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We propose a distributed learning algorithm for least squares regression in 
reproducing kernel Hilbert spaces (RKHSs) generated by flexible Gaussian kernels, 
based on a divide-and-conquer strategy. Our study demonstrates that Gaussian 
kernels with flexible variances greatly improve the learning performance of 
distributed algorithms generated by a fixed Gaussian. Under some mild conditions, 
we establish sharp error bounds for the distributed algorithm with labeled data 
in which the variance of the Gaussian kernel serves as a tuning parameter. We 
show that with suitably chosen parameters our error rates can be almost mini-max 
optimal under the standard Sobolev smoothness condition on the target function. 
By utilizing additional information of unlabeled data for semi-supervised learning, 
we relax the restrictions on the number of data partition and the range of the 
Sobolev smoothness index.

© 2021 Elsevier Inc. All rights reserved.

. Introduction

Distributed learning algorithms are commonly used in engineering and scientific communities for their 
apabilities to handle massive data. A divide-and-conquer strategy is a widely used approach in various 
istributed learning paradigms due to its simplicity and scalability. The basic procedure of the strategy 
egins with randomly partitioning the whole data set into disjoint subsets of equal size, produces a series of 
stimators by a base learning algorithm with each subset, and then averages the individual solutions together 
o get a global output. Its applications and theoretical analysis were investigated in a broad range of learning 
roblems, such as classification [8], matrix factorization [13], perceptron [14] and conditional maximum 
ntropy models [15]. Recently, the divide-and-conquer approach applied to kernel-based algorithms has 
een developed in many machine learning tasks [7,9–12,17,31]. The asymptotic behaviors of the averaged 
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estimators were considered and some consistency results were derived. It was shown that the averaged
estimators can retain mini-max optimal rates over the base algorithm working with the whole data set.

Gaussians are the most important and commonly used kernels in the design of kernel-based algorithms.
The variances of Gaussians characterize the frequency range of the key function features and appropriate
values of variances are essential to the learning power of the algorithms. However, distributed learning
for regression with Gaussian kernels has not been fully considered in the existing literature. It remains
a lack of theoretical understanding on the role of Gaussian variances in guaranteeing the effectiveness of
distributed learning. Note that the RKHS induced by a single Gaussian kernel has a low capacity and
allowing Gaussians with flexible variances improves learning abilities in terms of regularization error and
approximation error. In the case of flexible Gaussian kernels, the variance of Gaussian is not a given constant
and can be chosen to depend on the sample size, associated with smoothness conditions on target functions,
the intrinsic dimension or some other priori information on the learning problems. That is one advantage
of flexible Gaussians used in learning algorithms, see [27–29,22] and the references therein. In this paper,
based on the divide-and-conquer strategy, we study the distributed regularized least squares with flexible
Gaussian kernels. In our work, the variance of a Gaussian is not fixed and changes according to the sample
size. It is therefore of great interest to investigate how to employ suitable variances for keeping the effective
learning performance of distributed learning when the data size grows rapidly.

Let X denote an input space which is assumed to be a compact subset of Rd, an output space Y ⊂ R be
a set of real numbers, ρ be an underlying Borel probability measure on Z := X × Y. The Gaussian kernel
with standard deviation σ > 0 is the function on X × X given by

Kσ(x, u) := exp
{
−|x− u|2

σ2

}
.

With Kσ, the reproducing kernel Hilbert space Hσ is induced by the completion of the linear span of the
set of functions {Kσ(x, ·) : x ∈ X} with the inner product 〈·, ·〉Hσ

. It has the reproducing property, that is,
for any f ∈ Hσ,

〈f,Kσ(x, ·)〉Hσ
= f(x), x ∈ X . (1)

Given a data set D = {(xi, yi)}Ni=1 ⊂ Z, the regularized least squares with the Gaussian RKHS Hσ can be
stated as

fD := fD,λ,σ = arg min
f∈Hσ

⎧⎨
⎩ 1

|D|
∑

(x,y)∈D

(f(x) − y)2 + λ‖f‖2
Hσ

⎫⎬
⎭ . (2)

Here λ > 0 is a regularization parameter and |D| := N denotes the cardinality of D. When the data set D
has a very large size N , we can apply the divide-and-conquer strategy to this scheme. Suppose that the whole
data set D consists of m disjoint subsets {Dl}l of equal size, that is, D =

⋃m
l=1 Dl, |D1| = · · · , = |Dm| := n

and N = mn. Distributed learning with the regularized least squares and Gaussian kernels considered in this
paper takes the form of a weighted average of the local estimators {fDl

}l as

f̄D =
m∑
l=1

|Dl|
|D| fDl

= 1
m

m∑
l=1

fDl
, (3)

where {fDl
}l are produced by algorithm (2) with individual data subsets {Dl}l.

When the distributed regularized least squares algorithm is applied with a fixed RKHS, it was shown

48in [31] that as long as the individual data size |D|l is not too small, mini-max optimal learning rates 
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an be obtained by a matrix analysis approach. In this approach, error bounds were established under 
ome boundedness conditions on the normalized eigenfunctions of the integral operator associated with the 
ernel. Up to now, it is yet unknown when general kernels satisfy the boundedness condition in [31] for the 
igenfunctions. Such conditions were successfully removed in the paper [11] with a novel integral operator 
pproach and the optimal rate is achieved by means of effective dimensions of RKHSs and the regularity of 
arget functions. Similar results were established for spectral algorithms [7,17], gradient descent algorithms 
12], minimum error entropy principles [9] and the bias correct regularization kernel networks [7]. It should 
e noted that, either the boundedness assumption for eigenfunctions or some regularity requirement for 
arget functions is necessary in earlier works, which is hardly satisfied when a fixed Gaussian kernel is used 
to be discussed in Section 2). In addition, the obtained learning rate is constrained by the approximation 
rror (or regularization error) of the RKHS. It has been pointed out in [29,18] that the fixed Gaussian 
KHS Hσ has a poor approximation ability for target functions in Sobolev spaces. All these lead to the 
bservation that analysis and results with these spaces are infeasible in many scenarios.

The purpose of this paper is to study the learning performance of (3) with flexible Gaussian RKHSs by 
stimating the L2-error bounds in terms of the total data size N . Under some mild smoothness condition 
n the target function and weak eigenfunction assumption, the concrete rates can be almost optimal in 
he mini-max sense if the variance of Kσ is referred to as a tuning parameter in the learning process. 
urthermore, by a semi-supervised approach, we improve the upper bound for data partition size m and 
he range of the smoothness parameter for the target function, which ensures the mini-max optimal rates 
n distributed learning.

The remainder of the paper is organized as follows. In Section 2, we first introduce some necessary 
otations and assumptions. We then state error bounds for distributed algorithm (3) in supervised learning 
nd semi-supervised learning, respectively. Some discussions and comparisons with related work are also 
rovided. Section 3 presents a bias-variance based decomposition for the learning error and some key lemmas 
hat will be useful in the proof of our main results. The proofs of main results and necessary estimations 
re given in Sections 4 and 5. Some basic lemmas and proofs are postponed to the appendix.

. Main results

We begin with some necessary notations and assumptions used in this paper. Our work is carried out in 
he setting of nonparametric regression. The probability measure ρ on Z = X ×Y can be decomposed into 
he marginal distribution ρX on X and the conditional distributions ρ(·|x) for x ∈ X . Denote ‖ · ‖ρ as the 
2-norm in the L2

ρX space, which is defined by ‖f‖ρ := ‖f‖L2
ρX

=
(∫

X |f(x)|2dρX
) 1

2 .
In regression analysis, the target function is the conditional mean E(Y |X = x) with x ∈ X , that is, the 

egression function

fρ(x) =
∫
Y

ydρ(y|x), x ∈ X .

hroughout the paper, the second moment condition is taken to describe the tail property of the output Y, 
.e., for some constant B > 0,

E[y2|x] :=
∫

y∈Y

y2dρ(y|x) ≤ B2, ∀x ∈ X . (4)

t implies that fρ is bounded by B since ‖fρ‖∞ ≤
(∫

Y |y|2dρ(y|x)
)1/2

≤ B. The quality of the global esti-
ator f̄D for regression is measured by the mean squared error ‖f̄D − fρ‖2

ρ. In the following subsections, we 

48tate our main results in terms of the error bounds in supervised and semi-supervised learning, respectively.
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2.1. Optimal rates for supervised learning

Recall that the Sobolev space Hα(Rd) with index α > 0 consists of all functions in L2(Rd) such that the

norm ‖f‖Hα(Rd) :=
{

1
(2π)d

∫
Rd

(
1 + |ω|2

)α |f̂(ω)|2dω
} 1

2 is finite where f̂ is the Fourier transform of f . This
paper aims at error analysis of the distributed algorithm (3) under the Sobolev smoothness condition on
fρ. Let us state our first main result, whose proof will be provided in Section 4.

Theorem 1. Assume that ρX has a density function with respect to the Lebesgue measure on X and the
corresponding density is bounded away from 0 and ∞. Suppose that the regression function fρ equals the
restriction onto X of some function in Hα(Rd) for some α > d. If ξ > 0 (which can be arbitrarily small),
σ = N− 1

2α+d , λ = N−1 and m ≤ N
α−d
2α+d−ξ, then

E
[
‖f̄D − fρ‖2

ρ

]
≤ CN− 2α

2α+d+ξ. (5)

To avoid superfluous notation, here and in the following, C denotes a constant independent of N or m
which may be different at each occurrence.

It is known in [6] (Section 3.5) that when the distribution ρX is the normalized uniform measure on
a domain X , the i-th entropy number (cf. Definition 1) of the embedding id : Hα(X ) → L2

ρX decays as
O

(
i−

α
d

)
. Recall that, when α > d

2 , the Sobolev space Hα(X ) is continuously embedded into the space
L∞(X ) of all bounded measurable functions on X . Collecting these facts, we apply Lemma 4 in Appendix
with Θ = Hα(X ), η = d

α and δN = N− 2
2+η = N− 2α

2α+d and get that when fρ ∈ Hα(X ), the probability
inequalities

P
{
D : ‖f̃D − fρ‖2

ρ ≥ δ
}
≥

{
c0, if δ ≤ N− 2α

2α+d ,

c1 exp{−c2δN}, if δ ≥ N− 2α
2α+d

hold with some positive constants c0, c1, c2 for any estimator f̃D based on the data set D = {(xi, yi)}Ni=1.
Together with E[f ] =

∫∞
0 P{f ≥ δ}dδ for non-negative functions f , it yields

inf
f̃D

sup
fρ∈Hα(X )

E
[
‖f̃D − fρ‖2

ρ

]
≥ c0

N
− 2α

2α+d∫
0

dδ + c1

∞∫
N

− 2α
2α+d

exp{−c2δN}dδ ≥ c0N
− 2α

2α+d

where the infimum ranges over all estimators f̃D based on D. This lower bound implies that our result (5)
is nearly minimax-optimal.

