant

c3 in Lemma 2.1 and minj=1,...,m |Dj | ≥ |D|
d+ν
2r+d for some ν in (0, 2r), then

(4.5) E
{
‖fD,n − f∗‖2L2(Sd)

}
≤ C4|D|−2r/(2r+d),

where C4 is a constant independent of |D|, |D1|, . . . , |Dm| and n.

The proof of Theorem 4.4 will be given in section 6. From Theorems 4.4 and 3.5,
we see that the distributed filtered hyperinterpolation approximations with random
sampling and deterministic sampling can both achieve the convergence rate of order
|D|−2r/(2r+d). To achieve this approximation order, the condition on the number of
local machines of the random sampling is stronger than the deterministic case since
the former requires minj=1,...,m |Dj | ≥ |D|(d+ν)/(2r+d) for ν ∈ (0, 2r), while the latter
only needs minj=1,...,m |Dj | ≥ |D|d/(2r+d).

Here, we only consider error estimates for Lebesgue measure. It would be interest-
ing to consider error estimates for distributed learning with respect to other measures
as done in [54, 53, 55].

Computational complexity. We show in Table 1 a computational cost comparison
of distributed and nondistributed filtered hyperinterpolation. The total computa-
tional steps for both are the same. Nevertheless, in the distributed case, we can, in
parallel, compute the individual estimator. For the jth server, it takes O(|Dj |) steps.
So, suppose we equally distribute the data to m servers: The distributed estimator
will reduce the computational time to 1/m of the time for the nondistributed.

5. Numerical examples. In this section, we test distributed filtered hyperin-
terpolation on noisy data on S2. We use Womersley’s symmetric spherical t-designs1

1https://web.maths.unsw.edu.au/%7Ersw/Sphere/EffSphDes/.

https://web.maths.unsw.edu.au/%7Ersw/Sphere/EffSphDes/
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[50, 10] as the quadrature rule for distributed filtered hyperinterpolation. The sym-
metric spherical t-design is an equal-weighted quadrature with O(t2) nodes satisfying
(2.4) for degree n ≤ t, where the order O(t2) is optimal as a consequence of [4].

Let (u)+ := max{u, 0} for u ∈ R. The normalized Wendland function is given by

φ(u) := φ̃

(
8u

15
√
π

)
, u ∈ R,

where φ̃(u) is the original Wendland function

φ̃(u) := (1− u)8
+(32u3 + 25u2 + 8u+ 1).

See [8, 49, 52]. The φ(x · z) ∈ H4.5(S2) is a radial basis function on the sphere S2

with center at z ∈ S2 [26, 40]. We then define

(5.1) f(x) :=

6∑
i=1

φ(x · zi),

which is the linear combination of radial basis functions φ(x · zi) with centers at z1 =
(1, 0, 0), z2 = (−1, 0, 0), z3 = (0, 1, 0), z4 = (0,−1, 0), z5 = (0, 0, 1), z6 = (0, 0,−1).
The smoothness of f is 4.5, i.e., f ∈ H4.5(S2). We use the function f plus Gaussian
white noise as the noisy data. That is, at each node xi ∈ S2,

(5.2) yi = f(xi) + ε, ε ∼ N(0, σ2),

where xi are the nodes of a symmetric spherical t-design and σ ≥ 0.
Figures 1(a) and (b) show the pictures of f and a realization of f+ε with noise level

σ = 0.1. Figure 1(c) shows the distributed filtered hyperinterpolation approximation
f�D,n of degree n = 25 for noisy data yi. The distributed filtered hyperinterpolation

uses m = 100 machines and C5-filter η [46, 47, 48], which satisfies the condition of
Theorem 3.5. On the jth machine, j = 1, . . . , 100, the filtered hyperinterpolation uses
a 3n = 75-design with 2,852 nodes, where the design is rotated from Womersley’s
symmetric spherical 75-design [50] by the rotation matrix

ρj :=

cos(θj) − sin(θj) 0
sin(θj) cos(θj) 0

0 0 1


with θj = jπ/m. The rotated spherical design satisfies the same polynomial exactness
property for numerical integration as the unrotated symmetric spherical design since
the rotation of a spherical design is still a spherical design with the same separation
and filling radii [5, 6, 15]. The distributed filtered hyperinterpolation then satisfies
the condition of Theorem 3.5, which uses 285,200 points in total. The function values
are evaluated at 10,000 generalized spiral points on S2, which are equally distributed
points [3, 42]. Figure 1(d) shows the approximation error of f�D,n to f , which illustrates
that errors are small compared to the magnitude of the function f .

Figure 2 shows the convergence rate (with respect to n) of the approximation
error of the distributed filtered hyperinterpolation for yi with noise standard variance
σ = 0, 0.0001, 0.001, 0.01, 0.1. It illustrates that the approximation rate increases as
the noise level becomes higher (i.e., when σ is larger). When σ = 0 and the data are
not contaminated by noise, the approximation error reaches the highest convergence
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(a) f (b) f plus noise

(c) f�D,n (d) Error

Fig. 1. (a) Function f in (5.1), which is in Sobolev space H4.5(S2). (b) Noisy data f + ε with
noise level σ = 0.1. (c) Distributed filtered hyperinterpolation f�D,n with n = 25, m = 100, σ = 0.1

and the noisy data set D given on the nodes of symmetric spherical 75-design. (d) Error f�D,n − f .

