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Chapter 1

The vibrating string

We begin our discussion of the questions in the title with an example whose
generalizations and ramifications will occupy us at length.

Relations among the length, tension, and pitch of a vibrating string of
constant density have been known since antiquity. The mathematical formu-
lation of a model of a vibrating string as a partial differential equation is one
of the first successes of continuum mechanics. It was accomplished in the
18th century by work of Brooke Taylor, Daniel Bernouilli, Jean d’Alembert,
and Leonhard Euler. The problem led to controversy about the possibility
of representing an arbitrary function as a trigonometric series, and, indeed
about the meaning of the very term “function” controversies not resolved
until the middle of the 19th century.

The standard mathematical model of a vibrating string of length L is a
function u(x, t), defined for x in the interval [0, L] and for time t ≥ 0. This
function represents the vertical displacement of the string at time t from its
resting position u ≡ 0. The fixed endpoint condition is

u(0, t) = u(L, t) = 0, t ≥ 0. (1.1)

The equation of motion is

mutt = k uxx; (1.2)

(D’Alembert, 1747). This is Newton’s equation as interpreted in this case:
m is the density, assumed constant, so the left side is mass times acceleration
(at a point of the string). The right side represents a force proportional to
curvature of the string at that point; the constant k is the tension. To
complete the formulation one can impose initial conditions,

u(x, 0) = f(x), ut(x, 0) = g(x)

1



2 CHAPTER 1. THE VIBRATING STRING

and then fit the general solution

u(x, t) = F (x+ ct) +G(x− ct), c2 =
k

m
(1.3)

found by D’Alembert (1747) and Euler (1748).

Instead we start with a more physical point of view: what pure pitches
can be associated with this string? Specifically, are there solutions that have
the form

u(x, t) = a(x) cos(2πωt) ? (1.4)

Such a solution is periodic with period 1/ω and frequency (pitch) ω. Equa-
tion (1.2) then requires that the amplitude a satisfy the second order ODE

d2a

dx2
= −4π2ω2m

k
a. (1.5)

Combined with the endpoint condition (1.1), this implies that a nonzero
solution with no initial velocity is a multiple of one of the functions

ϕn(x) = sin
(nπx
L

)
, n = 1, 2, 3, . . . . (1.6)

Comparing (1.5) and (1.6), we see that the possible frequencies are

ωn =
n

2L

√
k

m
. n = 1, 2, 3, . . . . (1.7)

Thus the fundamental (lowest) frequency
√
k/m/2L tells us one of the quan-

tities density, tension, or length if we know the other two. In particular we
can hear one if we know the other two (and we have perfect pitch). This is
the first of several questions that we will discuss about what can be “heard”
in various contexts. A less picturesque version of the question is: how much
can a spectrum tell us?

Modern mathematicians and physicists would approach the string prob-
lem by concentrating first on the operator L = k(d/dx)2 that appears on the
right in (1.2). Acting on functions that satisfy (1.1) and that are smooth
enough, it is symmetric with respect to the L2 inner product

(Lu, v) =

∫ L

0
k
d2u

dx2
v dx = −

∫ L

0
k
du

dx

dv

dx
dx

= (u,Lv).
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In analogy with the finite-dimensional case, one can hope to diagonalize
the operator L: find a basis for this space of functions that consists of
eigenfunctions of L: Lϕn = λnϕn. Up to multiplicative constants, these are
exactly the functions (1.6), with λn = kn2π2/L2. Still in analogy with the
finite-dimensional case, one might hope to write a general function of x as
a sum of the eigenfunctions. For a function of x and t we can try

u(x, t) =
∞∑

n=1

bn(t)ϕn(x), (1.8)

and (1.2) leads to the equations

m
d2b

dt2
= −λnb = −kn

2π2

L2
b.

Note the reversal of point of view here from (1.5). Either way we find the
standing wave solutions

sin
(nπx
L

)
cos

(√
k

m

nπt

L

)
, n = 1, 2, 3, . . . . (1.9)

A few more historical remarks: Brooke Taylor found the n = 1 standing
wave solution for the vibrating string in 1713, although he did not write the
partial differential equation (1.2) found by D’Alembert. Euler noted in 1747
that linear combinations of functions (1.9) are solutions to (1.2), but he did
not consider this to be the general form of a solution. Daniel Bernouilli
wrote solutions as infinite sums of standing wave solutions in 1753, and did

consider this to be the general form. Lagrange very nearly found this same
form of the general solution in 1759.

The justification for the expansion (1.8) did not come until 1829, when
Gustav Lejeune Dirichlet gave the first convergence proof for the Fourier
expansion. The form (1.3) was also a source of controversy: do the functions
F and G need to be differentiable? D’Alembert said yes, on mathematical
grounds. Euler said no, on physical grounds – for example one can pull the
string into a starting position that has a corner, and this should still yield an
acceptable solution. A full resolution of this question came only in the 20th
century, with the notions of weak solution (Leray, Sobolev) and distribution
solution (Schwartz). For a full discussion of the early history see [16], [42],
[61].
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Chapter 2

Can one hear the density of

a string?

The title of this chapter is borrowed from the title of a famous lecture by
Mark Kac. That lecture and the associated problem will be discussed in
Chapter 12. For now we consider a one–dimensional variation.

For a string of variable density m with fixed endpoints, vibrating verti-
cally (with units suitably normalized), the position function u(x, t) is again
the solution of an equation with Dirichlet boundary conditions:

m(x)utt(x, t) = uxx(x, t), 0 < x < 1; u(0, t) = u(1, t) = 0.

The standing wave solutions are

uν(x, t) = cos(λνt)ϕν(x)

where the ϕν are the solutions of a generalized eigenvalue problem:

ϕ′′
ν(x) + λ2

ν m(x)ϕν(x) = 0; ϕν(0) = ϕν(1) = 0. (2.1)

The density m determines the possible frequencies {λν}. The question
whether the frequencies determine the density was touched on by Lord
Rayleigh [78], sections 140, 141. Rayleigh gave a formal argument that
suggests that when the density is symmetric about the midpoint, then it
is determined uniquely by the frequencies – one can hear the density of a
symmetric string (at least if one has perfect pitch and no upper limit to the
frequencies one can detect).

5



6 CHAPTER 2. CAN ONE HEAR THE DENSITY OF A STRING?

If m is strictly positive and sufficiently regular, the Liouville transform,
taking as a new independent variable

y(x) =

∫ x

0
m(x′)1/2 dx′,

converts the generalized eigenvalue problem (2.1) to a standard eigenvalue
problem for an operator with potential term. Changing notation once again
by writing x in place of y, the transformed problem can be normalized as
an eigenvalue problem

ϕ′′
ν(x) + λ2

νϕν(x) = q(x)ϕν(x); ϕν(0) = ϕν(1) = 0. (2.2)

The associated operator

Lq =
d2

dx2
− q(x) (2.3)

assumed new importance in the 20th century as the (negative of) the one-
dimensional Schrödinger operator of quantum mechanics. This led to re-
newed interest in the inverse problem.

In 1929 V. Ambarzumian [2] considered the eigenvalue problem for (2.3)
with Neumann boundary conditions ϕ′(0) = 0 = ϕ′(1) as a model case for
inverse problems of quantum mechianics. When q ≡ 0 the eigenvalues are
λ2

ν = n2π2, n = 0, 1, 2, . . . . Ambarzumian showed conversely that if (2.2) has
spectrum {n2π2}, then q ≡ 0. Göram Borg [15] studied this problem in great
detail and showed in 1946 that in general the spectra for two sets of boundary
conditions are necessary and sufficient to determine a unique potential; in
particular neither the Dirichlet spectrum (ϕ = 0 at the endpoints) nor the
Neumann spectrum (ϕ′ = 0 at the endpoints) alone is sufficient. He also
showed that when q is symmetric about the midpoint, then the Dirichlet
spectrum suffices, as suggested by Rayleigh. Simpler proofs were found by
Norman Levinson [60] and Vladimir Marčenko [62].

Instead of using two spectra, we could ask what additional information
besides the {λν} for (2.3) or (2.2) would suffice to fix m or q? For example,
one might seek to use the L2 norms

aν =

∫ 1

0
ϕ(x, λν)2 dx

for solutions to (2.1) or to (2.2) that are normalized by

ϕ′
ν(0) = 1.
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For problem (2.1) these are the energies of the standing wave solutions.
For problem (2.2) they determine the spectral measure dρ associated to the
choice of eigenfunctions {ϕ(·, λν)}, i.e. the measure such that the map U
that takes f to

f̂(λ) =

∫ ∞

0
f(x)ϕ(x, λ) dx (2.4)

is a unitary map
U : L2([0, 1], dx) → L2(R, dρ).

Equivalently, the inverse map U∗ is

f(x) =

∫ ∞

−∞
f̂(λ)ϕ(x, λ) dρ(λ) =

∑

ν

1

aν
f̂(λν)ϕ(x, λν). (2.5)

In this case the measure ρ is supported on the set {λν} and the point λν

has measure 1/aν .

Marčenko [62] noted that the spectral measure uniquely determines the
potential, because of an identity due to Jean Delsarte and Aleksander Povs-
ner. This identity is a continuous analog of the Gram-Schmidt orthogonal-
ization process. For any complex λ, let ϕ(·, λ) be the solution to

ϕ′′ + λ2ϕ = q ϕ; ϕ
∣∣
x=0

= 0, ϕ′
∣∣
x=0

= 1. (2.6)

Let ϕ0(λ) = sinλx/λ be the solution to (2.6) for q0 ≡ 0. Then the ϕ are
related to the ϕ0 by a Volterra integral equation

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0
V (x, y)ϕ0(y, λ) dy. (2.7)

In operator form this is ϕ = (I + V )ϕ0. Operators of the form I + V are
a group under composition, so it follows that there is a similar relation
between the solutions ϕ1 and ϕ2 for potentials q1 and q2. If q1 and q2 have
the same spectral measure, then the corresponding unitary operators Uj

have the property that U∗
2U1 is a unitary operator in L2([0, 1], dx). But

ϕ2 = (I + V )ϕ1 implies U∗
2 = (I + V )U∗

1 , so I + V = U∗
2U1 is unitary.

It follows that (I + V )−1 = I + V ∗. But this is impossible unless V = 0,
because the kernel W (x, y) = V (y, x) of V ∗ is supported where y ≥ x while
that of (I + V )−1 is supported where y ≤ x.

The proof of (2.7) also involves Volterra integral equations. In fact it is
not difficult to see that the conditions on V in order for the expression (2.7)
to give solutions to (2.6) are that

Vxx(x, y) = Vyy(x, y) + q(x)V (x, y), 0 < y < x (2.8)
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with boundary conditions

V (x, 0) = 0, V (x, x) =
1

2

∫ x

0
q(x′) dx′. (2.9)

As we shall see, relations like (2.7) have a number of important applications.
Given the usefulness, it is surprising how simple the proof is. To prove the
existence of V it is convenient to extend the problem to the wedge |y| ≤ x by
looking for a solution to (2.8) that satisfies the modified boundary conditions

V (x, x) =
1

2

∫ x

0
q(x′) dx′, V (x,−y) = −V (x, y). (2.10)

The function

v(x, y) =
1

2

∫ (x+y)/2

(x−y)/2
q(s) ds

satisfies the boundary conditions (2.9) and the pure wave equation vuxx =
vyy for |y| < x. On the other hand the function

w(x, y) = Tf(x, y) ≡ 1

2

∫ x

0

∫ x′

−x′

f(x′, y − y′) dy′ dx′

satisfies wxx = wyy + f . The Volterra operator T takes functions supported
on |y| ≤ x to functions that are supported in the same region and vanish for
|y| = x. Moreover, Tf is an odd function of y if f is. It follows from this
that the desired function V is the solution of the Volterra integral equation

V = v + T (qV ) ≡ v + Tq(V ).

The solution is given by the convergent series

V = v + Tq(v) + T 2
q (v) + T 3

q (v) + . . . .

This argument is easily adapted to other boundary conditions for the wave
functions ϕ, such as

ϕ
∣∣
x=0

= 1, ϕ′
∣∣
x=0

= h,

where h is a real constant.

For more historical discussion of the material in this chapter and the
next two, see [64].



Chapter 3

Can one hear a nuclear

potential?

Although Ambarzumian’s study of the problem (2.2) on a finite interval was
motivated by questions from quantum mechanics, the more typical quantum-
mechanical problem involves an infinite interval. In particular, for a radial
potential the Schrödinger operator is (2.3) on the half-line [0,∞). The
following discussion depends on some decay of the (real) potential q, such
as ∫ ∞

−∞
(1 + x2) |q(x)| dx < ∞.