Remark 1. A consequence of Theorem 1 is that the error bound for the classical (non-distributed)
least squares regularization scheme (2) with flexible Gaussians can achieve learning rates of order
E 
[
‖fD − fρ‖2

ρ

]
= O

(
N− 2α

2α+d+ξ
)

when α > d. It greatly improves the learning rates for Gaussian schemes
derived in the literature [28,29] which are not optimal. The same learning rates are achieved for all α > 1
in the work [5] by using an oracle probability inequality. But it requires an extra projection of fD onto
[−B, B] and that the output space Y is supported on the interval [−B, B] for some B > 0. We will show in
Subsection 2.3 that by a semi-supervised approach the range α > d in Theorem 1 can be extended to α > 0.

Theorem 1 suggests that the choice of σ that guarantees the optimal rate is data-dependent and changes

48with the data size N . Meanwhile, to keep the optimality, it establishes an upper bound for the number 
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L
σ

of data partitions in algorithm (3). It demonstrates that with flexible Gaussian kernels the learning 
erformance of distributed learning with regularized least squares can be as good as that of one single 
achine which could process the whole data.
Gaussians with flexible variances are often taken in data analysis with convolutions. It would be interesting 

o study connections of our results to the recent work on deep learning with convolutional neural networks 
23,33,34]. Meanwhile, stochastic gradient descent algorithm or other gradient descent analogues are widely 
sed in training deep neural networks [24,30]. It is also worthwhile to see how to improve the performance 
f these algorithms by aid of flexible Gaussians.

.2. Learning rates with a general condition on eigenfunctions

As mentioned in the introduction, for kernel-based distributed learning algorithms, considerable works 
ere carried out by means of the eigensystems associated with the integral operator LKσ

: L2
ρX → L2

ρX , 
hat is defined by

LKσ
(f) =

∫
X

f(x)Kσ(x, ·)dρX , ∀f ∈ L2
ρX .

enote the set of positive eigenvalues of LKσ
as {λi}i arranged in a decreasing order, and a set of normalized 

igenfunctions {φi}i of LKσ
in L2

ρX corresponding to the eigenvalues {λi}i. In this paper, we shall present 
rror analysis for (3) in general situations by making use of special properties of eigenpairs {(λi, φi)}i of 
Kσ

. To this end, we first recall some basic properties on the eigenvalues {λi}i.

efinition 1. Let E and F be Banach spaces and L : E → F be a bounded linear operator. Then the i-th 
ntropy number ei(L), i ≥ 1, of L is defined by

ei(L) := inf

⎧⎨
⎩ε > 0 : ∃x1, · · · , x2i−1 ∈ L(BE) such that L(BE) ⊂

2i−1⋃
j=1

(xj + εBF )

⎫⎬
⎭ ,

here BE and BF denote the closed unit balls of E and F , respectively.

Recall that for p ∈ (0, ∞) and a decreasing, non-negative sequence {ai}i, the Lorentz (p, ∞)-norm is 
efined by ‖{ai}‖p,∞ = supi≥1 i

1
p ai. The next lemma [19] shows that the eigenvalues {λi}i have the same 

symptotic behavior as the squared L2
μ-entropy numbers in terms of the Lorentz (p, ∞)-norm.

emma 1. Let μ = ρX be a probability distribution on X and Hσ be the Gaussian RKHS over X with 
∈ (0, 1]. For each 0 < p < 1, there exists a constant cp > 0 only depending on p such that

cp
∥∥e2

i (id : Hσ → L2
μ)
∥∥
p,∞ ≤ ‖{λi}‖p,∞ ≤ 4

∥∥e2
i (id : Hσ → L2

μ)
∥∥
p,∞ .

The lemma presents a simple way to characterize the decay rate of the eigenvalues {λi}i provided that 
he entropy numbers decreases polynomially fast. We then turn to the decay of the L2

μ-entropy numbers 
hat is usually used to measure the capacity of Hσ. The following lemma can be found in [20] as Theorem 
.34.

emma 2. Let μ = ρX be a probability distribution on X and Hσ be the Gaussian RKHS over X with 

48∈ (0, 1]. Then, for any ε > 0 and 0 < p < 1, there exists a constant cp,ε > 0 such that
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ei(id : Hσ → L2
μ) ≤ cp,εσ

− (1−p)(1+ε)d
2p i−

1
2p

for all i ≥ 1.

Consequently, since 0 < 1 − p < 1, we can obtain that 
∥∥e2

i (id : Hσ → L2
ρX )

∥∥
p,∞ ≤ c2p,εσ

− (1+ε)d
p and

λi ≤ 4c2p,εσ
− (1+ε)d

p i−
1
p , ∀i ≥ 1, 0 < p < 1. (6)

Remark 2. The estimate (6) exhibits a quantitative relation between polynomial decays of {λi}i and the
value of σ. It is known that the decay of the eigenvalues is essentially a smoothness condition for the kernel.
As Gaussians are smooth kernels, their associated eigenvalues’ decay actually should obey a bound of the
exponential form, but the changing variance should be taken into consideration. This paper incorporates a
bound (6) for {λi}i involving σ into the analysis. To our knowledge, there have been no results to reveal
explicit relations between the value of σ and the exponential decay of {λi}i.

Our second main result is based on an assumption regarding the boundedness of eigenfunctions {φi}i
using the fast decay of {λi}i.

Assumption. There is a constant C1 such that the eigenfunctions {φi}i of LKσ
satisfy

sup
i

λs
i‖φi‖2

∞ ≤ C1σ
−ν , for some 0 < s < 1 and ν > 0. (7)

Let us give some comments about the above assumption. The assumption that the eigenfunctions φi are
uniformly bounded appeared in the early literature on kernel methods, where it was even claimed that such
a strong assumption holds for general Mercer kernels. A counterexample with a C∞ kernel was presented
in [32] which showed that smoothness of the Mercer kernel does not guarantee the uniform boundedness of
the eigenfunctions. Therefore, it is not appropriate to assume only the uniform boundedness. Recall that
the sequence {λi}i has an exponential decay for a fixed σ but the decay becomes worse when σ is smaller.
Assumption (7) exhibits that the increase of the L∞-norm bounds for the eigenfunctions can be very fast,
which is comparable to an exponential rate. It is thus considerably weaker than that of the uniformly
boundedness assumption. We also note that assumption (7) coincides with the one used in [16] for general
Mercer kernels. They remarked that the example given in [32] with a C∞ kernel without uniformly bounded
eigenfunctions satisfies such a weaker boundedness condition. In addition, [21] derived the optimal rate for
the classical least squares algorithm (2) by an interpolation condition between Hσ and L∞, that is, for some
0 < s < 1, there holds

‖f‖∞ ≤ C‖f‖sHσ
‖f‖1−s

L2
ρX

, ∀f ∈ Hσ, (8)

where C is a constant independent of f . Obviously, (7) is weaker than the above assumption. In this work,
the eigenpairs (λi, φi) generated from Theorem 1 is a special case satisfying (7).

With these preliminaries, we can state our second main result, the general error bounds for the distributed
algorithm (3) involving the regularized generalization error, which measures the approximation ability of
RKHSs with flexible Gaussians.

Definition 2. With the kernel Kσ and the regularization parameter λ > 0, the regularized generalization
error is defined as

D(σ, λ) = arg min
{
‖f − fρ‖2

ρ + λ‖f‖2
H

}
= ‖fσ

λ − fρ‖2
ρ + λ‖fσ

λ ‖2
H (9)
48f∈Hσ
σ σ
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[

here fσ
λ is the minimizer of ‖f − fρ‖2

ρ + λ‖f‖2
Hσ

over Hσ.

emark 3. Due to the low capacity of Hσ, it was shown in [29] that in general, the regularization error of a 

xed Gaussian RKHS only obeys a logarithmic decay as O
(
(log(1/λ))−θ

)
for some θ > 0 under the Sobolev 

moothness condition on fρ. However, most results in the literature on distributed learning or other kernel 
ased methods required a nice approximation ability of the RKHS, such as a polynomial decay O

(
λθ

)
with 

> 0. That is one reason why such results cannot be applied to the single Gaussian RKHS directly. It is 
hen shown in a series of papers [27–29,22] that with flexible Gaussian RKHSs, the approximation power of 
he regularization scheme was greatly improved. It should be clear from this point that the learning schemes 
enerated by Gaussian kernels with flexible variances have advantages over those with fixed Gaussians.

heorem 2. Assume that (4) and (7) hold. If N
mS(σ,λ)N (σ,λ) ≥ C0N

η for some constant C0 > 0 (independent 
f N) and η > 0, then

E
[
‖f̄D − fρ‖2

ρ

]
≤ C

[
(logN)2

(
mS(σ, λ)N (σ, λ)

N
+ m2S2(σ, λ)

N2

)
+ 1

m
+ 1

]

×
{
D(σ, λ) + m [S(σ, λ)D(σ, λ) + N (σ, λ)]

N

}
, (10)

here N (σ, λ) :=
∞∑
i=1

1
1 + λ/λi

, S(σ, λ) :=
∞∑
i=1

‖φi‖2
∞

1 + λ/λi
are the two kernel-related quantities, and C is a

onstant independent of N , σ or m.

The first quantity N (σ, λ) is the effective dimension [2] of Hσ, which measures the complexity 
f the RKHS with respect to ρX and is actually the trace of the operator LKσ

(LKσ
+ λI)−1 as 

r
(
LKσ

(LKσ
+ λI)−1). The second quantity S(σ, λ) involves the tail behavior of {φi} that is characterized 

y their L∞-norms. Under assumption (7), we show that even if ‖φi‖∞ increases exponentially fast, the 
eries in S(σ, λ) is still convergent. As we see, σ and λ are tuning parameters for achieving good learning 
ates in the learning process. To demonstrate the explicit learning rates of algorithm (3), a general case 
ith suitably chosen parameters and the range of m is covered as follows.

heorem 3. Assume that (4) and (7) hold. Let the regression function fρ equal the restriction onto X of 
ome function in Hα(Rd) for some α > d(1+s)+ν

2(1−s) and dρX
dx ∈ L∞(X ). Take σ = N− 1

2α+d and λ = N−1. If

m ≤ N
1
2

[
1− 2d+ν

2α+d−s
]
−ξ

, (11)

hen

E
[
‖f̄D − fρ‖2

ρ

]
≤ CN− 2α

2α+d+ξ (12)

here ξ is a fixed positive number which can be arbitrarily small and C is a constant independent of N or 
.

emark 4. For the distributed regularized least squares associated with a general RKHS, [31] derived the 
ptimal rate when fρ lies in the RKHS, but under the much stronger condition than (7), that {φi} are 
niformly bounded. Meanwhile, when fρ is outside the RKHS, they claimed that the error rate is controlled 
y the approximation error in a ball with radius R ≥ 1, that is, inf

‖f‖Hσ≤R
‖f − fρ‖ρ. It has been shown in 
4818] that, for target functions in Sobolev spaces which are not C∞, the error has a logarithmic convergence 
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rate in the form of (logR)−θ. It implies that under the Sobolev smoothness condition on fρ the learning
rate obtained in [31] is only in the logarithmic form of (logN)−θ.

