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Abstract The augmented Lagrangian method (ALM) is one of the most useful meth-
ods for constrained optimization. Its convergence has been well established under
convexity assumptions or smoothness assumptions, or under both assumptions. ALM
may experience oscillations and divergence facing nonconvexity and nonsmoothness
simultaneously. In this paper, we consider the linearly constrained problem with a
nonconvex (in particular, weakly convex) and nonsmooth objective. We modify ALM
using a Moreau envelope of the augmented Lagrangian and establish its convergence
under conditions that are weaker than those in the literature. We call it the Moreau
envelope augmented Lagrangian (MEAL) method. We also show that the iteration
complexity of MEAL is >(Y−2) to yield an Y-accurate first-order stationary point. We
establish its whole sequence convergence (regardless of the initial guess) and a rate
when aKurdyka-Łojasiewicz property is assumed.Moreover, when the subproblem of
MEAL has no closed-form solution and is difficult to solve, we propose two practical
variants of MEAL, an inexact version called iMEAL with an approximate proximal

We thank Kaizhao Sun for discussions that help us complete this paper, as well as presenting to us an
additional approach to ensure boundedness. The work of J. Zeng is partly supported by National Natural
Science Foundation of China (No. 61977038) and the Thousand Talents Plan of Jiangxi Province (No.
jxsq2019201124). The work of D.-X. Zhou is partly supported by Research Grants Council of Hong Kong
(No. CityU 11307319) and the Hong Kong Institute for Data Science.

J. Zeng
School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China.
Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, Hong Kong.
E-mail: jinshanzeng@jxnu.edu.cn

W. Yin
Department of Mathematics, University of California, Los Angeles, CA.
E-mail: wotaoyin@math.ucla.edu

D.X. Zhou
School of Data Science, Department of Mathematics, and Liu Bie Ju Centre for Mathematical Sciences,
City University of Hong Kong, Hong Kong.
E-mail: mazhou@cityu.edu.hk



2 Jinshan Zeng et al.

update, and a linearized version called LiMEAL for the constrained problem with a
composite objective. Their convergence is also established.

Keywords Nonconvex nonsmooth optimization · augmented Lagrangian method ·
Moreau envelope · proximal augmented Lagrangian method · Kurdyka-Łojasiewicz
inequality

1 Introduction

In this paper, we consider the following optimization problem with linear constraints

minimizeG∈R= 5 (G)
subject to �G = 1,

(1)

where 5 : R= → R is a proper, lower-semicontinuous weakly convex function, which
is possibly nonconvex and nonsmooth, � ∈ R<×= and 1 ∈ R< are some given matrix
and vector, respectively. A function 5 is said to be weakly convex with a modulus
d > 0 if 5 (G) + d2 ‖G‖

2 is convex on R=, where ‖ · ‖ is the Euclidean norm. The class
of weakly convex functions is broad [50], including all convex functions, smooth but
nonconvex functions with Lipschitz continuous gradient, and their composite forms
(say, 5 (G) = ℎ(G) + 6(G) with both ℎ and 6 being weakly convex, and 5 (G) = 6(ℎ(G))
with 6 being convex and Lipschitz continuous and ℎ being a smooth mapping with
Lipschitz Jacobian [31, Lemma 4.2]).

The augmented Lagrangian method (ALM) is a well-known algorithm for con-
strained optimization by Hestenes [37] and Powell [53]. ALM has been extensively
studied and has a large body of literature ([54,9,25,24,14] just to name a few), yet
no ALM algorithm can solve the underlying problem (1) without at least one of the
following assumptions: convexity [52,54,9,10,33], or smoothness [2,3,5,4,27], or
solving nonconvex subproblems to their global minima [14,16], or (when running
ALM) the observation of a bounded nondecreasing penalty sequence [34,18]. Indeed,
ALMmay oscillate and even diverge unboundedly on simple quadratic programs [68,
59], where the objectives are weakly convex as shown in Sec. 7.1 later.

At a high level, we introduce a Moreau-envelope modification of the ALM for
solving (1) and show the method can converge under weaker conditions. In particular,
convexity is relaxed toweak convexity; nonsmooth functions are allowed; the subprob-
lems can be solved inexactly; linearization can be applied to a Lipschitz-differential
function; and, rank of � is not assumed. On the other hand, we introduce certain
subgradient properties1 as our main assumptions. By also assuming either a bounded
energy sequence or bounded primal-dual sequence, we derive present subsequence
rates of convergence. We introduce a novel way to establish it based on a feasible
coercivity assumption and a local-stability assumption on the subproblem. Finally,
with the additional assumption of Kurdyka-Łojasiewicz (KŁ) inequality, we establish
global convergence.

1 In this paper, we use either certain implicit Lipschitz subgradient property or implicit bounded sub-
gradient property (see, Definition 1) to yield the convergence of proposed methods, where the implicit
Lipschitz subgradient property is much weaker than the smoothness assumptions used in the literature.
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1.1 Proposed Algorithms

To present our algorithm, define the augmented Lagrangian:

LV (G, _) := 5 (G) + 〈_, �G − 1〉 + V
2
‖�G − 1‖2, (2)

and the Moreau envelope of LV (G, _):

qV (I, _) = min
G

{
LV (G, _) +

1
2W
‖G − I‖2

}
, (3)

where _ ∈ R< is a multiplier vector, V > 0 is a penalty parameter, and W > 0 is a
proximal parameter. The Moreau envelope applies to the primal variable G for each
fixed dual variable _.

We introduce Moreau Envelope Augmented Lagrangian method (dubbed MEAL)
as follows: given an initialization (I0, _0), W > 0, a sequence of penalty parameters
{V: } and a step size [ ∈ (0, 2), for : = 0, 1, . . . , run

(MEAL)
{
I:+1 = I: − [W∇IqV: (I: , _: ),
_:+1 = _: + V:∇_qV: (I: , _: ).

(4)

The penalty parameter V: can either vary or be fixed.
Introduce

G:+1 = ProxW,LV: ( ·,_: ) (I
: ) := argmin

G

{
LV: (G, _: ) +

1
2W
‖G − I: ‖2

}
, ∀: ∈ N,

which yields ∇IqV: (I: , _: ) = W−1 (I: − G:+1) and ∇_qV: (I: , _: ) = �G:+1 − 1. Then,
MEAL (4) is equivalent to:

(MEAL Reformulated)

G:+1 = ProxW,LV: ( ·,_: ) (I

: ),
I:+1 = I: − [(I: − G:+1),
_:+1 = _: + V: (�G:+1 − 1).

(5)

For ProxW,LV without closed-form solutions, we provide two practical variants of
MEAL.

Inexact MEAL (iMEAL) We call G:+1 an n: -accurate stationary point of the G-
subproblem in (5) if there exists

B: ∈ mGLV: (G:+1, _: ) + W−1 (G:+1 − I: ) such that ‖B: ‖ ≤ n: . (6)

iMEAL is described as follows: given an initialization (I0, _0), W > 0, [ ∈ (0, 2), and
two positive sequences {n: } and {V: }, for : = 0, 1, . . . , run

(iMEAL)


find an G:+1 to satisfy (6),
I:+1 = I: − [(I: − G:+1),
_:+1 = _: + V: (�G:+1 − 1).

(7)
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Linearized MEAL (LiMEAL) When problem (1) has the following form

minimizeG∈R= 5 (G) := ℎ(G) + 6(G)
subject to �G = 1,

(8)

where ℎ : R= → R is Lipschitz-continuous differentiable and 6 : R= → R is weakly
convex and has an easy proximal operator (in particular, admitting a closed-form
solution) [61,36,59,65], we shall use ∇ℎ. Write 5 : (G) := ℎ(G: ) + 〈∇ℎ(G: ), G − G:〉 +
6(G) and LV, 5 : (G, _) := 5 : (G) + 〈_, �G − 1〉 + V

2 ‖�G − 1‖
2. We describe LiMEAL

for (8) as: given (I0, _0), W > 0, [ ∈ (0, 2) and {V: }, for : = 0, 1, . . . , run

(LiMEAL)

G:+1 = ProxW,L

V: , 5
: ( ·,_: ) (I: ),

I:+1 = I: − [(I: − G:+1),
_:+1 = _: + V: (�G:+1 − 1).

(9)

1.2 Relation to ALM and Proximal ALM

Like ALM, MEAL alternatively updates primal and dual variables; but unlike ALM,
MEAL applies the update to the Moreau envelope of augmented Lagrangian. By [56],
theMoreau envelope qV: (I, _: ) provides a smooth approximation ofLV: (G, _: ) from
below and shares the sameminima. The smoothness ofMoreau envelope alleviates the
possible oscillation that ariseswhenALMis applied to certain nonconvex optimization
problems; see the example in [59, Proposition 1].

For the problems satisfying the conditions in this paper, ALM may require a
sequence of possibly unbounded {V: }. When V: is large, the ALM subproblem is
ill-conditioned. Therefore, bounding V: is practically desirable [25,17]. MEAL and
its practical variants can use a fixed penalty parameter under the implicit Lipschitz
subgradient assumption introduced in Definition 1 later.

Proximal ALM was introduced in [55]. Its variants were recently studied in [38,
36,68,67]. These methods add a proximal term to the augmented Lagrangian. By the
reformulation (5) of MEAL, proximal ALM [55] for problem (1) is a special case
of MEAL with the step size [ = 1. In [38], a proximal primal-dual algorithm called
Prox-PDA was proposed for problem (1). Certain non-Euclidean matrix norms were
adopted in Prox-PDA to guarantee the strong convexity of the ALM subproblem. A
proximal linearized version of Prox-PDA for the composite optimization problem (8)
was studied in [36]. Thesemethods are closely related toMEAL, but their convergence
conditions in the literature are stronger.

Recently, [68,67] modified proximal inexact ALM for the linearly constrained
problems with an additional bounded box constraint set or polyhedral constraint set,
denoted by C. Our method is partially motivated by their methods. Their problems
are equivalent to the composite optimization problems (8) with 6(G) = ]C (G), where
]C (G) = 0 when G ∈ C and +∞ otherwise. In this setting, the methods in [68,67]
can be regarded as prox-linear versions of LiMEAL (9), that is, yielding G:+1 via a
prox-linear scheme [61] instead of the minimization scheme as used in LiMEAL (9),
together with an additional dual step size and a sufficiently small primal step size in
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[68,67]. Specifically, in the case of 6(G) = ]C (G), the updates of G:+1 in methods in
[68,67] are yielded by

G:+1 = ProjC (G: − B∇ (G: , I: , _: )),

where  (G: , I: , _: )) = LV: , 5 (G, _: ) + 1
2W ‖G− I

: ‖2, and ProjC (G) is the projection of
G onto C. Besides, LiMEAL handles proximal functions beyond the indicator function
and permits the wider choice [ ∈ (0, 2).

1.3 Other Related Literature

On convex and constrained problems, locally linear convergence2 of ALM has been
extensively studied in the literature [52,9,10,33,11,48,26], mainly under the sec-
ond order sufficient condition (SOSC) and constraint conditions such as the linear
independence constraint qualification (LICQ). Global convergence (i.e., convergence
regardless of the initial guess) of ALM and its variants was studied in [58,54,25,24,
1,6,13,14,15], mainly under constraint qualifications and assumed boundedness of
nondecreasing penalty parameters. On nonconvex and constrained problems, conver-
gence of ALMwas recently studied in [14,16,2,3,5,4,27], mainly under the following
assumptions: solving nonconvex subproblems to their approximate global minima or
stationary points [14,16], or boundedness of the nondecreasing penalty sequence [34,
18]. Most of them require Lipschitz differentiability of the objective.

Convergence of proximal ALM and its variants was established under the assump-
tions of either convexity in [55] or smoothness (in particular, Lipschitz differentiablity)
in [38,36,39,68,67,60]. Besides proximal ALM, other related works for nonconvex
and constrained problems include [12,35,49,51], which also assume smoothness of
the objective, plus either gradient or Hessian information.

1.4 Contribution and Novelty

MEAL, iMEAL, and LiMEAL achieve the same order of iteration complexity >(Y−2)
to reach an Y-accurate first-order stationary point, slightly better than those in theALM
literature [38,36,60,68,67] but require weaker conditions. Our methods have conver-
gence guarantees for a broader class of objective functions, for example, nonsmooth
and nonconvex functions like |G2 − 1|, |GH − 1| (where G, H ∈ R), the smoothly clipped
absolute deviation (SCAD) regularization [32] and minimax concave penalty (MCP)
regularization [66], which are underlying the applications of low-rank matrix/tensor
factorization, phase retrieval, blind deconvolution, robust principal component anal-
ysis, statistical learning and beyond [28,30,59].

It should be pointed out that we only assume the feasibility of �G = 1, instead
of these commonly used but stricter hypotheses in the literature, such as: the strict
complementarity condition used in [68], certain rank assumption (such as Im(�) ⊆

2 Locally linear convergencemeans exponentially fast convergence to a localminimum froma sufficiently
close initial point.
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Im(�) when considering the two- (multi-)block case �G + �H = 0) used in [59], and
the linear independence constrained qualification (LICQ) used in [11,48] (implying
the full-rank assumption in the linear constraint case).

Our analysis is noticeably different from those in the literature [55,36,38,39,68,
67,60,59]. We base our analysis on new potential functions. The Moreau envelope
in the potential functions is partially motivated by [28]. Our potential functions are
tailored for MEAL, iMEAL, and LiMEAL and include the augmented Lagrangian
with additional terms. The technique of analysis may have its own value for further
generalizing and improving ALM-type methods.

1.5 Notation and Organization

We let R and N denote the sets of real and natural numbers, respectively. Given
a matrix �, Im(�) denotes its image, and f̃min (�) �) denotes the smallest positive
eigenvalue of �) �. ‖ · ‖ is the Euclidean norm for a vector. Given any two nonnegative
sequences {b: } and {Z: }, we denote by b: = >(Z: ) if lim:→∞

b:
Z:

= 0, and b: = O(Z: )
if there exists a positive constant 2 such that b: ≤ 2Z: for any sufficiently large : .

