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Abstract

An intriguing phenomenon observed during train-
ing neural networks is the spectral bias, which
states that neural networks are biased towards
learning less complex functions. The priority of
learning functions with low complexity might be
at the core of explaining the generalization ability
of neural networks, and certain efforts have been
made to provide a theoretical explanation for spec-
tral bias. However, there is still no satisfying the-
oretical result justifying the underlying mechanism
of spectral bias. In this paper, we give a compre-
hensive and rigorous explanation for spectral bias
and relate it with the neural tangent kernel function
proposed in recent work. We prove that the train-
ing process of neural networks can be decomposed
along different directions defined by the eigenfunc-
tions of the neural tangent kernel, where each di-
rection has its own convergence rate and the rate
is determined by the corresponding eigenvalue. We
then provide a case study when the input data is uni-
formly distributed over the unit sphere, and show
that lower degree spherical harmonics are easier
to be learned by over-parameterized neural net-
works. Finally, we provide numerical experiments
to demonstrate the correctness of our theory. Our
experimental results also show that our theory can
tolerate certain model misspecification in terms of
the input data distribution.

1 Introduction
Over-parameterized neural networks have achieved great suc-
cess in many applications. However, the success of deep
learning has not been well understood. In order to under-
stand neural network training, a recent work [Rahaman et al.,
2019] pointed out an intriguing phenomenon called spectral
bias, which says that during training, neural networks tend
to learn the components of lower complexity faster. Simi-
lar observation has also been pointed out in [Xu et al., 2019;
Xu et al., 2020]. The concept of spectral bias is appealing
because this may intuitively explain why over-parameterized
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neural networks can achieve a good generalization perfor-
mance without overfitting. During training, the networks fit
the low complexity components first and thus lie in the con-
cept class of low complexity. Arguments like this may lead
to rigorous guarantee for generalization.

Great efforts have been made in search of explanations
about the spectral bias. [Rahaman et al., 2019] evaluated the
Fourier spectrum of ReLU networks and empirically showed
that the lower frequencies are learned first; also lower fre-
quencies are more robust to random perturbation. [Andoni
et al., 2014] showed that for a sufficiently wide two-layer
network, gradient descent with respect to the second layer
can learn any low degree bounded polynomial. [Xu, 2018]
provided Fourier analysis to two-layer networks and showed
similar empirical results on one-dimensional functions and
real data. [Nakkiran et al., 2019] used information theoret-
ical approach to show that networks obtained by stochastic
gradient descent can be explained by a linear classifier dur-
ing early training. These studies provide certain explanations
about why neural networks exhibit spectral bias in real tasks.
But explanations in the theoretical aspect, if any, are to some
extent limited. For example, Fourier analysis is usually done
in the one-dimensional setting, and thus lacks generality.

Meanwhile, a recent line of work has taken a new ap-
proach to analyze neural networks based on the neural tan-
gent kernel (NTK) [Jacot et al., 2018]. In particular, they
show that under certain over-parameterization condition, the
neural network trained by gradient descent behaves similarly
to the kernel regression predictor using the neural tangent ker-
nel. For training a neural network with hidden layer width m
and sample size n, recent optimization results on the training
loss in the so-called “neural tangent kernel regime” can be
roughly categorized into the following two families: (i) With-
out any assumption on the target function (the function used
to generate the true labels based on the data input), if the net-
work width m ě polypn, λ´1

minq, where λmin is the smallest
eigenvalue of the NTK Gram matrix, then square loss/cross-
entropy loss can be optimized to zero [Du et al., 2019b;
Allen-Zhu et al., 2019; Du et al., 2019a; Zou et al., 2019;
Zou and Gu, 2019; Lee et al., 2019]; and (ii) If the target
function has bounded norm in the NTK-induced reproducing
kernel Hilbert space (RKHS), then global convergence can be
achieved with milder requirements on m [Arora et al., 2019;
Cao and Gu, 2019].



Inspired by these works mentioned above in the neural tan-
gent kernel regime, in this paper we study the spectral bias
of over-parameterized two-layer neural networks and its con-
nection to the neural tangent kernel. We show that, given
a training data set that is generated based on a target func-
tion, a fairly narrow network, although cannot fit the train-
ing data well due to its limited width, can still learn cer-
tain low-complexity components of the target function in
the eigenspace corresponding to large eigenvalues of neu-
ral tangent kernel. As the width of the network increases,
more high-frequency components of the target function can
be learned with a slower convergence rate. As a special case,
our result implies that when the input data follows uniform
distribution on the unit sphere, polynomials of lower degrees
can be learned by a narrower neural network at a faster rate.
We also conduct experiments to corroborate the theory we
establish.