Another line of research on distributed kernel-based learning algorithms has been built on the effective
dimensions of RKHSs and the regularity of target functions [7,10,11,17]. The former is similar to previous
work on kernel methods [2,11,17] and can be characterized by the decay of eigenvalues {λi} of LKσ

. The
latter, the regularity of fρ, imposes a strong smoothness condition on fρ for Gaussian RKHSs, that fρ lies
in the range space Lr

Kσ
(L2

ρX ) for some r > 0, requiring fρ ∈ C∞. This prevents their results from being
applied in general situations.

It should be noted that, condition dρX
dx ∈ L∞(X ) is not necessary to obtain (12) in Theorem 3. Instead of

it, if the regularization error D(σ, λ) decays as O
(
λ

2α
2α+d

)
with some suitably chosen λ = λ(σ), error rate (12)

still holds apart from a slightly different leading constant. In particular, we know from the past work [27,28]
that for fρ ∈ Hα(X ), D(σ, λ) = O

(
σ2α + λσ−d

)
if dρX

dx ∈ L∞(X ). Taking the trade-off λ = λ(σ) = σ2α+d,
we find (12) holds.

It turns out that the error rate of D(σ, λ) plays an important role in deriving the explicit error rate
for ‖f̄D − fρ‖2

ρ. As shown in Theorem 2, sharper bounds on D(σ, λ) will lead to better learning error.
More precisely, the error estimate for D(σ, λ) dominates the choice of λ = λ(σ) in our learning scheme. To
our knowledge, in existing works, the estimates of D(σ, λ) for fρ ∈ Hα(X ) satisfy the bounds of the form
O

(
σh(α) + λσ−d

)
where h(α) is a function of the smoothness index α. Using these estimates, the best choice

in algorithm (3) should be λ = σh(α)+d that ensures a sharp bound O
(
λ

h(α)
h(α)+d

)
for D(σ, λ). The explicit

forms of h(α) can be achieved according to the behavior of the approximation error estimated from the
priori knowledge on the distribution ρ or other priori conditions on practical problems, such as condition
dρX
dx ∈ L∞(X ) mentioned above. For more estimates of D(σ, λ), one can refer to the papers [5,27–29].

In Theorem 3, the order of the learning rate (12) is obtained by requiring α > (1+s)d+ν
2(1−s) . By tracing the

proof of Theorem 3 in Section 4, we find that if α is less than the lower bound, the corresponding error for
(3) is worse than (12) and far from the optimality even in the non-distributed case (m = 1). Besides, the
upper bound (11) of m to obtain the sharp error rate is restricted by assumption (7) for eigenfunctions. We
will address the issues in the next subsection.

2.3. Optimal rates for semi-supervised learning

As shown in Theorems 1 and 3, some restrictions on the range of m and the smoothness parameter α are
required in order to obtain almost optimal rates. In this subsection, we show how to relax the restrictions
by a semi-supervised approach [3,4].

Let unlabeled data D∗ = {x∗
i }N

∗

i=1 with |D∗| = N∗ be drawn independently according to ρX . In the
divide-and-conquer strategy, D∗ are partitioned equally into m subsets, i.e.

D∗ =
m⋃
l=1

D∗
l , with |D∗

l | = n∗, n∗ = N∗

m
.

We construct a new data set D̃ =
⋃m

l=1 D̃l with |D̃| := Ñ by

D̃l = Dl

⋃
D∗

l = {(x̃i, ỹi)}ñi=1 with ñ := n + n∗

where

(x̃ , ỹ ) =
{

(xi,
ñ
nyi), if 1 ≤ i ≤ n, (xi, yi) ∈ Dl,
48i i
(x∗

i−n, 0), if n + 1 ≤ i ≤ ñ, x∗
i−n ∈ D∗

l .
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iven the new set D̃, we get the averaged output f̄D̃ from the base algorithm (2) as follows

f̄D̃ = 1
m

m∑
l=1

fD̃l
. (13)

ow we can state our last main result on improved results in a semi-supervised learning framework.

heorem 4. Define f̄D̃ by (13) with D̃. Assume that (4) and (7) hold. Suppose that the regression function 

ρ equals the restriction onto X of some function in Hα(Rd) for some α > 0 and dρX
dx ∈ L∞(X ). Let 

˜ ≥ N
2d+ν
2α+d+s+2ξ with ξ > 0. Take σ = N− 1

2α+d and λ = N−1. If

m ≤ min
{
Ñ

1
2N− 2d+ν

2(2α+d)− s
2−ξ, Ñ

2
3N− 2d+2ν

3(2α+d)− 2s
3 −ξ

}
, (14)

hen

E
[
‖f̄D̃ − fρ‖2

ρ

]
≤ CN− 2α

2α+d+ξ,

here C is a constant independent of N or m.

Compared with Theorem 3, the upper bound (14) of m is enlarged as more unlabeled data are allowed 
n distributed learning. Meanwhile, provided that the number of unlabeled data is large enough, that is 
˜ ≥ N

2d+ν
2α+d+s+2ξ with ξ > 0, the range of α that ensures the order O

(
N− 2α

2α+d + ξ
)

can be extended 

rom α > d(1+s)+ν
2(1−s) to α > 0 for any m ≥ 1 satisfying (14). In the next corollary, the improvements are 

emonstrated for Theorem 1.

orollary 1. Assume that the density function of ρX exists and is bounded away from 0 and ∞. Suppose 
hat the regression function fρ equals the restriction onto X of some function in Hα(Rd) for some α > 0. 
et Ñ ≥ N

3d
2α+d+ξ with ξ > 0. If σ = N− 1

2α+d , λ = N−1 and m ≤ Ñ
1
2N− 3d

2(2α+d)−ξ, then

E
[
‖f̄D̃ − fρ‖2

ρ

]
≤ CN− 2α

2α+d+ξ

here C is a constant independent of N or m.

. Error bounds for the bias-variance decomposition

Recall (9). Then a natural error decomposition can be derived as

E
[
‖f̄D − fρ‖2

ρ

]
≤ 2E

[
‖f̄D − fσ

λ ‖2
ρ

]
+ 2‖fσ

λ − fρ‖2
ρ ≤ 2E

[
‖f̄D − fσ

λ ‖2
ρ

]
+ 2D(σ, λ). (15)

ur key analysis is about the first term E 
[
‖f̄D − fσ

λ ‖2
ρ

]
since the approximation error D(σ, λ) has been 

tudied well in [5,28,29]. To present the analysis, we need a bias-variance decomposition as follows.

roposition 1. If |D1| = · · · = |Dm| = n with N = mn, then

E
[
‖f̄D − fσ

λ ‖2
ρ

]
≤ 1

m2

m∑
l=1

E
[
‖fDl

− fσ
λ ‖2

ρ

]
+ 1

m

m∑
l=1

‖E [fDl
− fσ

λ ]‖2
ρ . (16)

The proposition enables us to conduct our analysis by estimating the variance term E 
[
‖fDl

− fσ
λ ‖2

ρ

]
and

ias term ‖E [fDl
− fσ

λ ]‖2
ρ, respectively. The rest of this subsection is devoted to bounding them achieved 
48y special features of Gaussians and the matrix analysis approach in [31].
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3.1. Some probabilistic estimates

To bound the variance and bias terms in (16), we need some probabilistic estimates which will be proved
in the appendix. To simplify the notations in the following, denote E∗[·] as the conditional expectation
E[·|x1, x2, · · · ] and ‖ · ‖2 as the �2-norm for a sequence in �2. To make it easy to follow our presentation, we
summarize some notations that are repeatedly used in the proof in Table 1 given in Appendix.

Proposition 2. Under Assumption (4), there holds

E∗[‖fDl
‖2
Hσ

] ≤ B2/λ (17)

and

E∗[‖fD̃l
‖2
Hσ

] ≤ B̃2/λ, with B̃2 := B2Ñ/N = B2ñ/n. (18)

Next, we state some estimates derived by the matrix analysis approach. Let u be a positive integer.

Denote Φ = [φj(xi)]ni=1
u

j=1 ∈ Rn×u and Q =
(
I + λ diag

(
1
λ1
, · · · , 1

λu

)) 1
2 ∈ Ru×u.

Proposition 3. Let u ∈ N. The following probability inequality holds for any t > 0,

P

{∥∥∥∥Q−1
(

1
n

ΦTΦ − I

)
Q−1

∥∥∥∥ ≥ t

}
≤ 2u exp

{
− nt2/2

4S(σ, λ)N (σ, λ) + 2S(σ, λ)t/3

}
, (19)

and the expectation for the second moment of 
∥∥Q−1 ( 1

nΦTΦ − I
)
Q−1

∥∥ is bounded as

E

[∥∥∥∥Q−1
(

1
n

ΦTΦ − I

)
Q−1

∥∥∥∥
2
]
≤ 64

[
S(σ, λ)N (σ, λ)

n
+ 64S2(σ, λ)

n2

]
(log(u))2. (20)

Proposition 4. Let u ∈ N and a1 = (〈fσ
λ , φi〉ρ)ui=1 ∈ Ru. The following bounds hold

∥∥∥∥λQ−1diag

(
1
λ1

, · · · , 1
λu

)
a1

∥∥∥∥
2

2
≤ λ‖fσ

λ ‖2
Hσ

, (21)

E

[∥∥∥∥ 1
n
Q−1ΦTv

∥∥∥∥
2

2

]
≤ 2Tr(LKσ

)βu

(
B2/λ + ‖fσ

λ ‖2
Hσ

)
/λ (22)

with v =

⎛
⎝ ∞∑

j=u+1
〈fDl

− fσ
λ , φj〉ρφj(xi)

⎞
⎠

n

i=1

∈ Rn, βu =
∞∑

j=u+1
λj‖φj‖2

∞ and Tr(LKσ
) :=

∑
j

λj, and

E

[∥∥∥∥ 1
n
Q−1ΦTε

∥∥∥∥
2

2

]
≤ 2

[
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
/n, (23)

where ε = (fσ
λ (xi) − yi)ni=1 ∈ Rn.