The variation of constants solution

ϕ(x, λ) =
sinλx

λ
+

∫ x

0
sinλ(x− y) q(y)ϕ(y, λ) dy

to the problem

ϕ′′ + λ2ϕ = qϕ, x ≥ 0; ϕ(0, λ) = 0, ϕ′(0, λ) = 1, (3.1)

leads to the approximation

ϕ(x, λ) ∼ A(λ)

λ
sin

(
λx− Φ(λ)

)
, x→ ∞, (3.2)

where it is easy to check that

F (λ) ≡ A(λ) eiΦ(λ) = 1 +

∫ ∞

0
eiλxq(x)ϕ(x, λ) dx. (3.3)

9
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It is important to note that F extends to a holomorphic function of λ in the
upper half-plane {Imλ > 0}. The asymptotic phase Φ can be normalized
by choosing it to be continuous, with

lim
λ→+∞

Φ(λ) = 0.

Note that (3.2) can be rewritten

ϕ(x, λ) ∼ F (λ)
[
eiλx − S(λ)e−iλx

]

where the scattering function S is

S(λ) =
F (−λ)

F (λ)
= e−2iΦ(λ). (3.4)

This is the simplest case of the scattering matrix introduced by John Wheeler
[89] in 1937 and Werner Heisenberg [44] in 1943. Heisenberg proposed that
the scattering matrix was the basic physically observable quantity of elemen-
tary particle theory and that it should therefore determine the potential q.

The question of determining the potential q from the phase Φ or, equiv-
alently, the scattering function S was studied by C. E. Fröberg [32] in 1948.
Levinson [59] showed in 1949 that the asymptotic phase uniquely determines
the potential when there is no discrete spectrum. As we shall see, this is a
special case of the extension to the half-line of Marčenko’s result that was
sketched in the previous chapter.

Note that in general there may be discrete spectrum: finitely many values
λ2

ν < 0 for which ϕν = ϕ(·, λν) has L2 norm ||ϕν || <∞; we take Imλν > 0.
These λν are precisely the zeros of F in the upper half plane. V. Bargmann
[8] showed that when there is discrete spectrum, the scattering function does
not suffice to determine the potential.

In the absence of discrete spectrum, logA and Φ are the real and imagi-
nary parts of the value on the real line of the function logF , holomorphic in
the upper half plane. This implies that either of logA or Φ is essentially the
Hilbert transform of the other. To see this, consider for simplicity a smooth
real-valued function p such that

∫ ∞

−∞
|p(s)| ds < ∞.

The function

f(λ) =
1

πi

∫ ∞

−∞

p(s) ds

s− λ
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is holomorphic in the upper half plane and

f(t+ εi) =
1

π

∫ ∞

−∞

ε p(s) ds

(t− s)2 + ε2
+
i

π

∫ ∞

−∞

(s− t) p(s) ds

(t− s)2 + ε2
.

The real part can be rewritten as

Re f(t+ εi) =

∫ ∞

−∞
g(s) p(t − εs) ds, g(t) =

1

π(1 + t2)
.

Since g has integral 1 it follows that on the line, taking the limit ε→ 0 gives
Re f = p. It follows that

Im f(t) = − 1

π

∫ ∞

−∞

Re f(s) ds

t− s
.

Applying this to logF and to i logF we get

Φ(λ) = − 1

π

∫ ∞

−∞

A(s) ds

λ− s

and

A(λ) =
1

π

∫ ∞

−∞

Φ(s) ds

λ− s
.

Thus in the absence of discrete spectrum, the asymptotic amplitude A can
be recovered from the asymptotic phase Φ and conversely, so Levinson’s
result shows that in this case the asymptotic amplitude A also determines
q uniquely.

When there is discrete spectrum, {λν}, one can consider the modifica-
tion

F̃ (λ) = F (λ)
∏

ν

(λ− λ̄ν

λ− λν

)
.

This function has no zeros in the upper half plane and has the same modulus
as F on the real line. In fact

F̃ (λ) = Aei
eΦ(λ), Φ̃(λ) = Φ(λ) − 2

∑

ν

arg(λ− λν),

and either of A or Φ, together with {λν}, determines the other.

Much earlier (1910), Weyl [84] had computed the spectral measure asso-
ciated to (3.1). Generalizing the case of a finite interval, this is the measure
dρ on the line with the property that the map from L2((0,∞)) to L2(R, dρ)

f → Uf(λ) =

∫ ∞

0
ϕ(x, λ) f(x) dx,
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where ϕ(·, λ) is the normalized wave function of (3.1), has inverse

U∗g(x) =

∫ ∞

−∞
ϕ(x, λ) g(λ) dρ(λ).

In (−∞, 0) we take the measure dρ to be supported on the points λ2
ν of

the discrete spectrum, with mass cν = ||ϕ(·, λν ||−2. Then

U∗g(x) =
∑

ν

cν g(λ
2
ν)ϕν(x) +

∫ ∞

0
ϕ(x, λ) g(λ) dρ(λ).

We expect dρ to be absolutely continuous on [0,∞). It can be computed
from the information above. In fact it should satisfy

lim
N→∞

∫ N

0
ϕ(x, λ)ϕ(y, λ) dρ(λ) = δ(x − y)

for x, y > 0. We take x, y very large and use the asymptotics (3.2) to find
that the integrand is

∼ A(λ2)

2λ2

{
cos λ(x− y) − cos[λ(x+ y) + 2Φ(λ)]

}
.

The second part of the expression on the right oscillates rapidly as a function
of λ when x+y >> 0. Therefore the principal contribution to the integrand
comes from the part involving cos λ(x− y). Now

∫ N

0
cos λx dλ =

sinNx

x

and as distribution this converges to c δ(x − u) where

c =

∫ ∞

−∞

sinNx

x
dx = π.

Therefore we have

dρ(λ) =
2λ2

π A(λ)2
dλ, λ ≥ 0. (3.5)

In other words the asymptotic amplitude A = |F | determines the spectral
measure ρ modulo the discrete spectrum {λν} and the norms ||ϕν ||, and
conversely.
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As in the case of the problem on a finite interval, the function (2.6) is
related to the solution ϕ0(x, λ) = sinλx/λ for q0 ≡ 0 by the Volterra integral
equation

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0
V (x, y)ϕ0(y, λ) dy. (3.6)

Once again, as observed by Marčenko, this implies that the spectral measure
determines the potential uniquely. See [64] for further discussion.
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Chapter 4

Can one reconstruct the

potential?

There is a large gap between knowing that some data, such as a pair of
spectra or a spectral measure, can belong at most to one density or one
potential, and being able to reconstruct the density or the potential from
that data. Elegant solutions of of reconstruction problems for equations like
(3.1) were found in the 1950s. In 1951 I. M. Gel’fand and B. M. Levitan
[37] showed how to reconstruct q from the spectral measure ρ, while in 1955
Marčenko [63] reconstructed q directly from the asymptotic phase and the
discrete part of the spectral measure; see the discussion in [64]. Much work
has been done since then on systems, higher dimensional operators, and
numerical implementations. We refer to the book by Chadan and Sabatier
[21] and its foreword by Roger Newton for an extensive treatment of these
developments and their history.

The basic idea of Gel’fand and Levitan for the boundary value problem

ϕxx(x, λ) + λ2ϕ(x, λ) = q(x)ϕ(x, λ), x > 0;

ϕ(0, λ) = a, ϕx(0, λ) = b

was that the kernel K that converts the solutions ϕ0 of the corresponding
equation with potential q0 ≡ 0 to ϕ by the formula

ϕ(x, λ) = ϕ0(x, l) +

∫ x

0
K(x, y)ϕ0(y, λ) dy (4.1)

can be computed from the spectral measure ρ by making use of orthogonality
relations ∫ ∞

−∞
ϕ(x, λ)ϕ(y, λ) dρ(λ) = δ(x− y) (4.2)

15
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and the corresponding relations for ϕ0.

The spectral measure dρ0 that corresponds to q0 ≡ 0 is readily computed.
There is an integral equation similar to (4.1) that expresses ϕ0(y, λ) in terms
of ϕ(z, λ), z ≤ y. Putting this into (4.1) gives

∫ ∞

−∞
ϕ(x, λ)ϕ0(y, λ) dρ(λ) = 0, y < x. (4.3)

For x 6= y set

f(x, y) =

∫ ∞

−∞
ϕ0(x, λ)ϕ0(y, λ) dσ(λ), σ = ρ− ρ0.

Combining (4.1) and (4.3) for y < x gives

0 =

∫ ∞

−∞
ϕ(x, λ)ϕ0(y, λ) dρ(λ)

= f(x, y) +

∫ x

0
K(x, z)

{ ∫ ∞

−∞
ϕ0(z, λ)ϕ0(y, λ) dρ(λ)

}
dz

= f(x, y) +

∫ x

0
K(x, z)

{
δ(z − y) + f(z, y)

}
dz

= f(x, y) +K(x, y) +

∫ x

0
K(x, z) f(z, y) dz.

Thus for each x > 0 we have an integral equation for K(x, ·) on the interval
[0, x],

K(x, y) +

∫ x

0
K(x, x) f(z, y) dz = −f(x, y), (4.4)

the famous Gel’fand–Levitan equation. The potential is then recovered as

q(x) = 2
d

dx

{
W (x, x)

}
.

It follows from earlier remarks that the Gel’fand–Levitan method also
– in principle – recovers the potential from the asymptotic phase Φ (or
the scattering function S = e−2iΦ), together with the discrete part of the
spectral measure. However the Hilbert transform of Φ is highly sensitive to
the detailed behavior of Φ. Marčenko developed a more stable process of
recovering q from Φ and the discrete part of ρ by scaling away the amplitude.
Let

ψ(x, λ) =
λ

A(λ)
ϕ(x, λ) ∼ ψ0(x, λ) ≡ sin

(
λx− Φ(λ)

)
as x→ ∞.
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These functions satisfy the orthogonality relation

∫ ∞

−∞
ψ(x, λ)ψ(y, λ) dr(λ) = δ(x − y),

where the continuous part of dr(λ) is (2/π)dλ, λ ≥ 0. To simplify the expo-
sition slightly we assume now that there is no discrete spectrum. Note that
(2/π)dλ is also the spectral measure for the functions sinλx that correspond
to ψ(x, λ) when q = 0.

There is an analogue here, due to Boris Levin, of the formula (3.6):

ψ(x, λ) = ψ0(x, λ) +

∫ ∞

x
V (x, y)ψ0(y, λ) dx (4.5)

and a similar formula expressing ψ0 in terms of ψ. This second formula
leads to the orthogonality relation for x < y:

2

π

∫ ∞

0
ψ(x, λ)ψ0(y, λ) dλ = 0. (4.6)

Combining (4.5) and (4.6),

0 =
2

π

∫ ∞

0
ψ0(y, λ)

{
ψ0(x, λ) +

∫ ∞

x
V (x, z)ψ0(z, λ) dy

}
dλ (4.7)

=
2

π

∫ ∞

0
ψ0(y, λ)ψ0(x, λ) dλ

+

∫ ∞

x
V (x, y)

{ 2

π

∫ ∞

0
ψ0(y, λ)ψ0(z, λ) dλ

}
dz.

Now

2

π

∫ ∞

0
ψ0(x, λ)ψ0(y, λ) dλ

= δ(x − y) +
2

π

∫ ∞

0

{
ψ0(x, λ)ψ0(y, λ) − sinλx sinλy

}
dλ

= δ(x − y) +
1

π

∫ ∞

0

{
cos(λx+ λy) − cos(λx+ λy − 2Φ) dλ.

Since Φ is odd, this can be rewritten as

2

π

∫ ∞

0
ψ0(x, λ)ψ0(y, λ) dλ = δ(x− y) + f(x+ y), (4.8)
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where

f(x) =
1

2π

∫ ∞

0
cos(λx)

[
1 − cos(2Φ)

]
dλ

is determined from Φ. Substituting (4.8) into (4.7) gives

0 = f(x+ y) + V (x, y) +

∫ ∞

x
V (x, z) f(y + z) dz, x < y. (4.9)

This is the Marčenko equation (in the absence of discrete spectrum), that
determines the Levin kernel V from the asymptotic phase Φ. The potential
q is

q(x) = −2
d

dx
[V (x, x)].

Including the discrete spectrum is left as an exercise.



Chapter 5

Quantum mechanics in one

dimension

Although the operators considered in the previous two chapters were one-
dimensional, the fact that the relevant interval was [0,∞) was due to an
assumption that a potential V (x) in higher dimensions was a function of
the norm |x|. For a truly one-dimensional problem one would have both
the potential q and the wave functions ϕ(·, λ) defined on R = (−∞,+∞).
Although a problem of limited physical interest (for quantum mechanics),
this turns out, unexpectedly, to have considerable interest mathematically
and has led to many consequences in other physical theories.

The Gel’fand–Levitan and Marčenko methods can be adapted to this
case, but it will be of interest to describe a modification based on the Jost

solutions [49] of the basic equation

(Lq + λ2)ϕ(x, λ) ≡ ϕxx(x, λ) +
[
λ2 − q(x)

]
ϕ(x, λ) = 0, x ∈ R. (5.1)

We continue to assume that q is real and
∫

(1 + x2)|q(x)|dx < ∞. For real
λ there are solutions with prescribed asymptotics as −x→ ±∞:

ϕ+(x, λ) = e−iλx +

∫ x

−∞
sin

(
λ(x− y)

)
q(y)ϕ+(y, λ) dy;

ϕ−(x, λ) = e−iλx −
∫ ∞

x
sin

(
λ(x− y)

)
q(y)ϕ−(y, λ) dy.