Our contributions are as follows:
1. We prove a generic theorem for arbitrary data distribu-

tions, which states that under certain sample complexity
and over-parameterization conditions, the convergence of
the training error along different eigendirections of NTK
relies on the corresponding eigenvalues. This theorem
gives a more precise control on the regression residual
than [Su and Yang, 2019], where the authors focused on
the case when the labeling function is close to the sub-
space spanned by the first few eigenfunctions.

2. We establish a rigorous explanation for spectral bias based
on the aforementioned theoretical results without any spe-
cific assumptions on the target function. We show that
the error terms from different frequencies are controlled
by the eigenvalues of the NTK, and the lower-frequency
components can be learned with less training examples
and narrower networks at a faster convergence rate.

3. For uniformly distributed input data, we further give con-
vergence results of two-layer ReLU networks by charac-
terizing the spectra of the neural tangent kernel. We show
that in this setting the eigenvalues of neural tangent ker-
nel are µk “ Ωpmaxtk´d´1, d´k`1uq, k ě 0, with cor-
responding eigenfunctions being the k-th order spherical
harmonics. Our result is better than the bound Ωpk´d´1q

derived in [Bietti and Mairal, 2019] when d " k, which is
in a more practical setting.

1.1 Additional Related Work
A few theoretical results have been established towards un-
derstanding the spectra of neural tangent kernels. To name a
few, [Bach, 2017] studied two-layer ReLU networks by re-
lating it to kernel methods, and proposed a harmonic decom-
position for the functions in the reproducing kernel Hilbert
space which we utilize in our proof. Based on the tech-
nique in [Bach, 2017], [Bietti and Mairal, 2019] studied the
eigenvalue decay of integrating operator defined by the neural
tangent kernel on unit sphere by using spherical harmonics.
[Vempala and Wilmes, 2019] calculated the eigenvalues of
neural tangent kernel corresponding to two-layer neural net-
works with sigmoid activation function. [Basri et al., 2019]
established similar results as [Bietti and Mairal, 2019], but
considered the case of training the first layer parameters of

a two-layer networks with bias terms. [Yang and Salman,
2019] studied the the eigenvalues of integral operator with re-
spect to the NTK on Boolean cube by Fourier analysis. Very
recently, [Bordelon et al., 2020] gave a spectral analysis on
the generalization error of NTK-based kernel ridge regres-
sion. [Basri et al., 2020] studied the convergence of full train-
ing residual with a focus on one-dimensional, non-uniformly
distributed data. [Advani et al., 2020] gave an average case
analysis of the learning dynamics of large neural networks
trained by gradient descent and studied the generalization of
over-parameterized neural networks.

2 Preliminaries
In this section we introduce the basic problem setup includ-
ing the neural network structure and the training algorithm,
as well as some background on the neural tangent kernel pro-
posed recently in [Jacot et al., 2018].

Notation. We use lower case, lower case bold face, and up-
per case bold face letters to denote scalars, vectors and ma-
trices respectively. For a vector v “ pv1, . . . , vdq

T P Rd
and a number 1 ď p ă 8, we denote its p´norm by
}v}p “ p

řd
i“1 |vi|

pq1{p. We also define infinity norm by
}v}8 “ maxi |vi|. For a matrix A “ pAi,jqmˆn, we
use }A}0 to denote the number of non-zero entries of A,
and use }A}F “ p

řd
i,j“1A

2
i,jq

1{2 to denote its Frobenius
norm. Let }A}p “ max}v}pď1 }Av}p for p ě 1, and
}A}max “ maxi,j |Ai,j |. For two matrices A,B P Rmˆn,
we define xA,By “ TrpAJBq. We use A ľ B if A ´ B
is positive semi-definite. In addition, we define the asymp-
totic notations Op¨q, rOp¨q, Ωp¨q and rΩp¨q as follows. Sup-
pose that an and bn be two sequences. We write an “

Opbnq if lim supnÑ8 |an{bn| ă 8, and an “ Ωpbnq if
lim infnÑ8 |an{bn| ą 0. We use rOp¨q and rΩp¨q to hide the
logarithmic factors in Op¨q and Ωp¨q.