3.2. Bounding the variance term
48Now we can estimate the variance term (16).
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roposition 5. (variance bound) Define {fDl
} by (2) and assume 0 < λ ≤ 1. Then we have

E
[
‖fDl

− fσ
λ ‖2

ρ

]
≤ Δ + 2λu+1

(
B2/λ + ‖fσ

λ ‖2
Hσ

)
, (24)

here u is an integer, and

Δ := 12λ‖fσ
λ ‖2

Hσ
+

24
[
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
n

+ 8
(

3Tr(LKσ
)βu/λ + u exp

{
− n/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

})(
B2/λ + ‖fσ

λ ‖2
Hσ

)
. (25)

roof. Denote E = fDl
− fσ

λ . Then there exists a coefficient sequence e = {ei}i ∈ �2 such that E can be 
xpanded as E =

∑∞
i=1 eiφi with ei = 〈E, φi〉ρ.

To prove (24), we only need to estimate E[‖e‖2
2] by the fact that

‖E‖2
ρ = ‖fDl

− fσ
λ ‖2

ρ = ‖e‖2
2 =

∑
i

|ei|2.

ote that {
√
λiφi} forms an orthonormal basis of Hσ, so we also get

‖E‖2
Hσ

= ‖fDl
− fσ

λ ‖2
Hσ

=
∞∑
i=1

e2
i

λi
. (26)

ixing the integer u, we decompose the vector e into two parts e1 = {e1, · · · , eu} and e2 = {eu+1, eu+2, · · · }. 
t implies that E[‖e‖2

2] = E[‖e1‖2
2] + E[‖e2‖2

2]. First, we consider E[‖e2‖2
2]. Since {λi} is arranged in a 

ecreasing order, by (26),

E[‖e2‖2
2] = E

[ ∞∑
i=u+1

|ei|2
]
≤ λu+1E

[ ∞∑
i=u+1

e2
i

λi

]
≤ λu+1E[‖E‖2

Hσ
]

≤ 2λu+1(E[‖fDl
‖2
Hσ

] + ‖fσ
λ ‖2

Hσ
). (27)

ext, we turn to estimate E[‖e1‖2
2]. By the definition of fDl

, we know that

1
n

n∑
i=1

(fDl
(xi) − yi)Kσ(xi, ·) + λfDl

= 0.

ecall εi = fσ
λ (xi) − yi, i = 1, · · · , n. It follows that

1
n

n∑
i=1

E(xi)Kσ(xi, ·) + 1
n

n∑
i=1

εiKσ(xi, ·) + λE = −λfσ
λ .

et fσ
λ =

∑∞
i=1 aiφi with a = {ai}i ∈ �2 in the basis {φi}i. Computing the Hσ inner products of both sides 

f the above equality with φk, we obtain that

1
n

n∑
E(xi)φk(xi) + 1

n

n∑
εiφk(xi) + λ

ek
λ

= −λ
ak
λ

. (28)

48i=1 i=1 k k
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Recall v = [v1, · · · , vn]T by vi =
∑∞

j=u+1 ejφj(xi), i = 1, · · · , n. Recall the matrix Φ = (Φij)i,j ∈ Rn×u

with Φij = (φj(xi)) for i ∈ {1, · · · , n} and j ∈ {1, · · · , u}. Recall that [E(xi)]i =
[∑u

j=1 ejφj(xi) +∑∞
j=u+1 ejφj(xi)

]
i
= Φe1 + v. Applying (28) with k = 1, · · · , u, we get that

(
1
n

ΦTΦ + λM−1
)

e1 = −λM−1a1 − 1
n

ΦTv − 1
n

ΦTε, (29)

where a1 = [a1, · · · , au]T denotes the vector formed by the first u terms of the sequence a = {al}l, ε =
[ε1, · · · , εn]T ∈ Rn, and M = diag(λ1, · · · , λu) ∈ Ru×u.

In addition, since Q =
(
I + λM−1) 1

2 , one gets

1
n

ΦTΦ + λM−1 = I + λM−1 + 1
n

ΦTΦ − I = Q

(
I + Q−1

(
1
n

ΦTΦ − I

)
Q−1

)
Q.

Putting this decomposition into (29) yields that

(
I + Q−1

(
1
n

ΦTΦ − I

)
Q−1

)
Qe1 = −λQ−1M−1a1 − 1

n
Q−1ΦTv − 1

n
Q−1ΦTε. (30)

Denote the event A :=
{∥∥Q−1 ( 1

nΦTΦ − I
)
Q−1

∥∥ ≤ 1
2
}
. If the event A happens, then

∥∥∥∥I + Q−1
(

1
n

ΦTΦ − I

)
Q−1

∥∥∥∥ ≥ 1
2

and

‖Qe1‖2
2 ≤ 4

∥∥∥∥λQ−1M−1a1 + 1
n
Q−1ΦTv + 1

n
Q−1ΦTε

∥∥∥∥
2

2

≤ 12
∥∥λQ−1M−1a1∥∥2

2 + 12
∥∥∥∥ 1
n
Q−1ΦTv

∥∥∥∥
2

2
+ 12

∥∥∥∥ 1
n
Q−1ΦTε

∥∥∥∥
2

2
. (31)

Note that ‖e1‖2
2 ≤ ‖Qe1‖2

2. So we estimate E[‖e1‖2
2] by bounding E[‖Qe1‖2

2] as

E[‖Qe1‖2
2] = E

[
I(A)‖Qe1‖2

2
]
+ E

[
I(Ac)‖Qe1‖2

2
]

= E
[
I(A)‖Qe1‖2

2
]
+ E

[
I(Ac)E∗ [‖Qe1‖2

2
] ]

:= I1 + I2,

where I(·) denotes the indicator function.
For I1, using the estimate (31), we have that

I1 ≤ 12
∥∥λQ−1M−1a1∥∥2

2 + 12E
[∥∥∥∥ 1

n
Q−1ΦTv

∥∥∥∥
2

2

]
+ 12E

[∥∥∥∥ 1
n
Q−1ΦTε

∥∥∥∥
2

2

]
.

For I2, we find

E∗
[∥∥Qe1∥∥2

]
= E∗

[
u∑

(1 + λ/λ )e2

]
= E∗

[(
u∑

e2 + λ
u∑

e2/λ

)]

482
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k k

k=1
k

k=1
k k
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I

B

A

P
w

R

T

3

P

w

≤ E∗ [(‖E‖2
ρ + λ‖E‖2

Hσ

)]
≤ (1 + λ)E∗ [‖E‖2

Hσ

]
≤ 2(1 + λ)E∗ [‖fDl

‖2
Hσ

+ ‖fσ
λ ‖2

Hσ

]
≤ 4

(
E∗ [‖fDl

‖2
Hσ

]
+ ‖fσ

λ ‖2
Hσ

)
.

t follows from (17) that

I2 ≤ 4P (Ac)
(
B2/λ + ‖fσ

λ ‖2
Hσ

)
.

ased on the above bounds for I1 and I2, we have that

E[‖Qe1‖2
2] ≤ 12

∥∥λQ−1M−1a1∥∥2
2 + 12E

[∥∥∥∥ 1
n
Q−1ΦTv

∥∥∥∥
2

2

]

+ 12E
[∥∥∥∥ 1

n
Q−1ΦTε

∥∥∥∥
2

2

]
+ 4P (Ac)

(
B2/λ + ‖fσ

λ ‖2
Hσ

)
. (32)

pplying the probability inequality (19) with t = 1
2 , one gets

P (Ac) ≤ 2u exp
{
− n/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

}
.

lugging the above probability bound for P (Ac) into (32), together with the estimates (21), (22) and (23), 
e obtain that

E[‖Qe1‖2
2] ≤ 12λ‖fσ

λ ‖2
Hσ

+ 24Tr(LKσ
)βu

(
B2/λ + ‖fσ

λ ‖2
Hσ

)
/λ +

24
[
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
n

+ 8u exp
{
− n/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

}(
B2/λ + ‖fσ

λ ‖2
Hσ

)
:= Δ. (33)

ecall the fact

E
[
‖fDl

− fσ
λ ‖2

ρ

]
= E[‖e‖2

2] ≤ E[‖Qe1‖2
2] + E[‖e2‖2

2].

his together with the estimate (27) for E[‖e2‖2
2] yields the conclusion (24).

The proof is complete. �
.3. Bounding the bias term

In this subsection we estimate the bias term in (16).

roposition 6. (bias bound) Define fDl
by (2) with Dl. Then we have

‖E [fDl
− fσ

λ ]‖2
ρ ≤ (4Tr(LKσ

)βu/λ + 2λu+1)
(
B2/λ + ‖fσ

λ ‖2
Hσ

)
+ 128

[
S(σ, λ)N (σ, λ)

n
+ 64S2(σ, λ)

n2

]
(log(u))2Δ, (34)
48here Δ and βu are defined in (22) and (25), respectively.
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Proof. Recall that E := fDl
− fσ

λ =
∑∞

i=1 eiφi. Then

‖E [fDl
− fσ

λ ]‖2
ρ =

∥∥∥∥∥E
[

u∑
i=1

eiφi

]∥∥∥∥∥
2

ρ

+

∥∥∥∥∥E
[ ∞∑
i=u+1

eiφi

]∥∥∥∥∥
2

ρ

=
∥∥Ee1∥∥2

2 +
∥∥Ee2∥∥2

2 . (35)

The second term on the right-hand side of (35) can be bounded by (17) as

∥∥Ee2∥∥2
2 ≤ E

[
‖e2‖2

2
]
≤ λu+1E

[ ∞∑
i=u+1

e2
i /λi

]

≤ λu+1E
[
‖fDl

− fσ
λ ‖2

Hσ

]
≤ 2λu+1(B2/λ + ‖fσ

λ ‖2
Hσ

). (36)

Hence, the key in our estimate is to bound the first term 
∥∥Ee1

∥∥2
2 on the right-hand side of (35). Notice that

the expression (30) can be rewritten as

Qe1 = −λQ−1M−1a1 − 1
n
Q−1ΦTv − 1

n
Q−1ΦTε−Q−1

(
1
n

ΦTΦ − I

)
e1.

By the definition of fσ
λ , we know that

E [(fσ
λ (x) − y)Kσ(x, ·)] = LKσ

(fσ
λ − fρ) = −λfσ

λ .

Taking the RKHS inner products of both sides of the above equality with the basis φk, we see

E [(fσ
λ (x) − y)φk(x)] = −λak

λk
.

Recalling that εi = fσ
λ (xi) − yi, then

1
n

n∑
i=1

E [εiφk(xi)] = −λak
λk

.

Applying the above relation for k = 1, · · · , u, we get

E

[
1
n

ΦTε

]
= −λM−1a1.