The functions ϕ̃±(x, λ) = ϕ±(x,−λ) are also solutions. For real λ, these
are just the complex conjugates ϕ̃± = ϕ̄±, but as shall see there are various
extensions to complex λ.
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The functions χ±(x, λ) = ϕ±(x, λ)eiλx are solutions of the integral equa-
tions

χ+(x, λ) = 1 +

∫ x

−∞

[eiλ(2x−2y) − 1

2i

]
q(y)χ+(y, λ) dy;

χ−(x, λ) = 1 −
∫ ∞

x

[eiλ(2x−2y) − 1

2i

]
q(y)χ−(y, λ) dy.

These formulas extend naturally to λ in the upper and lower half-planes
respectively, so χ+ and χ̃− = ϕ̃−e

−iλx extend to {Imλ > 0} while χ− and
χ̃+ extend to {Imλ < 0}, holomorphic in λ. As a consequence, ϕ+ and
ϕ̃− extend to the upper half-plane while ϕ− and ϕ̃+ extend to the lower
half-plane. For Imλ > 0, ϕ+(x, λ) decays exponentially as x → −∞ while
ϕ̃−(x, λ) decays exponentially as x→ +∞. Unless they are dependent, each
grows exponentially in the other direction. It follows that negative eigenval-
ues are exactly the λ2 with Imλ > 0 for which the Wronskian W (ϕ+, ϕ̃−)
vanishes.

The function ϕ− and ϕ̃− are independent solutions of (5.1) for real λ, so

ϕ+(x, λ) = a(λ)ϕ−(x, λ) + b(λ) ϕ̃−(x, λ), λ real. (5.2)

Then

ϕ+(x, λ) ∼ e−iλx, x→ −∞;

∼ a(λ) e−iλx + b(λ) eiλx, x→ +∞.

Thus a and b are determined entirely by asymptotics of solutions.

The Wronskians W (ϕ−, ϕ̃−) ≡ ϕ−ϕ̃
′
− − ϕ′

−ϕ̃− and W (ϕ+, ϕ̃−) are con-
stant; the asymptotics imply that each is 2iλ. Using (5.2) and its complex
conjugate to compute W (ϕ+, ϕ̃+) in two different ways, we obtain the rela-
tion

|a(λ)|2 − |b(λ)|2 = 1.

Thus a 6= 0, Using this fact and the definition of χ±, (5.2) can be rewritten
as

χ+(x, λ)

a(λ)
= χ−(x, λ) + r(λ) χ̃+(x, λ), r =

b

a
. (5.3)

The function r is called the reflection coefficient .

The coefficient a can be written as a Wronskian,

a(λ) =
W (ϕ+, ϕ̃−)

2iλ
,
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so a is holomorphic in the upper half-plane and the squares of its zeros {λν}
are the neqative eigenvalues.

The Fourier transform is essential in what follows. The Fourier transform
of an integrable function g on the line is defined by

ĝ(x) =

∫ ∞

−∞
e−ixyg(y) dy. (5.4)

If ĝ is also integrable, then g is its inverse Fourier transform:

g(x) =
1

2π

∫ ∞

−∞
eixy ĝ(y) dy. (5.5)

Conversely, if ĝ is integrable and g defined by (5.5) is integrable, then (5.4)
recovers ĝ from g. These identities, suitably interpreted, carry over to g ∈ L2

and ĝ in L2, and

∫ ∞

−∞
|g(x)|2 dx =

1

2π

∫ ∞

−∞
|ĝ(x)|2 dx.

For each x, χ−(x, ·) − 1 is holomorphic in the lower half-plane and is
O(1/|λ|) for large λ. Then for y < 0 the integrand in

A(x, y) =
1√
2π

∫ ∞

−∞
eiyz

[
χ−(x, z) − 1

]
dz (5.6)

is holomorphic for Im z < 0 and is both O(1/|z|) and O(exp(−|y Im z|) in
the lower half-plane. By Cauchy’s theorem the integral vanishes. Thus
A(x, y) = 0 for y < 0, and the inversion formula gives

χ−(x, λ) = 1 +

∫ ∞

0
e−iλyA(x, y) dy (5.7)

= 1 +

∫ ∞

x
e−iλ(x+y)V (x, y) dy, V (x, y) ≡ A(x, y − x).

It follows from the identity χ−(x,−λ) = χ̄−(x, λ) for real λ that A is real.

We are now in a position to derive the Marčenko equation for the problem
on the line. It is convenient to distinguish three cases. First suppose that
there are no bound states: a has no zeros in {Imλ > 0}. The identity (5.3)
can be written as

χ+

a
− 1 = (χ− − 1) + r e2iλx + (χ̃− − 1) r e2iλx.
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Once again the inverse Fourier transform of the function on the left vanishes
on [0,∞). Therefore

0 = A(x, y) + f(2x+ y) +

∫ ∞

0
f(2x+ y + z)A(x, z) dz, y > 0,

where f is the inverse Fourier transform of the reflection coefficient r. This
can be rewritten as the Marčenko equation

0 = f(x+ y) + V (x, y) +

∫ ∞

x
V (x, z)f(y + z) dz, y < x. (5.8)

Thus V is determined by the reflection coefficient. As before, the potential
q(x) = 2dV (x, x)/dx.

Next, suppose that there are bound states with eigenvalues −λ2
ν . (The

number of bound states is necessarily finite.) Suppose also that the reflection
coefficient r ≡ 0: q is a reflectionless potential . At each zero λν of a, χ+ is
a multiple cν of χ̃−e

2iλν . Therefore the rational function

η(λ) =
∑

ν

cν
a′(λν)(λ− λν)

has the property that the function

χ+

a
− 1 + η̃ χ−

is holomorphic and O(1/|λ|) in the upper half plane. Writing this function
as

χ+

a
− 1 + η χ̃− = (χ− − 1) + η (χ̃− − 1) e2iλx + η e2iλx,

we obtain (5.8) with f as the inverse Fourier transform of η.

Finally, suppose that there are both bound states and a non-vanishing
reflection coefficient. Choose the rational function η as in the second case.
Then

χ+

a
− 1 + χ̃− = (χ− − 1) + (r + η)(χ̃− − 1) e2iλx + (r + η) e2iλx,

and we get (5.8) with f as the inverse Fourier transform of r + η.

Let us return to the case of a reflectionless potential. In this case f is
a linear combination of decaying exponentials on [0,∞) and the problem of
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determining V is purely algebraic; the potential q can be written explicitly
as a rational combination of exponentials. In fact, with the notation above,

f(x) =
∑

ν

αν e
iλνx, αν ≡ icν

a′(λν)
.

Therefore we may write f(x + y) =
∑

ν bν(x) aν(y), where bν = ανaν , and
it follows that V has the form

V (x, y) =
∑

ν

cν(x) aν(y).

Inserting these expressions into (5.8) we obtain

cµ = −
∑

ν

(A−1)µν bν(x), Aµν(x) = δµν +

∫ ∞

x
bµ(z) aµ(x) dz.

It follows that

V (x, x) = −
∑

ν

(A−1)µν bν(x)αµ(x)

=
∑

ν

(A−1)µν
dAνµ

dx
= tr (A−1Ax)

=
1

det(A)

d

dx
det(A) =

d

dx
log detA.

Therefore the potential is the second logarithmic derivative

q(x) = 2
d2

dx2

(
log detA

)
.
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Chapter 6

Preserving the spectrum:

KdV

Borg’s result (see Chapter 2) and the results on the one-dimensional Schrö-
dinger operator show that knowing the spectrum for one self-adjoint real-
ization of an operator Lq = (d/dx)2 − q in an interval J ⊂ (−∞,+∞) is
not enough to determine the potential uniquely. This raises questions about
changing the operator without changing its spectrum, for example finding a
one-parameter family of operators unitarily equivalent to Lq. This problem
was addressed in the following way by Peter Lax [57], for reasons that will
be discussed later.

Suppose that {U(t)} is a one-parameter family of unitary operators in
L2(J) that preserve the domain of a particular self-adjoint realization of
Lq, say with U(0) = I, and consider Lq(t) = U(t)∗LqU(t). The question
of interest here is whether the family can be chosen so that Lq(t) has the
same form as Lq, but with a potential q(·, t) depending on t. Such a family
of potentials is called an isospectral flow . Formally, the family of unitary
operators is differentiable in t if it is generated by a family of skew hermitian
operators A(t):

U ′(t) = U(t)A(t), U(0) = I.

If so, then the derivative of Lq(t) is a commutator:

d

dt
Lq(t) =

[
Lq(t), A(t)

]
≡ Lq(t)A(t) −A(t)Lq(t).

If Lq(t) is to be (d/dx)2 − q(·, t), then

qt =
[
A(t), Lq(·,t)

]
, (6.1)

25
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This is known as the Lax equation. (We have identified the function qt with
the operator of multiplication by qt.) Equation (6.1) puts a strong constraint
on the form of A(t): its commutator with a second order differential operator
is an operator of order zero – a multiplication operator. It is natural to take
A(t) to be, like Lq(·,t), a differential operator. In order for the commutator
to have order zero, there are strong constraints on the coefficients, the first
of which is that highest order and next highest order coefficient be constant.
The choice A(t) = d/dx leads to

qt + qx = 0

so q(x, t) = q(x− t). This already illustrates a point: endpoints and explicit
boundary conditions are a problem. Therefore we restrict the discussion
here to the problem on the full line: one-dimensional quantum mechanics.
Then the solution q(x, t) = q(x − t) works, but rather trivially: just a
change in choice of origin.

Continuing, if A is of order 2, it can be checked that A must be a linear
combination of d/dx and Lq itself, with constant coefficients, so again the
solution is q(x, t) = q(x− ct). At third order we may subtract a constant
multiple of Lq and a constant multiple of d/dx and assume that

A(t) =
d2

dx3
+ b(·, t) d

dx
+ c(·, t),

with coefficients that vanish at ±∞. (We assume throughout the rest of
this chapter that q is real and that q and its derivatives vanish sufficiently
rapidly at ±∞.) Working out the commutator shows that

3qx + 2bx = 0,

3qxx + bxx + 2cx = 0,

qt + qxxx + bqx + cxx = 0,

so

A(t) =
d3

dx3
− 3

2
q(x, t)

d

dx
− 3

4
qx(x, t) (6.2)

and the evolution equation for the potential q is

qt +
3

2
q qx − 1

4
0qxxx = 0. (6.3)

There are corresponding nonlinear evolution equations of every higher odd
order in x that determine isospectral flows of Lq.
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Let us combine these observations with the solution of the corresponding
inverse problem from the previous chapter. The Lax equation (6.1) can be
viewed as the compatibility condition for the pair of equations

ϕt(x, t, λ) +A(t)ϕ(x, t, λ) − iλ3ϕ(x, t) = 0; (6.4)

ϕxx(x, t, λ) + λ2ϕ(x, t, λ) = q(x, t, λ).

Conversely, suppose (6.1) is true and that ϕ is a solution of the first of these
equations. Then if the second equation holds at t = 0, it holds for all t.

With A(t) as in (6.2) and q ≡ 0, the function e−iλx is a solution of both
these equations. Since this function defines the asymptotics as x → ±∞ of
ϕ±, it follows that the functions ϕ±(·, t, λ) for potentials q(x, t) that satisfy
(6.3) are solutions of (6.4). Taking the time derivative in (5.2) as x→ +∞
we find that the coefficients a and b satisfy

at(λ, t) = 0, bt(λ, t) = −2iλ3b(λ, t).

Thus

a(λ, t) ≡ a(λ), b(λ, t) = e−2iλ3t b(λ), r(λ, t) = e−2iλ3t r(λ),

In the absence of discrete spectrum we can in principle recover q(x, t) from
r(λ, t). Therefore the initial value problem for the nonlinear evolution equa-
tion (6.3) can be found by solving a linear integral equation, the Marčenko
equation (5.8)!

What about the general case, with discrete spectrum? Since a is inde-
pendent of t the discrete spectrum {−λ2

ν} is time-invariant. The residues of
the corresponding rational function η are constant multiples of the cν(t) =
ϕ̃−(x, λ)/ϕ+(x, λν), and just as for b we find that cν(t) = e−2iλ3

ν tcν . There-
fore the solution of the initial value problem may again be found by linear
methods.

When the reflection coefficient r is initially 0, the potentials q(·, t) con-
tinue to be reflectionless and, as we noted in the previous chapter, construct-
ing them is an algebraic process that can be carried out explicitly. This gives
a class of explicit solutions of (6.3), corresponding to arbitrary choices of
parameters λν = ilν , lν > 0 and cν , 1 ≤ ν ≤ n.

All this would be an only interesting curiosity if the equation (6.3) were
of no interest. As it happens, it is the Korteweg–de Vries equation (KdV)
and has an interesting history that comes in two parts, sketched in the next
two chapters. We remark here that by rescaling x and multiplying q by a
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constant, one can transform (6.3) to an equation of the same form with any
choice of constants; a common choice is

qt + 6qqx + qxxx = 0.