Problem Setup. Here we introduce the basic problem
setup. We consider two-layer fully connected neural net-
works of the form

fWpxq “
?
m ¨W2σpW1xq,

where W1 P Rmˆpd`1q, W2 P R1ˆm are1 the first and sec-
ond layer weight matrices respectively, and σp¨q “ maxt0, ¨u
is the entry-wise ReLU activation function. The network is
trained according to the square loss on n training examples
S “ tpxi, yiq : i P rnsu:

LSpWq “
1

n

n
ÿ

i“1

pyi ´ θfWpxiqq
2
,

where θ is a small coefficient to control the effect of initial-
ization, and the data inputs txiu

n
i“1 are assumed to follow

some unknown distribution τ on the unit sphere Sd Ď Rd`1.
Without loss of generality, we also assume that |yi| ď 1.

We first randomly initialize the parameters of the network,
and run gradient descent for both layers. We present our de-
tailed neural network training algorithm in Algorithm 1.

1Here the input dimension is d`1 since in this paper we assume
that all training data lie in the d-dimensional unit sphere Sd

Ď Rd`1.



Algorithm 1 GD for DNNs starting at Gaussian initialization

Input: Number of iterations T , step size η.
Generate each entry of W

p0q
1 and W

p0q
2 from Np0, 2{mq

and Np0, 1{mq respectively.
for t “ 0, 1, . . . , T ´ 1 do

Update Wpt`1q “ Wptq ´ η ¨∇WLSpW
ptqq.

end for
Output: WpT q.

The initialization scheme for Wp0q given in Algorithm 1 is
known as He initialization [He et al., 2015]. It is consistent
with the initialization scheme used in [Cao and Gu, 2019].

Neural Tangent Kernel. Many attempts have been made to
study the convergence of gradient descent assuming the width
of the network is extremely large [Du et al., 2019b; Li and
Liang, 2018]. When the width of the network goes to infinity,
with certain initialization on the model weights, the limit of
inner product of network gradients defines a kernel function,
namely the neural tangent kernel [Jacot et al., 2018]. The
neural tangent kernel is derived by linearizing the network
around its random initialization, and is defined as

κpx,x1q “ lim
mÑ8

m´1x∇WfWp0qpxq,∇WfWp0qpx1qy.

For two-layer networks, by the definition of Gaussian initial-
ization, we can obtain the following calculations of the neural
tangent kernel by the law of large numbers:

κpx,x1q “ xx,x1y ¨ κ1px,x
1q ` 2 ¨ κ2px,x

1q, (2.1)

where
κ1px,x

1q “ Ew„Np0,Iqrσ
1pxw,xyqσ1pxw,x1yqs,

κ2px,x
1q “ Ew„Np0,Iqrσpxw,xyqσpxw,x

1yqs.
(2.2)

Since we apply gradient descent to both layers, the neu-
ral tangent kernel is the sum of the two different ker-
nel functions and clearly it can be reduced to one layer
training setting. These two kernels are arc-cosine ker-
nels of degree 0 and 1 [Cho and Saul, 2009], which are
given as κ1px,x1q “ pκ1pxx,x

1yp}x}2 }x
1}2qq, κ2px,x

1q “

pκ2pxx,x
1y{p}x}2 }x

1}2qq, where

pκ1ptq “
1

2π
pπ ´ arccos ptqq ,

pκ2ptq “
1

2π

´

t ¨ pπ ´ arccos ptqq `
a

1´ t2
¯

.

(2.3)

Integral Operator. The theory of integral operator with re-
spect to kernel function has been well studied in literature
[Smale and Zhou, 2007; Rosasco et al., 2010] thus we only
give a brief introduction here. LetL2

τ pXq be the Hilbert space
of square-integrable functions with respect to a Borel mea-
sure τ from X Ñ R. For any continuous kernel function
κ : X ˆX Ñ R and τ we can define an integral operator Lκ
on L2

τ pXq by

Lκpfqpxq “

ż

X

κpx,yqfpyqdτpyq, x P X. (2.4)

It has been pointed out in [Cho and Saul, 2009] that arc-
cosine kernels are positive semi-definite. Thus the kernel

function κ defined by (2.1) is positive semi-definite being a
product and a sum of positive semi-definite kernels. Clearly
this kernel is also continuous and symmetric, which implies
that the neural tangent kernel κ is a Mercer kernel.