As a consequence, by Jensen’s inequality and 
∥∥Ee1

∥∥2
2 ≤

∥∥EQe1
∥∥2

2, we obtain that

∥∥Ee1∥∥2
2 ≤

∥∥∥∥E
[
λQ−1M−1a1 + 1

n
Q−1ΦTv + 1

n
Q−1ΦTε + Q−1

(
1
n

ΦTΦ − I

)
e1

]∥∥∥∥
2

2

=
∥∥∥∥E

[
1
n
Q−1ΦTv + Q−1

(
1
n

ΦTΦ − I

)
e1

]∥∥∥∥
2

2

≤ 2
∥∥∥∥E

[
1
n
Q−1ΦTv

]∥∥∥∥
2

2
+ 2

∥∥∥∥E
[
Q−1

(
1
n

ΦTΦ − I

)
e1

]∥∥∥∥
2

2

≤ 2E
[∥∥∥∥ 1

n
Q−1ΦTv

∥∥∥∥
2
]

+ 2
∥∥∥∥E

[
Q−1

(
1
n

ΦTΦ − I

)
e1

]∥∥∥∥
2

. (37)

482 2
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F

C

T

T
c

4

fi

P

w
U

w

P

or the second term 
∥∥E [

Q−1 ( 1
nΦTΦ − I

)
e1]∥∥2

2 above, by Cauchy-Schwarz inequality, we have

∥∥∥∥E
[
Q−1

(
1
n

ΦTΦ − I

)
e1

]∥∥∥∥
2

2
≤

(
E

[∥∥∥∥Q−1
(

1
n

ΦTΦ − I

)
e1

∥∥∥∥
2

])2

≤ E

[∥∥∥∥Q−1
(

1
n

ΦTΦ − I

)
Q−1

∥∥∥∥
2
]
E
[∥∥Qe1∥∥2

2

]
.

ombining this with (20) implies

∥∥∥∥E
[
Q−1

(
1
n

ΦTΦ − I

)
e1

]∥∥∥∥
2

2
≤ 64

[
S(σ, λ)N (σ, λ)

n
+ 64S2(σ, λ)

n2

]
(log(u))2E

[∥∥Qe1∥∥2
2

]
.

his together with (37) and (36) yields

‖E [fDl
− fσ

λ ]‖2
ρ ≤ 2E

[∥∥∥∥ 1
n
Q−1ΦTv

∥∥∥∥
2

2

]

+ 128
[
S(σ, λ)N (σ, λ)

n
+ 64S2(σ, λ)

n2

]
(log(u))2E

[∥∥Qe1∥∥2
2

]
+ 2λu+1(B2/λ + ‖fσ

λ ‖2
Hσ

). (38)

he term E 
[∥∥Qe1

∥∥2
2

]
can be bounded by (33). Finally, we put the estimate (22) into (38) to draw our 

onclusion (35). �
. Proofs of main results in supervised learning

This section is devoted to proving our main results stated in Subsections 2.1 and 2.2. To this end, we 
rst estimate the quantities S(σ, λ), N (σ, λ), βu and Tr(LKσ

) as follows.

roposition 7. For p ∈ (0, 1), ε > 0, we have

N (σ, λ) ≤ C2σ
−(1+ε)dλ−p, (39)

Tr(LKσ
) ≤ C3σ

− (1+ε)d
p , (40)

here the constants C2 and C3 are independent of λ or σ (given explicitly in the proof).
nder assumption (7), for 0 < λ ≤ 1, σ > 0 and u ∈ N,

S(σ, λ) ≤ C4λ
−(p+s)σ−(1+ε)d−ν , (41)

βu ≤ C5σ
− (1−s)(1+ε)d+pν

p u− 1−p−s
p , (42)

here the constants C4, C5 are independent of λ, σ or u (given explicitly in the proof).

roof. For N (σ, λ) and Tr(LKσ
), we calculate by using (6)

N (σ, λ) =
∑
i≥1

1
1 + λ/λi

=
∑
i≥1

λi

λi + λ
≤

∑
i≥1

4c2p,εσ
− (1+ε)d

p i−
1
p

4c2p,εσ
− (1+ε)d

p i−
1
p + λ

≤
∞∫ 4c2p,εσ

− (1+ε)d
p t−

1
p

(1+ε)d 1 dt ≤
(
4c2p,εσ

− (1+ε)d
p

)p

λ−p

∞∫ 1
1 dt
48
0 4c2p,εσ

− p t− p + λ 0
1 + t p
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≤
(4c2p,ε)p

1 − p
σ−(1+ε)dλ−p := C2σ

−(1+ε)dλ−p,

and

Tr(LKσ
) ≤ 4c2p,εσ

− (1+ε)d
p

∑
i≥1

i−
1
p ≤

4c2p,ε
1 − p

σ− (1+ε)d
p := C3σ

− (1+ε)d
p .

For S(σ, λ) and βu, we get by assumption (7) and (6),

S(σ, λ) =
∞∑
i=1

‖φi‖2
∞

1 + λ/λi
≤ C1σ

−ν
∞∑
i=1

λ−s
i

1 + λ/λi
= C1σ

−νλ−s
∞∑
i=1

(λ/λi)s

1 + λ/λi

≤ C1σ
−νλ−s

∞∑
i=1

1
(1 + λ/λi)1−s

≤ C1σ
−νλ−s

∞∑
i=1

1

(1 + 4−1c−2
p,εσ

(1+ε)d
p λi

1
p )1−s

≤ C1σ
−νλ−s

∞∫
0

1

(1 + 4−1c−2
p,εσ

(1+ε)d
p λt

1
p )1−s

dt

= C1σ
−νλ−s

(
4pc2pp,εσ−(1+ε)dλ−p

) ∞∫
0

1(
1 + t

1
p

)1−s dt

≤ C14pc2pp,ε
(

1 − s

1 − p− s

)
λ−(p+s)σ−(1+ε)d−ν := C4λ

−(p+s)σ−(1+ε)d−ν ,

and for u ∈ N,

βu ≤ C1σ
−ν

∞∑
j=u+1

λ1−s
j ≤ C141−sc2(1−s)

p,ε σ− (1−s)(1+ε)d+pν
p

∞∑
j=u+1

i−
1−s
p

≤ C141−sc2(1−s)
p,ε

(
p

1 − p− s

)
σ− (1−s)(1+ε)d+pν

p u− 1−p−s
p

:= C5σ
− (1−s)(1+ε)d+pν

p u− 1−p−s
p .

The proof is complete. �
Proof of Theorem 3. By checking the proof of Theorem 6 in [28] when dρX

dx ∈ L∞, we know that
D(σ, λ) ≤ c(σ2α + λσ−d) for some constant c independent of σ and λ. The choice of σ = N− 1

2α+d and
λ = N−1 yields that D(σ, λ) ≤ 2cN− 2α

2α+d and ‖fσ
λ ‖2

Hσ
≤ D(σ, λ)/λ ≤ 2cN

d
2α+d . We first estimate the bias

bound (34).
Take the integer u = N t with t being the smallest integer greater than or equal to
(2−s)(1+ε)d+p(ν+2α)+2p(2α+d)

(2α+d)(1−p−s) , then by (6), (40) and (42),

(4Tr(LKσ
)βu/λ + 2λu+1)

(
B2/λ + ‖fσ

λ ‖2
Hσ

)
≤ C6N

− 2α
2α+d

with C6 = 16(C3C5 + 2c2p,ε)(B2 + 2c).
We proceed to the quantity Δ defined in (25). With (41) and (40), we also see that

−2(1+ε)d−ν −2p−s 2d+ν
2α+d+s 2εd

2α+d+2p

484S(σ, λ)N (σ, λ) + S(σ, λ)/3 ≤ 8C2C4σ λ ≤ 8C2C4N N .
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T

D
T

I

S

M

T

U

hus,

u exp
{
− n/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

}(
B2/λ + ‖fσ

λ ‖2
Hσ

)

≤ (B2 + 2c)N t+1 exp
{
− N/(8m)

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

}

≤ (B2 + 2c)N t+1 exp
{
−N1− 2d+ν

2α+d−sN− 2εd
2α+d−2p

64C2C4m

}
.

enote ξ := εd
2α+d + p and take the values of p and ε to be small enough such that ξ < 1

2

(
1 − 2d+ν

2α+d − s
)
. 

his together with the restriction (11) of m yields that

exp
{
−N1− 2d+ν

2α+d−sN− 2εd
2α+d−2p

64C2C4m

}
= exp

{
−N1− 2d+ν

2α+d−sN−2ξ

64C2C4m

}
≤ exp

⎧⎨
⎩−N

1
2

(
1− 2d+ν

2α+d−s
)
−ξ

64C2C4

⎫⎬
⎭ .

t implies that we can find a constant C7 (depending on α, d, s, ν, p, ε) independent of N such that

u exp
{
− n/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

}(
B2/λ + ‖fσ

λ ‖2
Hσ

)

≤ (B2 + 2c)N t+1 exp

⎧⎨
⎩−N

1
2

(
1− 2d+ν

2α+d−s
)
−ξ

64C2C4

⎫⎬
⎭ ≤ C7mN− 2α

2α+d .

o, we get that

(
3Tr(LKσ

)βu/λ + u exp
{
− n/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

})(
B2/λ + ‖fσ

λ ‖2
Hσ

)
≤ (C6 + C7)mN− 2α

2α+d .

eanwhile,

24
[
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
n

=
24m

[
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
N

≤ 24m
(
2cC4N

− 2α
2α+d+s+ d+ν

2α+d−1Np+ εd
2α+d + 4B2C2N

− 2α
2α+dNp+ εd

2α+d

)

≤ (48cC4 + 96B2C2)mN
− 2α

2α+d+ξ+max
{

d+ν
2α+d+s−1,0

}
.

hen, the quantity Δ in (25) is bounded as

Δ ≤ m

[
12D(σ, λ)

m
+ (48cC4 + 96B2C2)N

− 2α
2α+d+ξ+max

{
d+ν
2α+d+s−1,0

}
+ 8(C6 + C7)N− 2α

2α+d

]

≤
(
24c + 48cC4 + 96B2C2 + 8(C6 + C7)

)
mN

− 2α
2α+d+ξ+max

{
d+ν
2α+d+s−1,0

}

:= C8mN
− 2α

2α+d+ξ+max
{

d+ν
2α+d+s−1,0

}
. (43)
48sing (41), (39) and the restriction (11) again, we have
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[
S(σ, λ)N (σ, λ)

n
+ 64S2(σ, λ)

n2

]
(log u)2

≤ t2
[
C2C4mσ−2(1+ε)d−νλ−2p−s

N
+ 64C2

2m
2σ−2(1+ε)d−2νλ−2p−2s

N2

]
(logN)2

= t2

[
C2C4mN

2(1+ε)d+ν
2α+d +2p+s

N
+ 64C2

2m
2N

2(1+ε)d+2ν
2α+d +2p+2s

N2

]
(logN)2

= t2

[
C2C4mN

2d+ν
2α+d+s+2ξ

N
+ 64C2

2m
2N

2d+2ν
2α+d +2s+2ξ

N2

]
(logN)2

≤ (C2C4 + 64C2
2 )t2/m.

