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Universal Consistency of Deep Convolutional
Neural Networks

Shao-Bo Lin, Kaidong Wang, Yao Wang, and Ding-Xuan Zhou

Abstract

Compared with avid research activities of deep convolutional neural networks (DCNNs) in practice, the study of theoretical
behaviors of DCNNs lags heavily behind. In particular, the universal consistency of DCNNs remains open. In this paper, we prove
that implementing empirical risk minimization on DCNNs with expansive convolution (with zero-padding) is strongly universally
consistent. Motivated by the universal consistency, we conduct a series of experiments to show that without any fully connected
layers, DCNNs with expansive convolution perform not worse than the widely used deep neural networks with hybrid structure
containing contracting (without zero-padding) convolutional layers and several fully connected layers.

Index Terms
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I. Introduction
The great success of deep learning [8] in practice stimulates avid research activities to understand the magic behind it.

The reasons for success can be attributed to the depth of networks [17], [27], massiveness of data [20], [6], fast developed
optimization algorithms [24], [1] and more importantly, architectures [5], [15] that reduce the number of free parameters of
networks while maintaining their excellent performances in feature extraction and function representations. Deep convolutional
neural networks (DCNNs) that equip deep neural networks with convolutional structures are one of the most popular networks
used in image processing [18], game theory [28], signal processing [16], among many others.

We are interested in DCNNs induced by one-dimensional convolution, one channel and the rectifier linear unit (ReLU)
activation function. As in [31], there are not any fully connected layers in DCNNs considered in this paper. The convolution
of two functions f and h on R is defined by

h ⊗ f (x) =

∫ ∞

−∞

f (x′)h(x − x′)dx′, x ∈ R.

Discretely, let ~w = (w j)∞j=−∞ be a filter of of length s, i.e. wk
j , 0 only for 0 ≤ j ≤ s. Two widely used types of 1-D convolution

of ~w with a vector ~v = (v1, . . . , vD)T , regarded as a sequence on Z supported in {1, . . . ,D}, are the expansive convolution (also
called convolution with zero-padding) denoted by ~w ∗ ~v and contracting convolution (or convolution without zero-padding)
~w ?~v with j-th components

(~w ∗ ~v) j =

D∑
`=1

w j−`v`, j = 1, . . . ,D + s, (1)

and

(~w ?~v) j =

j∑
`= j−s

w j−`v`, j = s + 1, . . . ,D. (2)

From (1) and (2), it is easy to derive [31] that there are D × (D + s) sparse Toeplitz type matrix W̃ and D × (D − s) one W̃ ′
such that

~w ∗ ~v = W̃~v, and ~w ?~v = W̃ ′~v, ∀~v ∈ RD. (3)

Let σ(t) = max{0, t} be ReLU and L ∈ N be the number of hidden layers. Given a set of filters {~wk}
L
k=1, a set of bias vectors

{~bk}
L
k=1 of compatible sizes and a vector ~aL, the DCNN can be defined by

hL(x) = âL · ~hL(x), (4)

where ~h0(x) = x,
~hk(x) = σ(~wk � ~hk−1(x) + ~bk), k = 1, . . . , L, (5)

σ acts on vectors componentwise and � denotes either ∗ in (1) or ? in (2). Due to (3), DCNNs can be regarded as special deep
fully connected neural networks with specified sparse comvolutional structures imposed to weight matrices. Figure 1 shows
structures of the mentioned two types of DCNNs.
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(a) expansive DCNN
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(b) contracted DCNN

Fig. 1: The left shows the expansive DCNN with s = 2 and L = 2, while the right exhibits a hybrid deep net with the contracted
DCNN with s = 2 and L = 2 and a fully connected neural network of width 10.