5 10 15 20 25
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

Fig. 2. Errors vs. degree n for distributed filtered hyperinterpolation, n ≤ 25, m = 100,
σ = 0, 0.0001, 0.001, 0.01, 0.1.
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10-6 10-5 10-4 10-3 10-2 10-1
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Fig. 3. Errors vs. standard variance σ for distributed filtered hyperinterpolation, n = 25, m = 100.
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Fig. 4. Errors vs. number of machines m for distributed filtered hyperinterpolation, n = 25,
m ≤ 500, σ = 0, 0.0001, 0.001, 0.01, 0.1.

rate at order n−6.7. The convergence rate of the distributed filtered hyperinterpolation
is higher than the upper bound of Theorem 3.5 since the function f is sufficiently
smooth.

Figure 3 shows that the approximation error of the distributed filtered hyperin-
terpolation of degree n = 25 with m = 100 machines converges at the rate 0.2σ0.9

with a decrease of noise level σ. The noise level of data impacts the approximation
precision of distributed filtered hyperinterpolation.

Figure 4 illustrates the impact of the number m of machines on approximation
capability. As we can see for a noise level σ > 0, the approximation error converges at a
rate of around m−0.5. This means that the noise level changes the absolute magnitude
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of approximation error but has little impact on the trend of approximation rate with
the increase of the number of machines.

6. Proofs.

6.1. Proof for Theorem 2.2. Theorem 2.2 uses the norming set method [35] to
derive the probabilistic quadrature rule. To prove Theorem 2.2, we need the following
four lemmas. The first one is the Nikolskîı inequality on the sphere, which was proved
in [21, 34].

Lemma 6.1. Let 1 ≤ p < q ≤ ∞, n ≥ 1 be an integer, and let P ∈ Πd
n. Then

‖P‖Lq(Sd) ≤ C̃1n
d
p−

d
q ‖P‖Lp(Sd),

where the constant C̃1 > 0 depends only on d, p, q.

The second one is the following concentration inequality, which was established
in [51].

Lemma 6.2. Let G be a set of functions on compact metric space Z. For every
g ∈ G, Eg ≥ 0, |g−Eg| ≤ B almost everywhere, and E(g2) ≤ c̃(Eg)α for some B ≥ 0,
0 ≤ α ≤ 1 and c̃ ≥ 0. Then, for any ε > 0,

P

{
sup
g∈G

∣∣Eg − 1
m

∑m
i=1 g(zi)

∣∣√
(Eg)α + εα

> ε1−α2

}
≤ 2N (G, ε) exp

{
− mε2−α

2(c̃+ 1
3Bε

1−α)

}
,

where N (G, ε) denotes the covering number [51] of G with radius ε.

The third one is a covering number estimate for Banach spaces, as given in [56].

Lemma 6.3. Let B be a finite-dimensional Banach space. Let BR be the closed
ball of radius R centered at the origin given by BR := {f ∈ B : ‖f‖B ≤ R}. Then

logN (BR, ε) ≤ dim(B) log

(
4R

ε

)
.

To state the last lemma, we need following definition.

Definition 6.4. Let X be a finite dimensional vector space with norm ‖ · ‖X ,
and let Z ⊂ X ∗ be a finite set. We say that Z is a norm generating set for X if the
mapping TZ : X → R|Z| defined by TZ(x) = (z(x))z∈Z is injective and TZ is called
sampling operator.

Let W := TZ(X ) be the range of TZ . Then the injectivity of TZ implies that
T−1
Z : W → X exists. Let ‖ · ‖R|Z| be the norm of R|Z| norm, and let ‖ · ‖R|Z|∗

be the dual norm on R|Z|
∗

for ‖ · ‖R|Z| . Equip W with the induced norm, and let
‖T−1
Z ‖ := ‖T−1

Z ‖W→X . In addition, let K+ be the positive cone of R|Z|, which is the
set of all (rz)z∈Z ∈ R|Z| such that rz ≥ 0. Then the following lemma [35] holds.

Lemma 6.5. Let Z be a norm generating set for X , with TZ the corresponding
sampling operator. If g ∈ X ∗ with ‖g‖X∗ ≤ A, then there exist positive numbers
{az}z∈Z depending only on g such that for every x ∈ X ,

g(x) =
∑
z∈Z

azz(x), ‖(az)‖R|Z|∗ ≤ A‖T−1
Z ‖.