Putting the above bound and (43) into the bound (34), we have that

‖E [fDl
− fσ

λ ]‖2
ρ ≤ C6N

− 2α
2α+d + 128(C2C4 + 64C2

2 )C8t
2N

− 2α
2α+d+ξ+max

{
d+ν
2α+d+s−1,0

}

≤
(
C6 + 128(C2C4 + 64C2

2 )C8t
2)N− 2α

2α+d+ξ+min
{

d+ν
2α+d+s−1,0

}
. (44)

Also, collecting the above analysis, with the bound (24), we have that

E
[
‖fDl

− fσ
λ ‖2

ρ

]
≤ (C8 + C6)mN

− 2α
2α+d+ξ+max

{
d+ν
2α+d+s−1,0

}
. (45)

Combining Proposition 1 with (44) and (45), we get that

E
[
‖f̄D − fσ

λ ‖2
ρ

]
≤

(
2C6 + C8 + 128(C2C4 + 64C2

2 )C8t
2)N− 2α

2α+d+ξ+max
{

d+ν
2α+d+s−1,0

}
.

This together with (15) yields our statement of Theorem 3 by taking

C = 2(2C6 + C8 + 128(C2C4 + 64C2
2 )C8t

2) + 4c.

The proof is complete. �
Proof of Theorem 2. Following the above proof, we apply the bounds (24) and (34) to prove the statement
in Theorem 2. We first consider the variance bound (24). The restriction N

mS(σ,λ)N (σ,λ) ≥ C0N
η for η > 0

implies that exp
{
− n/8

4S(σ,λ)N (σ,λ)+S(σ,λ)/3

}
= exp

{
− N/(8m)

4S(σ,λ)N (σ,λ)+S(σ,λ)/3

}
= O (exp{−C ′Nη}) for some

constant C ′ > 0 (independent of N). We also note that the quantities parameterized by u on the right-hand
side of (24) decrease as the value of u increases. We can choose u = N t with t being the smallest integer

greater than or equal to 
log

(
σ(p+s−2)(1+ε)dλp((p+s−2))np/Dp(σ,λ)

)
(1−p−s) logN . So, the leading term of the bound (24) is

12λ‖fσ
λ ‖2

Hσ
+

24
[
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
n

.

By the similar idea, we can also get that the leading term of (34) is

128
[
S(σ, λ)N (σ, λ)

n
+ 64S2(σ, λ)

n2

]
(logN)2

{
12λ‖fσ

λ ‖2
Hσ

+
24

[
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
n

}
.

48Collecting the above analysis, we get
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w
s

l

L
n

w

P
0

w
i
h

S
w
s

y

w
F
t

N
(

B
X
f

E
[
‖f̄D − fσ

λ ‖2
ρ

]
≤ C

{[
S(σ, λ)N (σ, λ)

n
+ S2(σ, λ)

n2

]
(logN)2 + 1

m

}{
λ‖fσ

λ ‖2
Hσ

+ [S(σ, λ)D(σ, λ) + N (σ, λ)]
n

}

here C is a constant independent of N or m. This bound with (15) and λ‖fσ
λ ‖2

Hσ
≤ D(σ, λ) yields our 

tatement in Theorem 2. �
Next, we prove Theorem 1 by Theorem 3. To check assumption (7) in Theorem 3, we need the following 

emma.

emma 3. Assume that ρX has a probability density function away from 0 and ∞. Let {(λi, φi)}i≥1 be the 
ormalized eigenpairs of the operator LKσ

: L2
ρX → L2

ρX . Then for all i ≥ 1 and any r ∈ N, there holds

‖φi‖2
∞ ≤ C ′

1σ
−dλ

− d
2r

i , (46)

here C ′
1 is a constant independent of λi, σ (to be given in the proof).

roof. When ρX is the normalized uniform distribution on X , we know by [1] (page 230) that for all 
 < s < 1,

[L2
ρX ,W

r
2 (X )]s,1 = Bsr

2,1(X )

here W r
2 (X ) denotes the Sobolev space of integer order, Bsr

2,1(X ) a Besov space and [L2
ρX , W

r
2 (X )]s,1 an 

nterpolation space between L2
ρX and W r

2 (X ). It implies that for some constant c′ depending on r, d, s, there 
olds for any f ∈ W r

2 (X )

‖f‖Bsr
2,1(X ) ≤ c′‖f‖sW r

2 (X )‖f‖1−s
L2

ρX
. (47)

ince the Gaussian kernel Kσ is C∞ and X is compact, Hσ can be embedded into the Sobolev space W r
2 (X )

ith an arbitrarily fixed r ∈ N. It implies that the relation (47) holds for any f ∈ Hσ. Moreover, take 
 = d

2r , Bsr
2,1(X ) can be continuously embedded into �∞(X ) ([1], Theorem 7.34). This together with (47)

ields that for any f ∈ Hσ,

‖f‖∞ ≤ c‖f‖
d
2r
W r

2 (X )‖f‖
1− d

2r
L2

ρX
(48)

here c is a constant depending only on r, d.
urthermore, by Theorem 4.48 in [20], we know that there exists a constant cr,d,X depending on r, d and 
he volume of X such that for any f ∈ Hσ,

‖f‖W r
2 (X ) ≤ cr,d,Xσ−r‖f‖Hσ

. (49)

ote that ‖φi‖L2
ρX

= 1 for i ≥ 1 and {
√
λiφi}i forms an orthonormal basis in Hσ. Putting the above bounds 

48) and (49) together with f = φi, we have

‖φi‖2
∞ ≤ c2

(
‖φi‖2

W r
2 (X )

) d
2r ≤ c2c2r,d,Xσ−d

(
‖φi‖2

Hσ

) d
2r = c2c2r,d,Xσ−dλ

− d
2r

i , ∀ i ≥ 1.

y taking C ′
1 := c2c2r,d,X , we can get the bound (46) when ρX is the normalized uniform distribution on 

. Note that the above proof is also applicable to a distribution whose probability density function is away 
rom 0 and ∞.
48The proof is complete. �
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We are now in a position to prove Theorem 1.

Proof of Theorem 1. According to Lemma 3, we know when ρX has a probability density function away
from 0 and ∞, assumption (7) holds with s = d

2r and ν = d for any r ∈ N. Here let r be large enough. Then
we can get the statement of Theorem 1 by applying Theorem 3.

The proof is complete. �
5. Proofs in semi-supervised learning

This section is devoted to proving the main results stated in Subsection 2.3, which shows the improved
performance of distributed regularized least squares using only unlabeled data. According to (15) and Propo-
sition 1 again, we need to estimate the bias bound 

∥∥E [
fD̃l

− fσ
λ

]∥∥2
ρ

and the variance bound E 
[∥∥fD̃l

− fσ
λ

∥∥2
ρ

]
with the semi-supervised data set D̃l. At a high-level, the proofs in semi-supervised learning are similar to
those in supervised learning. So, we only outline some necessary proof procedures and estimates that are
used in the proofs.

As in supervised learning, we denote Ẽ = fD̃l
− fσ

λ = Ẽ =
∑∞

i=1 ẽiφ with ẽ = {ẽi}i ∈ �2. Fix an
integer u ∈ N to be determined, and decompose the vector ẽ into two parts ẽ1 = {ẽ1, · · · , ̃eu} and ẽ2 =
{ẽu+1, ̃eu+2, · · · }. It implies that

E
[∥∥fD̃l

− fσ
λ

∥∥2
ρ

]
= E[‖ẽ‖2

2] = E[‖ẽ1‖2
2] + E[‖ẽ2‖2

2].

Define the vector ṽ = [ṽ1, · · · , vn]T by ṽi =
∑∞

j=u+1 ẽjφj(xi), i = 1, · · · , ̃n. Let the matrix Φ̃ = (Φ̃ij)i,j ∈
Rñ×u with Φ̃ij = (φj(xi)) for i ∈ {1, · · · , ̃n} and j ∈ {1, · · · , u}. Denote ε̃i = fσ

λ (x̃i) − ỹi, i = 1, · · · , ̃n and
ε̃ = [ε̃1, · · · , ̃εñ]T .
By tracing the proof in Proposition 5, we know from (27) and (32) that

E[‖ẽ2‖2
2] ≤ 2λu+1(B̃2/λ + ‖fσ

λ ‖2
Hσ

) (50)

and

E[‖ẽ1‖2
2] ≤ E[‖Qẽ1‖2

2] ≤ 12
∥∥λQ−1M−1a1∥∥2

2 + 12E
[∥∥∥∥ 1

ñ
Q−1Φ̃Tṽ

∥∥∥∥
2

2

]

+ 12E
[∥∥∥∥ 1

ñ
Q−1Φ̃Tε̃

∥∥∥∥
2

2

]
+ 4P

(
Ãc

) (
B̃2/λ + ‖fσ

λ ‖2
Hσ

)
, (51)

where Ã :=
{∥∥Q−1 ( 1

ñ Φ̃TΦ̃ − I
)
Q−1

∥∥ ≤ 1
2
}
.

We now present a proposition regarding the terms on the right-hand side of (51).