In the rest of this paper, Section 2 presents background and preliminary techniques.
Section 3 states convergence results of MEAL and iMEAL. Section 4 presents the
results of LiMEAL. Section 5 includes main proofs. Section 6 provides sufficient con-
ditions for certain boundedness assumptions in above results along with comparisons
with the related work. Section 7 provides some numerical experiments to demonstrate
the effectiveness of proposed methods. We conclude this paper in Section 8.

2 Background and Preliminaries

This paper uses extended-real-valued functions, for example, ℎ : R= → R ∪ {+∞}.
Define the domain of ℎ as dom(ℎ) := {G ∈ R= : ℎ(G) < +∞} and its range as ran(ℎ) :=
{H : H = ℎ(G),∀G ∈ dom(ℎ)}. For each G ∈ dom(ℎ), the Fréchet subdifferential of ℎ
at G, written as m̂ℎ(G), is the set of vectors E ∈ R= satisfying

lim inf
D≠G,D→G

ℎ(D) − ℎ(G) − 〈E, D − G〉
‖G − D‖ ≥ 0.

When G ∉ dom(ℎ), we define m̂ℎ(G) = ∅. The limiting-subdifferential (or simply
subdifferential) of ℎ [46] at G ∈ dom(ℎ) is defined as

mℎ(G) := {E ∈ R= : ∃GC → G, ℎ(GC ) → ℎ(G), m̂ℎ(GC ) 3 EC → E}. (10)

A necessary (but not sufficient) condition for G ∈ R= to be a minimizer of ℎ is
0 ∈ mℎ(G). A point that satisfies this inclusion is called limiting-critical or simply
critical. The distance between a point G and a subsetS of R= is defined as dist(G,S) =
infD{‖G − D‖ : D ∈ S}.
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2.1 Moreau Envelope

Given a function ℎ : R= → R, we define its Moreau envelope [47,56]:

MW,ℎ (I) = min
G

{
ℎ(G) + 1

2W
‖G − I‖2

}
, (11)

where W > 0 is a parameter. We define its associated proximity operator

ProxW,ℎ (I) = argmin
G

{
ℎ(G) + 1

2W
‖G − I‖2

}
. (12)

If ℎ is d-weakly convex and W ∈ (0, d−1), then ProxW,ℎ is monotone, single-valued,
and Lipschitz, andMW,ℎ is differentiable with

∇MW,ℎ (I) = W−1 (
I − ProxW,ℎ (I)

)
∈ mℎ(ProxW,ℎ (I)); (13)

see [56, Proposition 13.37]. From [30,31], we also have

MW,ℎ (ProxW,ℎ (I)) ≤ ℎ(I),
‖ProxW,ℎ (I) − I‖ = W‖∇MW,ℎ (I)‖,
dist(0, mℎ(ProxW,ℎ (I))) ≤ ‖∇MW,ℎ (I)‖.

The first relation above presents Moreau envelope as a smooth lower approxima-
tion of ℎ. By the second and third relations, small ‖∇MW,ℎ (I)‖ implies that I is
near its proximal point ProxW,ℎ (I) and I is nearly stationary for ℎ [28]. Therefore,
‖∇MW,ℎ (I)‖ can be used as a continuous stationarity measure. Hence, replacing the
augmented Lagrangian with its Moreau envelope not only generates a strongly convex
subproblem but also yields a stationarity measure.

2.2 Implicit Regularity Properties

Let ℎ be a proper, lower semicontinuous, d-weakly convex function. Given a W ∈
(0, d−1), we define the generalized inverse mapping Prox−1

W,ℎ
of ProxW,ℎ as

Prox−1
W,ℎ (G) := {F : ProxW,ℎ (F) = G}, ∀G ∈ ran(ProxW,ℎ). (14)

Based on (14), we introduce the following definitions, which impose implicitly some
regularity properties including Lipschitz continuity and boundedness on subgradient
of a weakly convex function.

Definition 1 Let ℎ be a proper, lower semicontinuous and d-weakly convex function.

(a) We say ℎ satisfies the implicit Lipschitz subgradient property if for any W ∈
(0, d−1), there exists a constant ! > 0 (possibly depending on W) such that for any
D, E ∈ ran(ProxW,ℎ),

‖∇MW,ℎ (F) − ∇MW,ℎ (F′)‖ ≤ !‖D − E‖, ∀F ∈ Prox−1
W,ℎ (D), F

′ ∈ Prox−1
W,ℎ (E);
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(b) We say ℎ satisfies the implicit bounded subgradient property if for any W ∈
(0, d−1), there exists a constant !̂ > 0 (possibly depending on W) such that for any
D ∈ ran(ProxW,ℎ),

‖∇MW,ℎ (F)‖ ≤ !̂, ∀F ∈ Prox−1
W,ℎ (D).

Since∇MW,ℎ (G) ∈ mℎ(ProxW,ℎ (G)) for any G ∈ R=, we have∇MW,ℎ (F) ∈ mℎ(D),∀D ∈
ran(ProxW,ℎ) and F ∈ Prox−1

W,ℎ
(D). Hence, the implicit Lipschitz subgradient and im-

plicit bounded subgradient imply, respectively, the Lipschitz continuity and bound-
edness of only the components of mℎ that are Moreau envelope gradients, but not
those of all components of mℎ. When ℎ is differentiable, implicit Lipschitz subgra-
dient implies Lipschitz gradient. Nonsmooth and nonconvex functions like |G2 − 1|,
|GH − 1|, G, H ∈ R, SCAD regularization and MCP regularization which appear in
phase retrieval, blind deconvolution, robust principal component analysis and statisti-
cal learning [28,30,59], have implicit Lipschitz subgradients but not gradients. They
have not been covered in the ALM literature. Having implicit bounded subgradients
is weaker than having bounded mℎ, which is commonly assumed in the analysis of
nonconvex algorithms (cf. [65,28,36]).

2.3 Kurdyka-Łojasiewicz Inequality

The Kurdyka-Łojasiewicz (KŁ) inequality [44,45,41,20,21] is a property that leads
to global convergence of nonconvex algorithms in the literature (see, [8,61,22,59,63,
64]). The following definition of Kurdyka-Łojasiewicz property is adopted from [20].

Definition 2 A function ℎ : R= → R∪{+∞} is said to have the Kurdyka-Łojasiewicz
property at G∗ ∈ dom(mℎ) if there exist a neighborhood U of G∗, a constant a > 0,
and a continuous concave function i(B) = 2B1−\ for some 2 > 0 and \ ∈ [0, 1)
such that the Kurdyka-Łojasiewicz inequality holds: for all G ∈ U ∩ dom(mℎ) and
ℎ(G∗) < ℎ(G) < ℎ(G∗) + a,

i′(ℎ(G) − ℎ(G∗)) · dist(0, mℎ(G)) ≥ 1, (15)

(we use the conventions: 00 = 1,∞/∞ = 0/0 = 0), where \ is called the KŁ exponent
of ℎ at G∗. Proper lower semicontinuous functions satisfying the KŁ inequality at
every point of dom(mℎ) are called KŁ functions.

This property was firstly introduced by [45] on real analytic functions [40] for \ ∈[ 1
2 , 1

)
, was then extended to functions defined on the o-minimal structure in [41], and

was later extended to nonsmooth subanalytic functions in [20]. KŁ functions include
real analytic functions [40], semialgebraic functions [19], tame functions defined
in some o-minimal structures [41], continuous subanalytic functions [20], definable
functions [21], locally strongly convex functions [61], as well as many deep-learning
training models [63,64].
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3 Convergence of MEAL

In this section, we state our convergence results of MEAL and iMEAL, whose proofs
are postponed in Section 5.

3.1 Assumptions and Stationarity Measure

Assumption 1 The set X := {G : �G = 1} is nonempty.

Assumption 2 The objective 5 in problem (1) satisfies:

(a) 5 is proper lower semicontinuous and d-weakly convex; and for any W ∈ (0, d−1),
either

(b) 5 satisfies the implicit Lipschitz subgradient property with a constant ! 5 > 0
(possibly depending on W); or,

(c) 5 satisfies the implicit bounded subgradient property with a constant !̂ 5 > 0
(possibly depending on W).

We emphasize that we are not assuming commonly used hypotheses in the litera-
ture, such as: the strict complementarity condition used in [68], any rank assumption
(such as Im(�) ⊆ Im(B) when considering the two- (multi-)block case �G + �H = 0)
used in [59], the linear independence constrained qualification (LICQ) used in [11,48]
(implying the full-rank assumption in the linear constraint case). Assumption 2 is mild
as discussed in Section 2.2 and satisfied by some important nonconvex nonsmooth
functions that have not been considered in the literature on ALM.

According to (3) and the update (4) of MEAL, we have

∇qV: (I: , _: ) =
(
([W)−1 (I: − I:+1)
V−1
:
(_:+1 − _: )

)
∈

(
m 5 (G:+1) + �) _:+1

�G:+1 − 1

)
. (16)

Let

b:meal := min
0≤C≤:

‖∇qVC (IC , _C )‖, ∀: ∈ N. (17)

Then according to (16), for accuracy Y > 0, requiring b:meal ≤ Y implies

min
0≤C≤:

dist
{
0,

(
m 5 (GC+1) + �) _C+1

�GC+1 − 1

)}
≤ b:meal ≤ Y,

which implies that MEAL can achieve an Y-accurate first-order stationary point of
problem (1) within : iterations. Thus, the defined b:meal in (17) can be used as an
effective stationarity measure of MEAL.

Based on (17), given an Y, the iteration complexity )Y used in this paper is defined
as follows:

)Y = inf
{
C ≥ 1 : ‖∇qVC (IC , _C )‖ ≤ Y

}
, (18)
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which is stronger than the commonly used measure of iteration complexity in the
literature (e.g., [68,60]), that is,3

)̂Y = inf
{
C ≥ 1 : dist(0, m 5 (GC ) + �) _C ) ≤ n and ‖�GC − 1‖ ≤ Y

}
in the sense that )Y ≥ )̂Y . Thus, the stationarity measure defined in (16) is slightly
stronger than that used in the literature [68,60].

3.2 Convergence Theorems of MEAL

We present the quantities used to state the convergence results of MEAL. Let

PV (G, I, _) = LV (G, _) +
1

2W
‖G − I‖2, (19)

for some V, W > 0. Then according to (5), MEAL can be interpreted as a primal-dual
update with respect to PV: (G, I, _) at the :-th iteration, that is, updating G:+1, I:+1,
and _:+1 by minimization, gradient descent, and gradient ascent respectively.

Based on (19), we introduce the following Lyapunov functions for MEAL:

E:meal := PV: (G: , I: , _: ) + 2U: ‖I: − I:−1‖2, ∀: ≥ 1, (20)

associated with the implicit Lipschitz subgradient assumption and

Ẽ:meal := PV: (G: , I: , _: ) + 3U: ‖I: − I:−1‖2, ∀: ≥ 1, (21)

associated with the implicit bounded subgradient assumption, where

U: :=
V: + V:+1 + W[(1 − [/2)

22W,�V2
:

, ∀: ∈ N, (22)

and 2W,� := W2f̃min (�) �). When V is fixed, we also fix

U :=
2V + W[(1 − [/2)

22W,�V2 . (23)

Theorem 1 (Iteration Complexity of MEAL) Suppose that Assumptions 1 and 2(a)
hold. Pick W ∈ (0, d−1) and [ ∈ (0, 2). Let {(G: , I: , _: )} be a sequence generated by
MEAL (5). The following claims hold:

(a) Set V sufficiently large such that in (23), U < min
{

1−Wd
4W (1+W! 5 )2

, 1
8W (

2
[
− 1)

}
. Under

Assumption 2(b), if {E:meal} is lower bounded, then b
:
meal = >(1/

√
:) for b:meal in

(17), i.e.,
√
: · b:meal → 0 as : →∞.

(b) Pick any ≥ 1. Set {V: } so that in (22),U: ≡ U∗

 
forU∗ = min

{
1−dW

6W , 1
12W

(
2
[
− 1

)}
.

Under Assumption 2(c), if {Ẽ:meal} is lower bounded, then b
 
meal ≤ 2̃1/

√
 for some

constant 2̃1 > 0.

3 When 5 is differentiable, dist(0, m 5 (GC ) + �) _C ) reduces to ‖∇ 5 (GC ) + �) _C ‖.
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In Section 6.1, we provide sufficient conditions for the lower-boundedness as-
sumptions. Let us interpret the theorem. To achieve an Y-accurate stationary point, the
iteration complexity of MEAL is >(Y−2) assuming the implicit Lipschitz subgradient
property and O(Y−2) assuming the implicit bounded subgradient property. Both itera-
tion complexities are consistent with the existing results of O(Y−2) in [38,36,60,67].
The established results of MEAL also hold for proximal ALM by setting [ = 1. We
note that it is not our goal to pursue any better complexity (e.g., using momentum) in
this paper.

Remark 1 Let Ū := min
{

1−Wd
4W (1+W! 5 )2

, 1
8W (

2
[
− 1)

}
. By (23), the requirement 0 < U <

Ū in Theorem 1(a) is met by setting

V >
1 +

√
1 + [(2 − [)W2W,�Ū

22W,�Ū
. (24)

Similarly, the assumption U: = U∗

 
in Theorem 1(b) is met by setting

V: =

 

(
1 +

√
1 + [(2 − [)W2W,�U∗/ 

)
22W,�U∗

, : = 1, . . . ,  . (25)

Next, we establish global convergence (whole sequence convergence regardless
of initial points) and its rate for MEAL under the KŁ inequality (Definition 2). Let
Î: := I:−1, H: := (G: , I: , _: , Î: ), ∀: ≥ 1, H := (G, I, _, Î) ∈ R= ×R= ×R< ×R=, and

Pmeal (H) := PV (G, I, _) + 3U‖I − Î‖2 (26)

where U is defined in (23).