Also, if W contains an interior point v0 ∈ K+ and if g(T−1
Z v) ≥ 0 when v ∈W ∩K+,

then we may choose az ≥ 0.
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We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. For p = 1, 2, without loss of generality, we prove Theo-
rem 2.2 for Pn ∈ Πd

n satisfying ‖Pn‖p,µ = A for some constant A > 0. For an
arbitrary Pn ∈ Πd

n with ‖Pn‖p,µ = A, it follows from (2.5) and Lemma 6.1 that

‖Pn‖L∞(Sd) ≤ C̃1n
d
p ‖Pn‖Lp(Sd) ≤ c

1/p
4 C̃1n

d
p ‖Pn‖p,µ and

E
{
|Pn|2p

}
=

∫
Sd
|Pn(x)|2pdµ(x) ≤ ‖Pn‖pL∞(Sd)

∫
Sd
|Pn(x)|pdµ(x)

≤ c4(C̃1)pnd‖Pn‖pp,µE [|Pn|p] .

Let Z = Sd, g(zi) = |Pn(xi)|p, B = 2c4(C̃1)pndAp, c̃ = c4(C̃1)pndAp, m = N , α = 1,
and Gp = {|Pn|p : Pn ∈ Πd

n, ‖Pn‖p,µ = A} in Lemma 6.2. Then, for any ε > 0,

P

 sup
Pn∈Πdn,‖Pn‖p,µ=A

∣∣∣‖Pn‖pp,µ − 1
N

∑N
i=1 |Pn(xi)|p

∣∣∣√
‖Pn‖pp,µ + ε

>
√
ε


≤ 2N (Gp, ε) exp

{
− Nε

C̃2ndAp

}
,

where C̃2 = 10c4(C̃1)p/3. For p = 1, we have |Pn|− |P ∗n | ≤ |Pn−P ∗n | for any Pn, P
∗
n ∈

Πd
n. Then it follows from the definition of the covering number that N (G1, ε) ≤
N (G′1, ε), where G′1 := {Pn ∈ Πd

n : ‖Pn‖p,µ = A}. For p = 2, |Pn|2 ∈ Πd
2n. Let

G′2 := {Pn ∈ Πd
2n : ‖Pn‖p,µ = A}. Then N (G2, ε) = N (G′2, ε). It then follows from

Lemma 6.3 that for p = 1, 2,

P

 sup
Pn∈Πdn,‖Pn‖p,µ=A

∣∣∣‖Pn‖pp,µ − 1
N

∑N
i=1 |Pn(xi)|p

∣∣∣√
‖Pn‖pp,µ + ε

>
√
ε


≤ 2 exp

{
(2n)d log

4Ap

ε
− Nε

C̃2ndAp

}
,

where we use dimGp ≤ (pn)d for p = 1, 2. Let ε = Ap/4. As N/nd > c for a
sufficiently large c > 0, (2nd) log 4Ap

ε < Nε
C̃2ndAp

. Then, with confidence

(6.1) 1− 2 exp
{
−C̃3N/n

d
}
,

there holds∣∣∣∣∣‖Pn‖pp,µ − 1

N

N∑
i=1

|Pn(xi)|p
∣∣∣∣∣ ≤

√
ε(‖Pn‖pp,µ + ε) =

√
5

4
‖Pn‖pp,µ.

Then, with the same confidence as (6.1),

(6.2)
1

3
‖Pn‖pp,µ ≤

1

N

N∑
i=1

|Pn(xi)|p ≤
5

3
‖P‖pp,µ ∀Pn ∈ Πd

n, p = 1, 2.

Now we use (6.2) with p = 2 and Lemma 6.5 to prove Theorem 2.2. In Lemma
6.5, we take X = Πd

n, ‖Pn‖X = ‖Pn‖2,µ, and Z to be the set of point evaluation
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functionals {δxi}Ni=1. The operator TZ is then the restriction map Pn 7→ Pn|XN and

‖f‖XN ,2 := ( 1
N

∑N
i=1 |f(xi)|2)

1
2 . It follows from (6.2) that with confidence at least

1 − 2 exp{−C̃3N/n
d}, there holds ‖T−1

Z ‖ ≤
√

5
3 . We take g to be the functional

g : Pn 7→
∫
Sd Pn(x)dµ(x). By the Hölder inequality, ‖g‖X∗ ≤ 1. Lemma 6.5 then

shows that there exists a set of real numbers {wi,n}Ni=1 such that

∫
Sd
Pn(x)dµ(x) =

N∑
i=1

wi,nPn(xi) ∀Pn ∈ Πd
n.

holds and 1
N

∑N
i=1(

wi,n
1/N )2 ≤ 2 with confidence at least 1− 2 exp{−C̃3N/n

d}.
Finally, we use the second assertion of Lemma 6.5 and (6.2) with p = 1 to prove

the positivity of wi,n. Since 1 ∈ Πd
n, we have that v0 := 1|XN = (1, 1, . . . , 1) is an

interior point of K+. For Pn ∈ Πd
n, TZPn = Pn|XN is in W ∩ K+ if and only if

Pn(xi) ≥ 0 for all xi ∈ XN . For an arbitrary Pn satisfying Pn(xi) ≥ 0 with xi ∈ XN ,
define ξi(Pn) = Pn(xi). From Lemma 6.1 and (2.5), we obtain the following estimates:
For i = 1, . . . , N ,

|ξi| ≤ ‖Pn‖L∞(Sd) ≤ C̃1n
d‖Pn‖L1(Sd) ≤ C̃1c4n

d‖Pn‖1,µ,
|ξi −Eξi| ≤ 2‖Pn‖L∞(Sd) ≤ 2C̃1c4n

d‖Pn‖1,µ,
Eξ2

i ≤ ‖Pn‖L∞(Sd)‖Pn‖1,µ ≤ C̃1c4n
d‖Pn‖21,µ.