3 Main Results
In this section we present our main results. We first give
a general result on the convergence rate of gradient descent
along different eigendirections of neural tangent kernel, and
then apply this result to give an explicit convergence rate for
uniformly distributed data on the unit sphere.
3.1 Convergence Analysis of Gradient Descent
In this section we study the convergence of Algorithm 1. In-
stead of studying the standard convergence of loss function
value, we provide a refined analysis on the speed of conver-
gence along different directions defined by the eigenfunctions
of Lκ. For simplicity, we focus on the setting where the data
inputs have normalized lengths, i.e., x P Sd.

Let tλiuiě1 with λ1 ě λ2 ě ¨ ¨ ¨ be the strictly positive
eigenvalues of Lκ, and φ1p¨q, φ2p¨q, . . . be the correspond-
ing orthonormal eigenfunctions (i.e., Lκpφiqpxq “ λiφipxq
for all x P Sd). Set vi “ n´1{2pφipx1q, . . . , φipxnqq

J,
i “ 1, 2, . . .. Note that Lκ may have eigenvalues with mul-
tiplicities larger than 1 and λi, i ě 1 are not distinct. There-
fore for any integer k, we define rk as the sum of the mul-
tiplicities of the first k distinct eigenvalues of Lκ. Define
Vrk “ pv1, . . . ,vrkq. By definition, vi, i P rrks are rescaled
restrictions of orthonormal functions in L2

τ pSdq on the train-
ing examples. Therefore we can expect them to form a set
of almost orthonormal bases in the vector space Rn. The fol-
lowing lemma follows by standard concentration inequality.

Lemma 3.1. Suppose that |φipxq| ď M for all x P Sd and
i P rrks. For any δ ą 0, with probability at least 1´ δ,

}VJ
rk

Vrk ´ I}max ď CM2
a

logprk{δq{n,

where C is an absolute constant.

Denote y “ py1, . . . , ynq
J and pyptq “ θ ¨

pfWptqpx1q, . . . , fWptqpxnqq
J for t “ 0, . . . , T . Then

Lemma 3.1 shows that the convergence rate of }VJ
rk
py ´

pyptqq}2 roughly represents the speed gradient descent learns
the components of the target function corresponding to the
first rk eigenvalues. The following theorem gives the conver-
gence guarantee of }VJ

rk
py ´ pyptqq}2.

Theorem 3.2. Suppose |φjpxq| ď M for j P rrks and x P

Sd. For any ε, δ ą 0 and integer k, if n ě rΩpε´2¨maxtpλrk´

λrk`1q
´2,M4r2kuq, m ě rΩppolypT, λ´1

rk
, ε´1qq, then with

probability at least 1´δ, Algorithm 1 with η “ rOpm´1θ´2q,
θ “ rOpεq satisfies

n´1{2 ¨ }VJ
rk
py ´ pypT qq}2

ď 2p1´ λrkq
T ¨ n´1{2 ¨ }VJ

rk
y}2 ` ε.

Theorem 3.2 shows that the convergence rate of
}VJ

rk
py ´ pyptqq}2 (or its normalized version, }VJ

rk
py ´

pyptqq}2{}V
J
rk

y}2) is determined by the rk-th eigenvalue λrk .



This reveals the spectral bias of neural network training un-
der the NTK regime. Specifically, when the network is wide
enough and the sample size is large enough, gradient descent
first learns the target function along the eigendirections of
neural tangent kernel with larger eigenvalues, and then learns
the rest components corresponding to smaller eigenvalues2.
Moreover, by showing that learning the components corre-
sponding to larger eigenvalues can be done with smaller sam-
ple size and narrower networks, our theory pushes the study
of neural networks towards more practical settings. There-
fore, Theorem 3.2 provides an explanation of the observations
given in [Rahaman et al., 2019] in the NTK regime.