Practically, the contracting DCNN (cDCNN) is more commonly used than the expansive DCNN (eDCNN) by utilizing the
convolutional layers to extract features of data. However, it can be found in [13, Theorem 1] (see also [12]) that to guarantee
the universal approximation property of deep ReLU nets, there exists at least one hidden layer whose width is larger than
d + 1. Noting further that the maximum width of hidden layers in cDCNN is d, smaller than d + 1, cDCNN is thus not a
universal approximant. Though this bottleneck of cDCNN can be broken through by equipping the network with additional
fully connected layers, it brings new challenges on determining the depth and width of fully connected layers. Differently, due
to the zero-padding mechanism, the widths of all hidden layers in eDCNN are not smaller than d + 1. Under this circumstance,
the universal approximation property of eDCNNs has recently been verified in [31], showing that an eDCNN without any
fully connected layers can approximate any continuous functions to an arbitrary accuracy, provided there are sufficiently many
layers.

From universal approximation to universal consistency in learning, the price for approximation, measured by the capacity of
the family of approximants, should be taken into account. In particular, it can be found in [22] that there exists a set of deep
nets with two hidden layers and a bounded sigmoid function possessing universal approximation property but is not a universal
consistent learner, since the capacity (measured by the pseudo-dimension) of this set is infinite. A similar problem seems to
exist for eDCNN, since the constructed network in [31] for universal approximation involves unbounded weights. Generally
speaking, unboundedness of parameters leads to extremely large capacity of deep nets, especially for deep nets with sigmoid
activation functions [21], [22], [2], which makes the universal approximation property established in [31] be not applicable for
the learning purpose at the first glance (see the discussion in [26, Sec. 2] for example). Surprisingly , due to the piecewise
linear property of ReLU, a tight pseudo-dimension estimate of deep ReLU nets without any restrictions on free parameters
has been derived in [4]. With this, we use a classical relation [14], [25] between the pseudo-dimension and covering number
and then succeed in deriving the universal consistency for implementing empirical risk minimization (ERM) on eDCNNs.

Since we are concerned with the universal consistency of eDCNN, seems to be no hint on advantages of eDCNN in
our theory, as it has already been demonstrated in [11] and [2] that both shallow nets and deep nets with fixed widths are
universally consistent, respectively. However, as discussed in [30], [31], [32], [23], a main advantage of eDCNNs is their good
approximation capability in tackling high dimensional data. To be detailed, to approximate a function f ∈ Cr([0, 1]d)), r-th
smooth functions defined on [0, 1]d with r ≈ d/2, within accuracy ε, deep fully connected nets (DFCNs) [29] need 2dε−2 free
parameters paved on c0d

4

(
log 1

ε
+ d

)
hidden layers, while eDCNN [31] requires at most 75d

ε2 log 1
ε2 free parameters paved on

4
ε

log 1
ε

hidden layers. The independence of the required number of hidden layers on the dimension illustrates evidence for the
power of eDCNNs. Furthermore, given fixed approximation accuracy ε, eDCNNs performs excellently in approximating high
dimensional functions, since the required number of free parameters is linear with respect to d for eDCNN while exponential
with respect to d for DFCNs. We refer the readers to [31, Section 2] for more details of the outperformance of eDCNNs over
shallow nets and DFCNs. We highlight that there are not any exponential factors of d involved in our proof, the mentioned
dimension-independent property of eDCNN also holds for the learning purpose. Different from cDCNNs, it should be mentioned
that the width and number of free parameters in eDCNNs increase linearly with the depth. We can use either a threshold-sharing
strategy in [31] or a pooling-type down-sampling strategy [32] to reduce them, while the universal approximation and universal
consistency properties still hold. We also conduct a series of numerical experiments to verify our theoretical assertions and show
the excellent learning performance of eDCNNs in real applications like human activity recognition and heartbeat classification.
Our numerical results show that with a unified simple structure, eDCNNs perform not worse than cDCNNs equipped with
fully connected layers with different widths and depths.

II. Universal Consistency of eDCNN

In learning theory [7], [9], the samples in the data set D := {zi}
m
i=1 := {(xi, yi)}mi=1 are assumed to be drawn independently and

identically from an unknown Borel probability distribution ρ on Z := X ×Y, where xi ∈ X ⊆ R
d, and yi ∈ Y ⊆ R. Throughout
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the paper, we assume X is a compact set. The aim is to learn a function fD based on D to minimize the generalization error

E( f ) :=
∫
Z

( f (x) − y)2dρ.