Applying Lemma 6.2 with B = 2C̃1c4n
dA, c̃ = C̃1c4n

dA2, and α = 0 to the set
{Pn : Pn ∈ Πd

n, ‖Pn‖1,µ = A}, by Lemma 6.3, we obtain for any ε > 0,

P

{
sup

Pn∈Πdn,Pn|XN≥0,‖Pn‖1,µ=A

∣∣∣∣∣g(Pn)− 1

N

N∑
i=1

Pn(xi)

∣∣∣∣∣ > ε

}

≤ 2 exp

{
nd log

4A

ε
− Nε2

2C̃1c4ndA(A+ 2ε/3)

}
.

Let ε = A/4. We then obtain that with confidence 1− 2 exp{−C̃4N/n
d}, there holds∣∣∣∣∣g(Pn)− 1

N

N∑
i=1

Pn(xi)

∣∣∣∣∣ ≤ 1

4
‖Pn‖1,µ ∀Pn ∈ Πd

n.

This and (6.2) imply that, with confidence 1 − 4 exp{−CN/nd} (where C depends
only on C̃3 and C̃4), for any Pn satisfying Pn(xi) ≥ 0 ∀xi ∈ XN , the inequality∣∣∣∣∣g(Pn)− 1

N

N∑
i=1

Pn(xi)

∣∣∣∣∣ ≤ 3

4

1

N

N∑
i=1

Pn(xi)

holds and then

g(Pn) ≥ 1

4

1

N

N∑
i=1

Pn(xi) ≥ 0.

It hence follows from Lemma 6.5 that wi,n ≥ 0, thus completing the proof of Theo-
rem 2.2.



16 SHAO-BO LIN, YU GUANG WANG, AND DING-XUAN ZHOU

6.2. Proofs for the theorems in section 3. The following lemma shows that
the filtered kernel has the following localization property, as proved by [38] and also
[46, 47, 48].

Lemma 6.6 ([38]). Let d ≥ 2 and η be a filter in Cκ(R+) with 1 ≤ κ <∞ such
that η is constant on [0, a] for some 0 < a < 2. Then

|Kn(cos θ)| ≤ cnd

(1 + nθ)κ
, n ≥ 1,

where c is a constant depending only on d, η, and κ.

Lemma 6.6 gives the following upper bound of the Lp norm of the filtered kernel.

Lemma 6.7. Let d ≥ 2, 1 ≤ p ≤ ∞, and η be a filter in Cκ(R+) with κ ≥ bd+3
2 c

such that η is constant on [0, a] for some 0 < a < 2. Then

‖Kn(x · ·)‖Lp(Sd) ≤ c1nd(1−1/p) ∀x ∈ Sd, n ≥ 1,

where c1 is a constant depending only on d, η, κ, and p.

The above lemma for p = 1 was proven in [47] (see also [38] for κ ≥ d+ 1). The
case p > 1 can be obtained from the case p = 1 with the fact that Kn ∈ Πd

2n and the
Nikolskîı inequality for spherical polynomials [34].

Proof of Theorem 3.2. Define

(6.3) f�,∗D,n(x) :=

|D|∑
i=1

wi,s,Df
∗(xi)Kn(xi · x).

As E{εi} = 0 for any i = 1, . . . , |D|,

E
{
f�D,n(x)

}
= E

{
m∑
i=1

wi,s,DyiKn(xi · x)

}
= E

{
m∑
i=1

wi,s,D(f∗(xi) + εi)Kn(xi · x)

}

=

m∑
i=1

wi,s,Df
∗(xi)Kn(xi · x) +

m∑
i=1

wi,s,DE{εi}Kn(xi · x) = f�,∗D,n(x).

Then

(6.4) E
{
f�,∗D,n(x)− f�D,n(x)

}
= 0.

This implies

E
{
‖f�D,n − f∗‖2L2(Sd)

}
(6.5)

=

∫
Sd

E{(f∗(x)− f�D,n(x))2}dω(x)

=

∫
Sd

E{(f∗(x)− f�,∗D,n(x) + f�,∗D,n(x)− f�D,n(x))2}dω(x)

=

∫
Sd

(f�,∗D,n(x)− f∗(x))2dω(x) +

∫
Sd

E{(f�,∗D,n(x)− f�D,n(x))2}dω(x)

:= A�D,n + S�D,n.
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Lemma 2.4 gives

(6.6) A�D,n ≤ c25 n−2r‖f∗‖2Wr
2(Sd).