In this form there is a one-parameter family of solutions

qc(x, t) =
c

2 cosh2[c1/2(x− ct)]
, c > 0. (6.5)

These are travelling wave solutions: a wave with a single maximum am-
plitude c/2 travelling to the right at velocity c. Suitably transformed, they
correspond to a reflectionless potential with a single eigenvalue. Rather than
resort to the method sketched above, however, one can derive these solutions
using the following observations. First, if q is a solution of (6.3) and a 6= 0
is real, then

qa(x, t) = a2q(ax, a3t)

is also a solution. Second, q(x, t) = f(x − t) is a travelling wave solution
with velocity one if and only if −f ′ + 6ff ′ + f ′′′ = 0 Assuming that f and
derivatives decay rapidly at infinity this can be integrated to −f+3f2+f ′′ =
0. Multiplying by f ′ and integrating again gives −f2 + 2f3 + (f ′)2 = 0 or

f ′

f
= ±

√
1 − 2f . (6.6)

It is easy to check that f(x) = 1/[2 cosh2(x/2)] is a solution.

To this point in our exposition it is clear that equation (6.3) might have
been discovered by pure thinking, starting with the question of finding a
one-parameter family of unitarily equivalent one-dimensional Schrödinger
operators. Combined with the known inversion method, this would give an
interesting, but not compelling, example of finding explicit solutions to a
nonlinear PDE. But this is not how (6.3) was discovered, and not how it
was found to be connected to the Schrödinger operator.



Chapter 7

Can one explain the shape of

a wave?

In 1834 a young scientist named John Scott Russell made the first known
observation of a phenomenon that was to be debated for the rest of the
century:

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses when the boat sud-
denly stopped – not so the mass of water in the channel which
it had put into motion: it accumulated around the prow of the
vessel in a state of violent agitation, then suddenly leaving it
behind, rolled forward with great velocity, assuming the form of
a large solitary elevation, a rounded, smooth, and well defined
heap of water, which continued in its course along the channel
apparently without change of form or diminution of speed. I fol-
lowed it on horseback, and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its original fgure
some thirty feet long and a foot to a foot and a half in height.
Its height gradually diminished and after a chase of one or two
miles I lost it in the windings of the channel. [79]

Russell’s observation and his subsequent study of the “Great Solitary Wave”
were controversial. The equations for long waves in a shallow channel, a spe-
cialization of Euler’s equations for incompressible irrotational flow, were well
known but not easy to integrate, and some argued that a wave with eleva-
tion but no depression of the surface was not possible. The possibility of a
travelling wave solution was examined in 1871 by Joseph de Boussinesq [17]
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and in 1876 by Lord Rayleigh [77] who, after some approximations, derived
essentially the equation ((6.6) and noted that its solutions would have the
shape described by Russell. Nevertheless, controversy continued until the
1895 paper by Diederik Korteweg and Gustav de Vries that introduced equa-
tion (6.3). For historical discussions, see Craik [23] and the introduction to
[18].

The KdV equation for long one-dimensional waves in water of uniform
depth can be derived as follows, cf [52], [48]. First, suppose that fluid of
density ρ = ρ(x, t) is moving with velocity vector u = u(x, t) through a
region of R3 that contains a subregion Ω with smooth boundary ∂Ω. (We
take u and other vectors here to be 3×1 column vectors.) The rate of change
of the mass of fluid in Ω is the same as the rate of flow inward through the
boundary, so

d

dt

∫

Ω
ρ dx +

∫

∂Ω
ρ(u · n) dσ = 0,

where n is the outer unit normal. The divergence theorem converts this to
the vanishing of an integral over Ω, and since it must hold for each region
Ω we get

ρt + ∇ · (ρu) = 0,

where ∇ denotes the x–gradient. Let F be the external force on the fluid and
p the pressure. By Newton’s second law the rate of change of momentum
ρu in Ω plus the rate of flow of momentum in through the boundary should
equal the external force plus the force on the boundary due to pressure p:

d

dt

∫

Ω
ρu dx +

∫

∂Ω
ρ(u · n) dσ = −

∫

∂Ω
pn dσ +

∫

Ω
F dx.

As before this leads to a vector equation

(ρu)t + (u · ∇)(ρu) + ρ(∇ · u)u + ∇p = ρF.

Now consider boundary conditions. On a fixed surface, like the bottom of
a channel, the normal component of u must be zero: u · n = 0. On a free
surface given by f(x, t) = 0 the normal velocity of the surface is the normal
component of u. The unit normal to the surface is |∇f |−1∇f , so

0 =
d

dt
f(x(t), t)) = ft + u · n = ft + u · ∇f.

Finally, ignoring surface tension, the pressure at the free surface should equal
the air pressure, which can be taken to be the constant p0.
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For water, the density ρ is essentially constant and we take it to be 1. If
the external force is due to gravity, the preceding equations simplify to

ut + (u · ∇)u + ∇p = (0, 0,−g)t; (7.1)

∇ · u = 0,

ft + u · ∇f = 0;

p = p0 where f = 0,

u · n = 0 on the fixed surface.

Let us simplify still further, to water moving in one horizontal direction
over a flat bottom, with units scaled so that the equilibrium depth is one
and the gravitational constant is one. Take coordinates (x, y) with x the
horizontal and y the vertical position, and velocity vector (u, v). The free
surface is y = 1 + η(x, t) and p̃ = p − (p0 − y) is the difference between the
pressure and the undisturbed (hydrostatic) pressure. The equations become
Euler’s equations

ut + uux + vuy = −p̃x; (7.2)

vt + uvx + vvy = −p̃y;

ux + vy = 0, 0 < y < 1 + η(x, t);

vy=0 = 0; p̃
∣∣
y=1+η

= η, (ηt + ηxu− v)
∣∣
y=1+η

= 0.

In order to get a reasonable simplification of this system for long waves
of small amplitude, we consider a depth scale ε and a length scale 1/δ, δ and
ε small and positive. Since we want to consider travelling waves, we also
scale time by 1/δ. To do so we introduce functions ū, v̄, η̄, p̄ of variables x̄,
y,t̄. Considering the amplitude scale and the boundary conditions we take

η(x, t) = ε η̄(δx, δt), p̃(x, y, t) = ε p̄(δx, y, δt).

In order to preserve the linear parts of the equations above we must take

u(x, y, t) = ε ū(δx, y, δt), v(x, y, t) = ε δ v̄(δx, y, δt).

Putting these into (7.2), dividing out by common factors, and changing
notation once more we obtain

ut + ε (uux + vuy) = −px; (7.3)

δ2
[
vt + ε (uvx + vvy)

]
= −py;

ux + vy = 0, 0 < y < 1 + εη(x, t);

vy=0 = 0; p
∣∣
y=1+εη

= η, (ηt + εηxu− v)
∣∣
y=1+η

= 0.
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Taking the long wave, small amplitude limits δ → 0, ε → 0 we obtain the
linear system

ut + px = 0, py = 0; ux + vy = 0;

v|y=0 = 0, p|y=1 = η; (ηt − v)|y=1 = 0.

It follows that ut is independent of y and it is consistent to assume that u
is independent of y; then the same is true of vy. Under these assumptions
the boundary conditions imply that

p ≡ η, v = −uxy, ηt + ux = 0

and the first equation becomes

ut + ηx = 0.

If we assume that u(x, t) → 0 as |x| → ∞ then everything is determined by
η, which must satisfy the classical wave equation

ηtt = ηxx.

It follows that η is a sum of a wave moving to the right and one moving to
the left:

η(x, t) = ϕ(x− t) + ψ(x+ t).

When ψ = 0 and ϕ(x) → 0 as |x| → ∞ we have u = η.

Considering unidirectional movement for the full system (7.3), we take
δ2 = ε and look for a solution that has an additional time scale to allow for
the development of nonlinear effects:

η(x, t) = ϕ(x− t, εt).

We follow the convention that the arguments of ϕ and its derivatives are
(x− t, t), so, for example, ηt = −ϕx + εϕt. We write

u = ϕ+ εu1, v = −ϕxy + εv1, p = ϕ+ εp1,

and try to choose ϕ so that equations (7.3) are satisfied to order ε2.

The boundary conditions in(7.3) become, to order ε2,

v1|y=1 = 0; p1|y=1 = 0; (ϕt + 2ϕϕx − v1)
∣∣
v=1

= 0.
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The second equation in (7.3), to order ε2, is p1y +ϕxxy = 0. Combining this
with the boundary condition on p gives

p1 =
1

2
(1 − y2)ϕxx.

Therefore the first equation becomes, to order ε2

u1t + ϕt + ϕϕx =
1

2
(y2 − 1)ϕxxx.

It is reasonable to assume that u1t +u1y = O(ε), so the third equation qives
u1t = v1y +O(ε) and we have

v1y = −
(
ϕt + ϕϕx +

1

2
ϕxxx

)
+
y2

2
ϕxxx.

Thus v1y is independent of y. Integrating to y = 1 and using the boundary
condition, we obtain

v1
∣∣
y=1

= −
(
ϕt + 2ϕϕx +

1

2
ϕxxx

)
+

1

6
ϕxxx

= ϕt + 2ϕϕx,

or

ϕt + 2ϕϕx +
1

6
ϕxxx = 0,

the KdV equation. Thus the equation is of genuine physical interest. Never-
theless, it attracted little attention for 60 years after the publication of the
Korteweg–de Vries paper. When it did re-emerge, the context was not wa-
ter waves and an actual observation, but statistical mechanics and puzzling
computer experiments.
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Chapter 8

Should one hear white noise

– or KdV?

The advent of the digital computer made it possible to test numerically vari-
ous predictions of physical theory that could not be calculated in closed form.
This applies especially to those that are modelled by nonlinear equations.
We begin with a familiar problem, the vibrating string. Let us consider a
periodic discrete version, with n points on a circle:

xk = e2πik/n, k = 0, . . . , n − 1; xn+k = xk.

Let uk(t) be the displacement from equilibrium at time t. The governing
equations for the linear string model are

d2u

dt2
= (uk+1 − uk) − (uk − uk−1). (8.1)

Any function of the xk is a linear combination of the power functions, or
modes ϕm(x) = xm, m = 0, 1, . . . , n− 1. In particular, any solution of (8.1)
is a linear combination of the standing wave or standing mode solutions

um(xk, t) = ϕm(xk) cos(λmt) = xm
k cos(λmt),

where the frequencies are given by λm = 2cos(πm/n). The energy associ-
ated to the mode ϕm is proportional to λ2

m.

Consider now a nonlinear version of (8.1):

d2u

dt2
=

[
f(uk+1 − uk) − f(uk − uk−1)

]
, (8.2)

35
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where f is not linear. Any solution can be decomposed uniquely into a
time-dependent linear combination of modes:

u(xk, t) =

n−1∑

m=0

am(t)ϕm(xk).

However, even if only one mode is involved at time t = 0, other coefficients
will become nonnegative for t > 0. Physically this is thought of as inter-
action among the various modes, and their are reasons to expect that the
interactions will result in “equipartition of energy”: the time average of the
energy in each mode will be the same:

lim
T→∞

{ 1

T

∫ T

0
λ2

m am(t) dt
}

independent of m.

This is called “thermalization” – indeed it is this process that makes it
possible to introduce the concept of temperature and measure it.

In a famous experiment, Enrico Fermi, John Pasta, and Stanislaw Ulam
[30] sought to gain information about how long it takes for thermalization to
occur in the model (8.2). They took f to contain quadratic or cubic terms,
corresponding to cubic or quartic terms in the potential energy. Then an
initial condition involving only one or two modes would be expected over
time to involve all modes, with approximately equal average energies.

The result of the computer calculations was quite contrary to these ex-
pectations. All though energy did pass signicantly among a few different
modes, only a few modes were essentially involved at all and the system
eventually returned very close to its initial state: it behaved as though it
were periodic. (Poincaré’s recurrence theorem is not the issue here: if the
system were ergodic the expected time to return so close to its initial state
would be many orders of magnitude greater than the observed time.)

Faster computers made it possible for Norman Zabusky and Martin
Kruskal to take up the problem in more detail later. If now the function
u(xk, t) is extended to be a smooth function of x, then the evolution of the
system is given by an equation of the form

utt = uxx + 2αhuxuxx + h2uxxxx +O(h4),

where h is the spacing between particles and α is a measure of the strength
of the nonlinear interaction force. Thus with no nonlinear interaction the
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obvious continuum limit h→ 0 is the wave equation utt = uxx, while if the
nonlinear force term is increased so that αh→ ε in the limit, we get

utt = (1 + εux)uxx.

This is a well-known equation that develops shocks on a time scale of order
1/ε, which, for the Fermi–Pasta–Ulam model would have been much shorter
than the observed time period. Zabusky suggested keeping the next term:

utt = uxx + 2αuxuxx + βuxxxx.

This is the Boussinesq equation, derived by Boussinesq [17] in his study of
water waves. The long wave length, small amplitude limit is just the wave
equation, which whose solutions are superpositions of a wave moving to the
right and a wave moving to the left.