Noting that the regression function fρ(x) :=
∫
Y

ydρ(y|x) defined by means of the conditional distributions ρ(·|x) of ρ at x ∈ X
minimizes the generalization error, our aim is then to find an estimator fD to minimize

E( f ) − E( fρ) = ‖ f − fρ‖2L2
ρX
, (6)

where ρX is the marginal distribution of ρ on X.
We build up the estimator via empirical risk minimization (ERM):

fD,L,s := arg min f∈HL,s
ED( f ), (7)

where ED( f ) = 1
m

∑m
i=1( f (xi) − yi)2 denotes the empirical risk of f and

HL,s :=
{
hL(x) : ~wk is of length s, ~bk ∈ R

d+ks, âL ∈ R
d+Ls, k = 1, . . . , L

}
(8)

be the set of all output functions produced by the eDCNN defined by (5) with � = ∗. One of the most important properties
that a learner should have is that, as the sample size m grows, the deduced estimator converges to the real relation between
the input and output. This property, featured as the strongly universal consistency [11], can be defined as follows.

Definition 1: A sequence of regression estimators { fm}∞m=1 is called strongly universally consistent, if

lim
m→∞

E( fm) − E( fρ) = 0

holds with probability one for all Borel probability distributions ρ satisfying
∫
Y

y2dρ(y|x) < ∞.
Our main result is the following theorem, which shows that running ERM on eDCNN yields strongly universally consistent

learners.
Theorem 1: Let θ ∈ (0, 1/2) be an arbitrary real number and 2 ≤ s ≤ d. If L = Lm → ∞, M = Mm → ∞, M2

mm−θ → 0 and

M4
mL2

m(Lm + d) log Lm log(Mmm)
m1−2θ → 0, (9)

then πMm fD,Lm,s is strongly universally consistent, where πMt = min{M, |t|} · sgn(t) is the well known truncation operator.
Remark 1: There is a truncation operator involved in Theorem 1. It should be mentioned that such a truncation operator

is essential. The reasons are two folds. On the one hand, since we do not impose any boundedness restrictions on the free
parameters, it is obvious that functions in HL,s are not uniformly bounded. Under this circumstance, it is difficult to derive a
covering number estimate for HL,s since the relation between covering numbers and pseudo-dimension is built upon bounded
functions [14]. On the other hand, expect for

∫
Y

y2dρ(y|x) < ∞, there is no any other restriction on y, making the analysis
difficult. A preferable way is to consider a truncation operator on y, yMm := πMm y, with Mm → ∞, which corresponds a
truncation operator on fD,L,s. Such a truncation operator is widely adopted in demonstrating the universal consistency for
numerous learning schemes [11], including local average regression, linear least squares, and shallow neural networks learning.

Remark 2: There are totally four conditions involved in Theorem 1 on the depth L = Lm and truncation value M = Mm to
guarantee the universal consistency of eDCNN: 1) Lm → ∞; 2) Mm → ∞; 3) M2

mm−θ → 0; 4) limit (9). The first restriction is
natural since Lm → ∞ is necessary for the universal approximation of eDCNN. The second one is also mild since there is no
any boundedness assumption on y. It is impossible to derive a bounded learner that can learn unbounded samples well. The
third one, restricting the growth of Mm with respect to m, is also widely used in the literature [11], since the sample error
frequently depends on g1(Mm)g2(m−1) for some increasing univariate functions g1 and g2. Therefore, it is necessary to tailor
Mm such that g1(Mm)g2(m−1)→ 0. The last one is technical, which focuses on the relation among Mm, Lm and m. It presents a
guidance of selecting Mm and Lm in eDCNNs learning. In particular, Mm = log m and Lm = mα with α < 1/3 satisfy all these
assumptions and can yield strongly universally consistent eDCNN estimator.