To bound S�D,n, we observe from (3.1) that

E
{

(f�,∗D,n(x)− f�D,n(x))2
}

= E


 |D|∑
i=1

(yi − f∗(xi))wi,s,DKn(xi · x)

2


= E


 |D|∑
i=1

εiwi,s,DKn(xi · x)

2


≤M2

|D|∑
i=1

w2
i,s,D|Kn(xi · x)|2,

where the last inequality uses the independence of ε1, . . . , ε|D|. This together with
Lemmas 6.7 and 2.1 shows

S�D,n ≤M2

∫
Sd

|D|∑
i=1

w2
i,s,D|Kn(xi · x)|2dω(x)

= M2

|D|∑
i=1

w2
i,s,D

∫
Sd
|Kn(xi · x)|2dω(x) ≤ c1M2nd

|D|∑
i=1

w2
i,s,D ≤

c1c
2
2M

2nd

|D|
.(6.7)

Putting (6.7) and (6.6) to (6.5), we obtain

(6.8) E
{
‖f�D,n − f∗‖2L2(Sd)

}
≤ c25n−2r‖f∗‖2Wr

2(Sd) +
c1c

2
2M

2nd

|D|
,

with c3
6 |D|

1
2r+d ≤ n ≤ c3

3 |D|
1

2r+d . Then E{‖f�D,n − f∗‖2L2(Sd)} ≤ C1|D|−
2r

2r+d with

C1 := 36rc25c
−2r
3 ‖f∗‖2Wr

2(Sd) + 3−dc1c
2
2c
d
3M

2, thus completing the proof.

To prove Theorem 3.5, we need the following lemma, which is a modified version
of [16, Proposition 4].

Lemma 6.8. For f�D,n in Definition 3.4, there holds

E
{∥∥f�D,n − f∗∥∥2

L2(Sd)

}
≤

m∑
j=1

|Dj |2

|D|2
E
{
‖f�Dj ,n − f

∗‖2L2(Sd)

}
+

m∑
j=1

|Dj |
|D|

∥∥∥f�,∗Dj ,n − f∗∥∥∥2

L2(Sd)
,(6.9)

where f�,∗Dj ,n is given by (6.3).
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Proof. Due to (3.4) and
∑m
j=1

|Dj |
|D| = 1, we have

∥∥f�D,n − f∗∥∥2

L2(Sd)
=

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

(f�Dj ,n − f
∗)

∥∥∥∥∥∥
2

L2(Sd)

=

m∑
j=1

|Dj |2

|D|2
‖f�Dj ,n − f

∗‖2L2(Sd)

+

m∑
j=1

|Dj |
|D|

〈
f�Dj ,n − f

∗,
∑
k 6=j

|Dk|
|D|

(f�Dk,n − f
∗)

〉
L2(Sd)

.

Taking expectations gives

E
{∥∥f�D,n − f∗∥∥2

L2(Sd)

}
=

m∑
j=1

|Dj |2

|D|2
E
{
‖f�Dj ,n − f

∗‖2L2(Sd)

}
+

m∑
j=1

|Dj |
|D|

〈
EDj

{
f�Dj ,n

}
− f∗,E

{
f�D,n

}
− f∗ − |Dj |

|D|

(
EDj{f�Dj ,n} − f

∗
)〉

L2(Sd)

,

where

m∑
j=1

|Dj |
|D|

〈
EDj{f�Dj ,n} − f

∗,E
{
f�D,n

}
− f∗

〉
L2(Sd)

= E

{〈
f�D,n − f

∗,E
{
f�D,n

}
− f∗

〉
L2(Sd)

}
=
∥∥∥E{f�D,n}− f∗∥∥∥2

L2(Sd)
.

Then

E
{∥∥f�D,n − f∗∥∥2

L2(Sd)

}
=

m∑
j=1

|Dj |2

|D|2
E
{
‖f�Dj ,n − f

∗‖2L2(Sd)

}
−

m∑
j=1

|Dj |2

|D|2
∥∥∥E{f�Dj ,n} − f∗∥∥∥2

L2(Sd)
+
∥∥∥E{f�D,n}− f∗∥∥∥2

L2(Sd)
.

By (6.4), E{f�D,n} =
∑m
j=1

|Dj |
|D| f

�,∗
Dj ,n

. This plus
∑m
j=1

|Dj |
|D| = 1 gives

∥∥∥E{f�D,n}− f∗∥∥∥2

L2(Sd)
=

∥∥∥∥∥∥
m∑
j=1

|Dj |
|D|

(
f�,∗Dj ,n − f

∗
)∥∥∥∥∥∥

2

L2(Sd)

≤
m∑
j=1

|Dj |
|D|

∥∥f�,∗Dj ,n − f∗∥∥2

L2(Sd)
,

thus proving the bound in (6.9).
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Proof of Theorem 3.5. By Lemma 6.8, we only need to estimate the bounds of
E{‖f�Dj ,n − f

∗‖2L2(Sd)} and ‖f�,∗Dj ,n − f
∗‖2L2(Sd). Since minj=1,...,m |Dj | ≥ |D|d/(2r+d)

and Dj is τ -quasi uniform, it follows from Lemma 2.1 that there exists a quadrature
rule for each local machine which is exact for polynomials of degree 3n − 1 for n ≤
c3
3 |D|

1/(2r+d). From (6.8) with D = Dj , for j = 1, . . . ,m,

E
{
‖f�Dj ,n − f

∗‖2L2(Sd)

}
≤ c25n−2r‖f∗‖2Wr

2(Sd) +
c1c

2
2M

2nd

|Dj |
.