Specializing to waves moving to the right leads to the KdV equation,
and this is the reason that Kruskal and Zabusky did a number of numerical
simulations of initial value problems for KdV. They discovered that, typi-
cally, an initial profile broke up into a what appeared to be a superposition
of the travelling wave solutions (“solitary waves”) described earlier, whose
velocities are proportional to their amplitudes. In the periodic case this
meant that a larger wave would eventually catch up with a smaller one –
and, after a period of interaction, both waves would emerge in their original
forms, with the larger one ahead.

This preservation of identities lead Kruskal and Zabusky to coin the
term “soliton” for the solitary wave solutions. It also led them to study a
modification of KdV with a cubic nonlinearity, since called the “modified
KdV” or “mKdV” equation. Here it is convenient to use the normalizations

ut − 6uux + uxxx = 0,

vt − 6v2vx + vxxx = 0

for KdV and mKdV respectively. Very similar behavior was found for solu-
tions of mKdV, which raised the question whether they were in any sense
the “same” equation. There is a history of functional transformations from
one PDE to another, e.g. [24], [7]. Typically the transformation takes the
form u = f(x, t, v)vx + g(x, t, v), and indeed Robert Miura [69] found that
the map

v → u = vx + v2
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takes solutions of mKdV to solutions of KdV. It is natural to invert this
map. The standard procedure to solve the resulting Riccati equation for v
is to take v = ϕx/ϕ, which leads to the equation

ϕxx = uϕ

Now the KdV is invariant under Galilean transformations: if u is a solution,
so is

ũ(x, t) = u(x− ct) − c/6.

The corresponding solution of mKdV is obtained by solving the Schrödinger
eigenvalue problem

ϕxx +
c

6
ϕ = uϕ.

Once this connection to the Schrödinger eigenvalue problem was made,
it was soon discovered that the discrete spectrum is invariant under the
KdV flow, while the remaining scattering data evolves as derived above.
Therefore, as noted above, the nonlinear KdV equation could be integrated
by a linear method: the “method of the inverse scattering transform” [35],
[70]. In particular, as noted earlier, for a reflectionless potential the solu-
tions can be obtained quite explicitly as second logarithmic derivatives of
determinants.

These special solutions are the soliton and multisoliton solutions, and the
analytical formulas confirm the computer experiments: for large negative
times the solution is very close to a superposition of solitary wave solutions
travelling to the right, with the smaller but slower waves ahead, for large
positive times one has the same near-superposition of solitary waves, but
with the larger, faster waves ahead. In the periodic version these solutions
are almost periodic – an analytic confirmation of the behavior found in the
original Fermi–Pasta–Ulam experiment.

For a full historical account of the material in this chapter and the next,
see the survey article by Palais [75].

We have discussed here the case of KdV on the line, the case that mod-
els John Scott Russell’s original observation. Fermi, Pasta, and Ulam, for
reasons of computational convenience, dealt with the periodic case. The
analagous situation for KdV would be to consider only solutions periodic in
x, say u(x+1, t) = u(x, t). This leads naturally to questions of an algebraic–
geometric nature. The analogue of an n–soliton solution now comes from a
hyperelliptic curve; see [58], [26], [73].
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The soliton revolution

Striking as it was, the discovery of KdV solitons and the inverse scatter-
ing method seemed at first to be a mysterious coincidence mathematically
as well as an isolated and anomalous example among physical phenomena.
The mathematical mystery was solved by the elegant explanation of Lax
[57] described above. The physical view changed dramatically in 1972,
when Vladimir Zakharov and Alexei Shabat studied the cubic nonlinear
Schrödinger equation

iqt + qxx + |q|2q = 0, (9.1)

which models the propagation of spins in various physical systems, including
resonant short optical pulses [91]. Zakharov and Shabat showed that (9.1)
could be solved in a way very similar to KdV. In fact consider the system
of equations for a pair of functions ψ1(x, t), ψ2(x, t):

ψ1x =
iλ

2
ψ1 + q ψ2, (9.2)

ψ2x = − iλ
2
ψ1 − q̄ ψ2

with time derivatives

ψ1t =
iλ2

2
ψ1 + λ q ψ2 + a1ψ1 + a2ψ2, (9.3)

ψ2t = − iλ
2

2
ψ1 − λ q̄ ψ2 + b1ψ1 + b2ψ2.

Then (9.1) is the compatibility condition between (9.2) and (9.3): the equal-
ity of the mixed partial derivatives (ψj)xt = (ψj)tx. The system (9.2) plays
the role here that the equation

ϕxx + λ2ϕ− q ϕ = 0

39
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played with respect to the KdV evolution of q, and it has the same type of
scattering and inverse scattering theory as the (linear) Schrödinger operator
on the line. Once again the appropriate asymptotic data evolve linearly
under the flow (9.1). Moreover there are special (soliton) solutions that
correspond to purely discrete data and can be calculated algebraically.

The discovery of this second physically interesting equation connected
to a linear spectral problem like (9.2) led to an explosive development of the
subject: very many new “completely integrable” equations were found in
one and two space dimensions, some of them modelling interesting physical
problems. Connections were established with differential geometry, infinite-
dimensional Lie theory, algebraic geometry, and quantum field theory.

Let us return to the system (9.2), which can be written in matrix form
with constant matrix J as

Ψx = (λJ +Q)Ψ, (9.4)

while (9.3) is the case n = 2, J1 = J of

Ψt = B(λ)Ψ ≡ (λnJ1 + λn−1Bn−1 + · · · +Bn)Ψ. (9.5)

Here J1 is also constant, and commutes with J . Then the general compati-
bility condition is the Lax equation

Qt = B(λ)x +
[
B(λ) , λJ +Q ].

In the case (9.2),

J =
1

2

[
i 0
0 −i

]
, Q =

[
0 q
−q̄ 0

]
.

Systems like (9.4), (9.5) for 2× 2 matrices were examined in detail by Mark
Ablowitz, David Kaup, Alan Newell, and Harvey Segur [1], and by Za-
kharov and Shabat [92]; they are now commonly known as AKNS–ZS sys-
tems. These papers develop an inverse theory very similar to the Gel’fand–
Levitan–Marčenko methods described above.

The scattering theory for systems like (9.4) can be also be looked at in
different way, that is equally applicable to m × m systems [9]. Consider
(9.4) in general form. Suppose that J is a constant diagonal matrix with
distinct non-zero entries on the diagonal and that Q is an off-diagonal matrix
with entries that, together with their derivatives, converge rapidly to zero
as |x| → ∞. If Q ≡ 0 then (9.4) has the fundamental matrix solution
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exp(xλJ). It is natural to look for a solution in the general case in the Jost
form

Φ(x, λ) = M(x, λ)exλJ , (9.6)

where we normalize by requiring that

lim
x→−∞

M(x, λ) = I, sup
x

||M(x, λ)|| < ∞, (9.7)

where we use any convenient matrix norm, such as ||A|| = trace (A∗A)1/2.
We assume that ||Q(·)|| has finite L1 norm.

When M(·, λ) exists it satisfies the equation

Mx = λ[J,M ] +QM, (9.8)

in which multiplication by J in (9.4) is replaced by the commutator [J, · ].
One consequence of (9.8) is that detM is independent of x and therefore is

≡ 1. A second consequence is that if M̃(·, λ) is a second solution of(9.4),
(9.5) then

(M̃−1M)x = λ[J, M̃−1M ]. (9.9)

In particular, the jk element f = (M̃−1M)jk satisfies fx = λ(Jjj − Jkk)f .
Therefore the diagonal entries are constant. If j 6= k and λ(Jjj − Jkk) is not
purely imaginary, then the boundedness condition(9.7) implies that f ≡ 0.

Let us assume J has the form above, with diagonal entries i/2 and −i/2.
It follows that M(·, λ) is unique (if it exists) whenever λ is not real. Suppose
that Imλ > 0. Then, if it exists, M(·, λ) is the solution to the matrix integral
equation

M(x, λ) =




1 +
∫ x
−∞[QM ]11 dy

∫ x
−∞ eiλ(x−y)[QM ]12 dy

−
∫ ∞
x e−iλ(x−y)[QM ]21 dy 1 +

∫ x
−∞[QM ]22


 , (9.10)

where we used the shorthand [QM ]ij = [Q(y)M(y, λ)]ij for matrix elements.
A similar equation holds for Imλ < 0, with different limits for the off-
diagonal terms.

It is not difficult to show that if
∫ ∞

−∞
||Q(y)|| dy < 1 (9.11)

then (9.10) has a unique solution for each λ in the upper half plane, the
corresponding equation has a unique solution when λ is in the lower half



42 CHAPTER 9. THE SOLITON REVOLUTION

plane. Moreover the solutions are holomorphic as functions of λ and have
continuous limits M+ and M− as λ approaches the real line from the up-
per and lower half planes, respectively. Applying the previous remarks to
M−1

− M+, we obtain

M+(x, λ) = M−(x, λ)e−xλJA(λ)exλJ , x ∈ R. (9.12)

for some matrix-valued function A(λ). It follows from (9.12) that A(λ) can
be determined from the asymptotics of M±(·, λ). Thus it plays the role here
of scattering data.

If we assume also that Q is smooth, it be shown that M has an asymp-
totic expansion

M(x, λ) = I +
M1(x)

λ
+
M2(x)

λ2
+ . . . ,

and it follows that Q = [J,M1]. Thus the potential matrix Q can be recov-
ered by solving the Riemann-Hilbert problem: given a matrix-valued func-
tion A defined on the real line, find for each real x a factorization (9.10)
where M± are the limiting values of functions holomorphic in the upper and
lower half-planes respectively, having limit I as λ→ ∞.

If we drop the smallness assumption (9.11) then it remains true that
(9.10) has a solution for most non-real values of λ. Indeed the solution is
a meromorphic function of λ for λ not real. For “most” choices of Q the
solution has finitely many simple poles and has continuous limits M+ from
the upper half-plane and M− from the lower half-plane. The scattering
data must be enlarged to include a matrix associated to each pole, and the
Riemann-Hilbert factorization problem must be reformulated: the factors
are meromorphic with specified behavior at the poles.

To consider the evolution (9.5), say with J = J1 and n = 2 we set

M(x, t, λ) = Ψ(x, t, λ)exλJ+tλ2J .

Arguing as before, we have

M+(x, λ) = M−(x, λ)e−xλJ
[
e−tλ2JA(λ)etλ

2J
]
exλJ ,

so the scattering data on the line evolves linearly; the same can be shown
to be true for the scattering data associated with the poles.

There is an extensive literature; we mention here [9], [74], [31]. As for
periodic KdV, there is a rich algebraic–geometric structure connected to
these problems; see for example [56], [25].



Chapter 10

Strings revisited

In our earlier discussion of the string density problem we used the Liouville
transform to change variables and put the generalized eigenvalue problem
(2.1) into the form of an eigenvalue problem (2.2) for an operator with
potential function q. This tacitly assumes a certain amount of smoothness
of the density function m; in fact writing q in terms of m requires the second
derivative m′′. As we shall see, it is of interest to consider the problem when
m is only assumed to be a measure. The inverse problem in this case was
studied extensively by Mark Krĕın [53]–[55] and taken up again in [28],[27].
It will be convenient in discussing it to change the notation slightly from
(2.2) so that the generalized eigenvalue problem is

D2ϕ+ λϕm = 0, D =
d

dx
. (10.1)

We consider solutions ϕ(·, λ) on the interval I = [0, 1], normalized by

ϕ(0, λ) = 0, Dϕ(0, λ) = 1. (10.2)

We assume that m is a finite positive measure on the interval and that the
endpoints have zero mass. Then (10.1), (10.2) can be interpreted as the
integral equation

ϕ(x, λ) = x− λ

∫ x

0

∫ y−

0
ϕ(z, λ) dm(z) dy. (10.3)

For fixed x this is an entire function of λ. The generalized spectrum with
respect to Dirichlet boundary conditions ϕ(0) = 0 = ϕ(1) is the finite or
countable set {λν} of zeros of ϕ(1, ·). Set ϕν = ϕ(·, λν).
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If f = D2u+ λum then

∫ 1

0

[
Du(x)Dv(x) + f(x) v(x)

]
dx (10.4)

= v Du
∣∣∣
1

0
+ λ

∫ 1

0
u(x) v(x) dm(x).

This specializes to a collection of identities that prove that the roots of
ϕ(·, λ) are positive and simple, while the derivatives Dϕν are orthogonal
in L2(I, dx). In analogy with the situations discussed above, we expect
additional information such as {aν}, aν = ||Dϕν ||−2 to be necessary, in
addition to {λν}, in order to determine the measure m uniquely.

The fact that the data {λν}, {aν} determines the measure m uniquely is
a consequence of the work of Krĕın; see also [12], [13]. The theory lies much
deeper than the corresponding theory for the one-dimensional Schrödinger
operator sketched above. With a uniqueness result in hand, one way to
reconstruct the measure from the data is the following.