Proposition 1 (Global convergence and rate of MEAL) Suppose that the assump-
tions required for Theorem 1(a) hold and that {(G: , I: , _: )} generated by MEAL (5)
is bounded. If Pmeal satisfies the KŁ property at some point H∗ := (G∗, G∗, _∗, G∗) with
an exponent of \ ∈ [0, 1), where (G∗, _∗) is a limit point of {(G: , _: )}, then

(a) the whole sequence {Ĥ: := (G: , I: , _: )} converges to Ĥ∗ := (G∗, G∗, _∗); and
(b) the following rate-of-convergence results hold: (1) if \ = 0, then {Ĥ: } converges

within a finite number of iterations; (2) if \ ∈ (0, 1
2 ], then ‖ Ĥ

: − Ĥ∗‖ ≤ 2g: for
all : ≥ :0, for certain :0 > 0, 2 > 0, g ∈ (0, 1); and (3) if \ ∈ ( 1

2 , 1), then
‖ Ĥ: − Ĥ∗‖ ≤ 2:− 1−\

2\−1 for all : ≥ :0, for certain :0 > 0, 2 > 0.

From Proposition 1, the KŁ property of Pmeal defined in (26) plays a central role
in the establishment of global convergence of MEAL, and its KŁ exponent determines
the convergence speed ofMEAL, particularly, the exponent \ = 1/2 is desired due to it
implies the linear rate of convergence. In the following, we provide some preliminary
results on these, which can be yielded by the existing results ([57, page 43], [20,
Theorem 3.1], [63, Lemma 5], [42, Theorem 3.6 and Corollary 5.2]).

Proposition 2 The following claims hold:
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(a) If 5 is subanalytic with a closed domain and continuous on its domain, then Pmeal
defined in (26) is a KŁ function;

(b) IfLV (G, _) defined in (2) has the KŁ property at some point (G∗, _∗) with exponent
\ ∈ [1/2, 1), then Pmeal has the KŁ property at (G∗, G∗, _∗, G∗) with exponent \;

(c) If 5 has the following form (see, [42, Eq. (35)]):

5 (G) = min
1≤8≤A

{
1
2
G)"8G + D)8 G + 28 + %8 (G)

}
, (27)

where %8 are proper closed polyhedral functions, "8 are symmetric matrices of
size =, D8 ∈ R= and 28 ∈ R for 8 = 1, . . . , A , then LV is a KŁ function with an
exponent of 1/2.

Claim (a) can be argued as follows. The terms in Pmeal besides 5 are polynomial
functions, which are both real analytic and semialgebraic [19]. Since 5 is subanalytic
with a closed domain and continuous on its domain, by [63, Lemma 5], Pmeal is also
subanalytic with a closed domain and continuous on its domain. By [20, Theorem
3.1], Pmeal is a KŁ function. Claim (b) can be verified by applying [42, Theorem 3.6]
to Pmeal. Claim (c) can be argued as follows. It can be shown that the defined class of
functions 5 (27) are weakly convex with a modulus d = 2 max1≤8≤A ‖"8 ‖. As pointed
out in [42, Sec. 5.2], the class of functions defined in (27) covers many nonconvex
functions such as the SCAD regularization [32] and MCP regularization [66] in
statistical learning, and −|G2 − 1| and −|GH − 1| (G, H ∈ R) in phase retrieval and blind
deconvolution [28]. Notice that LV (G, _) = V

2 ‖�G + V
−1_ − 1‖2 + ( 5 (G) − 1

2V ‖_‖
2),

which falls into the form of regularized least square, then according to [42, Corollary
5.2], LV is a KŁ function with an exponent of 1/2. More results on the KŁ functions
with exponent 1/2 can be found in the recent literature [42,62] and references therein.

3.3 Convergence of iMEAL

When considering iMEAL, the Lyapunov functions need to be slightly modified into

E:imeal := PV: (G: , I: , _: ) + 3U: ‖I: − I:−1‖2, ∀: ≥ 1, (28)

associated with the implicit Lipschitz subgradient assumption, and

Ẽ:imeal := PV: (G: , I: , _: ) + 4U: ‖I: − I:−1‖2, ∀: ≥ 1, (29)

associated with the implicit bounded subgradient assumption, where U: is defined in
(22).

Theorem 2 (Iteration Complexity of iMEAL) Let Assumptions 1 and 2(a) hold,
W ∈ (0, d−1), and [ ∈ (0, 2). Let {(G: , I: , _: )} be a sequence generated by iMEAL
(7) with

∑∞
:=0 n

2
:
< ∞. The following claims hold:

(a) Set V sufficiently large such that in (23),U < min
{

1−Wd
6W (1+W! 5 )2

, 1
12W (

2
[
− 1)

}
. Under

Assumption 2(b), if {E:imeal} is lower bounded, then b
:
meal = >(1/

√
:) (cf. (17)).
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(b) Pick ≥ 1. Set {V: } such that in (22),U: ≡ Û∗

 
for Û∗ := min

{
1−dW

8W , 1
16W (

2
[
− 1)

}
.

Under Assumption 2(c), if {Ẽ:imeal} is lower bounded, then b
 
meal ≤ 2̃2/

√
 for some

constant 2̃2 > 0.

By Theorem 2, the iteration complexity of iMEAL is the same as that of MEAL
and also consistent with that of inexact proximal ALM [60] (when the stationary
accuracy n: is square summable). Moreover, if the condition on n: is strengthened to
be

∑∞
:=0 n: < +∞ as required in the literature [55,59], then following a proof similar

for Proposition 1, global convergence and similar rates ofMEAL also hold for iMEAL
under the assumptions required for Theorem 2(a) and the KŁ property.

Remark 2 (Extension to multiblock case) We generalize MEAL to a class of linearly
constrained optimization problems with multi-block variables of the following forms:

minimizeG1 ,...,G? 5 (G1, . . . , G?) :=
∑?

8=1 A8 (G8)
subject to

∑?

8=1 �8G8 = 1,
(30)

where G8 ∈ R=8 with = =
∑?

8=1 =8 , �8 : R=8 → R<, and 1 ∈ R<, A8 : R=8 → R is weakly
convex with a modulus d > 0 and its proximity operator is assumed to be easy to
calculate (generally admitting a closed-form solution)4. Many kinds of problems can
be formulated into the form (30) such as the regularized statistical learning [59, Sec.
5.A] and sparse regularized phase retrieval [43] shown later. Let G := [G1; G2; . . . ; G?],
G<8 := [G1; . . . ; G8−1] and G>8 := [G8+1; . . . ; G?] for 8 = 1, . . . , ? and for the notational
convention, let G<1 = ∅ and G>? = ∅. Similarly, we let �<8 = [�1, . . . , �8−1], �>8 =
[�8+1, . . . , �?], �<8G<8 :=

∑8−1
9=1 � 9G 9 and �>8G>8 =

∑?

9=8+1 � 9G 9 for 8 = 1, . . . , ?, and
we can also define G≤8 , G≥8 , �≤8 , �≥8 , �≤8G≤8 and �≥8G≥8 similarly. Similar to MEAL
(5), we adopt the alternating direction scheme (also called block coordinate descent
scheme) [61] to deal with each block of variable. Specifically, at the :-th iteration, for
8 = 1, . . . , ?, let G:\8 := [G:+1

<8
; G:
>8
], �\8G:\8 := �<8G:+1<8

+ �>8G:>8 , G:[8 ] := [G:+1
<8

; G:
8

; G:
>8
]

and

LV: ,A8 (G8 , _) := A8 (G8) + 〈_, �8G8 + �\8G:\8 − 1〉 +
V:

2
‖�8G8 + �\8G:\8 − 1‖

2,

then the iterate of Moreau Envelope Alternating Direction method (dubbed MEAD)
for (30) can be described as follows: given an initialization (I0, _0), W > 0, [ > 0 and
{V: }, for : = 0, 1, . . . ,

(MEAD)


for 8 = 1, . . . , ?, G:+1
8

= ProxW,LV: ,A8 ( ·,_: ) (I
:
8
),

I:+1 = I: − [(I: − G:+1),
_:+1 = _: + V: (�G:+1 − 1).

(31)

Convergence results of MEAL shall also hold for MEAD under similar assumptions.

4 Without loss of generality, we use a uniform weakly convex modulus for all functions A8’s for the
simplicity
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4 Convergence of LiMEAL for Composite Objective

In this section, we present the convergence results of LiMEAL (9) for the constrained
problem with a composite objective (8), of which proofs are presented in Section 5
later. Similar to Assumption 2, we make the following assumptions.

Assumption 3 The objective 5 (G) = ℎ(G) + 6(G) in problem (8) satisfies:

(a) ℎ is differentiable and ∇ℎ is Lipschitz continuous with a constant !ℎ > 0;
(b) 6 is proper lower-semicontinuous and d6-weakly convex; and either
(c) 6 has the implicit Lipschitz subgradient property with a constant !6 > 0; or
(d) 6 has the implicit bounded subgradient property with a constant !̂6 > 0.

In (c) and (d), !6 and !̂6 may depend on W.

By the update (9) of LiMEAL, some simple derivations show that

G:+1 = ProxW,6 (I: − W(∇ℎ(G: ) + �) _:+1)) (32)

and

6:limeal :=
(
W−1 (I: − G:+1) + (∇ℎ(G:+1) − ∇ℎ(G: ))

V−1
:
(_:+1 − _: )

)
∈

(
m 5 (G:+1) + �) _:+1

�G:+1 − 1

)
.

(33)

Actually, the term W−1 (I: − G:+1) represents some prox-gradient sequence frequently
used in the analysis of algorithms for the unconstrained composite optimization (e.g.,
[28]). Thus, let

b:limeal := min
0≤C≤:

‖6Climeal‖, ∀: ∈ N, (34)

which can be taken as an effective stationarity measure of LiMEAL for problem (8).
In the following, we present the iteration complexity of LiMEAL for problem (8).

Since the prox-linear scheme is adopted in the update of G:+1 in LiMEAL as described
in (9), thus, the proximal term (i.e., ‖G: − G:−1‖2) should be generally included in the
associated Lyapunov functions of LiMEAL, shown as follows:

E:limeal := PV: (G: , I: , _: ) + 3U: (W2!2
ℎ ‖G

: − G:−1‖2 + ‖I: − I:−1‖2) (35)

associated with the implicit Lipschitz gradient assumption, and

Ẽ:limeal := PV: (G: , I: , _: ) + 4U: (W2!2
ℎ ‖G

: − G:−1‖2 + ‖I: − I:−1‖2), (36)

associated with the implicit bounded subgradient assumption, where U: is defined in
(22).

The iteration complexity of MEAL can be similarly generalized to LiMEAL as
follows.

Theorem 3 (Iteration Complexity of LiMEAL) Take Assumptions 1 and 3(a)-(b).
Pick [ ∈ (0, 2) and 0 < W < 2

(d6+!ℎ)
©­«1+

√
1+

2(2−[)[!2
ℎ

(d6+!ℎ )2
ª®¬
. Let {(G: , I: , _: )} be a sequence

generated by LiMEAL (9). The following claims hold:
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(a) Set V sufficiently large such that U < min
{

1
12W (

2
[
− 1), 1−W (d6+!ℎ)−[ (1−[/2)W2!2

ℎ

6W( (1+W!6)2+W2!2
ℎ)

}
.

Under Assumption 3(c), if {E:limeal} is lower bounded, then b
:
limeal = >(1/

√
:).

(b) Pick ≥ 1. Set {V: } such thatU: ≡ Ũ∗

 
for Ũ∗ = min

{
1−W(d6+!ℎ)−[ (1−[/2)W2!2

ℎ)
8W (1+W2!2

ℎ
) , 1

16W

(
2
[
− 1

)}
.

Under Assumption 3(d), if {Ẽ:limeal} is lower bounded, then b
 
limeal ≤ 2̃3/

√
 for

some constant 2̃3 > 0.

Similar to the discussions following Theorem 1, to yield an Y-accurate first-order
stationary point, the iteration complexity of LiMEAL is >(Y−2) under the implicit
Lipschitz subgradient assumption and O(Y−2) under the implicit bounded subgradient
assumption, as demonstrated by Theorem 3. The conditions on V and V: in these two
cases can be derived similarly to (24) and (25), respectively.

In the following, we establish the global convergence and rate of LiMEAL under
assumptions required for Theorem 3(a) and the KŁ property. Specifically, let Ĝ: :=
G:−1, Î: := I:−1, H: := (G: , I: , _: , Ĝ: , Î: ), ∀: ≥ 1, H := (G, I, _, Ĝ, Î) ∈ R= × R= ×
R< × R= × R=, and

Plimeal (H) := PV (G, I, _) + 4U
(
‖I − Î‖2 + W2!2

ℎ ‖G − Ĝ‖
2
)
. (37)

Proposition 3 (Global convergence and rate of LiMEAL) Suppose that Assump-
tions 1 and 3(a)-(c) hold and that the sequence {(G: , I: , _: )} generated by LiMEAL (9)

is bounded. If W ∈ (0, 1
d6+!ℎ ), [ ∈ (0, 2),0 < U < min

{
1

8W

(
2
[
− 1

)
,

1−W (d6+!ℎ)
8W( (1+W!6)2+W2!2

ℎ)

}
,

and Plimeal satisfies the KŁ property at some point H∗ := (G∗, G∗, _∗, G∗, G∗) with an
exponent of \ ∈ [0, 1), where (G∗, _∗) is a limit point of {(G: , _: )}, then
(a) the whole sequence {Ĥ: := (G: , I: , _: )} converges to Ĥ∗ := (G∗, G∗, _∗); and
(b) all the rate of convergence results in Proposition 1(b) also hold for LiMEAL.

Remark 3 The established results in this section is more general than those in [68]
and done under weaker assumptions on ℎ and for more general class of 6. Specifically,
as discussed in Section 1.2, the algorithm studied in [68] is a prox-linear version of
LiMEAL with 6 being an indicator function of a box constraint set. In [68], global
convergence and a linear rate of proximal inexact ALM were proved for quadratic
programming, where that the augmented Lagrangian satisfies the KŁ inequality with
exponent 1/2. Besides, the strict complementarity condition required in [68] is also
removed in this paper for LiMEAL.