This together with
∑m
i=1

|Dj |
|D| = 1 gives

m∑
j=1

|Dj |2

|D|2
E
{
‖f�Dj ,n − f

∗‖2L2(Sd)

}
(6.10)

≤ 36rc25c
−2r
3 ‖f∗‖2Wr

2(Sd)|D|
− 2r

2r+d

+ 3−dc1c
2
2c
d
3M

2
m∑
j=1

|Dj |2

|D|2
|D|

d
2r+d

|Dj |
= C1|D|−

2r
2r+d ,

where C1 := 36rc25c
−2r
3 ‖f∗‖2Wr

2(Sd) + 3−dc1c
2
2c
d
3M

2.

For each j = 1, . . . ,m, Dj is τ -quasi uniform. Lemma 2.1 implies that there
exists a quadrature rule with nodes of Dj and |Dj | positive weights such that f∗Dj ,n is

a filtered hyperinterpolation for the noise-free data set {xi, f∗(xi)}xi∈Dj . Lemma 2.4
then gives ∥∥∥f�,∗Dj ,n − f∗∥∥∥2

L2(Sd)
≤ c25n−2r‖f∗‖2Wr

2(Sd) ∀j = 1, 2, . . . ,m.

This together with
∑m
j=1

|Dj |
|D| = 1 and c3

6 |D|
1

2r+d ≤ n ≤ c3
3 |D|

1
2r+d gives

(6.11)

m∑
j=1

|Dj |
|D|

∥∥∥f�,∗Dj ,n − f∗∥∥∥2

L2(Sd)
≤ 36rc25c

−2r
3 ‖f∗‖2Wr

2(Sd)|D|
− 2r

2r+d .

Using (6.10) and (6.11) in Lemma 6.8,

E
{
‖f�D,n − f

∗‖2L2(Sd)

}
≤ C2|D|−

2r
2r+d .

This then proves (3.5) with C2 = 22r+1 · 9rc25c−2r
3 ‖f∗‖2Wr

2(Sd) + 3−dc1c
2
2c
d
3M

2.

6.3. Proofs for the theorems in section 4.

Proof of Theorem 4.2. Let {wi,n,D}|D|i=1 be the real numbers computed in (4.1).

Since {xi}|D|i=1 is a set of random points on Sd, we define four events as follows. Let

ΩD be the event such that
∑|D|
i=1 |wi,n,D|2 ≤

2
|D| and ΩcD be the complement of ΩD,

i.e., ΩcD be the event
∑|D|
i=1 |wi,n,D|2 >

2
|D| . Let ΞD be the event that {(wi,n,D,xi)}|D|i=1

is a quadrature rule exact for polynomials in Πd
n and ΞcD be the complement event of

ΞD. Then, by Theorem 2.2,

(6.12) P{ΩcD} ≤ P{ΞcD} ≤ 4 exp
{
−C|D|/nd

}
.
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We write

E
{
‖fD,n − f∗‖2L2(Sd)

}
= E

{
‖fD,n − f∗‖2L2(Sd)|ΩD

}
P{ΩD}(6.13)

+ E
{
‖fD,n − f∗‖2L2(Sd)|Ω

c
D

}
P{ΩcD}.

Under the event ΩcD, we have from (4.1) and (4.2) that fD,n(x) = 0. Then, by (6.12),

(6.14) E
{
‖fD,n − f∗‖2L2(Sd)|Ω

c
D

}
P{ΩcD} ≤ 4‖f∗‖2L∞(Sd) exp

{
−C|D|/nd

}
.

Now we estimate the first term of the right-hand side of (6.13) when the event ΩD
takes place. Under this circumstance, we let

(6.15) f∗D,n(x) :=

|D|∑
i=1

wi,n,Df
∗(xi)Kn(xi · x).

Let ΛD := {xi}|D|i=1. By the independence between {εi}|D|i=1 and ΛD and E{εi} = 0,
i = 1, . . . , |D|, we obtain

E
{
fD,n(x)

∣∣ΛD} = E

{
m∑
i=1

wi,n,DyiKn(xi · x)
∣∣ΛD}

= E

{
m∑
i=1

wi,n,D(f∗(xi) + εi)Kn(xi · x)
∣∣ΛD}

=

m∑
i=1

wi,n,Df
∗(xi)Kn(xi · x) +

m∑
i=1

wi,n,DE{εi}Kn(xi · x)

= f∗D,n(x).

Hence,

(6.16) E
{(
f∗D,n(x)− fD,n(x)

) ∣∣ΛD} = 0.