If the set {λν} is finite, then m is supported on finitely many points
and the reconstruction problem is algebraic. Suppose for the moment that
for any choice of a pair of n–tuples of positive constants, one can find a
corresponding discrete measure. In the countable case, for each n, compute
the measure mn that corresponds to the truncated data

{λ1, λ2, . . . , λn}, {a1, α2, . . . , an}.

Then the mn converge to m in the sense that

lim
n→∞

∫ 1

0
u(x) dmn(x) =

∫ 1

0
u(x) dm(x)

for every continuous function u [14]. Thus the general inverse problem is
reduced to the inverse problem for a discrete measure m with support {xj}n

1

and masses {mj}n
1 . This can be put into a form that was solved by Thomas

Stieltjes in 1894 [82]. We assume that

x0 = 0 < x1 < x2 < · · · < xn < 1 = xn+1

and set lj = xj+1 − xj . The problem is to determine {lν}n
1 and {mν}n

1 .
Given the wave function ϕ(·, λ), define

qj(λ) = ϕ(xj , λ),

pj(λ) = D−ϕ(xj , λ) ≡ qj(λ) − qj−1(λ)

lj−1
, j = 1, . . . , n+ 1.
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Then the equation (10.1) becomes

pj+1(λ) − pj(λ) = −λ qj(λ)mj , j = 1, . . . , n.

Suppose that the generalized eiqenvalues are 0 < λ1 < · · · < λn, Set
λ0 = 0, a0 = 1. We define the Weyl function associated to this problem to
be

W (λ) =
D−ϕ(1, λ)

λ,ϕ(1, λ)
=

pn+1(λ)

λ qn+1(λ)
.

It can be shown (using consequences of the identity (10.4)) that W has the
partial fractions decomposition

W (λ) =
∑

ν≥0

aν

λ− λν
. (10.5)

Thus knowing the data {λν}, {aν} is equivalent to knowing W . Now

pn+1

λ qn+1
=

pn+1

λ(qn + pn+1ln)
=

1

λ ln +
λ qn
pn+1

(10.6)

=
1

λ ln +
λ qn

−λ qnmn + pn

=
1

λ ln +
1

−mn +
pn

λ qn

.

Continuing, we can express W as a (finite) continued fraction, with respec-
tive coefficients λln, −mn, λln−1, −mn−1, . . . . By relating the asymptotics
as λ → ∞ of the partial fractions expansion (10.5) and the continued frac-
tions expansion begun in (10.6), Stieltjes established that

ln−k =

(
∆1

k

)2

∆0
k∆

2
k+1

, mn−k =

(
∆0

k+1

)2

∆1
k∆

1
k+1

, (10.7)

where ∆i
0 = 1 and ∆i

k is the determinant of the k × k submatrix of the
Hankel matrix 



A0 A1 A2 . . . An

A1 A2 A3 . . . An+1

. . .

An An+1 . . . A2n




starting with 11–entry Ai and the Aj are moments:

Aj =
n∑

ν=0

λj
ν aν =

∫ ∞

0
λj dρ(λ),



46 CHAPTER 10. STRINGS REVISITED

where ρ is the measure supported on the λν with masses aν .

For any positive formal data {λν}n
1 , {aν}n

1 , supplemented with λ0 = 0,
a0 = 1, the various minors ∆0

k and ∆1
k of the moment matrix (10.8) are

positive. Therefore there is a unique measure on the interval with support
and masses determined by (10.7).



Chapter 11

Waves with peaks and

troughs

The nicely rounded shape of the 1/ cosh2 solution of KdV fits the wave profile
actually observed by John Scott Russell in 1834, but observed waves often
are much less smooth. One might picture instead a wave with elevation

u(x, t) = e−2|x−t|, (11.1)

travelling to the right at unit speed and with a corner at x = t. This function
is not a solution of KdV, but it is a weak or generalized solution of another
model shallow water equation derived by Robert Camassa and Daryl Holm
[20]. This equation,

4ut − 4uxxt + 12uux − 2uxuxx − uuxxx = 0 (11.2)

can be written more compactly as the system

m = 2u− 1

2
uxx, mt + (um)x + uxm = 0. (11.3)

It is the compatibility condition for the overdetermined system

[ ∂2

∂x2
− 1 + λm

]
ϕ = 0, (11.4)

[ ∂
∂t

+
( 1

λ
+ u

) ∂

∂x
− ux

2

]
ϕ = 0. (11.5)

Camassa and Holm found that with the ansatz

u(x, t) =
1

2

n∑

j=1

mj(t)e
−2|x−xj(t)| (11.6)
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the CH system (11.3), suitably interpreted, are Hamilton’s equations

∂xj

∂t
=

∂H

∂mj
,

∂mj

∂t
= −∂H

∂xj
,

where the Hamiltonian is

H(x1, . . . , xn,m1, . . . ,mn) =
1

2

n∑

j,k=1

mjmke
−2|xj−xk|.

When n = 1 the solutions are

ua,x0
(x, t) = ae−2|x−x0−at|, a ∈ R. (11.7)

For a > 0 this is a peaked wave moving to the right, called a peakon. For
a < 0 it is a depression or trough moving to the left, called an antipeakon.
Note that in this case m(·, t) is a measure supported on {xj(t)} with masses
{mj(t)}. In particular, it need not be positive. Note also that, like the KdV
case, the speed of the travelling wave (11.7) is proportional to its height or
depth.

It can be shown that the general solution (11.8) is asymptotic for t →
±∞ to a superposition

u±(x, t) ∼
n∑

j=1

uaj ,x±

j
(x, t), (11.8)

where the phase differences x+
j − x−j can be calculated. Thus in the long

run, individual peakons and antipeakons can be identified.

Again the key to finding explicit solutions of (11.2) on the line is to
study the problem (11.4) and the corresponding inverse problem. Consider
(11.4) with no t–dependence. If the function m is positive and sufficiently
smooth, then again there is a Liouville transformation that converts (11.4)
to the eigenvalue problem for a one-dimensional Schrödinger operatorD2−q.
As we have seen, any smoothness assumption on m rules out the solutions
(11.7), and a positivity assumption rules out antipeakons. Moreover, even
with smoothness and positivity, it is difficult to extract desired information
on (11.2) from the transformed problem.

Let us consider(11.4) directly, under a decay assumption: |m(x)| ≤
Ce−4|x|. Then there will be solutions

ϕ(x, λ) ∼ ex, x→ −∞; ψ(x, λ) ∼ e−x, x→ +∞.
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For a discrete set of values {λν} these are multiples of each other:

ϕ(x, λν) = cνψ(x, λν).

Under the CH flow, it can be seen from (11.4), (11.5) that the λν are fixed,
while

dcν
dt

=
2cν
λν

. (11.9)

Thus the analogue of the KdV solution procedure is to recover m from the
data {λν}, {cν}.

The simple Liouville transformation y = (tanh x+1)/2 converts the line
to the interval I = (0, 1) and the operator D2 − 1 + λm to a multiple of
the operator D2 + λm̃. If m is nonnegative then so is m̃, and thus (11.4) is
converted to the string density problem. The {λν} are just the generalized
eigenvalues for the string density problem, and the coupling constants {cν}
are related to the remaining scattering data {aν} for the string density
problem by

aj = cj
∏

k 6=j

(
1 − λj

λk

)−1
.

Therefore these also evolve by (11.9) under the CH flow. If follows that
the multipeakon case (all mj > 0) of (11.8) can be integrated explicitly by
using the method of the previous chapter. The same is true of the multi-
antipeakon case (all mj < 0) by working with −u in place of u.

Note that the solution of the inverse problem for a discrete measure in
Chapter 10 is purely algebraic: the masses {m̃ν} and positions {lν} are
expressed as rational functions of the (positive) data {lν} and {aν}, and
conversely. In particular, for generic choice of formal data, independent of

sign, there will be a unique corresponding signed discrete measure. Letting it
evolve according to (11.9) and pulling back to the line by x = tanh−1(2y−1),
we obtain an explicit solution (11.8) valid until one of the denominators in
(10.7) becomes zero. When this happens at time t0, although two of the mj

blow up like ±(t− t0)
−1, the corresponding difference lj = 0((t − t0)

2) and
it follows that the solution(11.8) remains well-behaved. Thus the method
of the previous chapter gives global explicit expressions for solutions (11.8)
for any choice of signs.

The equation (11.2) was first written down in [33], [34] as one of a num-
ber of examples of “completely integrable” equations, but was not given
a physical interpretation. The physical interpretation is a matter of some
discussion; see Johnson [48].
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Chapter 12

Can one hear the shape of a

drum?

As we noted at the start, the title of this chapter is borrowed from a famous
article by Mark Kac [50]. Consider the surface of a drum as a membrane
fixed along the boundary of a bounded region Ω in the plane. If u(x, t) is
the vertical displacement at time t after the membrane is set in motion, then
the (linearized) equation of motion is the wave equation

∂2u

∂t2
= c2

( ∂2u

∂x1
2

+
∂2u

∂x2
2

)
≡ c2∆u. (12.1)

The assumption that the membrane is fixed at the boundary is expressed
by the Dirichlet boundary condition

u(x, t) = 0, x ∈ ∂Ω. (12.2)

Here c is a constant that incoporates the physical properties of the mem-
brane, as well as its tension. As in the case of a string, either the math-
ematical goal of diagonalizing the operator c2∆ and separating variables,
or the physical goal of finding the pure tones that may be produced, leads
us to look for standing wave solutions – the (real and imaginary parts of)
solutions of the form

u(x, t) = u(x) eiωt. (12.3)

For convenience, we asume that units have been chosen so that c2 = 1/2.
In addition to the boundary condition (12.2), the amplitude function u here
must be an eigenfunction with eigenvalue −ω2:

−ω2u =
1

2
∆u. (12.4)
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On physical grounds, and by analogy with the problem in one dimension –
the vibrating string – we expect that there should be a discrete sequence

0 < ω1 ≤ ω2 ≤ ω3 ≤ . . . , ωn → ∞

for which there are nontrivial solutions of (12.4) that satisfy

u(x) = 0, x ∈ ∂Ω.

This was one of the great problems of 19th century mathematical physics.
The existence of such a discrete spectrum was proved early in the 20th
century with the help of the then new theory of integral equations.

We can now make precise the question posed as the title of this chap-
ter: given two such regions Ω1 and Ω2, if the corresponding sequences of
eigenvalues (for the same constant c2) are the same, are Ω1 and Ω2 con-

gruent (up to reflection)? The answer is not obvious. In 1964, two years
before Kac’s article, John Milnor [67] had constructed two noncongruent tori
whose Laplace-Beltrami operators had the same eigenvalues – but this was
in 16 dimensions. As it turns out, the answer is also “no” for some plane
domains. In 1992, Carolyn Gordon, David Webb, and Scott Wolpert [41]
exhibited two noncongurent polygonal domains – assemblages of five simple
pieces – which have the same Dirichlet spectrum and the same Neumann
spectrum.

Given the result just mentioned – that even two different spectra may
not be enough to identify the domain – it is a bit surprising how much
information is already contained in the asymptotics of the spectrum and
related quantities. We begin with the asymptotics for plane domains cited
by Kac.

The English physicist James Jeans used thermodynamic principles to
give a heuristic derivation of the asymptotic behavior of the number N(λ)
of eigenvalues ≤ λ for standing electromagnetic waves in an enclosure with
perfectly reflecting boundary. The challenge of providing a proof of this re-
sult was presented to the mathematicians in Göttingen by the Dutch physi-
cist H. A. Lorentz in a lecture in 1910. One of those present at the lecture
was Hermann Weyl, who used Hilbert’s theory of integral equations to pro-
vide a proof the next year; [85], [86]. Weyl’s result applied to the vibrating
membrane gives

N(λ) ∼ λ|Ω|
2π

, (12.5)

where |Ω| is the area.
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Thus (if we can hear infinitely high frequencies!) we can hear the area
of a drum. In 1954 Ake Pleijel [76] refined Weyl’s result and obtained

∞∑

n=1

e−λnt ∼ |Ω|
2πt

− L√
4πt

as t→ 0 + . (12.6)

Here L is the length of the boundary ∂Ω. Thus one can also hear the length
of the circumference of the drum. According to the isoperimetric inequality
L2 ≥ 4πA, with equality if and only if Ω is circular. Therefore circular drum
is recognizable by its frequencies. This is a close analogue of Ambarzumian’s
result about the frequencies of a string of uniform density; see Chapter 2.

In his lecture, Kac showed how to prove that for a region bounded by
one or more polygons,

∞∑

n=1

e−λnt =
|Ω|
2πt

− L√
4πt

+
1 − h

6
+O(

√
t) (12.7)

as t→ 0+, where h is the number of holes. Thus one can hear the connectiv-
ity of a polygonal drum: a topological invariant. (Since 1− h is an integer,
it remains the same if we deform the region Ω continuously.) A year later
McKean and Singer [65] proved (12.7) for a general bounded plane region
with smooth boundary.

The exponential sum in (12.6), (12.7) may look mysterious at first, but
it is a natural quantity for the problem: the trace of the “heat operator.”