Remark 4 (Extension to multiblock composite objective) Similar to the analysis in
Remark 2, we generalize LiMEAL to a class of linearly constrained optimization
problems with multi-block compositions of the following forms:

minimizeG1 ,...,G? 5 (G1, . . . , G?) := ℎ(G1, . . . , G?) +
∑?

8=1 A8 (G8)
subject to

∑?

8=1 �8G8 = 1,
(38)

where G8 ∈ R=8 with = =
∑?

8=1 =8 , �8 : R=8 → R<, and 1 ∈ R<, A8 : R=8 → R is
weakly convex with a modulus d > 0 and its proximity operator is assumed to be easy
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to calculate, ℎ : R= → R is differentiable with respect to each block G8 and has !ℎ-
Lipschitz continuous gradient in the sense that ‖∇G8 ℎ(G1, . . . , G8−1, D, G8+1, . . . , G?) −
∇G8 ℎ(G1, . . . , G8−1, E, G8+1, . . . , G?)‖ ≤ !ℎ ‖D − E‖, ∀D, E ∈ R=8 . Similar to LiMEAL
(9), we adopt the block coordinate descent and prox-linear schemes [61] to deal with
the smooth function ℎ, while keep the nonsmooth functions A8’s. Specifically, at the
:-th iteration, for 8 = 1, . . . , ?, let

5 :8 (G8) := ℎ(G:[8 ]) + 〈∇G8 ℎ(G
:
[8 ]), G8 − G

:
8 〉 + A8 (G8) +

∑
9<8

A 9 (G:+19 ) +
∑
9>8

A 9 (G:9 ) (39)

and

LV: , 5 :8 (G8 , _) := 5 :8 (G8) + 〈_, �8G8 + �\8G:\8 − 1〉 +
V:

2
‖�8G8 + �\8G:\8 − 1‖

2,

(here we use the same notations as in Remark 2), then the iterate of multi-block lin-
earizedMEAL (mLiMEAL) for (38) can be described as follows: given an initialization
(I0, _0), W > 0, [ > 0 and {V: }, for : = 0, 1, . . . ,

(mLiMEAL)


for 8 = 1, . . . , ?, G:+1

8
= ProxW,L

V: , 5
:
8
( ·,_: ) (I:8 ),

I:+1 = I: − [(I: − G:+1),
_:+1 = _: + V: (�G:+1 − 1).

(40)

Convergence results of LiMEAL shall also hold for mLiMEAL under similar assump-
tions.

5 Main Proofs

In this section, we first prove some lemmas and then present the proofs of our main
convergence results.

5.1 Preliminary Lemmas

5.1.1 Lemmas on Iteration Complexity and Global Convergence

The first lemma concerns the convergence speed of a nonenegative sequence {b: }
satisfying the following relation

[̃b2
: ≤ (E: − E:+1) + ñ

2
: , ∀: ∈ N, (41)

where [̃ > 0, {E: } and {ñ: } are two nonnegative sequences, and
∑∞
:=1 ñ

2
:
< +∞.

Lemma 1 For any sequence {b: } satisfying (41), b̃: := min1≤C≤: bC = >(1/
√
:).
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Proof Summing (41) over : from 1 to  and letting  → +∞ yields
∞∑
:=1

b2
: ≤ [̃

−1

(
E1 +

∞∑
:=1

ñ2
:

)
< +∞,

which implies the desired convergence speed by :
2 b̃

2
:
≤ ∑

:
2 ≤ 9≤:

b2
9
→ 0 as : → ∞,

as proved in [29, Lemma 1.1].

Then we provide a lemma to show the convergence speed of a nonenegative
sequence {b: } satisfying the following relation instead of (41)

[̃b2
: ≤ (E: − E:+1) + ñ

2
: + U: !̃, ∀: ∈ N, (42)

where [̃ > 0, !̃ > 0, {E: }, {U: } and {ñ: } are nonnegative sequences, and
∑∞
:=1 ñ

2
:
<

+∞.

Lemma 2 Pick  ≥ 1. Let {b: } be a nonnegative sequence satisfying (42). Set
U: ≡ Ũ

 
for some Ũ > 0. Then b̃ := min1≤:≤ b: ≤ 2̃/

√
 for some constant 2̃ > 0.

Proof Summing (42) over : from 1 to  yields

1
 

 ∑
:=1

b2
: ≤
E1 +

∑ 
:=1 ñ

2
:
+ !̃∑ 

:=1 U:

 [̃
.

The result follows from the choice of Ũ: and
∑∞
:=1 ñ

2
:
< +∞.

In both Lemmas 1 and 2, the nonnegative assumption on the sequence {E: } can
be relaxed to its lower boundedness.

The following lemma presents the global convergence and rate of a sequence
generated by some algorithm for the nonconvex optimization problem, based on
the Kurdyka-Łojasiewicz inequality, where the global convergence result is from [8,
Theorem 2.9] while the rate results are from [7, Theorem 5].

Lemma 3 (Existing global convergence and rate)LetL be a proper, lower semicon-
tinuous function, and {D: } be a sequence that satisfies the following three conditions:

(P1) (Sufficient decrease condition) there exists a constant 01 > 0 such that L(D:+1) +
01‖D:+1 − D: ‖2 ≤ L(D: ), ∀: ∈ N;

(P2) (Bounded subgradient condition) for each : ∈ N, there exists E:+1 ∈ mL(D:+1)
such that ‖E:+1‖ ≤ 02‖D:+1 − D: ‖ for some constant 02 > 0;

(P3) (Continuity condition) there exist a subsequence {D: 9 } and D̃ such that D: 9 → D̃

and L(D: 9 ) → L(D̃) as 9 →∞.
If L satisfies the KŁ inequality at D̃ with an exponent of \, then

(1) {D: } converges to D̃; and
(2) depending on \, (i) if \ = 0, then {D: } converges within a finite number of

iterations; (ii) if \ ∈ (0, 1
2 ], then ‖D

: − D̃‖ ≤ 2g: for all : ≥ :0, for certain
:0 > 0, 2 > 0, g ∈ (0, 1); and (iii) if \ ∈ ( 1

2 , 1), then ‖D
: − D̃‖ ≤ 2:− 1−\

2\−1 for all
: ≥ :0, for certain :0 > 0, 2 > 0.
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5.1.2 Lemmas on controlling dual ascent by primal descent

In the following, we establish several lemmas to show that the dual ascent quantities
of proposed algorithms can be controlled by the primal descent quantities.

Lemma 4 (MEAL: controlling dual by primal) Let {(G: , I: , _: )} be a sequence
generated by MEAL (5). Take Assumptions 1 and 2(a) and W ∈ (0, d−1).
(a) Under Assumption 2(b), for any : ≥ 1,

‖�) (_:+1 − _: )‖ ≤ (! 5 + W−1)‖G:+1 − G: ‖ + W−1‖I: − I:−1‖, (43)

‖_:+1 − _: ‖2 ≤ 22−1
W,�

[
(W! 5 + 1)2‖G:+1 − G: ‖2 + ‖I: − I:−1‖2

]
, (44)

where 2W,� = W2f̃min (�) �).
(b) Under Assumption 2(c), for any : ≥ 1,

‖_:+1 − _: ‖2 ≤ 32−1
W,�

[
4W2 !̂2

5 + ‖G
:+1 − G: ‖2 + ‖I: − I:−1‖2

]
. (45)

Proof The update (5) of G:+1 implies

G:+1 = argmin
G

{
5 (G) + 〈_: , �G − 1〉 + V:

2
‖�G − 1‖2 + 1

2W
‖G − I: ‖2

}
.

Its optimality condition and the update (5) of _:+1 in MEAL together give us

0 ∈ m
(
5 + 1

2W
‖ · −(I: − W�) _:+1)‖2

)
(G:+1). (46)

Let F:+1 := I: − W�) _:+1, ∀: ∈ N. The above inclusion implies

G:+1 = ProxW, 5 (F:+1), (47)

and thus by (13),

�) _:+1 = −∇MW, 5 (F:+1) − W−1 (G:+1 − I: ), (48)

which further implies

‖�) (_:+1 − _: )‖ = ‖(∇MW, 5 (F:+1) − ∇MW, 5 (F: )) + W−1 (G:+1 − G: ) − W−1 (I: − I:−1)‖.

(a)With Assumption 2(b), the above equality yields

‖�) (_:+1 − _: )‖ ≤ (! 5 + W−1)‖G:+1 − G: ‖ + W−1‖I: − I:−1‖,

which leads to (43). By Assumption 1 and the relation _:+1 − _: = V: (�G:+1 − 1),
(_:+1 − _: ) ∈ Im(�). Thus, from the above inequality, we deduce

‖_:+1 − _: ‖ ≤ f̃−1/2
min (�

) �)
[
(! 5 + W−1)‖G:+1 − G: ‖ + W−1‖I: − I:−1‖

]
,

and, further by (D + E)2 ≤ 2(D2 + E2) for any D, E ∈ R,

‖_:+1 − _: ‖2 ≤ 2f̃−1
min (�) �)

[
(! 5 + W−1)2‖G:+1 − G: ‖2 + W−2‖I: − I:−1‖2

]
.
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(b) From Assumption 2(c), we have

‖�) (_:+1 − _: )‖ ≤ 2!̂ 5 + W−1 (‖G:+1 − G: ‖ + ‖I: − I:−1‖),

which implies

‖_:+1 − _: ‖ ≤ f̃−1/2
min (�

) �)
[
2!̂ 5 + W−1 (‖G:+1 − G: ‖ + ‖I: − I:−1‖)

]
,

and further by (0 + 2 + 3)2 ≤ 3(02 + 22 + 32) for any 0, 2, 3 ∈ R,

‖_:+1 − _: ‖2 ≤ 3f̃−1
min (�) �)

[
4!̂2

5 + W
−2 (‖G:+1 − G: ‖2 + ‖I: − I:−1‖2)

]
.

The similar lemma also holds for iMEAL shown as follows.

Lemma 5 (iMEAL: dual controlled by primal) Let (G: , I: , _: ) be a sequence
generated by iMEAL (7). Take Assumptions 1 and 2(a) hold, and W ∈ (0, d−1).
(a) Under Assumption 2(b), for any : ≥ 1,

‖_:+1 − _: ‖2 ≤ 32−1
W,�

[
(W! 5 + 1)2‖G:+1 − G: ‖2 + ‖I: − I:−1‖2 + W2 (n: + n:−1)2

]
.

(b) Under Assumption 2(c), for any : ≥ 1,

‖_:+1 − _: ‖2 ≤ 42−1
W,�

[
4W2 !̂2

5 + ‖G
:+1 − G: ‖2 + ‖I: − I:−1‖2 + W2 (n: + n:−1)2

]
.

Proof The proof is similar to that of Lemma 4, but with (46) being replaced by

0 ∈ m
(
5 + 1

2W




· − (
I: − W(�) _:+1 − B: )

)


2
)
(G:+1),

and thus F:+1 := I: − W(�) _:+1 − B: ).

Lemma 6 (LiMEAL: controlling dual by primal) Let {(G: , I: , _: )} is a sequence
generated by LiMEAL (9). Take Assumptions 1 and 3(a)-(b), and W ∈ (0, d−1

6 ).
(a) Under Assumption 3(c), for any : ≥ 1,

‖�) (_:+1 − _: )‖ (49)

≤ (!6 + W−1)‖G:+1 − G: ‖ + !ℎ ‖G: − G:−1‖ + W−1‖I: − I:−1‖,
‖_:+1 − _: ‖2 (50)

≤ 32−1
W,�

[
(W!6 + 1)2‖G:+1 − G: ‖2 + W2!2

ℎ ‖G
: − G:−1‖2 + ‖I: − I:−1‖2

]
.

(b) Under Assumption 3(d), for any : ≥ 1,

‖_:+1 − _: ‖2 (51)

≤ 42−1
W,�

[
4W2 !̂2

6 + ‖G:+1 − G: ‖2 + W2!2
ℎ ‖G

: − G:−1‖2 + ‖I: − I:−1‖2
]
.

Proof The proof is also similar to that of Lemma 4, but (46) needs to be modified to

0 ∈ m
(
6 + 1

2W
‖ · −

(
I: − W(�) _:+1 + ∇ℎ(G: ))

)
‖2

)
(G:+1),

and thus F:+1 := I: − W(�) _:+1 + ∇ℎ(G: ))).
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5.1.3 Lemmas on One-step Progress

Here, we provide several lemmas to characterize the progress achieved by a single
iterate of the proposed algorithms.

Lemma 7 (MEAL: one-step progress) Let {(G: , I: , _: )} be a sequence generated
by MEAL (4). Take Assumption 2(a), W ∈ (0, d−1), and [ ∈ (0, 2). Then for any : ∈ N,

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) ≥
(1 − Wd)

2W
‖G:+1 − G: ‖2 (52)

+ 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2 + 1

4
W[(2 − [)‖∇qV: (I: , _: )‖2 − U:2W,�‖_:+1 − _: ‖2,

where U: is presented in (22) and 2W,� = W2f̃min (�) �).

Proof By the update (5) of G:+1 in MEAL, G:+1 is updated via minimizing a strongly
convex function PV: (G, I: , _: ) with modulus at least (W−1 − d), we have

PV: (G: , I: , _: ) − PV: (G:+1, I: , _: ) ≥
W−1 − d

2
‖G:+1 − G: ‖2. (53)

Next, recall in (5), I:+1 = I: + [(G:+1 − I: ) implies

2G:+1 − I: − I:+1 = (2[−1 − 1) (I:+1 − I: ). (54)

So we have

PV: (G:+1, I: , _: ) − PV: (G:+1, I:+1, _: ) =
1

2W
(‖G:+1 − I: ‖2 − ‖G:+1 − I:+1‖2)

=
1

2W
〈I:+1 − I: , 2G:+1 − I: − I:+1〉 = 1

2W
( 2
[
− 1)‖I:+1 − I: ‖2.