Remark 3: Theorem 1 only considers eDCNN with one dimensional convolution. It would be interesting to derive similar
results for eDCNN with two dimensional convolution, which is widely used in practice. Different from 1-d eDCNN that corre-
sponds to Toeplitz type weight matrices, the structures of weight matrices in 2-d eDCNN are much more sophisticated, making
the existing convolutional factorization [30], [31] infeasible and the universal approximation property of 2-d eDCNN remains
open. The analysis for 2-d eDCNN can be eased if more channels are permitted. In particular, the universal approximation
property for 2-d eDCNN with numerous channels was studied in the recent work [33]. Since we are interested in eDCNN with
only one channel, our result cannot be extended to 2-d eDCNN directly by using the approach developed in this paper.

The proof of Theorem 1 can be found in Appendix A. Generally speaking, boundedness of free parameters play a crucial
role in the classical literature of learning with neural networks [3]. In particular, without any restrictions on free parameters,
it can be found in [21], [22] that there exists a bounded sigmoid function such that the pseudo-dimension of a deep net with
this activation function, two hidden layers and O(d) free parameters is infinite, which implies that it is impossible to derive
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universal consistency for running ERM on such deep nets. On the contrary, with a controllable magnitude of free parameters, the
universal consistency holds for deep nets with an arbitrary bounded sigmoid activation function [2]. The main breakthrough in
Theorem 1 is that without any restrictions on free parameters, implementing ERM on DCNNs also yields universally consistent
estimators. The main reason for this breakthrough is the piecewise linear property of ReLU, which is crucial to derive tight
pseudo-dimension estimates for eDCNNs [4].

The universal consistency in Theorem 1 demonstrates the versatility of eDCNNs for different learning tasks, which is totally
different from cDCNN that requires some fully connected layers suitably chosen for various learning tasks. This phenomenon is
also verified by our real data experiments, where eDCNNs with the same structure are adaptive for different data but cDCNNs
need different fully connected layers to enhance their learning performance (See Appendix B).

III. Numerical Experiments

In this section, we shall illustrate the versatility of eDCNNs through several simulated data and real data examples.

A. Simulated data examples

We consider the following regression model

y =
sin(‖x‖2)
‖x‖2

+ ε, (10)

for generating training data, where x is a random vector with entries uniformly distributed in [−10, 10]d, and ε is a random
Gaussian noise with mean 0 and variance 0.01. To verify our theoretical assertion, we mainly consider three cases of the
dimension of x, that is, the dimension d varies in {30, 100, 1000}. Then by using (10), we generate the training data sets with
the number m varying in {100, 300, 500, 1000, 2000, · · · , 9000, 10000} for each d. For the network structure, we fix the filter
length s as 2, and the number of network layers as L = ceil( 4

√
m) that is consistent with the assumption of our theorem, where

ceil(·) returns the value of a number rounded upwards to the nearest integer. To evaluate the prediction performance of the
trained network, we further generate the test data sets in the same way as the training data, except that they are computed

without noise, that is, ytest =
sin(‖xtest‖2)
‖xtest‖2

. The size of the test data is chosen as 2000 for d = 30, 100, and 10000 for d = 1000,

respectively.
Fig. 2 depicts the average results over 20 independent trials of both eDCNN and cDCNN in terms of RMSE (root-mean-

square error). It is not hard to observe from this figure that, for all the three cases, the test RMSE of eDCNN gradually
decreases and then reaches a stable manner as the number of training samples m grows. This conforms Theorem 1, since
E( fD,L,s)−E( fρ)→ 0 implies E( fD,L,s)→ E( fρ). Moreover, the proposed eDCNN illustrates similar prediction behaviors as the
traditional cDCNN, except for the case of m = 6000 and d = 1000.
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Fig. 2: The prediction results of both cDCNN and eDCNN on simulated data sets. (a) the error bar of d = 50; (b) the error
bar of d = 100; (c) the error bar of d = 1000.

B. Real data examples

We now apply the proposed eDCNNs to deal with two real-world applications.
1. Human Activity Recognition. In this application, we would like to recognize the type of movement (walking, running,

jogging, etc.) based on a given set of accelerometer data from a mobile device carried around a person’s waist. The data set
considered here is the WISDM data set firstly released in [19] and includes 1098207 samples with 6 categories. Different from
the methods used in [19], we consider the traditional 1D cDCNN equipped with some fully connected layers as the baseline
method for comparison. For the network structure of our eDCNN, we fix the filter length as s = 9, and the number of network
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layers varies in {2, . . . , 8}. The detailed architectures of the proposed eDCNN and the baseline network, and data descriptions
can be found in Appendix B.