It is also worth noting that Theorem 3.2 is not based
on the common NTK-type assumption that the target func-
tion belongs to the NTK-induced RKHS [Arora et al., 2019;
Cao and Gu, 2019]. Instead, Theorem 3.2 works for arbitrary
labeling, and is therefore rather general.
Comparison with existing results. The most relevant re-
sults to ours are [Arora et al., 2019; Su and Yang, 2019;
Bordelon et al., 2020; Basri et al., 2020]. Compared with
[Arora et al., 2019] which focuses on the setting where the
network is wide enough to guarantee global convergence, our
result works for narrower networks for which global conver-
gence may not even be possible. Compared with [Su and
Yang, 2019], the key difference is that while [Su and Yang,
2019] studied the full residual }y ´ pypT q}2 and required that
the target function lies approximately in the eigenspace of
large eigenvalues of the neural tangent kernel, our result in
Theorem 3.2 works for arbitrary target function, and shows
that even if the target function has very high frequency com-
ponents, its components in the eigenspace of large eigenval-
ues can still be learned very efficiently by neural networks.
More recently, [Bordelon et al., 2020] studied the solution
of NTK-based kernel ridge regression. Compared with their
result, our analysis is directly on the practical neural net-
work training procedure, and specifies the width requirement
for a network to successfully learn a certain component of
the target function. Another recent work by [Basri et al.,
2020] provides theoretical analysis for one-dimensional non-
uniformly distributed data, and only studies the convergence
of the full residual vector. In comparison, our results cover
high-dimensional data, and provide a more detailed analysis
on the convergence of different projections of the residual.
3.2 Spectral Analysis of NTK for Uniform Data
We now study the case when the data inputs are uniformly
distributed over the unit sphere as an example where the
eigendecompositon of NTK can be calculated. We present
our results on the spectral analysis of neural tangent kernel in
the form of a Mercer decomposition, which explicitly gives
the eigenvalues and eigenfunctions of NTK.

Theorem 3.3. For any x,x1 P Sd, the Mercer decomposition
of the neural tangent kernel κ : Sd ˆ Sd Ñ R is

κ
`

x,x1
˘

“

8
ÿ

k“0

µk

Npd,kq
ÿ

j“1

Yk,j pxqYk,j
`

x1
˘

, (3.1)

2Note that by the definition we have λrk ă 1 for all k. More
details are given in Section 3.2 and th proofs in the appendix

where Yk,j for j “ 1, ¨ ¨ ¨ , Npd, kq are linearly indepen-
dent spherical harmonics of degree k in d` 1 variables with
Npd, kq “ 2k`d´1

k

`

k`d´2
d´1

˘

and orders of µk are given by

µ0 “ µ1 “ Ωp1q, µk “ 0, k “ 2j ` 1,

µk “ Ωpmaxtdd`1kk´1pk ` dq´k´d, dd`1kkpk ` dq´k´d´1,

dd`2kk´2pk ` dq´k´d´1uq, k “ 2j,

where j P N`. Specifically, we have µk “ Ω
`

k´d´1
˘

when
k " d and µk “ Ω

`

d´k`1
˘

when d " k, k “ 2, 4, 6, . . ..
Remark 3.4. The µk’s in Theorem 3.3 are the distinct eigen-
values of the integral operator Lκ on L2

τd
pSdq defined by

Lκpfqpyq “

ż

Sd
κpx,yqfpxqdτdpxq, f P L2

τd
pSdq,

where τd is the uniform probability measure on unit sphere
Sd. Therefore the eigenvalue λrk in Theorem 3.2 is just µk´1

given in Theorem 3.3 when τd is uniform distribution.
Remark 3.5. [Vempala and Wilmes, 2019] studied two-
layer neural networks with sigmoid activation function, and
proved that in order to achieve ε0 ` ε error, it requires
T “ pd ` 1qOpkq log p}f

˚
}2{εq iterations and m “ pd `

1qOpkqpolyp}f
˚
}2{εq wide neural networks, where f˚ is the

target function, and ε0 is certain function approximation er-
ror. Another highly related work is [Bietti and Mairal, 2019],
which gives µk “ Ωpk´d´1q. The order of eigenvalues we
present appears as µk “ Ωpmaxpk´d´1, d´k`1qq. This is
better when d " k, which is closer to the practical setting.
3.3 Convergence for Uniformly Distributed Data
In this subsection, we apply the result in the previous sub-
section and give explicit convergence rate for uniformly dis-
tributed data on the unit sphere. The following two corollaries
are based on the calculation of the spectral decomposition of
the NTK for uniform data in Theorem 3.1.
Corollary 3.6. Suppose that k " d, and the sample
txiu

n
i“1 follows the uniform distribution τd on the unit sphere

Sd. For any ε, δ ą 0 and integer k, if n ě rΩpε´2 ¨

maxtk2d`2, k2d´2r2kuq, m ě rΩppolypT, kd`1, ε´1qq, then
with probability at least 1 ´ δ, Algorithm 1 with η “
rOppmθ2q´1q, θ “ rOpεq satisfies