Moreover, by the update _:+1 = _: + V: (�G:+1 − 1), we have

PV: (G:+1, I:+1, _: ) − PV: (G:+1, I:+1, _:+1) = −V−1
: ‖_

:+1 − _: ‖2,

and

PV: (G:+1, I:+1, _:+1) − PV:+1 (G:+1, I:+1, _:+1) =
V: − V:+1

2V2
:

‖_:+1 − _: ‖2.

Combining the above four terms of estimates yields

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) (55)

≥ (1 − dW)
2W

‖G:+1 − G: ‖2 + 1
2W
( 2
[
− 1)‖I:+1 − I: ‖2 − V: + V:+1

2V2
:

‖_:+1 − _: ‖2.

Then, we establish (52) from (55). By the definition (16) of ∇qV: (I: , _: ), we have

‖∇qV: (I: , _: )‖2 = ([W)−2‖I: − I:+1‖2 + V−2
: ‖_

:+1 − _: ‖2,
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which implies

([W)−2‖I: − I:+1‖2 = ‖∇qV: (I: , _: )‖2 − V−2
: ‖_

:+1 − _: ‖2.

Substituting this into the above inequality yields

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) ≥
(1 − Wd)

2W
‖G:+1 − G: ‖2

+ 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2 + 1

4
W[(2 − [)‖∇qV: (I: , _: )‖2 − U:2W,�‖_:+1 − _: ‖2,

where U: = V:+V:+1+W[ (1−[/2)
22W,�V2

:

. This finishes the proof.

Next, we provide a lemma for iMEAL (7).
Lemma 8 (iMEAL: one-step progress) Let {(G: , I: , _: )} be a sequence generated
by iMEAL (7). Take Assumptions 2(a) and (b), W ∈ (0, d−1), and [ ∈ (0, 2). It holds
that

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) (56)

≥ (1 − Wd)
2W

‖G:+1 − G: ‖2 + 〈B: , G: − G:+1〉 + 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2

+ 1
2
W[(1 − [/2)‖∇qV: (I: , _: )‖2 − U:2W,�‖_:+1 − _: ‖2, ∀: ∈ N.

Proof The proof of this lemma is similar to that of Lemma 7 and uses the descent
quantity along the update of G:+1. By the update (7) of G:+1 in iMEAL and noticing
that LV: (G, _: ) +

‖G−I: ‖
2W is strongly convex with modulus at least (W−1 − d), we have

PV: (G: , I: , _: ) ≥ PV: (G:+1, I: , _: ) + 〈B: , G: − G:+1〉 +
W−1 − d

2
‖G:+1 − G: ‖2.

By replacing (53) in the proof of Lemma 7 with the above inequality and following
the rest part of its proof, we obtain the following inequality

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) ≥
1 − Wd

2W
‖G:+1 − G: ‖2 + 〈B: , G: − G:+1〉

+ 1
2W
( 2
[
− 1)‖I:+1 − I: ‖2 − V: + V:+1

2V2
:

‖_:+1 − _: ‖2.

We can establish (56) with a derivation similar to that in the proof of Lemma 7.

Also, we state a similar lemma for one-step progress of LiMEAL (9) as follows.
Lemma 9 (LiMEAL: one-step progress)Let {(G: , I: , _: )} be a sequence generated
by LiMEAL (9). Take Assumptions 3(a) and (b), W ∈ (0, d−1

6 ), and [ ∈ (0, 2). We have

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) (57)

≥
(1 − W(d6 + !ℎ)

2W
− 1

4
W(2 − [)[!2

ℎ

)
‖G:+1 − G: ‖2

+ 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2 + 1

4
W(1 − [:/2)[‖6:limeal‖

2 − U:2W,�‖_:+1 − _: ‖2, ∀: ∈ N.
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Proof The proof of this lemma is similar to that of Lemma 7. By the update (9)
of G:+1 in LiMEAL, G:+1 is updated via minimizing (W−1 − d6)-strongly convex
LV: , 5 : (G, _: ) +

‖G−I: ‖
2W , so

LV: , 5 : (G
: , _: ) + ‖G

: − I: ‖2
2W

≥ LV: , 5 : (G
:+1, _: ) + ‖G − I

: ‖2
2W

+
W−1 − d6

2
‖G:+1 − G: ‖2.

Bydefinition,LV: , 5 : (G, _) = ℎ(G: )+〈∇ℎ(G: ), G−G:〉+6(G)+〈_, �G−1〉+
V

2 ‖�G−1‖
2

and PV: (G, I, _) = ℎ(G) + 6(G) + 〈_, �G − 1〉 +
V:
2 ‖�G − 1‖

2 + ‖G−I ‖
2

2W , so the above
inequality implies

PV: (G: , I: , _: ) ≥ PV: (G:+1, I: , _: ) +
W−1 − d6

2
‖G:+1 − G: ‖2

− (ℎ(G:+1) − ℎ(G: ) − 〈∇ℎ(G: ), G:+1 − G:〉)

≥ PV: (G:+1, I: , _: ) +
W−1 − d6 − !ℎ

2
‖G:+1 − G: ‖2,

where the second inequality is due to the !ℎ-Lipschitz continuity of ∇ℎ. By replacing
(53) in the proof of Lemma 7 with the above inequality and following the rest part of
that proof, we obtain

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) (58)

≥
1 − W(d6 + !ℎ)

2W
‖G:+1 − G: ‖2 + 1

2W
( 2
[
− 1)‖I:+1 − I: ‖2 − V: + V:+1

2V2
:

‖_:+1 − _: ‖2.

Next, based on the above inequality, we establish (57). By the definition (33) of
6:limeal and noticing that I: − G:+1 = −[−1 (I:+1 − I: ) by the update (9) of I:+1, we
have

‖6:limeal‖
2 ≤ 2!2

ℎ ‖G
:+1 − G: ‖2 + 2(W[)−2‖I:+1 − I: ‖2 + V−2

: ‖_
:+1 − _: ‖2,

which implies

(W[)−2‖I:+1 − I: ‖2 ≥ 1
2
‖6:limeal‖

2 − 1
2
V−2
: ‖_

:+1 − _: ‖2 − !2
ℎ ‖G

:+1 − G: ‖2.

Substituting this inequality into (58) yields

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1)

≥
(1 − W(d6 + !ℎ)

2W
− 1

4
W(2 − [)[!2

ℎ

)
‖G:+1 − G: ‖2

+ 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2 + 1

4
W(1 − [/2)[‖6:limeal‖

2 − U:2W,�‖_:+1 − _: ‖2.

This finishes the proof of this lemma.
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5.2 Proofs for Convergence of MEAL

Based on the above lemmas, we give proofs of Theorem 1 and Proposition 1.

5.2.1 Proof of Theorem 1

Proof We first establish the >(1/
√
:) rate of convergence under the implicit Lipschitz

subgradient assumption (Assumption 2(b)) and then the convergen rate result under
the implicit bounded subgradient assumption (Assumption 2(c)).

(a) In the first case, V: = V and U: = U. Substituting (44) into (52) yields

PV (G: , I: , _: ) − PV (G:+1, I:+1, _:+1) ≥
1
2
W[(1 − [/2)‖∇qV (I: , _: )‖2

+
(
(1 − Wd)

2W
− 2U(1 + W! 5 )2

)
‖G:+1 − G: ‖2 + 1

4W
( 2
[
− 1)‖I:+1 − I: ‖2 − 2U‖I: − I:−1‖2.

By the definition (20) of E:meal, the above inequality implies

E:meal − E
:+1
meal ≥

1
2
W[(1 − [/2)‖∇qV (I: , _: )‖2 +

(
1

4W
( 2
[
− 1) − 2U

)
‖I:+1 − I: ‖2

+
(

1 − Wd
2W

− 2U(1 + W! 5 )2
)
‖G:+1 − G: ‖2 (59)

≥ 1
2
W[(1 − [/2)‖∇qV (I: , _: )‖2,

where the second inequality holds due to the condition on U. Thus, claim (a) follows
from the above inequality, Lemma 1 with ñ: = 0 and the lower boundedness of
{E:meal}.

(b) Similarly, substituting (45) into (52) and using the definition (21) of Ẽ:meal, we
have

Ẽ:meal − Ẽ
:+1
meal ≥

1
2
W[(1 − [/2)‖∇qV: (I: , _: )‖2 − 12U:W2 !̂2

5

+
(

1 − Wd
2W

− 3U:
)
‖G:+1 − G: ‖2 +

(
1

4W
( 2
[
− 1) − 3U:+1

)
‖I:+1 − I: ‖2.

With U: = U∗

 
,

Ẽ:meal − Ẽ
:+1
meal ≥

1
2
W(1 − [/2)[‖∇qV: (I: , _: )‖2 − 12U:W2 !̂2

5 ,

which yields claim (b) by Lemma 2with ñ: = 0 and the lower boundedness of {Ẽ:meal}.
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5.2.2 Proof of Proposition 1

Proof With Lemma 3, we only need to check conditions (%1)-(%3) hold for MEAL.
(a) Establishing (%1): With 0 := W[ (2−[)

4V , we have 1+0
V2W,�

= U for U in (23).
Substituting (44) into (55) with fixed V: yields

PV (G: , I: , _: ) − PV (G:+1, I:+1, _:+1) ≥ (
1 − dW

2W
− 2U(W! 5 + 1)2)‖G:+1 − G: ‖2

+ 1
2W
( 2
[
− 1)‖I:+1 − I: ‖2 − 2U‖I: − I:−1‖2 + 0V−1‖_:+1 − _: ‖2.

For the definition (26) of Pmeal and the assumption on U, we deduce from the above
inequality:

Pmeal (H: ) − Pmeal (H:+1) ≥ (
1 − dW

2W
− 2U(W! 5 + 1)2)‖G:+1 − G: ‖2

+
(

1
2W
( 2
[
− 1) − 3U

)
‖I:+1 − I: ‖2 + U‖I: − I:−1‖2 + 0V−1‖_:+1 − _: ‖2

≥ 21‖H:+1 − H: ‖2, (60)

where 21 := min
{

1−dW
2W − 2U(W! 5 + 1)2, U, 0V−1

}
by 1

2W (
2
[
−1)−3U ≥ U. This yields

(%1) for MEAL.
(b) Establishing (%2): Note that Pmeal (H) = 5 (G) + 〈_, �G − 1〉 + V2 ‖�G − 1‖

2 +
1

2W ‖G − I‖
2 + 3U‖I − Î‖2. The optimality condition from the update of G:+1 in (5) is

0 ∈ m 5 (G:+1) + �) _:+1 + W−1 (G:+1 − I: ),

which implies W−1 (I: − I:+1) + �) (_:+1 − _: ) ∈ mGPmeal (H:+1). From the update of
I:+1 in (5), I:+1 − G:+1 = −(1 − [)[−1 (I:+1 − I: ) and thus

mIPmeal (H:+1) = W−1 (I:+1 − G:+1) + 6U(I:+1 − I: ) =
(
6U − 1 − [

[W

)
(I:+1 − I: ).

The update of _:+1 in (5) yields m_Pmeal (H:+1) = �G:+1 − 1 = V−1 (_:+1 − _: ).
Moreover, it is easy to show mÎPmeal (H:+1) = 6U(I: − I:+1). Thus, let

E:+1 :=
©­­­­«
W−1 (I: − I:+1) + �) (_:+1 − _: )(

6U − 1−[
[W

)
(I:+1 − I: )

V−1 (_:+1 − _: )
6U(I: − I:+1)

ª®®®®¬
,

which obeys E:+1 ∈ mPmeal (H:+1) and

‖E:+1‖ ≤
(
W−1 +

����6U − 1 − [
[W

���� + 6U
)
‖I:+1 − I: ‖ + V−1‖_:+1 − _: ‖ + ‖�) (_:+1 − _: )‖

≤
(
W−1 +

����6U − 1 − [
[W

���� + 6U
)
‖I:+1 − I: ‖ + V−1‖_:+1 − _: ‖

+ (! 5 + W−1)‖G:+1 − G: ‖ + W−1‖ Î:+1 − Î: ‖,
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where the second inequality is due to (43). This yields (%2) for MEAL.
(c) Establishing (%3): (%3) follows from the boundedness assumption of {H: },

and the convergence of {Pmeal (H: )} is implied by (%1). This finishes the proof.

5.3 Proofs for Convergence of iMEAL

In this subsection, we present the proof of Theorem 2 for iMEAL (7).

Proof (of Theorem 2)We first show the >(1/
√
:) rate of convergence under Assump-

tion 2(b) and then the convergence rate result under Assumption 2(c).
(a) In this case, we use a fixed V: = V and thus U: = U. Substituting the inequality

in Lemma 5(a) into (56) in Lemma 8 yields

PV (G: , I: , _: ) − PV (G:+1, I:+1, _:+1) ≥
1
2
W[(1 − [/2)‖∇qV (I: , _: )‖2 (61)

+
(

1 − Wd
2W

− 3U(1 + W! 5 )2
)
‖G:+1 − G: ‖2 + 〈B: , G: − G:+1〉 − 3UW2 (n: + n:−1)2

+ 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2 − 3U‖I: − I:−1‖2.

Let X := 2
(
(1−Wd)

2W − 3U(1 + W! 5 )2
)
. By the assumption 0 < U < min

{
1−Wd

6W (1+W! 5 )2
, 1

12W (
2
[
− 1)

}
,

we have X > 0 and further

〈B: , G: − G:+1〉 ≥ −X
2
‖G:+1 − G: ‖2 − 1

2X
‖B: ‖2 ≥ −X

2
‖G:+1 − G: ‖2 − 1

2X
(n: + n:−1)2.