This allows us to write

E
{
‖fD,n − f∗‖2L2(Sd)

∣∣ΩD}
= E

{∫
Sd

E{(f∗(x)− fD,n(x))2
∣∣ΛD}dω(x)

∣∣ΩD}
= E

{∫
Sd

E{(f∗(x)− f∗D,n(x) + f∗D,n(x)− fD,n(x))2
∣∣ΛD}dω(x)

∣∣ΩD}
= E

{∫
Sd

E{(f∗D,n(x)− fD,n(x))2
∣∣ΛD}dω(x)

∣∣ΩD}
+ E

{∫
Sd

E{(f∗D,n(x)− f∗(x))2
∣∣ΛD}dω(x)

∣∣ΩD}
:= SD,n +AD,n.(6.17)
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Given ΛD, if the event ΩD occurs, by |εi| ≤M ,

E
{

(f∗D,n(x)− fD,n(x))2
∣∣ΛD} = E


 |D|∑
i=1

εiwi,n,DKn(xi · x)

2 ∣∣∣∣ΛD


≤M2

|D|∑
i=1

w2
i,n,D|Kn(xi · x)|2,

where we used the independence of ε1, . . . , ε|D|. This with Lemma 6.7 shows

SD,n ≤M2E


∫
Sd

|D|∑
i=1

w2
i,n,D|Kn(xi · x)|2dω(x)

∣∣ΩD


= M2E


|D|∑
i=1

w2
i,n,D

∫
Sd
|Kn(xi · x)|2dω(x)

∣∣ΩD


≤ c21M2ndE


|D|∑
i=1

w2
i,n,D

 ≤ 2c21M
2nd

|D|
.(6.18)

We now turn to bound AD,n. We split AD,n as

AD,n = E

{∫
Sd

E
{

(f∗(x)− f∗D,n(x))2
∣∣ΛD} dω(x)

∣∣ΞD,ΩD}P{ΞD}

+ E

{∫
Sd

E
{

(f∗(x)− f∗D,n(x))2
∣∣ΛD} dω(x)

∣∣ΞcD,ΩD}P{ΞcD}

:= AD,n,1 +AD,n,2.(6.19)

To estimate AD,n,2 given the event ΩD ∩ ΞcD, by the Cauchy–Schwarz inequality,

(
f∗(x)− f∗D,n(x)

)2 ≤ 2‖f∗‖2L∞(Sd) + 2

∣∣∣∣∣∣
|D|∑
i=1

wi,n,Df
∗(xi)Kn(xi · x)

∣∣∣∣∣∣
2

≤ 2‖f∗‖2L∞(Sd) + 2‖f∗‖2L∞(Sd)

|D|∑
i=1

a2
i,n,D

|D|∑
i=1

|Kn(xi · x)|2,

which, with (6.12) and Lemma 6.7, gives

(6.20) AD,n,2 ≤ 2‖f∗‖2L∞(Sd)(|S
d|+ 2c21n

d) exp
{
−C|D|/nd

}
.

To bound AD,n,1, we observe that when the event ΩD∩ΞD takes place, {wi,n,D}|D|i=1 is
a set of positive weights for quadrature rule Q|D|,n. We then obtain from Lemma 2.4

and f∗ ∈Wr
2(Sd) with r > d/2 that

(6.21) AD,n,1 ≤ c25n−2r‖f‖2Wr
2(Sd).

By (6.21), (6.20), and (6.19), we obtain

(6.22) AD,n ≤ c25n−2r‖f∗‖2Wr
2(Sd) + 2‖f∗‖2L∞(Sd)(|S

d|+ 2c21n
d) exp{−C|D|/nd}.
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This and (6.18) and (6.17) give

E
{
‖fD,n − f∗‖2L2(Sd)

∣∣ΩD}
≤ c25n−2r‖f‖2Wr

2(Sd) + 2‖f∗‖2L∞(Sd)(|S
d|+ 2c21n

d) exp{−C|D|/nd}+
2c21M

2nd

|D|
.

Putting the above estimate and (6.14) into (6.13), we obtain

E
{
‖fD,n − f∗‖2L2(Sd)

}
≤ c25n−2r‖f‖2Wr

2(Sd) +
2c21M

2nd

|D|
+ 2‖f∗‖2L∞(Sd)(|S

d|+ 2c21n
d + 2) exp

{
−C|D|/nd

}
.(6.23)

Taking account of c3
6 |D|

1
2r+d ≤ n ≤ c3

3 |D|
1

2r+d and r > d/2, we then have

nd exp
{
−C|D|/nd

}
≤
(c3

3

)d
|D|

d
2r+d exp

{
−C|D|

2r
2r+d

}
≤ C̃5|D|−

2r
2r+d ,

where C̃5 is a constant independent of |D|. Thus,

E
{
‖fD,n − f∗‖2L2(Sd)

}
≤ C3|D|−

2r
2r+d

with C3 a constant independent of |D|, thus completing the proof.

To prove Theorem 4.4, we need the following lemma, which can be obtained by a
similar proof as Lemma 6.8.