Proposition 8. The following bounds hold

P
(
Ãc

)
≤ 2u exp

{
− ñ/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

}
, (52)

E

[∥∥∥∥ 1
ñ
Q−1Φ̃Tṽ

∥∥∥∥
2

2

]
≤ 2Tr(LKσ

)βu

(
B̃2/λ + ‖fσ

λ ‖2
Hσ

)
/λ, (53)
48and
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P
o
S

W

W

S

T

P

w

E

[∥∥∥∥ 1
ñ
Q−1Φ̃Tε̃

∥∥∥∥
2

2

]
≤ 2

ñ

[
S(σ, λ)D(σ, λ) + 2B2N (σ, λ)

]
+ 4B2N (σ, λ)

n
. (54)

roof. The bounds (52) and (53) can be obtained respectively by following the bound of P (Ac) in the proof 
f Proposition 5 and the estimate in (22). But for bound (54), we should notice that ε̃i �= εi when 1 ≤ i ≤ n. 
o, we cannot derive (54) directly by the proof of (23). Note by (63) in the appendix that

E

[∥∥∥∥ 1
ñ
Q−1Φ̃Tε̃

∥∥∥∥
2

2

]
= 1

ñ2

u∑
k=1

ñ∑
i=1

E[φ2
k(x̃i)ε̃2i ]

1 + λ/λk
.

hen 1 ≤ i ≤ n, we have

E[φ2
k(x̃i)ε̃2i ]

1 + λ/λk
≤ 2

⎛
⎝E

[
φ2
k(x̃i)(fσ

λ (x̃i) − fρ(x̃i))2
]

1 + λ/λk
+

E
[
φ2
k(xi)(fρ(x̃i) − ỹi)2

]
1 + λ/λk

⎞
⎠

≤ 2

⎛
⎝‖φk‖2

∞E
[
(fσ

λ (x̃i) − fρ(x̃i))2
]

1 + λ/λk
+

2E
[
φ2
k(x̃i)E∗ [|fρ(x̃i)|2 + |ỹi|2

] ]
1 + λ/λk

⎞
⎠

≤ 2

⎛
⎝‖φk‖2

∞E
[
(fσ

λ (x̃i) − fρ(x̃i))2
]

1 + λ/λk
+

2B2 + 2E
[
φ2
k(x̃i)E∗ [|ỹi|2] ]

1 + λ/λk

⎞
⎠

≤ 2
(
‖φk‖2

∞D(σ, λ)
1 + λ/λk

+ 2B2(1 + ñ2/n2)
1 + λ/λk

)
.

hen n + 1 ≤ i ≤ ñ, by ỹi = 0, we have that

E[φ2
k(x̃i)ε̃2i ]

1 + λ/λk
≤ 2

(
‖φk‖2

∞D(σ, λ)
1 + λ/λk

+ 2B2

1 + λ/λk

)
.

o,

E

[∥∥∥∥ 1
ñ
Q−1Φ̃Tε̃

∥∥∥∥
2

2

]
≤ 2

ñ2

u∑
k=1

ñ∑
i=1

[
‖φk‖2

∞D(σ, λ)
1 + λ/λk

+ 2B2

1 + λ/λk

]
+ 2

ñ2

u∑
k=1

n∑
i=1

(
2B2ñ2/n2

1 + λ/λk

)

= 2
ñ

[
S(σ, λ)D(σ, λ) + 2B2N (σ, λ)

]
+ 2

n2

u∑
k=1

n∑
i=1

(
2B2

1 + λ/λk

)

= 2
ñ

[
S(σ, λ)D(σ, λ) + 2B2N (σ, λ)

]
+ 4B2N (σ, λ)

n
.

he proof is complete. �
With this proposition in place, we can get the variance bound in semi-supervised learning.

roposition 9. Define fD̃l
by (2) with D̃l. Then we have

E
[∥∥fD̃l

− fσ
λ

∥∥2
ρ

]
≤ Δ̃ + 2λu+1

[
ñB2/(nλ) + ‖fσ

λ ‖2
Hσ

]
, (55)
48here u is an integer, and
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Δ̃ := 12λ‖fσ
λ ‖2

Hσ
+

24
[
S(σ, λ)D(σ, λ) + 2B2N (σ, λ)

]
ñ

+ 48B2N (σ, λ)
n

+ 8
(

3Tr(LKσ
)βu/λ + u exp

{
− ñ/8

4S(σ, λ)N (σ, λ) + S(σ, λ)/3

})[
ñB2/(nλ) + ‖fσ

λ ‖2
Hσ

]
. (56)

Proof. Notice that E 
[∥∥∥fD̃l,λ

− fσ
λ

∥∥∥2

ρ

]
≤ E[‖Qẽ1‖2

2] + E[‖ẽ2‖2
2]. Combining (50), (51) with Proposition 8

and (21) yields the conclusion (55). �
Next we get the bias bound in semi-supervised learning.

Proposition 10. Define f̄D̃l
by (2) with D̃l. Then we have

∥∥E [
fD̃l

− fσ
λ

]∥∥2
ρ
≤ (4Tr(LKσ

)βu/λ + 2λu+1)
[
ñB2/(nλ) + ‖fσ

λ ‖2
Hσ

]
+ 128

[
S(σ, λ)N (σ, λ)

ñ
+ 64S2(σ, λ)

ñ2

]
(log(u))2Δ̃, (57)

where Δ̃ is defined in Proposition 9.

Proof. Notice that

1
ñ

ñ∑
i=1

E [ε̃iφk(x̃i)] = E [(fσ
λ (x) − y)φk(x)] = −λak

λk
.

Then we get

E

[
1
ñ

Φ̃T ε̃

]
= −λM−1a1.

Following the same proof procedures as those in the proof of Proposition 6, we have by (38)

∥∥E [
fD̃l

− fσ
λ

]∥∥2
ρ
≤ 2E

[∥∥∥∥ 1
n
Q−1Φ̃Tṽ

∥∥∥∥
2

2

]

+ 128
[
S(σ, λ)N (σ, λ)

ñ
+ 64S2(σ, λ)

ñ2

]
(log(u))2E

[∥∥Qẽ1∥∥2
2

]
+ 2λu+1(B̃2/λ + ‖fσ

λ ‖2
Hσ

).

This together with (51) and (53) yields the conclusion. �
Based on Proposition 10 and Proposition 9, we now prove Theorem 4.

Proof of Theorem 4. Here we choose u = Ñ t with t being the smallest integer greater than or equal to
(2−s)(1+ε)d+p(ν+2α)+(1+p+s)(2α+d)

(2α+d)(1−p−s) . The remainder of the proof is very similar to that of Theorem 3. We
omit it for simplicity. This completes the proof. �
Proof of Corollary 1. Note by (46) that assumption (7) holds with ν = d and an arbitrarily small s > 0 in
48this case. Then the statement of Corollary 1 can be derived directly from Theorem 4. �
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L
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P
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ppendix A. Useful Lemmas

In this appendix, we give some useful lemmas in proving our main results. The first one is regarding the 
ini-max optimal rate in the regression setting, which can be found as Theorem 2.2 in [25] and Theorem 

3 in [21].

emma 4. Let Θ be a subset of L2
ρX such that all f ∈ Θ is uniformly bounded. If for some η ∈ (0, 1), the 

ntropy numbers satisfy

ei(Θ, L2
ρX ) = O

(
i−

1
η

)
,

hen there exist constants c0 > 0, c1, c2 > 0 and a sequence {δn} with δn ∼ n− 2
2+η such that when fρ ∈ Θ, 

> 0 and n ≥ 1, there holds

P
{
D : ‖fD − fρ‖2

L2
ρX

≥ δ
}
≥

{
c0, if δ ≤ δn,

c1 exp{−c2δn}, if δ ≥ δn,

here fD is a prediction function based on a given data set D.

The second lemma found in [26] provides a matrix concentration inequality that is used to bound spectral 
orms of sums of independent, random, symmetric matrices.

emma 5. Consider a finite sequence {Xk}k of independent, random, symmetric matrices with dimension 
. Assume that

E[Xk] = 0, ‖Xk‖ ≤ R almost surely,

nd the norm of the total variance Σ2 :=

∥∥∥∥∥
∑
k

E
[
X2

k

]∥∥∥∥∥ < ∞, then the following inequality holds for every 

 > 0,

P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ ≥ t

}
≤ 2u exp

{
− t2/2

Σ2 + Rt/3

}

≤

⎧⎨
⎩2u exp

{
− t2

8Σ2

}
, for t ≤ Σ2/R,

2u exp
{
− t

8R
}
, for t ≥ Σ2/R.

(58)

With the help of the matrix concentration inequality above, we can develop an upper bound for the 
xpectation of the second moment ‖

∑
k Xk‖2, that is, if u ≥ 4e,

E

⎡
⎣
∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥
2
⎤
⎦ ≤ 16(Σ2 + 64R2)(log(u))2. (59)

roof of the expectation estimate (59). Using the formula E[ξ] =
∫∞
0 P{ξ > t}dt with ξ = ‖

∑
k Xk‖2, we 
48et by (58) that
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E

⎡
⎣
∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥
2
⎤
⎦ =

∞∫
0

P

⎧⎨
⎩
∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥
2

> t

⎫⎬
⎭ dt =

∞∫
0

P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt

=

⎛
⎜⎜⎜⎝

∫
{
t
1
2 ≤Σ2/R

}
+

∫
{
t
1
2 ≥Σ2/R

}

⎞
⎟⎟⎟⎠P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt

:= I1 + I2.

First, we estimate I1 as

I1 =
∫

{
t
1
2 ≤Σ2/R

}
P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt

=
∫

{
8Σ2 log(2u)≤t≤(Σ2/R)2

}
P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt +

∫
{t<8Σ2 log(2u)}

P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt

≤
∫

{
8Σ2 log(2u)≤t≤(Σ2/R)2

}
P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt + 8Σ2 log(2u).

Obviously, if 8Σ2 log(2u) ≥
(
Σ2/R

)2, we have I1 ≤ 8Σ2 log(2u). Otherwise,

∫
{
8Σ2 log(2u)≤t≤(Σ2/R)2

}
P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt ≤ 2u

∫
{
8Σ2 log(2u)≤t≤(Σ2/R)2

}
exp

{
− t

8Σ2

}
dt

≤ 2u
∫

{t≥8Σ2 log(2u)}

exp
{
− t

8Σ2

}
dt = 8Σ2.

It follows that

I1 ≤ 8Σ2 log(2u) + 8Σ2 = 8Σ2 log(2eu). (60)

For I2, we have

I2 =
∫

{
t
1
2 ≥Σ2/R

}
P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt

≤
∫

{
t
1
2 ≥Σ2/R,t

1
2 ≥16R log(4u)

}
P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt +

∫
{
t
1
2 ≤16R log(4u)

}
P

{∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥ > t
1
2

}
dt

≤ 2u
∫

{
t
1
2 ≥Σ2/R,t

1
2 ≥16R log(4u)

}
exp

{
− t

1
2

8R

}
dt +

(
16R log(4u)

)2
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B

T

A

P

T

A

S

P

W

≤ 2u
∫

{
t
1
2 ≥16R log(4u)

}
exp

{
− t

1
2

8R

}
dt +

(
16R log(4u)

)2

= 4u
∫

{t≥16R log(4u)}

exp
{
− t

8R

}
tdt +

(
16R log(4u)

)2

= 4u
[
−8Rte−

t
8R

]∞
16R log(4u)

+ 4u · 8R
∞∫

16R log(4u)

e−
t

8R dt +
(
16R log(4u)

)2

≤ (16R)2 +
(
16R log(4u)

)2
≤

(
16R log(4eu)

)2
. (61)

ased on the above estimates (60) and (61) for I1 and I2, by u ≥ 4e, we get

E

⎡
⎣
∥∥∥∥∥
∑
k

Xk

∥∥∥∥∥
2
⎤
⎦ ≤ 8Σ2 log(2eu) +

(
16R log(4eu)

)2
≤ (16Σ2) log(u) + (32R)2(log(u))2

≤ 16(Σ2 + 64R2)(log(u))2.