Substituting this into (61) and noting the definition (28) of E:imeal, we have

E:imeal − E
:+1
imeal ≥

1
2
W[(1 − [/2)‖∇qV (I: , _: )‖2 − (3UW2 + 1

2X
) (n: + n:−1)2,

which yields claim (a) by the assumption
∑∞
:=1 (n: )2 < +∞ and Lemma 1.

(b)Thenwe establish claim (b) under Assumption 2(c). Substituting the inequality
in Lemma 5(b) into (56) in Lemma 8 yields

PV: (G: , I: , _: ) − PV:+1 (G:+1, I:+1, _:+1) ≥
1
2
W[(1 − [/2)‖∇qV: (I: , _: )‖2 (62)

+
(
(1 − Wd)

2W
− 4U:

)
‖G:+1 − G: ‖2 + 〈B: , G: − G:+1〉 − 4W2U: (n: + n:−1)2

+ 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2 − 4U: ‖I: − I:−1‖2 − 16U:W2 !̂2

5 .

Let Û∗ := min
{

1−dW
8W , 1

16W (
2
[
− 1)

}
and X̃ := 2

(
(1−Wd)

2W − 4Û∗
)
> 0. We have

〈B: , G: − G:+1〉 ≥ − X̃
2
‖G:+1 − G: ‖2 − 1

2X̃
‖B: ‖2 ≥ − X̃

2
‖G:+1 − G: ‖2 − 1

2X̃
(n: + n:−1)2.
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Substituting this into (62), and by the definition (29) of Ẽ:imeal and setting of U: , we
have

Ẽ:imeal − Ẽ
:+1
imeal ≥

1
2
W(1 − [/2)[‖∇qV: (I: , _: )‖2 − (4U:W2 + 1

2X̃
) (n: + n:−1)2 − 16U:W2 !̂2

5 ,

which yields claim (b) by the assumption
∑∞
:=1 (n: )2 < +∞ and Lemma 2.

5.4 Proofs for Convergence of LiMEAL

Now, we show proofs of main convergence theorems for LiMEAL (9).

5.4.1 Proof of Theorem 3

Proof Wefirst establish claim (a) and then claim (b) under the associated assumptions.
(a) In this case, a fixed V: is used. Substituting (50) into (57) yields

PV (G: , I: , _: ) − PV (G:+1, I:+1, _:+1) ≥
1
4
W(1 − [/2)[‖6:limeal‖

2

+
(1 − W(d6 + !ℎ)

2W
− 1

4
W(2 − [)[!2

ℎ − 3(1 + W!6)2U
)
‖G:+1 − G: ‖2

+ 1
4W
( 2
[
− 1)‖I:+1 − I: ‖2 − 3U(W2!2

ℎ ‖G
: − G:−1‖2 + ‖I: − I:−1‖2).

By the definition (35) of E:limeal, the above inequality implies

E:limeal − E
:+1
limeal ≥

1
4
W(1 − [/2)[‖6:limeal‖

2 +
(

1
4W
( 2
[
− 1) − 3U

)
‖I:+1 − I: ‖2 (63)

+
(1 − W(d6 + !ℎ)

2W
− 1

4
W(2 − [)[!2

ℎ − 3U
(
(1 + W!6)2 + W2!2

ℎ

))
‖G:+1 − G: ‖2

≥ 1
4
W(1 − [/2)[‖6:limeal‖

2,

where the second inequality holds under the conditions in Theorem 3(a). This shows
the claim (a) by Lemma 1 and the lower boundedness of {E:limeal}.

(b) Similarly, substituting (51) into (57) and using the definitions of U: in (22)
and Ẽ:limeal in (36), we obtain

Ẽ:limeal − Ẽ
:+1
limeal ≥

1
4
W(1 − [/2)[: ‖6:limeal‖

2 − 16U:W2 !̂2
6 +

(
1

4W
( 2
[
− 1) − 4U:+1

)
‖I:+1 − I: ‖2

+
( (1 − W(d6 + !ℎ))

2W
− 1

4
W(2 − [)[!2

ℎ − 4U: − 4W2!2
ℎU:+1

)
‖G:+1 − G: ‖2

≥ 1
4
2W[‖6:limeal‖

2 − 16U:W2 !̂2
6,

where the second inequality is due to the settings of parameters presented in Theorem
3(b). This inequality shows claim (b) by Lemma 2 and the lower boundedness of
{Ẽ:limeal}.
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5.4.2 Proof of Proposition 3

Proof By Lemma 3, we only need to verify conditions (%1)-(%3) hold for LiMEAL.
(a) Establishing (%1): Similar to the proof of Theorem 1, let 0 := W[ (2−[)

4V . Then
1+0
V2W,�

= U, where U is defined in (23). Substituting (50) into (58) with fixed V: yields

PV (G: , I: , _: ) − PV (G:+1, I:+1, _:+1)

≥
(1 − W(d6 + !ℎ)

2W
− 3U(1 + W!6)2

)
‖G:+1 − G: ‖2 − 3UW2!2

ℎ ‖G
: − G:−1‖2

+ 1
2W
( 2
[
− 1)‖I:+1 − I: ‖2 − 3U‖I: − I:−1‖2 + 0V−1‖_:+1 − _: ‖2.

By the definition (37) of Plimeal, the above inequality implies

Plimeal (H: ) − Plimeal (H:+1) ≥
(1 − W(d6 + !ℎ)

2W
− 4U

(
(1 + W!6)2 + W2!2

ℎ

))
‖G:+1 − G: ‖2

+
(

1
2W

(
2
[
− 1

)
− 4U

)
‖I:+1 − I: ‖2 + 0V−1‖_:+1 − _: ‖2

+ U
(
W2!2

ℎ ‖Ĝ
:+1 − Ĝ: ‖2 + ‖ Î:+1 − Î: ‖2

)
,

which, with the assumptions on the parameters, implies (%1) for LiMEAL.
(b) Establishing (%2): Note that Plimeal (H) = 5 (G) + 〈_, �G − 1〉 + V2 ‖�G − 1‖

2 +
1

2W ‖G−I‖
2+4UW2!2

ℎ
‖G− Ĝ‖2+4U‖I− Î‖2. The update of G:+1 in (9) has the optimality

condition

0 ∈ m6(G:+1) + ∇ℎ(G: ) + �) _:+1 + W−1 (G:+1 − I: ),

which implies

(∇ℎ(G:+1) − ∇ℎ(G: )) + 8W2!2
ℎU(G

:+1 − G: )
+ W−1 (I: − I:+1) + �) (_:+1 − _: ) ∈ mGPlimeal (H:+1).

The derivations for the other terms are straightforward and similar to those in the proof
of Proposition 1. We directly show the final estimate: for some E:+1 ∈ mPlimeal (H:+1),

‖E:+1‖ ≤
(
!ℎ + !6 + W−1 + 16UW2!2

ℎ

)
‖G:+1 − G: ‖ +

(
W−1 +

����8U − 1 − [
[

���� + 8U
)
‖I:+1 − I: ‖

+ V−1‖_:+1 − _: ‖ + !ℎ ‖Ĝ:+1 − Ĝ: ‖ + W−1‖ Î:+1 − Î: ‖,

which yields (%2) for LiMEAL.
(c) Establishing (%3): (%3) follows from the boundedness assumption of {H: }

and the convergence of {Plimeal (H: )} by (%1). This finishes the proof.

6 Discussions on Boundedness and Related Work

In this section, we firstly discuss how to ensure the bounded sequences and then
provide some discussions on related work.
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6.1 Discussions on Boundedness of Sequence

Theorem 1 imposes the condition of lower boundedness of {E:meal} and Proposition
1 does with boundedness of the generated sequence {(G: , I: , _: )}. In this section,
we provide some sufficient conditions to guarantee the former and then the latter
boundedness conditions.

Besides the d-weak convexity of 5 (implying the curvature of 5 is lower bounded
by d), we impose the coerciveness on the constrained problem (1) as follows.

Assumption 4 (Coercivity) The minimal value 5 ∗ := infG∈X 5 (G) is finite (recall
X := {G : �G = 1}), and 5 is coercive over the set X, that is, 5 (G) → ∞ if G ∈ X and
‖G‖ → ∞.

The coercive assumption is a common condition used to obtain the boundedness
of the sequence, for example, used in [59, Assumption A1] for the nonconvex ADMM.
Particularly, let (G0, I0, _0) be a finite initial guess of MEAL and

E0 := E1
meal < +∞. (64)

By Assumption 4, if G ∈ X and 5 (G) ≤ E0, then there exists a positive constant B0
(possibly depending on E0) such that ‖G‖ ≤ B0. Define another positive constant as

B1 := B0 +
√

2d−1 ·max{0, E0 − 5 ∗}. (65)

Given a W ∈ (0, 1/d) and I ∈ R= with ‖I‖ ≤ B1 and D ∈ Im(�), we define

G(D; I) := argmin
{G:�G=D }

{
5 (G) + 1

2W
‖G − I‖2

}
. (66)

Since 5 is d-weakly convex by Assumption 2(a), then for any W ∈ (0, 1/d), the
function 5 (G) + 1

2W ‖G − I‖
2 is strongly convex with respect to G, and thus the above

G(D; I) is well-defined and unique for any given I ∈ R= and D ∈ Im(�). Motivated by
[23, Ch 5.6.3], we impose some local stability on G(D; I) defined in (66).

Assumption 5 (Local stability) For any given I ∈ R= with ‖I‖ ≤ B1, there exist a
X > 0 and a finite positive constant "̄ (possibly depending on �, B1 and X) such that

‖G(D; I) − G(1; I)‖ ≤ "̄ ‖D − 1‖, ∀D ∈ Im(�) ∩ {E : ‖E − 1‖ ≤ X}.

The above local stability assumption is also related to theLipschitz sub-minimization
path assumption suggested in [59, Assumption A3]. As discussed in [59], the Lipschitz
sub-minimization path assumption relaxes the more stringent full-rank assumption
used in the literature (see the discussions in [59, Sections 2.2 and 4.1] and references
therein). As {I ∈ R= : ‖I‖ ≤ B1} is a compact set, "̄ can be taken as the supremum
of these stability constants over this compact set. Based on Assumption 5, we have
the following lemma.

Lemma 10 Let {(G: , I: , _: )} be the sequence generated by MEAL (5) with fixed
V > 0 and [ > 0. If W ∈ (0, 1/d), ‖I: ‖ ≤ B1 and ‖�G:+1 − 1‖ ≤ X, there holds

‖G:+1 − G(1; I: )‖ ≤ "̄ ‖�G:+1 − 1‖, ∀: ∈ N.
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Proof Let D:+1 = �G:+1. By the update of G:+1 in (5), there holds

PV (G:+1, I: , _: ) ≤ PV (G(D:+1; I: ), I: , _: ),

Noting that �G(D:+1; I: ) = �G:+1 due to its definition in (66), the above inequality
implies

5 (G:+1) + 1
2W
‖G:+1 − I: ‖2 ≤ 5 (G(D:+1; I: )) + 1

2W
‖G(D:+1; I: ) − I: ‖2.

By the definition of G(D:+1; I: ) in (66) again and noting that �G:+1 = D:+1, we have

5 (G:+1) + 1
2W
‖G:+1 − I: ‖2 ≥ 5 (G(D:+1; I: )) + 1

2W
‖G(D:+1; I: ) − I: ‖2.

These two inequalities imply

5 (G:+1) + 1
2W
‖G:+1 − I: ‖2 = 5 (G(D:+1; I: )) + 1

2W
‖G(D:+1; I: ) − I: ‖2,

which yields
G:+1 = G(D:+1; I: ) = G(�G:+1; I: )

by the strong convexity of function 5 (G) + 1
2W ‖G − I

: ‖2 for any W ∈ (0, 1/d) and thus
the uniqueness of G(D:+1; I: ). Then by Assumption 5, we yield the desired result.

Based on the above assumptions, we establish the lower boundedness of {E:meal}
and the boundedness of {(G: , I: , _: )} as follows.

Proposition 4 Let {(G: , I: , _: )}:∈N be a sequence generated by MEAL (5) with
a finite initial guess (G0, I0, _0) such that ‖I0‖ ≤ B1, where B1 is defined in
(65). Suppose that Assumptions 1, 2(a)-(b) and 4 hold and further Assumption 5
holds with some 0 < "̄ < 2√

fmin (�) �)
. If W ∈ (0, d−1), [ ∈ (0, 2) and V >

max
{

1+
√

1+[ (2−[)W2W,�Umax
22W,�Umax

,
02+
√
02

2+40103
201

}
,whereUmax := min

{
1−Wd

4W (1+W! 5 )2
, 1

8W (
2
[
− 1)

}
,

2W,� = W2fmin (�) �), 01 = 4 − "̄2fmin (�) �), 02 = 4( !̄ + W−1)"̄2 − W[(2 − [),
03 = (1 + W!̄)[(2 − [)"̄2 and !̄ = d + 2! 5 , then the following hold:

(a) {E:meal} is lower bounded;
(b) {(G: , I: )} is bounded; and
(c) if further _0 ∈ Null(�) ) (the null space of �) ) and ‖∇MW, 5 (F1)‖ is finite with

F1 = I0 − W�) _1, then {_: } is bounded.

Proof In order to prove this proposition, we firstly establish the following claim for
sufficiently large ::

Claim A: If ‖I:−1‖ ≤ B1, ‖�G: − 1‖ ≤ X,∀: ≥ :0 for some sufficiently large :0,
then E:meal ≥ 5 ∗, and ‖I: ‖ ≤ B1 and ‖G: ‖ ≤ B2.