Lemma 6.9. For fD,n in Definition 4.3, there holds

E
{
‖fD,n − f∗‖2L2(Sd)

}
≤

m∑
j=1

|Dj |2

|D|2
E
{
‖fDj ,n − f∗‖2L2(Sd)

}
+

m∑
j=1

|Dj |
|D|

∥∥E{fDj ,n} − f∗∥∥2

L2(Sd)
.

Proof of Theorem 4.4. By Lemma 6.9, we only need to estimate the bounds of
E{‖fDj ,n − f∗‖2L2(Sd)} and ‖E{fDj ,n} − f∗‖2L2(Sd). To estimate the first, we obtain

from (6.23) with D = Dj that for j = 1, . . . ,m,

E
{
‖fDj ,n − f∗‖2L2(Sd)

}
≤ c25n−2r‖f‖2Wr

2(Sd) +
2c21M

2nd

|Dj |
+ 2‖f∗‖2L∞(Sd)

(
|Sd|+ 2c21n

d + 2
)

exp
{
−C|Dj |/nd

}
.

Since min1≤j≤m |Dj | ≥ |D|
d+ν
2r+d , c3

6 |D|
1

2r+d ≤ n ≤ c3
3 |D|

1
2r+d , 2r > d, and 0 < ν < 2r,

2‖f∗‖2L∞(Sd)

(
|Sd|+ 2c21n

d + 2
)

exp
{
−C|Dj |/nd

}
≤ C̃7|D|−

2r
2r+d ,

where C̃7 is a constant depending only on r, c1, C, d, and f∗. Thus, there exists a
constant C̃8 independent of m,n, |D1|, . . . , |Dm|, and |D| such that

m∑
j=1

|Dj |2

|D|2
E
{
‖fDj ,n − f∗‖2L2(Sd)

}

≤ C̃8

|D|− 2r
2r+d +

m∑
j=1

|Dj |2

|D|2
|D|

d
2r+d

|Dj |

 = (C̃8 + 1)|D|−
2r

2r+d ,(6.24)
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where we used
∑m
i=1

|Dj |
|D| = 1. To bound ‖E{fDj ,n}− f∗‖2L2(Sd), let ΛDj be the set of

points of the data set Dj . Then we use (6.16) and Jensen’s inequality to obtain∥∥E{fDj ,n} − f∗∥∥2

L2(Sd)
=
∥∥E{E{fDj ,n|ΛDj} − f∗}∥∥2

L2(Sd)

=
∥∥∥E{f∗Dj ,n − f∗}∥∥∥2

L2(Sd)
≤ E

{
‖f∗Dj ,n − f

∗‖2L2(Sd)

}
.(6.25)

We now use a similar proof as Theorem 4.2 to prove the error bound of distributed
filtered hyperinterpolation fD,n. For each j = 1, . . . ,m, we let ΩDj be the event
such that the sum of the quadrature weights

∑
i=1 w

2
i,n,Dj

≤ 2/|Dj | and ΩcDj be the
complement of ΩDj . Write

E
{
‖f∗Dj ,n − f

∗‖2L2(Sd)

}
= E

{
‖f∗Dj ,n − f

∗‖2L2(Sd)|ΩDj
}

P{ΩDj}

+ E
{
‖f∗Dj ,n − f

∗‖2L2(Sd)|Ω
c
Dj

}
P{ΩcDj},(6.26)

where E{‖f∗Dj ,n − f
∗‖2L2(Sd)|Ω

c
Dj
}P{ΩcDj} ≤ 4‖f∗‖2L∞(Sd) exp{−C|Dj |/nd}.

By (6.22) with D = Dj , the second term of the right-hand side in (6.26) becomes

E
{
‖f∗Dj ,n − f

∗‖2L2(Sd)|ΩDj
}

P{ΩDj}

≤ c25n−2r‖f‖2Wr
2(Sd) + 2‖f∗‖2L∞(Sd)(|S

d|+ 2c21n
d) exp

{
−C|Dj |/nd

}
.

These two estimates give

E
{
‖f∗Dj ,n − f

∗‖2L2(Sd)

}
≤ c25n−2r‖f‖2Wr

2(Sd) + 2‖f∗‖2L∞(Sd)(|S
d|+ 2c21n

d + 2) exp
{
−C|Dj |/nd

}
.

By min1≤j≤m |Dj | ≥ |D|
d+ν
2r+d , c3

6 |D|
1

2r+d ≤ n ≤ c3
3 |D|

1
2r+d , and 2r > d, 0 < ν < 2r,

E
{
‖f∗Dj ,n − f

∗‖2L2(Sd)

}
≤ C̃9|D|−

2r
2r+d ,

which with (6.25) and
∑m
j=1

|Dj |
|D| = 1 gives

(6.27)

m∑
j=1

|Dj |
|D|

∥∥E{fDj ,n} − f∗∥∥2

L2(Sd)
≤ C̃9|D|−

2r
2r+d .

Using (6.24) and (6.27) in Lemma 6.9 then gives

E
{
‖fD,n − f∗‖2L2(Sd)

}
≤ C4|D|−

2r
2r+d ,

thus completing the proof.
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