n´1{2 ¨ }VJ
rk
py ´ pypT qq}2

ď 2
`

1´ Ω
`

k´d´1
˘˘T

¨ n´1{2 ¨ }VJ
rk

y}2 ` ε,

where rk “
řk´1
k1“0Npd, k

1q and Vrk “ pn
´1{2φjpxiqqnˆrk

with φ1, . . . , φrk being a set of orthonormal spherical har-
monics of degrees up to k ´ 1.
Corollary 3.7. Suppose that d " k, and the sample txiu

n
i“1

follows the uniform distribution τd on the unit sphere Sd. For
any ε, δ ą 0 and integer k, if n ě rΩpε´2d2k´2r2kq, m ě

rΩppolypT, dk´2, ε´1qq, then with probability at least 1 ´ δ,
Algorithm 1 with η “ rOppmθ2q´1q, θ “ rOpεq satisfies

n´1{2 ¨ }VJ
rk
py ´ pypT qq}2

ď 2
`

1´ Ω
`

d´k`2
˘˘T

¨ n´1{2 ¨ }VJ
rk

y}2 ` ε,



where rk “
řk´1
k1“0Npd, k

1q and Vrk “ pn
´1{2φjpxiqqnˆrk

with φ1, . . . , φrk being a set of orthonormal spherical har-
monics of degrees up to k ´ 1.

Corollaries 3.6 and 3.7 further illustrate the spectral bias of
neural networks by providing exact calculations of λrk , Vrk
and M in Theorem 3.2. They show that if the input distri-
bution is uniform over unit sphere, then spherical harmonics
with lower degrees are learned first by wide neural networks.

4 Experiments
In this section we present experimental results to verify our
theory. Across all tasks, we train a two-layer neural networks
with 4096 hidden neurons and initialize it exactly as defined
in the problem setup. The optimization method is vanilla gra-
dient descent, and the training sample size is 1000.

Learning Polynomials. We first experimentally verify our
theoretical results by learning linear combinations of spheri-
cal harmonics with data inputs uniformly distributed over unit
sphere. Define

f˚pxq “ a1P1pxζ1,xyq ` a2P2pxζ2,xyq ` a4P4pxζ4,xyq,

where the Pkptq is the Gegenbauer polynomial, and ζk, k “
1, 2, 4 are fixed vectors that are independently generated from
uniform distribution on unit sphere in R10. Note that ac-
cording to the addition formula

řNpd,kq
j“1 Yk,jpxqYk,jpyq “

Npd, kqPkpxx,yyq, every normalized Gegenbauer polyno-
mial is a spherical harmonic, so f˚pxq is a linear combina-
tion of spherical harmonics of order 1,2 and 4. The higher
odd-order Gegenbauer polynomials are omitted because the
spectral analysis showed that µk “ 0 for k “ 3, 5, 7 . . . .

Following our theoretical analysis, we denote vk “

n´1{2pPkpx1q, . . . , Pkpxnqq. By Lemma 3.2 vk’s are al-
most orthonormal. So we define the (approximate) pro-
jection length of residual rptq onto vk at step t as pak “

|vJk rptq|, where rptq “ pf˚px1q´θfWptqpx1q, . . . , f
˚pxnq´

θfWptqpxnqq and fWptqpxq is the neural network function.
The results are shown in Figure 1. It can be seen that the

residual at the lowest frequency (k “ 1) converges to zero
first and then the second lowest (k “ 2). The highest fre-
quency component is the last one to converge. Following the
setting of [Rahaman et al., 2019] we assign high frequencies
a larger scale in Figure 1 (b), expecting that larger scale will
introduce a better descending speed. Still, the low frequen-
cies are learned first.

Note that pak is the projection length onto an approximate
vector. In the function space, we can also project the resid-
ual function rpxq “ f˚pxq ´ θfWptqpxq onto the orthonor-
mal Gegenbauer functions Pkpxq. Replacing the training data
with randomly sampled data points xi can lead to a random
estimate of the projection length in function space. Experi-
ments in this setting can be found in the appendix.