By Theorem 1(a), such :0 does exist due to the lower boundedness of {E:<40;} for
all finite : and thus b:meal ≤ 2̂/

√
: for some constant 2̂ > 0 (implying ‖�G: − 1‖ is

sufficiently small with a sufficiently large : ).
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In the next, we show Claim A. By the definition (20) of E:meal, we have

E:meal = 5 (G: ) + 〈_: , �G: − 1〉 + V
2
‖�G: − 1‖2 + 1

2W
‖G: − I: ‖2 + 2U‖I: − I:−1‖2

= 5 (G: ) + 〈�) _: , G: − Ḡ:〉 + V
2
‖�G: − 1‖2 + 1

2W
‖G: − I: ‖2 + 2U‖I: − I:−1‖2,

where
Ḡ: := G(1; I:−1)

as defined in (66). Let _̄: be the associated optimal Lagrangian multiplier of Ḡ: and
F̄: = I:−1 − W�) _̄: . Then we have

Ḡ: = ProxW, 5 (F̄: ),

and ∇MW, 5 (F̄: ) ∈ m 5 (Ḡ: ). By (48) in the proof of Lemma 4, we have

�) _: = −∇MW, 5 (F: ) − W−1 (G: − I:−1),

and ∇MW, 5 (F: ) ∈ m 5 (G: ), where F: = I:−1 − W�) _: . Substituting the above
equation into the previous equality yields

E:meal = 5 (G: ) + 〈∇MW, 5 (F: ), Ḡ: − G:〉 +
V

2
‖�G: − 1‖2 (67)

+ W−1〈G: − I:−1, Ḡ: − G:〉 + 1
2W
‖G: − I: ‖2 + 2U‖I: − I:−1‖2.

Noting that ∇MW, 5 (F̄: ) ∈ m 5 (Ḡ: ) and by the d-weak convexity of 5 , we have

5 (G: ) ≥ 5 (Ḡ: ) + 〈∇MW, 5 (F̄: ), G: − Ḡ:〉 −
d

2
‖G: − Ḡ: ‖2,

which implies

5 (G: ) + 〈∇MW, 5 (F: ), Ḡ: − G:〉

≥ 5 (Ḡ: ) − d
2
‖Ḡ: − G: ‖2 − 〈∇MW, 5 (F̄: ) − ∇MW, 5 (F: ), Ḡ: − G:〉

≥ 5 (Ḡ: ) − d
2
‖Ḡ: − G: ‖2 − ‖∇MW, 5 (F̄: ) − ∇MW, 5 (F: )‖ · ‖Ḡ: − G: ‖.

By the implicit Lipschitz subgradient assumption (i.e., Assumption 2 (b)) and the
definition of !̄ := d + 2! 5 , the above inequality yields

5 (G: ) + 〈∇MW, 5 (F: ), Ḡ: − G:〉 ≥ 5 (Ḡ: ) − !̄
2
‖Ḡ: − G: ‖2. (68)

Moreover, it is easy to show that

W−1〈G: − I:−1, Ḡ: − G:〉 + 1
2W
‖G: − I: ‖2 + 2U‖I: − I:−1‖2 (69)

=
1

2W
‖Ḡ: − I: ‖2 − 1

2W
‖Ḡ: − G: ‖2 + W−1〈I: − I:−1, Ḡ: − G:〉 + 2U‖I: − I:−1‖2

=
1

2W
‖Ḡ: − I: ‖2 −

(
1

2W
+ 1

8UW2

)
‖Ḡ: − G: ‖2 + 2U





(I: − I:−1) + 1
4UW
(Ḡ: − G: )





2
.
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Substituting (68)-(69) into (67) and by Lemma 10, we have

E:meal ≥ 5 (Ḡ: ) + 1
2W
‖Ḡ: − I: ‖2 + 2U





(I: − I:−1) + 1
4UW
(Ḡ: − G: )





2

+ 1
2

[
V −

(
1

4UW2 + !̄ + W
−1

)
"̄2

]
‖�G: − 1‖2

≥ 5 (Ḡ: ) + 1
2W
‖Ḡ: − I: ‖2 + 2U





(I: − I:−1) + 1
4UW
(Ḡ: − G: )





2
(70)

≥ 5 ∗ + 1
2W
‖Ḡ: − I: ‖2 + 2U





(I: − I:−1) + 1
4UW
(Ḡ: − G: )





2
(71)

> −∞, (72)

where the second inequality follows from the definition of U =
2V+W[ (1−[/2)

2W2fmin (�) �)V2 and the
condition on V, the third inequality holds for Ḡ: := G(1; I:−1) and thus �Ḡ: = 1 and
5 (Ḡ: ) ≥ 5 ∗, and the final inequality is due to Assumption 4. The above inequality
yields the lower boundedness of {E:meal} inClaimA. Thus, clam (a) in this proposition
holds.

Then, we show the boundedness of {(G: , I: )} in Claim A. By (70) and (59), we
have

5 (Ḡ: ) ≤ E0 := E1
meal,

which implies ‖Ḡ: ‖ ≤ B0 byAssumption 4. By (71) and the condition on W ∈ (0, d−1),
we have 5 ∗ + d2 ‖Ḡ

: − I: ‖2 ≤ 5 ∗ + 1
2W ‖Ḡ

: − I: ‖2 ≤ E0, which implies

‖I: ‖ ≤ B0 +
√

2(E0 − 5 ∗)/d = B1.

By (71) again, we have



(I: − I:−1) + 1

4UW (Ḡ
: − G: )




2
≤ E

0− 5 ∗
2U ,which, together with

these existing bounds ‖I:−1‖ ≤ B1, ‖I: ‖ ≤ B1 and ‖Ḡ: ‖ ≤ B0, yields

‖G: ‖ ≤ B0 + 4UW

(
2B1 +

√
E0 − 5 ∗

2U

)
=: B2. (73)

Thus, we have shown Claim A. Recursively, we can show that {G: } and {I: } are
respectively bounded by B2 and B1 for any : ≥ 1, that is, claim (b) in this proposition
holds.

In the following, we show claim (c) of this proposition. By the update of _:+1
in (5), it is easy to show _: = _0 + _̂: , where _̂: = V

∑:
C=1 (�GC − 1) ∈ Im(�) by

Assumption 1. Furthermore, by the assumption that _0 ∈ Null(�) ), we have

〈_0, _̂:〉 = 0, ∀: ≥ 1. (74)

By (48), for any : ≥ 1, we have

�) _: = −(∇MW, 5 (F: ) − ∇MW, 5 (F1)) − ∇MW, 5 (F1) − W−1 (G: − I:−1),
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Table 1 Comparisons on convergence results of existing algorithms for problem (1), where imp-Lip
and imp-bound represent the implicit Lipschitz subgradient (see, Assumption 2(b)) and implicit bounded
subgradient (see, Assumption 2(c)) assumptions, respectively. In [60], the general nonlinear equality
constraints 2 (G) = 0 is considered, where ∇2 is Lipschitz and bounded.

Algorithm MEAL (our) iMEAL (our) Prox-PDA [38] Prox-ALM [60]
Assumption 5 : weakly convex, imp-Lip or imp-bound ∇ 5 : Lipschitz
Iteration imp-Lip: > (Y−2) imp-Lip: >(Y−2) O (Y−2) O (Y−2)complexity imp-bound: O(Y−2) imp-bound: O(Y−2)
Global

X (KŁ) – – –Convergence

where F: = I:−1 − W�) _: . By Assumption 2(b) and the boundedness of {(G: , I: )}
shown before, the above equation implies

‖�) _: ‖ ≤ ! 5 ‖G: − G1‖ + ‖∇MW, 5 (F1)‖ + W−1‖G: − I:−1‖
≤ W−1B1 + (2! 5 + W−1)B2 + ‖∇MW, 5 (F1)‖ < +∞.

By the relation _: = _0 + _̂: and (74), the above inequality implies

‖�) _̂: ‖ ≤ W−1B1 + (2! 5 + W−1)B2 + ‖∇MW, 5 (F1)‖.

Since _̂: ∈ Im(�), the above inequality implies

‖_̂: ‖ ≤ f̃−1/2
min (�

) �)‖�) _̂: ‖ ≤ f̃−1/2
min (�

) �)
[
W−1B1 + (2! 5 + W−1)B2 + ‖∇MW, 5 (F1)‖

]
,

which yields the boundedness of {_: } by the triangle inequality. This finishes the
proof.

The proof idea of claim (c) of this proposition is motivated by the proof of
[68, Lemma 3.1]. Based on Proposition 4, we show the lower boundedness of the
Lypunov function sequence and the boundedness of the sequence generated byMEAL.
Following the similar analysis of this section, we can obtain the similar boundeness
results for both iMEAL and LiMEAL.

6.2 Discussions on Related Work

When compared to these tightly related work [55,38,36,68,67,60,39], this paper
provides some slightly stronger convergence results under weaker conditions. The
detailed discussions and comparisons with these works are shown as follows and
presented in Tables 1 and 2.

When reduced to the case of linear constraints, the proximal ALM suggested in
[55] is a special case of MEAL with [ = 1, and the Lipschitz continuity of certain
fundamental mapping at the origin [55, pp. 100] generally implies the KŁ property of
the proximal augmented Lagrangian with exponent 1/2 at some stationary point, and
thus, the linear convergence of proximal ALM can be directly yielded by Proposition
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Table 2 Comparisons on convergence results of existing algorithms for the composite optimization problem
(8).

Algorithm LiMEAL (our) PProx-PDA [36] Prox-iALM [68] S-prox-ALM [67]

Assumption
∇ℎ: Lipschitz, ∇ℎ: Lipschitz, ∇ℎ: Lipschitz, ∇ℎ: Lipschitz,

6: weakly convex, 6: convex, 6 : ]C (G) , 6 : ]P (G) ,
imp-Lip or imp-bound m6: bounded C: box constraint P: polyhedral set

Iteration imp-Lip: >(Y−2) O (Y−2) O (Y−2) O (Y−2)complexity imp-bound: O(Y−2)
Global

X (KŁ) – X (quadratic –Convergence programming)

1(b). Moreover, the proposed algorithms still work (in terms of convergence) for some
constrained problems with nonconvex objectives and a fixed penalty parameter.

In [38], a proximal primal-dual algorithm (named Prox-PDA) was proposed for
the linearly constrained problem (1) with 1 = 0. Prox-PDA is shown as follows:

(Prox − PDA)
{
G:+1 = argminG∈R=

{
5 (G) + 〈_: , �G〉 + V2 ‖�G‖

2 + V2 ‖G − G
: ‖2
�) �

}
,

_:+1 = _: + V�G:+1,

where � is chosen such that �) � + �) � � I= (the identity matrix of size =).
To achieve a

√
Y-accurate stationary point, the iteration complexity of Prox-PDA is

O(Y−1) under the Lipschitz differentiability of 5 (that is, 5 is differentiable and has
Lipschitz gradient) and the assumption that there exists some 5 > −∞ and some X > 0
such that 5 (G) + X

2 ‖�G‖
2≥ 5 for any G ∈ R=. Such iteration complexity of Prox-PDA

is consistent with the order of O(Y−2) to achieve an Y-accurate stationary point. On
one hand if we take � = I= in Prox-PDA, then it reduces to MEAL with W = V−1

and [ = 1. On the other hand, by our main Theorem 1(a), the iteration complexity of
the order of >(Y−2) is slightly better than that of Prox-PDA, under weaker conditions
(see, Assumption 2(a)-(b)). Moreover, we established the global convergence and rate
of MEAL under the KŁ inequality, while such global convergence result is missing
(though obtainable) for Prox-PDA in [38].

A prox-linear variant of Prox-PDA (there dubbedPProx-PDA) was proposed in the
recent paper [36] for the linearly constrained problem (8) with a composite objective.
Besides Lipschitz differentiability of ℎ, the nonsmooth function 6 is assumed to
be convex with bounded subgradients. These assumptions used in [36] are stronger
than ours in Assumption 3(a), (b) and (d), while the yielded iteration complexity of
LiMEAL (Theorem 3(b)) is consistent with that of PProx-PDA in [36, Theorem 1].
Moreover, we establish the global convergence and rate of LiMEAL (Proposition 3),
which is missing (though obtainable) for PProx-PDA.

In [60], an O(Y−2)-iteration complexity of proximal ALM was established for the
constrained problem with nonlinear equality constraints, under assumptions that the
objective is differentiable and its gradient is both Lipschitz continuous and bounded,
and that the Jacobian of the constraints is also Lipschitz continuous and bounded
and satisfies a full-rank property (see [60, Assumption 1]). If we reduce their setting
to linear constraints, their iteration complexity is slightly worse than ours and their
assumptions are stronger (of course, except for the part on nonlinear constraints).
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In [68], a very related algorithm (called Proximal Inexact Augmented Lagrangian
Multiplier method, dubbed Prox-iALM) was introduced for the following linearly
constrained problem

min
G∈R=

ℎ(G) subject to �G = 1, G ∈ C,

where C is a box constraint set. Subsequence convergence to a stationary point was
established under the following assumptions: (a) the origin is in the relative interior
of the set {�G − 1 : G ∈ C}; (b) the strict complementarity condition [48] holds for
the above constrained problem; (c) ℎ is differentiable and has Lipschitz continuous
gradient. Moreover, the global convergence and linear rate of this algorithm was
established for the quadratic programming, in which case, the augmented Lagrangian
satisfies theKŁ inequalitywith exponent 1/2, by noticing the connection betweenLuo-
Tseng error bound and KŁ inequality [42]. According to Theorem 3 and Proposition 3,
the established convergence results in this paper is more general and stronger than that
in [68] but under weaker assumptions. Particularly, besides the weaker assumption on
ℎ, the strict complementarity condition (b) is also removed in this paper for LiMEAL.

The algorithm studied in [68] has been recently generalized to handle the linearly
constrained problem with the polyhedral set in [67] (dubbed S-prox-ALM). Under the
Lipschitz differentiability of the objective, the iteration complexity of the orderO(Y−2)
was established in [67] for the S-prox-ALM algorithm. Such iteration complexity is
consistent with LiMEAL as shown in Theorem 3. Besides these major differences
between this paper and [68,67], the step sizes [ are more flexible for both MEAL
and LiMEAL (only requiring [ ∈ (0, 2)), while the step sizes used in the algorithms
in [68,67] should be sufficiently small to guarantee the convergence. Meanwhile, the
Lyapunov function used in this paper is motivated by the Moreau envelope of the
augmented Lagrangian, which is very different from the Lyapunov function used in
[68,67]. Based on the defined Lyapunov function, our analysis is much simpler than
that in [68,67].