The heat problem associated with the region Ω is the following. Suppose
that the boundary of the region is kept at a fixed temperature, and now let
u(x, t) denote the difference between the temperature at x ∈ Ω and the
boundary temperature. Then an initial temperature distribution evolves
according to

∂u

∂t
=

1

2
∆u, (12.8)

with Dirichlet boundary condition

u(x, t) = 0, x ∈ ∂Ω.

The same model describes diffusion in a region with an absorbing boundary,
which is the guiding principle used by Kac in his discussion of the membrane
problem.

To solve the problem, let us diagonalize the operator as before, with
normalized eigenfunctions:

1

2
∆ϕn = −λnϕn, (ϕn, ϕn) = 1,
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where ( , ) denotes the L2(Ω) inner product

(u, v) =

∫

Ω
u(x) v(x) dx

for real-valued functions. The ϕn are orthogonal, so a function u(x, t) has
an expansion

u(x, t) =

∞∑

n=1

an(t)ϕn(x)

with

an(t) =
(
u(·, t), ϕn

)
.

Then (12.8) implies an(t) = an(0)e−λnt. It follows that the solution to (12.8)
with initial value u(x, 0) = f(x) is

u(x, t) =

∫

Ω
Pt(x, y) f(y) dy

where the heat kernel Pt is

Pt(x, y) =

∞∑

n=1

e−λntϕn(x)ϕn(y). (12.9)

In particular, its trace, in analogy with the trace of a matrix, is

∫

Ω
Pt(x, x) dx =

∫

Ω

∞∑

n=1

e−λntϕn(x)2 dx =

∞∑

n=1

e−λnt. (12.10)

Thus one way to extract geometric information is to examine the small-time
asymptotics of the heat kernel and its trace.

As we indicate later, one can get significant information about the heat
kernel in any number of dimensions without any calculation of the actual
spectrum. (On the other hand, any information about the spectrum is highly
encoded in the heat trace.) By “significant information” we mean a sequence
of approximations to the heat kernel that are sufficient for expansions like
(12.8). This process will be described in the next three chapters, starting
with approximating the inverse of an operator like the Laplacian ∆ itself.

We return here to the integer

χ(Ω) = 1 − h.
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For the polygonal domains considered by Kac it is the Euler characteristic

χ(Ω) = V − E + F (12.11)

where V , F , and E are the number of vertices, faces, and edges in any
decomposition of Ω into triangles with disjoint interiors. For a connected,
simply coonected polyhedral surface in three dimensions, V − E + F = 2,
a result that may have been known to Descartes and that was proved for
convex polyhedra by Euler in 1752. If S is a smooth closed surface, drawing
triangles on it gives a determination of χ(S). Gauss’s “Theorema Egregia”
gives χ(S) in terms of a local geometric invariant K, the Gauss curvature:

χ(S) =
1

2π

∫∫

S
K(x) dV (x) (12.12)

where dV is the Riemannian volume element. The identity (12.12) is known
as the Gauss–Bonnet formula.

Kac ended his article [50] with the comment

One can, of course, speculate on whether in general one can hear
the Euler-Poincaré characteristic and raise all sorts of interesting
questions.

The Euler-Poincaré characteristic of an n–dimensional manifold M is Poin-
caré’s generalization of (12.11):

χ(M) = b0 − b1 + b2 − · · · + (−1)nbn, (12.13)

where bk is the number of k–dimensional simplexes in a decomposition of M ;
it can also be taken to be the k-th Betti number of the simplicial complex,
which is itself a topological invariant. It is a consequence of Poincaré duality
that χ(M) = 0 if the dimension n is odd (a result that we return to in
Chapter 14). For even n, Shiing-Shen Chern [22] proved the following gen-
eralization of the Gauss-Bonnet formula (12.12) to a Riemannian manifold
in 1944:

χ(M) =
1

2π

∫

M
C(x) dV (x), (12.14)

where V is the volume form and C is a homogeneous polynomial of degree
n
2 in the components of the curvature tensor, one of the Chern classes.

To summarize a bit: at this point we have several analytic formulas for
geometric and topological invariants, involving manifolds with boundary, in
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the case of (12.8), or without in the case of (12.12) and (12.14). In one case
a Laplacian, indeed a heat operator, plays a role, in the other cases it does
not seem to. In the remaining chapters we sketch the way in which these
matters can be tied together.

The 1948 Gibbs Lecture by Hermann Weyl [88] contains a discussion of
various approaches to the eigenvalue distribution question in an historical
context.



Chapter 13

Inverting an elliptic operator

The most widely occuring type of elliptic operator in n variables is a second
order operator with an expression in local coordinates of the form

P = p
(
x,−i ∂

∂x

)
=

n∑

j,k=1

ajk(x)
∂2

∂xj∂xk
+

n∑

j=1

bj(x)
∂

∂xj
+ c(x), (13.1)

where for each x, p(x, ·) is the polynomial

p(x, ξ) =
n∑

j,k=1

ajk(x)(−iξj)(−iξk) +
n∑

j=1

bj(x)(−iξj) + c(x),

= −
n∑

j,k=1

ajk(x)ξjξk − i
n∑

j=1

bj(x)ξj + c(x),

where we may assume that ajk = akj. The mysterious-looking choice of
−i here will turn out to be convenient; it is connected with the fact that

p
(
x,−i ∂

∂x

)
{eix·ξ} = p(x, ξ) eix·ξ.

“Ellipticity” here is the condition that for each x, the top–order part has no
real zeros:

p2(x, ξ) ≡ −
n∑

j,k=1

ajkξjξk 6= 0, ξ ∈ Rn \ {0}.

For example, if M is a compact Riemannian manifold, then the associated
Laplace–Beltrami operator is elliptic. Locally it can be taken to have the
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form

P =
1

2

n∑

j=1

X2
j + lower order

where the vector fields

Xj =

n∑

k=1

ajk
∂

∂xk

are, locally, an orthonormal frame for the tangent bundle of M .

How would one go about inverting such an operator? Suppose first that
we complicate matters by taking a noncompact manifold, M = Rn, but then
simplify by assuming the operator P has constant coefficients and no lower
order terms. The associated characteristic polynomial or symbol is then the
quadratic

p(ξ) =

n∑

j,k=1

ajkξjξk

If Pu = f , then taking the Fourier transform

û(ξ) =

∫
e−ix·ξ u(x) dx,

whose inverse is given by

u(x) =
1

(2π)n

∫
eix·ξ û(ξ) dξ

leads to

p(ξ) û(ξ) = f̂(ξ).

In turn, taking the inverse Fourier transform gives

u(x) =
1

(2π)n

∫
eix·ξ

1

p(ξ)
f̂(ξ) dξ.

In the case of an operator P with variable coefficients, we could take as
first approximation to a solution of Pu = f the function

∫
eix·ξq(x, ξ) f̂(ξ) dξ, (13.2)

where q(x, ξ) = 1/p(x, ξ). This is called a pseudodifferential operator with
symbol q = q(x, ξ).
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It takes some time and space to give a proper development of the calculus
of pseudodifferential operators; a good starting point is the expository article
[71]. Here we simply make a number of remarks.

First, there is the technical problem that p(ξ) vanishes for ξ = 0, and
p(x, ξ) will also vanish for some values of ξ. On the other hand, the inverse
Fourier transform of a function with compact support is a smooth function,
so we can modify the symbol near the zeroes if we are willing to make smooth
errors (which we are).

Second, the approximation given by (13.2) can be improved, in the sense
the error will be smoother, if we systematically modify the symbol. Note
that

p
(
x,

∂

∂x

)
=

2∑

j=0

pj

(
x,

∂

∂x

)
, (13.3)

with pj(x, ξ) homogeneous of degree j in ξ. We look for the approximate
inverse to have a symbol with an asymptotic expansion

q(x, ξ) ∼
∞∑

m=2

q−m(x, ξ), |ξ| → ∞, (13.4)

where q−m is homogeneous in ξ of degree −m.

Third, calculating the composition of differential operators suggests the
following composition rule for a pair of pseudodifferential operators P and
Q with symbols p and q: the symbol of PQ should have an expansion

∑

α

1

α !

[( ∂

∂ξ

)α
p
](

− i
∂

∂x

)α
q.

Here α = (α1, α2, . . . , αn) is an n–tuple of nonnegative integers and

ξα = ξα1

1 ξα2

2 · · · ξαn
n , α ! = α1 !α2 ! · · ·αn !.

It follows that in our expansion (13.4) of the symbol for the inverse of (13.3)
we want the first two terms to be

q−2 =
1

p2
,

q−3 = − 1

p2

[
p1q−2 − i

n∑

j=1

∂p2

∂ξj

∂q2
∂xj

]
.
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In general we want

q−r = − 1

p2

[∑

s<r

∑

s+|α|−t=−r

1

α !

[( ∂

∂ξ

)α
pt

] (
− i

∂

∂x

)α
q−s

]
,

where |α| = α1 + α2 + · · · + αn. It can be shown that there is a symbol q
(not unique) with expansion (13.4) and that the corresponding operator Q
is an inverse for P modulo smoothing operators:

PQ = I +R1, QP = I +R2 (13.5)

where the operators Rj map distributions to smooth functions. (We are
tacitly assuming that the coefficients of P are smooth functions.) The first of
these equations follow directly from the construction, since we constructed
Q to be essentially a right inverse. To obtain the second we modify the
construction in the obvious way to obtain an approximate left inverse Q1,
so that

Q1P = I +R,

with R smoothing. Then

Q = (I +R)Q−RQ = Q1PQ−RQ

= Q1(I +R1) −RQ = Q1 + [Q1R1 −RQ].

The term in brackets is a smoothing operator, so Q1 differs from Q by a
smoothing operator and can be replaced by Q.

A final remark: we really wanted to work on a general manifold, not
on Rn. However, the commutator of a pseudodifferential operator with
multiplication by a smooth function is an operator of lower order, so by
using a smooth partition of unity one can work locally and then glue things
together on the manifold.

Some history: the Hilbert transform, mentioned in Chapter 3, is the
simplest example of a singular integral operator

Tu(x) =

∫
K(x, x− y)u(y) dy.

From our current perspective, such operators are pseudodifferential opera-
tor of order zero. In 1936 S. G. Mikhlin [66] worked out the composition
of singular integral operators in the plane and defined their multiplicative
symbol. Georges Giraud [40] carried this out in higher dimensions. The na-
ture of the symbol – as the partial Fourier transform of the kernel K of the



61

singular integral operator – was clarified by the work of Alberto Calderón
and Antoni Zygmund [19].

The theory of pseudodifferential operators is a refinement of the algebra
of singular integral operators introduced by Calderón and Zygmund. It was
developed in 1965 independently by Joseph Kohn and Louis Nirenberg [51],
Robert Seeley [80] and André Unterberger and Juliane Bokobza [83]; see the
survey article by Seeley [81].

With more effort, these procedures can be adapted to a class of subel-
liptic operators; see [10].
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Chapter 14

Indices and index theorems

Continuing the discussion of the previous chapter, suppose that P is an el-
liptic operator on a compact manifold M without boundary, and let Q be
an approximate inverse as constructed above. It will sometimes be conve-
nient to use Hilbert space concepts here by choosing a measure on M (with
smooth density) and working with the corresponding L2 space. We take the
domain of P as an operator in L2(M) to be

{
u ∈ L2(M) : Pu ∈ L2(M)

}
,

where Pu is taken in the sense of distributions. Equivalently, this realization
of P is the closure of the restriction of P to smooth functions.

Recall (13.5):

PQ = I +R1, QP = I +R2.

Compactness of the manifold implies that the remainder terms Rj are com-
pact as operators acting in L2(M). It follows from this that I + Rj has
a finite-dimensional kernel (nullspace) and closed range with finite codi-
mension. This immediately implies that P has finite–dimensional nullspace
N(P ) and closed range ran(P ) with finite codimension. Therefore the index

indexP = dim kerP − codim ranP (14.1)

is well-defined. It is, of course, an integer and therefore invariant under
continuous perturbations (of the coefficients of the operator, so long as el-
lipticity is preserved, and also of the manifold itself). In some cases it is very
closely related to our earlier integer–valued invariants, the Euler–Poincaré
characteristics (12.11) and (12.13), though we shall need to extend our no-
tion of ellipticity to systems of operators.
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Given a smooth compact manifold without boundary, M , we consider
the DeRham complex: it consists of the spaces E(k) of smooth k–forms on M ,
together with the exterior derivative d. Its restriction to k-forms is denoted
by

dk : E(k) → E(k+1).

If we equip M with a smooth measure, we can introduce inner products in
the spaces E(k) and then define an adjoint operation d∗,

d∗k : E(k+1) → E(k).

The first-order system d+d∗ is selfadjoint (in the L2 completion of the space
of smooth forms). Because d2 = 0, the second-order system ∆ = (d + d∗)2

maps k–forms to k-forms:

∆k = d∗kdk + dk−1d
∗
k−1.