2. ECG Heartbeat Classification. An ECG is a 1D signal that is the result of recording the electrical activity of the heart
using an electrode. It is a very useful tool that cardiologists use to diagnose heart anomalies and diseases. The data sets
considered here are the MIT-BIH Arrhythmia Database and the PTB Diagnostic ECG Database that were preprocessed in [16].
The MIT-BIH Arrhythmia data set includes 109446 samples with 5 categories, and the PTB Diagnostic ECG Database includes
14552 samples with 2 categories. We also compare the eDCNN with a traditional 1D CNN whose network architecture can
be found in Appendix B. In this application, we design our eDCNN in the same way as for the Human Activity Recognition
application, except that the filter length is changed to s = 19. One can find more details about the description and structures
for this real application in Appendix B.

Fig. 3 shows the comparison results of the proposed eDCNN over the traditional 1D cDCNN in terms of the misclassification
rate on the test data. Here we change the the number of layers for the baseline networks to make a more thorough comparison.
It is easy to see that, as for all the three data sets, the best predication results obtained by both eDCNN and cDCNN are
comparable; as for the MIT-BIH Arrhythmia Database and the PTB Diagnostic ECG Database, eDCNN gives more stable
predication results than cDCNN for a wide range of network layers. In addition, the test RMSE of the original baseline
networks for those datasets are 0.905, 0.984 and 0.990, respectively. Considering the good theoretical guarantees and simple
structures (see Appendix B) of eDCNN, we would prefer it over the traditional 1D cDCNN in practice.
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Fig. 3: The comparison results on real data sets. (a) the WISDM dataset; (b) the MIT-BIH Arrhythmia Database; (c) the PTB
Diagnostic ECG Database.
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Appendix

A. Proof of Theorem 1

We divide our proof into three parts: capacity estimate, error analysis for bounded samples and universal consistency.
1) Capacity estimate: Let ν be a probability measure on X. For a function f : X → R, set ‖ f ‖Lp(ν) :=

{∫
X
| f (x)|pdν

}p
. Denote

by Lp(ν) the set of all functions satisfying ‖ f ‖Lp(ν) < ∞. For V ⊂ Lp(ν), denote by N(ε,V, ‖ · ‖Lp(ν)) the covering number
[11, Def. 9.3] of V in Lp(ν), which is the number of elements in a least ε-net of V with respect to ‖ · ‖Lp(ν). In particular,
denote by Np(ε,V, xm

1 ) := N(ε,V, ‖ · ‖Lp(νm)) with νm the empirical measure with respect to xm
1 = (x1, . . . , xm) ∈ Xm. Define

further M(ε,V, ‖ · ‖Lp(ν)) to be the ε-packing number of V with respect to ‖ · ‖Lp(ν), i.e. M(ε,V, ‖ · ‖Lp(ν)) is the largest integer
N such that a subset {g1, . . . , gN} of V satisfies ‖g j − gk‖Lp(ν) ≥ ε for 1 ≤ j < k ≤ N. For the sake of brevity, we also denote
Mp(ε,V, xm

1 ) := M(ε,V, ‖ · ‖Lp(νm)) with respect to xm
1 = (x1, . . . , xm) ∈ Xm. The following lemma found in [11, Lemma 9.2]

presents a relation between ε-covering numbers and ε-packing numbers.
Lemma 1: Let V be a class of functions on X and let ν be a probability measure on X, p ≥ 1 and ε > 0. Then

M(2ε,V, ‖ · ‖Lp(ν)) ≤ N(ε,V, ‖ · ‖Lp(ν)) ≤ M(ε,V, ‖ · ‖Lp(ν)).

In particular,
Mp(2ε,V, xm

1 ) ≤ Np(ε,V, xm
1 ) ≤ Mp(ε,V, xm

1 ).