In [39], a multiblock proximal ADMM algorithm (called proximal ADMM-g) was
suggested for the constrained problem (38) with a multiblock composite objective,
where A? (G) = 0,∀G ∈ R= and �? = I=? (the identity matrix of size =?). The O(Y−2)-
iteration complexity of the algorithm was established in [39] under the block-wise
Lipschtz differentiability of ℎ and the lower boundedness of the proximal functions
A8’s. If we set the matrix norm used in proximal ADMM-g as the Euclidean norm, then
the proximal ADMM-g algorithm proposed in [39] is a special case of mLiMEALwith
[ = 1 as described in (40). Following the similar analysis of LiMEAL, mLiMEAL
shall permit the consistent iteration complexity of proximal ADMM-g in [39].

7 Numerical Experiments

In this section, we provide three experiments to show the effectiveness of the proposed
algorithms. The first experiment is implemented to show the effectiveness of the
propose LiMEAL for solving a specific quadratic programming problem, while it
has been proved theoretically in [59, Proposition 1] that ALM with any bounded
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penalty parameter diverges when applied to this quadratic programming problem. In
the second experiment, we consider a general quadratic programming problem with
the same settings to that in [68, Sec. 6.2] and show the effectiveness of the proposed
algorithm via comparing to the algorithm Prox-iALM recently suggested in [68]. In
the third experiment, we consider a sparse regularized phase retrieval problem [43]
that has not been considered in the ALM literature, to show the effectiveness of the
multi-block version of MEAL, i.e., MEAD (31) via comparing to an ADMMmethod
[59]. The codes are available at https://github.com/JinshanZeng/MEAL.

7.1 A Motivated Experiment

Motivated by [59, Proposition 1], we consider the following optimization problem:

min
G,H∈R

G2 − H2, subject to G = H, G ∈ [−1, 1] . (75)

It has been shown in [59, Proposition 1] that ALM with any bounded penalty pa-
rameter V diverges when applied to solve the above problem, since the duality gap
of this problem is non-zero, while according to Theorem 3 and Proposition 3, the
proposed LiMEAL converges exponentially fast when applied to this problem since
the augmented Lagrangian of this problem is a KŁ function with an exponent of
1/2 (see, [68]). Specifically, for both ALM and LiMEAL, the penalty parameter V
is empirically set to be 50. The proximal parameter W used in LiMEAL is set to
be 1/2. We consider three different [′B, that is, 0.5, 1, 1.5. The curves of objective
5 (G: , H: ) = (G: )2 − (H: )2, constraint violation error |G: − H: |, multiplier sequences
{_: } and the norm of gradient of Moreau envelope defined as in (33) and used as the
stationarity measure, are depicted in Fig. 1.

It can be observed from Fig. 1 that ALM diverges when applied to this problem,
where the multiplier sequence {_: } oscillates between two distinct values (Fig. 1
(a)) and the constraint violation converges to some positive value (Fig. 1 (b)), while
the proposed LiMEAL converges exponentially fast (Fig. 1 (c)-(e)) and can achieve
the optimal objective value 0 (Fig. 1 (f)) with different [′B. This verifies the global
convergence and rate results of LiMEAL established in Proposition 3. According
to the detailed curves in Fig. 1(f), LiMEAL with all these three [′B can achieve the
optimal objective value 0 within very few iterations, i.e., about 10 iterations. From Fig.
1(e), LiMEAL converges exponentially fast for all the concerned [′B, and LiMEAL
with [ = 1 converges faster than the other two choices of [′B in this experiment.

7.2 Quadratic Programming

In the following, we consider the performance of proposed LiMEAL for the quadratic
programming problem with box constraints, that is,

min
G∈R=

1
2
G)&G + A) G B.C. �G = 1, ℓ8 ≤ G8 ≤ D8 , 8 = 1, . . . , =, (76)

https://github.com/JinshanZeng/MEAL
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Fig. 1 Performance of ALM and LiMEAL for problem (75). It can be observed that ALM diverges while
LiMEAL converges exponentially fast and can achieve the optimal objective value 0.

where & ∈ R=×=, A ∈ R=, � ∈ R<×=, 1 ∈ R<, and ℓ8 , D8 ∈ R, 8 = 1, . . . , =. Let
C := {G : ℓ8 ≤ G8 ≤ D8 , 8 = 1, . . . , =}.

Following the update framework of LiMEAL (9) and with some easy computa-
tions, the specific updates of LiMEAL for problem (76) can be described as follows:
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given (G0, I0, _0), W > 0, [ ∈ (0, 2) and V > 0, for : = 0, 1, . . . , run

(LiMEAL)


G̃: = (V�) � + W−1I=)−1 (W−1I: + V�) 1 − A −&G: − �) _: ),
G:+1 = ProjC (G̃: ),
I:+1 = I: − [(I: − G:+1),
_:+1 = _: + V: (�G:+1 − 1),

where ProjC (G) := argminḠ∈C ‖Ḡ − G‖ denotes the projection of G onto the box
constraint set C with the 8-th component of the projection [ProjC (G)]8 being ℓ8 if
G8 ≤ ℓ8 , and D8 if G8 ≥ D8 , and G8 itself otherwise, I= represents an identity matrix of
size =. We also take the Prox-iALM algorithm recently proposed in [68, Algorithm
2.2] as a competitor. Following [68, Algorithm 2.2], the update of Prox-iALM can be
described as follows: given (G0, I0, _0), parameters V, ?, U, B, [ > 0, for : = 0, 1, . . . ,
run

(Prox − iALM)


Ḡ: = (V�) � + ?I=)G: +&G: + �) _: − ?I: − (V�) 1 − A),
G:+1 = ProjC (G: − BḠ: ),
I:+1 = I: − [(I: − G:+1),
_:+1 = _: + V: (�G:+1 − 1).

In particular, when [ = 1, then Prox-iALM reduces to Algorithm 2.1 in [68] (dubbed
iALM).

The experimental settings are similar to that in [68, Sec. 6.2]. Specifically, we set
< = 5, = = 20. The entries of &, � and 1 are generated according to the uniform
distribution, and 1 = �G̃, where each entry of G̃ is generated according to the uniform
distribution. For LiMEAL, we set V = 50, W = 1

2‖& ‖2 , and consider three [′B, i.e.,
0.5, 1, 1.5. For Prox-iALM, we use the similar parameter settings as in [68, Sec. 6.2],
that is, ? = 2‖&‖2, V = 50, U =

V

4 , B =
1

2( ‖& ‖2+?+V ‖�‖22)
. Moreover, we consider two

[′B, i.e., 1 and 0.5 for Prox-iALM. As pointed out before, Prox-iALM with [ = 1
reduces to iALM. The curves of objective sequence, ‖�G: −1‖, ‖G:+1− I: ‖ and norm
of gradient of Moreau envelope are depicted in Fig. 2. From Fig. 2, the proposed
LiMEAL converges faster than both iALM and Prox-iALM. Particularly, by Fig. 2(d),
the proposed LiMEAL converges exponentially fast for all these three [′B. This also
verifies the developed theoretical results in Proposition 3(b) since the augmented
Lagrangian of problem (76) is a KŁ function with an exponent 1/2 (see, [68]).

7.3 Sparse Regularized Phase Retrieval

We consider the following sparse regularized robust phase retrieval (e.g., [43]):

min
G∈R=

<∑
8=1
|〈08 , G〉2 − 18 | + 2‖G‖1, (77)

where the entries of 08 ∈ R= (8 = 1, . . . , <) are generated from the normal distribution,
18 = 〈08 , G∗〉2 + n is the observation, G∗ ∈ R= is the sparse true signal with a sparsity
level B � =, n is some noise, ‖G‖1 =

∑=
8=1 |G8 | is the ℓ1-norm of G and 2 > 0 is a

regularization parameter. By introducing < copies of G, i.e., y := [y1; y2, . . . , y<]
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Fig. 2 Performance of LiMEAL and Prox-iALM for the quadratic programming problem (76).

(where y8 ∈ R=), the above problem (77) can be reformulated to the following linearly
constrained problem:

min
G∈R= ,y∈R<=

=∑
8=1
|〈08 , y8〉2 − 18 | + 2‖G‖1 s.t. �G + y = 0, (78)

where � = −[−I=; . . . ;−I=] ∈ R<=×= and I= is the identity matrix of size =.
MEAD. Given the current iterate (G: , y: , D: , v: , _: ), the Moreau envelope alter-

nating direction method (MEAD) for problem (78) can be described as follows.
1. (G-update) According to the update ofMEAD (31), G:+1 is update via the following

G:+1 = arg min
G

{
2‖G‖1 + 〈_: , �G + y:〉 + V

2

<∑
8=1
‖G − y:8 ‖22 +

1
2W
‖G − D: ‖2

}
,

which has the following closed-form solution

G:+1 =
1

V< + W−1 max
{
0, |3:+1 | − 2

}
· sign(3:+1),

where 3:+1 = W−1D: +∑<
8=1 (_:8 + Vy:

8
), and sign(3) represents the sign function

of 3, that is, sign(3) = 1 if 3 > 0, and sign(3) = −1 if 3 < 0, and sign(3) = 0
otherwise.



Title Suppressed Due to Excessive Length 39

2. (y-update) Since the objective and linear constraints are separable and the same
for each block of y8 , thus we update them in a parallel way. Specifically, for
8 = 1, . . . , <, y:+1

8
is updated according to the following

y:+18 = arg min
y8

{
|〈08 , H8〉2 − 18 | + 〈_:8 , H8〉 +

V

2
‖G:+1 − H8 ‖22 +

1
2W
‖v:8 − y8 ‖22

}
,

which has the following closed-form solution

y:+18 = Prox 1
V+W−1 , | 〈08 , ·〉2−18 |

(
1

V + W−1 (VG
:+1 + W−1v:8 − _:8

)
,

where ProxX, | 〈0, ·〉2−1 | (I) = arg minG
{
|〈0, G〉2 − 1 | + 1

2X ‖G − I‖
2} for X > 0, 0 ∈

R= and 1 ≥ 0, which has the following closed form solution (see, [28, Sec. 5.1]):

ProxX, | 〈0, ·〉2−1 | (I) = arg min
G∈S

{
|〈0, G〉2 − 1 | + 1

2X
‖G − I‖2

}
,

whereS :=
{
I −

(
2X 〈0,I 〉

2X ‖0 ‖2+1

)
0, I −

(
2X 〈0,I 〉

2X ‖0 ‖2−1

)
0, I −

(
〈0,I 〉+

√
1

‖0 ‖2

)
0, I −

(
〈0,I 〉−

√
1

‖0 ‖2

)
0

}
.

3. ((D, E)-update) D:+1 = D: − [(D: − G:+1), v:+1 = v: − [(v: − y:+1).
4. (_-update) _:+1 = _: + V(�G:+1 + y:+1).

ADMM. By [59] and following the analysis similar to MEAD, the ADMMmethod
for problem (78) can be described as follows: given the current update (G: , y: , _: ),
1. (G-update) G:+1 = (V<)−1 max{0, |3̃:+1−2 |}·sign(3̃:+1), where 3̃:+1 =

∑<
8=1 (_:8 +

Vy:
8
).

2. (y-update) For 8 = 1, . . . , <, y:+1
8

= ProxV−1 , | 〈08 , ·〉2−18 | (G:+1 − V−1_:
8
).

3. (_-update) _:+1 = _: + V(�G:+1 + y:+1).
In this experiment, we set = = 300, < = 100, the sparsity level of true signal

G∗ is 10, where nonzero entries of G∗ are generated from the normal distribution.
For MEAD, W = 1/2 and three different [′B, i.e., 0.5, 1, 1.5 are considered. For both
MEAD and ADMM, V = 100 and the regularization parameter 2 is tuned via a
hand-optimal way. The curves of recovery error (i.e., ‖G: − G∗‖) and stationary error
(measured by

√
‖∑<

8=1 (y:8 − y:+1
8
)‖2 + ‖_:+1 − _: ‖2) are presented in Fig. 3. From

Fig. 3(a), both the suggested MEAD and ADMM can recover the sparse signal with
a very high precision, while from Fig. 3(b), the rates of convergence of MEAD with
three different [’s are linear in terms of the defined stationary error. When compared
to ADMM, the performance of the proposed MEAD is slightly beteer than ADMM.

8 Conclusion

This paper suggests a Moreau envelope augmented Lagrangian (MEAL) method
for the linearly constrained weakly convex optimization problem. By leveraging the
implicit smoothing property of Moreau envelope, the proposed MEAL generalizes
the ALM and proximal ALM to the nonconvex and nonsmooth case. To yield an Y-
accurate first-order stationary point, the iteration complexity ofMEAL is >(Y−2) under
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Fig. 3 Performance of MEAD and ADMM for the sparse regularized phase retrieval problem (77).

the implicit Lipschitz subgradient assumption and O(Y−2) under the implicit bounded
subgradient assumption. The global convergence and rate ofMEAL is also established
under the furtherKurdyka-Łojasiewicz inequality.Moreover, an inexact variant (called
iMEAL) and a prox-linear variant (called LiMEAL) for the composite objective case
are suggested and analyzed for different practical settings. The convergence results
established in this paper for MEAL and its variants are generally stronger than the
existing ones, but under weaker assumptions.

One future direction of this paper is to get rid of the implicit Lipschitz subgra-
dient and implicit bounded subgradient assumptions, which in some extent limit the
applications of the suggested algorithms, though these two assumptions are respec-
tively weaker than the Lipschitz differentiable and bounded subgradient assumptions
commonly used in the literature. Another direction of this paper is to generalize this
work to the constrained problem with nonlinear constraints. One possible application
of our study is robustness and convergence of stochastic gradient descent in training
parameters of structured deep neural networks such as deep convolutional neural net-
works [69], where linear constraints can be used to impose convolutional structures.
We leave them in our future work.
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