We verify the linear convergence rate proved in Theo-
rem 3.2. Figure 2 presents the convergence curve in loga-
rithmic scale. We can see from Figure 2 that the convergence
of different projection length is close to linear convergence,
which is well-aligned with our theoretical analysis. Note that
we performed a moving average of range 20 on these curves
to avoid the heavy oscillation especially at late stage.
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Figure 1: Convergence curve of projection lengths. (a) shows the
curve when the target function have the same scale for different
components. (b) shows the curve when the higher-order components
have larger scale.
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Figure 2: Log-scale convergence curve for projection lengths. (a)
shows the curve when the target function have the same scale for
different components. (b) shows the curve when the higher-order
components have larger scale.
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Figure 3: Convergence curve for different components. (a) shows
the curve of a trigonometric function. (b) shows the curve of a poly-
nomial with even degrees.

Learning Functions of Simple Forms. Apart from the
synthesized low frequency function, we also show the dy-
namics of more general functions’ projection to Pkpxq. These
functions, though in a simple form, have non-zero high-
frequency components. In this subsection we show our re-
sults still apply when all frequencies exist in the target func-
tions, which are given by f˚pxq “

ř

i cospaixζ,xyq and
f˚pxq “

ř

ixζ,xy
pi , where ζ is a fixed unit vector.

Figure 3 verifies the result of Theorem 3.2 with more gen-
eral target functions, and backs up our claim that Theorem 3.2
does not make any assumptions on the target function. Notice



that in the early training stage, not all the curves monotoni-
cally descend. This is due to the unseen components’ influ-
ence on the gradient. Again, as the training proceeds, the
residual projections converge at the predicted rates.

Non-uniform Input Data Distributions. In this subsec-
tion, we provide experimental results for non-uniformly dis-
tributed input data. Note that the eigendecomposition of
NTK for general multi-dimensional input distributions do not
necessarily have good analytic forms. Therefore, here we
treat the non-uniform distribution of the input data as model
misspecification, and test whether residual projections onto
spherical harmonics of different degrees can still exhibit var-
ious convergence speed. We consider three examples of non-
uniform distributions: (i) piece-wise uniform distribution,
(ii) normalized non-isotropic Gaussian, and (iii) normalized
Gaussian mixture.

Piece-wise uniform distribution. We divide the unit sphere
into two semi-spheres along a randomly drawn direction ζ0.
A data input is then generated as follows: with probability
1{4, draw the input uniformly over the first unit sphere; with
probability 3{4, draw the input uniformly over the second unit
sphere. The results are shown in Figure 4.
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Figure 4: Convergence curve of projection lengths for the piece-wise
uniform distribution example.

Normalized non-isotropic Gaussian. We generate the
data by first generating non-zero mean, non-isotropic Gaus-
sian vectors, and then normalize them to unit length.
The Gaussian mean vector is generated elementwise from
Unifpr´1, 1sq; the covariance matrix is generated as Σ “

AJA, where A P RdˆD(d “ 10, D “ 20) has i.i.d. standard
Gaussian entries. The results are shown in Figure 5.
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Figure 5: Convergence curve for projection lengths for the normal-
ized non-isotropic Gaussian example.

Normalized Gaussian mixture. Here the inputs are drawn
from a mixture of 3 non-isotropic Gaussian distributions de-
scribed in the second example. The results are in Figure 6.

Figures 4, 5, 6 show that the residual components corre-
sponding to lower order polynomials are still learned rela-
tively faster, even for the non-uniform distributions described
above, where spherical harmonics are no longer exactly the
eigenfunctions of NTK. This suggests that our theoretical re-
sults can tolerate certain level of model misspecification, and
therefore the spectral bias characterized in Theorem 3.2 and
Corollaries 3.6, 3.7 holds in a variety of problem settings.
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Figure 6: Convergence curve of projection lengths for the normal-
ized Gaussian mixture example.

5 Conclusion and Future Work
This paper gives theoretical justification for spectral bias
through a detailed analysis of the convergence behavior of
two-layer ReLU networks. We show that the convergence of
gradient descent in different directions depends on the corre-
sponding eigenvalues of the neural tangent kernel, and give
the exact order of convergence rate on different directions.
We also conduct experiments on synthetic data to support our
theoretical result.

Our current analysis of spectral bias is mostly in the NTK
regime. Extending our analysis and results to the general set-
ting beyond NTK regime is an important future work direc-
tion. Studying the spectral bias phenomenon for the training
of deep neural networks with regularization [Hu et al., 2021]
is another interesting future direction.
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