Denote further by Pdim(V) the pseudo-dimension [2, Chap. 14] of V, which is the largest integer ` for which there exists
(ξ1, . . . , ξm, η1, . . . , ηm) ∈ Xm × Rm such that for any (a1, . . . , a`) ∈ {0, 1}` there is some v ∈ V satisfying

∀ i : v(ξi) > ηi ⇔ ai = 1.

The following lemma that can be found in [14, Theorem 6] (see also [25, Theorem 1]) presents a close relation between
ε-packing numbers and pseudo-dimensions.

Lemma 2: Let R > 0 and VR be a set of functions from X to [−R,R]. Then for any ε ∈ (0,R], there holds

M(ε,VR, ‖ · ‖L1(ν)) ≤ 2
(

2eR
ε

ln
2eR
ε

)Pdim(VR)

.

From (5), there are s + 1 tunable weights from ~wk and d + ks tunable bias vector components from ~bk in the k-th layers for
k = 1, . . . , L − 1. Noting additional d + Ls tunable outer weights in the L-th layer, there are totally

nL,s := (s + 1)L + d + Ls +

L∑
k=1

(d + ks) (11)

free parameters paved on

dL,s := 1 + d +

L∑
k=1

(d + ks) (12)

neurons in the eDCNN.
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Our main tool is a tight pseudo-dimension estimate for deep nets with a piecewise linear activation. In fact, combining
[4, Theorem 7] and [2, Theorem 14.1], we can get the following pseudo-dimension estimate for the eDCNN without any
restrictions on the magnitudes of free parameters.

Lemma 3: There exists an absolute constant C0 such that

Pdim(HL,s) ≤ C0LnL,s log dL,s, (13)

where nL,s and dL,s are given in (11) and (12) respectively.
Our aim is to use the above three lemmas to derive a tight bound for the covering numbers of eDCNNs. For M > 0, define

πMHL,s := {πM f : f ∈ HL,s}. (14)

Since Pdim(πMHL,s) ≤ Pdim(HL,s) [21, p. 297], it follows from Lemma 3 that

Pdim(πMHL,s) ≤ C0LnL,s log dL,s.

Plugging the above estimate into Lemma 2, we then have

M(ε, πMHL,s, ‖ · ‖L1(ν)) ≤ 2
(

2eM
ε

)2C0LnL,s log dL,s

.

Then it follows from Lemma 1 with ν = νm and an arbitrary xm
1 ∈ X

m that the following covering number estimates for the
eDCNN without any restrictions to the magnitudes of parameters hold.

Lemma 4: For any 0 < ε ≤ M, there holds

log2 sup
xm

1 ∈X
m
N1(ε, πMHL,s, xm

1 ) ≤ c∗L2(Ls + d) log(L(s + d)) log
M
ε
,

where c∗ is an absolute constant.
2) Error analysis for bounded samples: Write yM = πMy and yi,M = πMyi. Define

EπM ( f ) =

∫
Z

( f (x) − yM)2dρ,

and

EπM ,D( f ) =
1
m

m∑
i=1

( f (xi) − yi,M)2.

In this part, we aim at bounding EπM (πM fD,L,s)−EπM ,D(πM fD,L,s). Our tool is the following concentration inequality which can
be easily deduced from [11, Theorem 11.4].

Lemma 5: Assume |y| ≤ B and B ≥ 1. Let F be a set of functions f : X → R satisfying | f (x)| ≤ B. Then for each m ≥ 1,
with confidence at least

1 − 14 max
xm

1 ∈X
m
N1

(
βε

20B
,F , xm

1

)
exp

(
−
ε2(1 − ε)αm
214(1 + ε)B4

)
,

there holds

E( f ) − E( fρ) − (ED( f ) − ED( fρ))
≤ ε(α + β + E( f ) − E( fρ)), ∀ f ∈ F ,

where α, β > 0 and 0 < ε ≤ 1/2.
Based on Lemma 5 and Lemma 4, we can derive the following result.

Lemma 6: If M2
mm−θ → 0 and (9) holds for some θ ∈ (0, 1/2), then

lim
m→∞

EπM (πM fD,L,s) − EπM ,D(πM fD,L,s) = 0

holds almost surely.
Proof: Since |πM fD,L,s(x)|, |yM |, |yi,M | ≤ M, we have

|EπM (πM fD,L,s) − EπM ,D(πM fD,L,s)| ≤ 8M2.