hen the proof is complete. �
ppendix B. Proofs of estimates in Subsection 3.1

In this appendix we prove estimates stated in subsection 3.1.

roof of Proposition 2. Note that

λ‖fDl
‖2
Hσ

≤ 1
|Dl|

∑
(x,y)∈Dl

(fDl
(x) − y)2 + λ‖fDl

‖2
Hσ

≤ 1
|Dl|

∑
(x,y)∈Dl

y2.

aking the conditional expectation E∗ on the both sides of the above inequality, by (4), we have

E∗[λ‖fDl
‖2
Hσ

] ≤ E∗[y2] ≤ B2.

lso,

E∗ [λ‖fD̃l
‖2
Hσ

]
≤ E∗

⎡
⎣ 1
|D̃l|

∑
(x̃,ỹ)∈D̃l

ỹ2

⎤
⎦ ≤ Ñ

N
B2.

o the stated estimates follow. The proof is complete. �
roof of Proposition 3. For each 1 ≤ i ≤ n, we denote πi = (φ1(xi), · · · , φu(xi))T ∈ Ru. Then we get that

Q−1
(

1
n

ΦTΦ − I

)
Q−1 = 1

n

n∑
i=1

Q−1 (πiπ
T
i − I

)
Q−1.

e derive the bound (19) by Lemma 5. Let the random matrix sequence {Xi}ni=1 be

1 ( )

48Xi :=

n
Q−1 πiπ

T
i − I Q−1, 1 ≤ i ≤ n.
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It is easy to check that {Xi}ni=1 ⊂ Ru×u are independent, symmetric matrixes and E[Xi] = 0, 1 ≤ i ≤ n.
Since πiπ

T
i is rank one and Q is diagonal, we have that

1
n

∥∥Q−1πiπ
T
i Q

−1∥∥ = 1
n
πT
i

(
I + λM−1)πi = 1

n

u∑
k=1

φk(xi)2

1 + λ/λk
.

It tells us that

‖Xi‖ ≤ 1
n

(∥∥Q−1πiπ
T
i Q

−1∥∥ + 1
1 + λ/λ1

)
≤ 2

n

u∑
k=1

φk(xi)2

1 + λ/λk
≤ 2

n
S(σ, λ) := R.

We also find that for each 1 ≤ i ≤ n,

E
[
‖X2

i ‖
]
≤ E

[
‖Xi‖2] ≤ 4

n2E

⎡
⎣( u∑

k=1

φk(xi)2

1 + λ/λk

)2
⎤
⎦ ≤ 4

n2

∞∑
k=1

‖φk‖2
∞

1 + λ/λk
E

[
u∑

k=1

φk(xi)2

1 + λ/λk

]

= 4
n2

∞∑
k=1

‖φk‖2
∞

1 + λ/λk

(
u∑

k=1

1
1 + λ/λk

)
≤ 4

n2S(σ, λ)N (σ, λ).

As a consequence, the total variance is bounded by

∥∥∥∥∥
n∑

i=1
E
[
X2

i

]∥∥∥∥∥ ≤
n∑

i=1

∥∥E [
X2

i

]∥∥ ≤
n∑

i=1
E
[
‖X2

i ‖
]
≤ 4

n
S(σ, λ)N (σ, λ) := Σ2.

Using the first inequality of (58), we can get the conclusion (19). �
Proof of Proposition 4. The first bound (21) can be found in [31]. We now derive the second inequality
(22). Observe that

1
n
Q−1ΦTv = (M + λI)−

1
2

(
1
n
M1/2ΦTv

)
.

Since the matrix (M + λI)−
1
2 is positive definite, its operator norm is bounded as

∥∥∥(M + λI)−
1
2

∥∥∥ = sup
1≤j≤u

1√
λj + λ

≤ 1√
λ
. (62)

For the estimate of 
∥∥ 1
nM

1/2ΦTv
∥∥2

2, let Φk = (φk(x1), · · · , φk(xn))T ∈ Rn, then

∥∥∥∥ 1
n
M1/2ΦTv

∥∥∥∥
2

2
= 1

n2

u∑
k=1

λk

(
ΦT

k v
)2 ≤ 1

n2

u∑
k=1

λk ‖Φk‖2
2 ‖v‖

2
2 .

Notice that

E
[
‖Φk‖2

2 ‖v‖
2
2

]
= E

[
‖Φk‖2

2 E
∗
[
‖v‖2

2

]]
.

[ ]

48We first bound the conditional expectation E∗ ‖v‖2

2 . We find
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T

N

T
F

D

w

A

v2
i ≤

⎛
⎝ ∞∑

j=u+1
ejφj(xi)

⎞
⎠

2

≤

⎛
⎝ ∞∑

j=u+1
e2
j/λj

⎞
⎠

⎛
⎝ ∞∑

j=u+1
λjφ

2
j (xi)

⎞
⎠

≤ ‖E‖2
Hσ

⎛
⎝ ∞∑

j=u+1
λj‖φj‖2

∞

⎞
⎠ ≤ 2

(
‖fDl

‖2
Hσ

+ ‖fσ
λ ‖2

Hσ

)⎛⎝ ∞∑
j=u+1

λj‖φj‖2
∞

⎞
⎠ .

his together with (17) yields

E∗
[
‖v‖2

2

]
= E∗

[
n∑

i=1
|vi|2

]
≤ 2n

(
B2/λ + ‖fσ

λ ‖2
Hσ

)⎛⎝ ∞∑
j=u+1

λj‖φj‖2
∞

⎞
⎠ .

otice that E[‖Φk‖2
2] = E 

[∑n
i=1 φ

2
k(xi)

]
= n. Based on the above estimates, we get

E

[∥∥∥∥ 1
n
M1/2φTv

∥∥∥∥
2

2

]
≤ 2

(
u∑

k=1

λk

)(
B2/λ + ‖fσ

λ ‖2
Hσ

)⎛⎝ ∞∑
j=d+1

λj‖φj‖2
∞

⎞
⎠ .

hen the conclusion (22) follows from (62) and 
∑u

k=1 λk ≤ Tr(LKσ
).

inally, we turn to E 
[∥∥ 1

nQ
−1ΦTε

∥∥2
2

]
. Noting that the diagonal entries of Q−1 is 1/

√
1 + λ/λk, then

E

[∥∥∥∥ 1
n
Q−1ΦTε

∥∥∥∥
2

2

]
= 1

n2

u∑
k=1

n∑
i=1

E[φ2
k(xi)ε2i ]

1 + λ/λk
. (63)

ecompose εi = fσ
λ (xi) − yi as εi = fσ

λ (xi) − fρ(xi) + fρ(xi) − yi. This together with (4) yields that

E[φ2
k(xi)ε2i ]

1 + λ/λk
≤ 2

⎛
⎝E

[
φ2
k(xi)(fσ

λ (xi) − fρ(xi))2
]

1 + λ/λk
+

E
[
φ2
k(xi)(fρ(xi) − yi)2

]
1 + λ/λk

⎞
⎠

≤ 2

⎛
⎝‖φk‖2

∞E
[
(fσ

λ (xi) − fρ(xi))2
]

1 + λ/λk
+

2E
[
φ2
k(xi)E∗ [|fρ(xi)|2 + |yi|2

] ]
1 + λ/λk

⎞
⎠

≤ 2

⎛
⎝‖φk‖2

∞E
[
(fσ

λ (xi) − fρ(xi))2
]

1 + λ/λk
+ 4B2

1 + λ/λk

⎞
⎠

≤ 2
(
‖φk‖2

∞D(σ, λ)
1 + λ/λk

+ 4B2

1 + λ/λk

)
,

here the last inequality is derived from the fact

E
[
(fσ

λ (xi) − fρ(xi))2
]

=
∫
X

(fσ
λ (x) − fρ(x))2 dρX ≤ D(σ, λ).

s a consequence,

E

[∥∥∥∥ 1
n
Q−1ΦTε

∥∥∥∥
2

2

]
≤ 2

n2

u∑
k=1

n∑
i=1

(
‖φk‖2

∞D(σ, λ)
1 + λ/λk

+ 4B2

1 + λ/λk

)

= 2 [
S(σ, λ)D(σ, λ) + 4B2N (σ, λ)

]
.

48n
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Table 1
List of notations.

Notation Meaning of the notation

D the labeled data set D = {(xi, yi)}N
i=1

D∗ the unlabeled data set D∗ = {x∗
i }N∗

i=1
D̃ the union of D and D∗ with D̃ = {(x̃i, ỹi)}Ñ

i=1 given in subsection 2.3
Dl /D∗

l /D̃l the l-th subset of D /D∗/D̃
n /n∗ /ñ the size of Dl /D∗

l /D̃l

fDl
/fD̃l

the l-th output function by regularized least squares with Dl/D̃l

f̄D/ f̄D̃ the global output of distributed least squares with D/D̃
ε/ε̃ the noise vector ε = {εi}n

i=1 with εi = fσ
λ (xi) − yi/ ε̃ = {ε̃i}ñ

i=1 with ε̃i = fσ
λ (x̃i) − ỹi

u the positive integer that is to be determined
φj the j-th eigenfunction of the operator LKσ

Φ n × u matrix with entries Φij = φj(xi), i = 1, · · · , n, j = 1, · · · , u
Φ̃ ñ × u matrix with entries Φ̃ij = φj(x̃i), i = 1, · · · , ñ, j = 1, · · · , u
M diagonal matrix M = diag(λ1, · · · , λu)
Q diagonal matrix Q = (I + λM)

1
2

ei/ẽi basis coefficients of fDl
− fσ

λ / fD̃l
− fσ

λ in fDl
− fσ

λ =
∑

j ejφj /fD̃l
− fσ

λ =
∑

j ẽjφj

e1/ẽ1 the u dimension vector e1 = [e1, · · · , eu]T /ẽ1 = [ẽ1, · · · , ẽu]T
e2/ẽ2 the tail vector e2 = [eu+1, · · · ]T /ẽ2 = [ẽu+1, · · · ]T
a1 vector {ai}u

i=1 consisting of the first u basis coefficients of fσ
λ =

∑
j ajφj in L2

ρX

v/ṽ vector v = [v , · · · , v ]T , v =
∑∞ e φ (x )/ṽ = [ṽ , · · · , ṽ ]T , ṽ =

∑∞ ẽ φ (x )
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1 n i j=u+1 j j i 1 n i j=u+1 j j i

βu the tail sum βu =
∑∞

j=u+1 λj‖φj‖2
∞

Tr(LKσ
) the kernel trace

∑
j

λj .

N (σ, λ) the effective dimension of Hσ, given as the sum
∑
k

1
1 + λ/λk

S(σ, λ) the sum
∑
k

‖φk‖2
∞

1 + λ/λk

The proof is complete. �
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