Both d + d∗ and ∆ are elliptic systems, which means that in local coordi-
nates the matrix P (ξ) of symbols of the highest order terms is invertible
– the analogue for systems of the ellipticity condition for real second order
operators. The method of the previous chapter can be adapted easily to
obtain approximate inverses for these systems.

It follows that each system has an index – which turns out not to be
very interesting for these operators. In fact if A is any selfadjoint operator
then the nullspace is the orthogonal complement of the range, so if A has
an index, the index is zero.

To make life more interesting, we suppose that n is even and take D to
be the restriction of d + d∗ to forms of even degree. These are mapped to
forms of odd degree, and D∗ maps forms of odd degree to forms of even
degree. The kernel of D is the same as the kernel of

D∗D = ∆0 + ∆2 + · · · + ∆n,

while the codimension of the range is the dimension of the kernel of D∗,
which is the same as the kernel of

DD∗ = ∆1 + ∆3 + · · · + ∆n−1.

According to the work of W. V. D. Hodge in the 1930s, the dimension of
the null space of ∆k (the space of harmonic k–forms) as an operator in the
associated L2 space is the dimension of the k–th (real) cohomology group
and therefore, by Poincaré duality, equal to the Betti number bn−k; [47],
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but see also [87]. This means that the index of D is the Euler-Poincaré
characteristic (12.13):

Index (D) = (bn + bn−2 + · · · + b0) (14.2)

−(bn−1 + bb−3) + · · · + b1)

= χ(M).

Without going into detail, we note that a complex analytic manifold M
carries a more refined version of the structure above, in that the exterior
derivative d decomposes as the sum ∂ + ∂̄, where ∂̄ annihilates the holo-
morphic forms. There is a corresponding complex – actually a family of
complexes – the Dolbeault complex. The index of this complex that is anal-
ogous to that of the DeRham complex, (14.2), was calculated by Friedrich
Hirzebruch in 1954 [45], [46]. It is is the general form of the Riemann-Roch
theorem for Riemann surfaces.

Every elliptic complex has an associated index. Since it is invariant under
continuous deformations, it depends only on the principal symbol (highest
order terms) of the elliptic system and, one might expect, on topological
invariants of the manifold. The problem of determining the index from this
data was formulated by Gel’fand in 1960 [36]. The definitive solution was
obtained by Michael Atiyah and Isidore Singer [5] in the early 1960s: the
previous index, the analytic index of an elliptic complex, is equal to the
topological index , an expression involving product of the Chern character of
a bundle associated to the symbol of the complex and a Todd class. For a
brief outline, see [46].

The original proofs of the Atiyah Singer theorem used functoriality prop-
erties of both mappings and showed that these properties characterized the
invariant uniquely. An important feature on the analytic side was the ability
to work with elliptic complexes associated to homotopy deformations of the
symbol, which is only possible if one goes beyond the class of differential
operators to that of pseudodifferential operators.

The topological index is a generalization of the left side of the identities
(12.12) or (12.14). The corresponding generalization of the right side of
these identities, at least in the case of a Riemannian manifold, would be an
integral over the manifold of an expression in local geometric invariants and
derivatives of the principal symbol. One way to arrive at such an analytic–
geometric expression was proposed by Atiyah and Bott [4]. Suppose D
is an elliptic complex, realized as a closed operator in an appropriate L2

space. The operators D∗D and DD∗ are selfadjoint. Restricting them to



66 CHAPTER 14. INDICES AND INDEX THEOREMS

the subspaces (kerD)⊥ and (kerD∗)⊥ respectively, they are invertible. The
operator

U = D(D∗D)1/2 : (kerD)⊥ → (kerD∗)⊥

is unitary, and
U∗DD∗U = D∗D.

Therefore, on the complements of their kernels, the elliptic operators D∗D
and DD∗ are unitarily equivalent. In particular, they have the same non-
zero eigenvalues {λn}. It follows that the traces of the heat kernels for
−D∗D and −DD∗ are

trace e−tD∗D = dim kerD∗D +
∞∑

n=1

e−tλn ; (14.3)

trace e−tD∗D = dim kerD∗D +

∞∑

n=1

e−tλn ,

and
indexD = trace e−tD∗D − trace e−tDD∗

. (14.4)

Minakshisundaram and Pleijel [68] showed in 1949 that the trace of the
heat operator for the Laplace–Beltrami operator on a compact manifold has
an asymptotic expansion

trace e−t∆ ∼ t−n/2
∞∑

m=0

cmt
m, as t → 0+, (14.5)

where n is the dimension of the manifold. Expansions like this are true for
general elliptic operators. It follows from this that if D is a first order elliptic
system, then the cm coefficients in the expansions of the two traces (14.3)
are the same for m < n/2. Moreover, the index is zero if n is odd, and is the
difference of the cn/2 coefficients if n is even. In particular, this gives what
has been called the “analyst’s proof” that the Euler–Poincaré characteristic
of an odd–dimensional manifold is zero.

In the final chapter we outline a derivation of expansions like (14.5) for
general heat kernels and traces.

Some history: The study of the index seems to have originated in work
on a singular integral equation on a line by Fritz Noether [72], who had
discovered a point overlooked by Poincaré in studying tidal motion. It was
further investigated in the context of singular integral operators by F. V.
Atkinson [3] in 1951, and in more abstract form by a number of authors.
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Gel’fand’s 1960 article drew much attention to the index problem in the
context of elliptic equations. This led to a number of investigations by
analysts and topologists that culminated in the work of Atiyah and Singer.
For further references, see the survey article by Seeley [81].
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Chapter 15

The index and the heat

operator

One way to obtain the expansion of the heat trace of a general elliptic
operator is to redo the pseudodifferential calculus of Chapter 13 for heat
operators. We sketch the procedure here, assuming for convenience that the
elliptic operator P is of second order and is scalar, rather than a system.
As in Chapter 13 we start with an operator with constant coefficients, and
assume that the principal symbol p2 is a negative definite quadratic form
(as is the case for the Laplacian). To solve

∂u

∂t
− Pu = f

we take the Fourier transform in all variables,

û(ξ, τ) =

∫

Rn×R

e−ix·ξ−itτu(x, t) dx dt

to obtain [
iτ − p(ξ)

]
û(ξ, τ) = f̂(ξ, τ).

Passing to the variable coefficient version in Rn × R, it is natural to begin
the process with the symbol

q−2(x, ξ, τ) =
[
iτ − p2(x, ξ)

]−1
,

which is homogeneous of degree −2 with respect to the weighted dilations
(ξ, τ) → (λξ, λ2τ), and to compute further terms by the method of Chap-
ter 13. This will produce an approximate inverse whose symbol q has an
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asymptotic expansion

q(x, ξ, τ) ∼
∞∑

m=2

q−m(x, ξ, τ),

where each term q−m is a linear combination of terms of the form

rm,m−k(x, ξ)[
iτ − p2(x, ξ)

]k
,

m

2
≤ k < m, (15.1)

where rm,m−k(x, ·) is a polynomial of degree 2k −m.
Formally, the pseudodifferential operator q(x,−i∂/∂x,−i∂/∂t) is an in-

tegral operator with kernel

K(x, t; y, s) = k(x, y, t− s)

=
1

(2π)n+1

∫

Rn×R

ei(x−y)·ξ+i(t−s)τ q(x, ξ, τ) dξ dτ.

The kernel of e−tP is then kt(x, y) = k(x, y, t). Corresponding to the
expansion of q is an expansion

kt(x, y) ∼
∞∑

m=2

kt,−m(x, y),

kt,−m(x, y) =
1

(2π)n+1

∫

Rn×R

ei(x−y)·ξ+itτ q−m(x, ξ, τ) dξ dτ.

The form (15.1) shows that each q−m extends to a function holomorphic
in τ for Im τ < 0, and homogeneous of degree −m. It follows that the inverse
transform satisfies

kt,−m = 0, t < 0;

kt,−m(x, t;x, 0) = t1+(m−n)/2 kt,−m(x, 1;x, 0), t > 0.

Taking λ = −1, the homogeneity condition implies that q−m is an odd
function of ξ when m is odd, which implies kt,−m = 0 when m is odd. Thus
we obtain the expansion

kt,−m(x, x) ∼ t−n/2
∞∑

m=0

cm(x)tm. (15.2)

Again, these considerations extend from the case Rn×R to the case M×R,
where M is a compact manifold. If kt were the exact heat kernel, i.e. the



71

kernel of the integral operator e−tP for t > 0, then we could integrate this
expansion and obtain (14.5). But in fact the expansion (15.2) does give
(14.5). This follows from the fact that for any given integer N , if N1 is large
enough then

P

N1∑

m=2

Qm = I −R

where R is an integral operator with continuous kernel r(x, y, t) that satisfies

|r(x, y, t)| ≤ C tN , 0 ≤ t ≤ 1.

Let
|r|t = sup

0≤s≤t
sup
x∈M

|r(x, y, s)|.

The kernel of R2 is

r(2)(x, y, t) =

∫ t

0

∫

M
r(x, z, t− s) r(z, y, s) dz ds.

and for 0 ≤ t ≤ 1,

|r(2)|t ≤ C2|M |2
∫ t

0
(t− s)sN ds =

C2|M |2tN+2

(N + 2)(N + 1)
,

where |M | is the volume of M . Inductively, the kernel of Rk has norm

|r(k)|t ≤
N !Ck|M |ktN+2k

(N + 2k) !
.

Therefore the kernels of the partial sums of the Neumann series
∑∞

k=0R
k

converge uniformly to the kernel of (1 −R)−1 and give the heat kernel

[ N∑

m=2

Q−m

]
(I −R)−1.

Combining the previous results, we find that the difference between the
kernel of e−tP and

t−n/2
N1∑

m=2

cm(x) tm

is O(tN ) as t→ 0+.

For the details of the construction for P of any order, see [43]. Again,
an analogous procedure can be carried out for certain subelliptic P : [11].
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Let us return to questions like those in Chapter 12, which involve a
manifold with boundary as well as the heat operator associated with an
elliptic operator. Suppose the compact manifold M has a smooth boundary
∂M . Given a second order elliptic operator P on M , we may find a function
ρ defined near the boundary such that dρ 6= 0 on ∂M and such that in local
coordinates (ρ, x) the principal part of P has the form

P =
∂2

∂ρ2
+ Ptan, (15.3)

where Ptan involves only differentiation in the tangential directions x. In fact
we may replace P by the similar operator e−fPef obtained by conjugation
with multiplication by a nonvanishing smooth function ef , with f chosen so
that (15.3) is true for the full operator (not just the principal part).

The form (15.3) allows one to adapt the procedure of Chapter 13 to
construct approximate inverses for boundary value problems associated to
P . Specifically we consider the problem

Pu = f on M, (15.4)

with either Dirichlet boundary condition

u = 0 on ∂M (15.5)

or Neumann boundary condition

∂u

∂ρ
= 0 on ∂M. (15.6)

Let M1 be a manifold without boundary that contains M , in such a way
that ∂M is a smooth submanifold. Extend P to an elliptic operator on M1,
and let Q be an approximate inverse on M1. Given a function f on M , we
extend it to M1 and look for an approximate solution to (15.4) of the form

u = Qf + w

where w is a solution of

Pw = 0 on M (15.7)

with a boundary condition fitted to (15.5) or (15.6). Formally, because of
(15.3), the solution of (15.7) should have the form

v = exp
(
− ρ

√
−Ptan

)
g
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for some function g on ∂M . Thus we want

g = −u on ∂M

in the Dirichlet case and

g = −(−Ptan)−1/2u on ∂M

in the Neumann case. Altogether, then, the approximate solution is the
restriction to M of

[
I − exp

(
− ρ(−Ptan)1/2

)
J
]
Q

in the Dirichlet case and

[
I − exp

(
− ρ(−Ptan)1/2

)
(−Ptan)−1/2J

]
Q

in the Neumann case, where J is the operator of restriction to the boundary.
Approximations to the operators

(−Ptan)−1/2, e−ρ(−Ptan)−1/2

can be constructed by the methods in Chapter 13 and this chapter.

For details of this approach and its application to the drum problem,
see [43]. The general index theorem has been extended to manifolds with
boundary; see [6]. For an extension to certain subelliptic cases, see [11].

In cases where P is defined geometrically, e.g. as the Laplace–Beltrami
operator for M , an examination of the construction of the approximate heat
kernel shows that the functions cm(x) above are built from combinations of
geometrically defined quantities such as curvature and its covariant deriva-
tives. One can then use invariant theory to narrow down or identify the cm
exactly; see,for example, [38] and [11]. This gives, finally, the generalization
of the right side of the identities (12.12) and (12.14).

For the current state of affairs in heat kernel asymptotics in elliptic
boundary value problems, see [39].
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[32] C. E. Fröberg. Calculation of the potential from the asymptotic phase.
Ark. Mat. Astr. Physik 34A (1948), 16pp.

[33] B. Fuchssteiner. The Lie algebra structure of nonlinear evolution equa-

tions admitting infinite dimensional abelian symmetry groups. Progr.
Theor. Phys. 65 (1981), 861-876.

[34] B. Fuchssteiner, B. and A. S. Fokas. Symplectic structures, their
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