Then it follows from Lemma 5 with α = β = 1 and ε = m−θ that with confidence at least

1 − 14 max
xm

1 ∈X
m
N1

(
1

20Mmθ
, πMHL,s, xm

1

)
exp

(
−

m1−2θ

428M4

)
,

there holds

EπM (πM fD,L,s) − EπM ( fρ) − (EπM ,D(πM fD,L,s) − EπM ,D( fρ)) ≤ 8(M2 + 2)m−θ.
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Due to Lemma 4, we have

max
xm

1 ∈X
m
N1

(
1

20Mmθ
, πMHL,s, xm

1

)
exp

(
−

m1−2θ

428M4

)
≤ exp

(
c∗ log(20M2mθ)L2(d + sL) log(L(s + d)) −

m1−2θ

428M4

)
.

Noting (9), we obtain

lim
m→∞

max
xm

1 ∈X
m
N1

(
1

20Mmmθ
, πMmHLm,s, x

m
1

)
exp

(
−

m1−2θ

428M4
m

)
= 0.

Thus, together with the strong law of large numbers, as m→ ∞, we see that

EπMm
(πMm fD,Lm,s) − EπMm ,D(πMm fD,Lm,s) ≤ 8M2m−θ → 0

holds almost surely. This completes the proof of Lemma 6.
3) Universal consistency: Our final tool is the universality of eDCNNs, which was proved in [31, Theorem 1].
Lemma 7: Let 2 ≤ s ≤ d. For any compact subset X of Rd and any f ∈ C(X), there exists some hL,s ∈ HL,s such that

lim
L→+∞

‖ f − hL,s‖C(X) = 0. (15)

Now we are in a position to prove Theorem 1.
Proof of Theorem 1: Since E{y2} < ∞, we have fρ ∈ L2(ρX). It follows from Lemma 7 that for any ε > 0, there exists

some gε ∈ HLε,s with sufficiently large Lε such that

‖ fρ − gε‖2L2(ρX ) ≤ ε. (16)

The triangle inequality then yields

E(πM fD,L,s) − E( fρ)
≤ E(πM fD,L,s) − (1 + ε)EπM (πM fD,L,s)
+ (1 + ε)(EπM (πM fD,L,s) − EπM ,D(πM fD,L,s))
+ (1 + ε)(EπM ,D(πM fD,L,s) − EπM ,D( fD,L,s))
+ (1 + ε)EπM ,D( fD,L,s) − (1 + ε)2ED( fD,L,s)
+ (1 + ε)2(ED( fD,L,s) − ED(gε))
+ (1 + ε)2(ED(gε) − E(gε))
+ (1 + ε)2(E(gε) − E( fρ))
+ ((1 + ε)2 − 1)E( fρ)

=:
8∑
`=1

B`.

To deduce the strongly universal consistency, we should bound B`, ` = 1, . . . , 8, in probability, respectively. As

(a + b)2 ≤ (1 + ε)a2 + (1 + 1/ε)b2 for a, b > 0, (17)

we have

B1 =

∫
Z

|πM fD,L,s(x) − yM + yM − y|2dρ

− (1 + ε)
∫
Z

|πM fD,L,s(x) − yM |
2dρ

≤ (1 + 1/ε)
∫

Z
|y − yM |

2dρ.

Since M = Mm → ∞ as m→ ∞, we obtain
B1 → 0 when m→ ∞.

From Lemma 6, (9) and M2
mm−θ → 0, it follows that

B2 → 0 when m→ ∞

holds almost surely. The definition of the truncation operator yields

1
m

m∑
i=1

|πM fD,L,s(xi) − yi,M |
2 −

1
m

m∑
i=1

| fD,L,s(xi) − yi,M |
2 ≤ 0.
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Therefore, we have
B3 ≤ 0.

According to the strong law of large numbers and (17), we get

B4 ≤ (1 + ε)(1 + 1/ε)
1
m

m∑
i=1

|yi − yi,M |
2 → (1 + ε)(1 + 1/ε)

∫
Z
|y − yM |

2dρ

as m→ ∞ almost surely. Therefore, Mm → ∞ and the definition of yM yield

B4 → 0.

Due to (7), we obtain

B5 = (1 + ε)2

 1
m

m∑
i=1

| fD,L(xi) − yi|
2 −

1
m

m∑
i=1

|gε(xi) − yi|
2

 ≤ 0.

By the strong law of large numbers again, we have almost surely

B6 → 0, (as m→ ∞).

To bound B7, we note from (6)
B7 = (1 + ε)2‖gε − fρ‖2L2

ρX
.

The above equality together with (16) and Lm → ∞ yields

B7 ≤ (1 + ε)2ε.

Noting
(1 + ε)2 − 1 = ε(ε + 2),

we have
B8 ≤ ε(ε + 2)

∫
Z
| fρ(x) − y|2dρ.

Using all the above assertions, we can concludes that

lim sup
m→∞

E(πM fD,L,s) − E( fρ) ≤ (1 + ε)2ε + ε(ε + 2)
∫

Z
| fρ(x) − y|2dρ

holds almost surely. This proves Theorem 1 by setting ε→ 0.

B. Description and structures for real data sets

In this part, we introduce some auxiliary information for our real data experiments.
1) Detailed description of implementing real data sets: We shall provide more details on how to implement the three real

data sets using the proposed eDCNNs.
1. WISDM dataset. This dataset is a collection of accelerometer data taken from a smartphone that various people carried

with them while conducting six different exercises, i.e., Downstairs, Jogging, Sitting, Standing, Upstairs, and Walking. For
each exercise, the accelerations with respect to the x, y, and z axes were measured and captured with a timestamp and person
ID.

We first split all the samples based on the user IDs, that is, users with ID 1 to 28 are used for training the model and users
with ID greater than 28 are consider as the test set. We then reshape the data by considering 80 time periods as one record
with the accelerations with respect to the x, y, and z axes. Therefore, the input of our network is a matrix of size 80 × 3
and the output of our network is a vector with length 6. To train the network, we choose the cross entropy function as the
loss function, and the adam as the optimizer. Then the batch size and the maximal number of epochs are set as 400 and 50,
respectively. Similar to other traditional CNNs, the early stopping strategy is also used for training out network.

2. MIT-BIH Arrhythmia database. The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel
ambulatory ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979.
It was preprocessed and reported in [16] based on the beat extraction method described in III.A of the paper, and thus the
data set has totally 109446 samples corresponding to five categories.

To test the performance of our network, we randomly choose 80% samples as the training set and the remaining 20% as
the test set. Since each sample has 187 attributes, the input of our network is a vector with length 187 and the output of our
network is a vector with length 5. Similar to before, the cross entropy function is chosen as the loss function, the adam is
consider as the optimizer and the early stopping strategy is used to train our network. Then the batch size and the maximal
number of epochs are set as 32 and 100, respectively.
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Fig. 4: The detailed network architectures of our eDCNN and baseline methods used in the simulated and real data experiments,
where the “LM” module means linear mapping and the “FC” module is a fully connected layer. (a) eDCNN for simulated data
examples; (b) cDCNN for simulated data examples; (c) eDCNN for real data examples; (d) baseline network for the Human
Activity Recognition task; (e) baseline network for the ECG Heartbeat Classification task.

3. PTB Diagnostic ECG Database. The database contains 549 records from 290 subjects (aged 17 to 87, mean 57.2; 209
men, mean age 55.5, and 81 women, mean age 61.6; ages were not recorded for 1 female and 14 male subjects). Each subject
is represented by one to five records. By using the beat extraction method in [16], this data set is transformed to a new one
that has totally 14552 samples corresponding to two categories. The implementation details of this data is the same as the
MIT-BIH Arrhythmia database, except that the network’s output is a vector with length 2.

2) Architectures of the implemented DCNNs: Fig. 4 plots the detailed network architectures of our eDCNNs and baseline
networks used in the simulated and real data experiments. It is easy to see that the network structures of the proposed eDCNNs
are simpler and cleaner than the baseline networks.


