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Preface

This booklet is based on the lectures delivered by the author at the Department of
Mathematics, City University of Hong Kong, in the autumn of 1997. It is aimed
primarily at those people who are non-experts in, but willing to learn, the option
pricing theory. The reader is assumed to have some knowledge in probability theory.
But no prerequisities in finance are required.

As indicated by the title, the main objective of the booklet is to provide a short
and comprehensive presentation of the main ideas and fundamental results on mar-
tingale methods in option pricing, although the PDE approach is also occasionally
touched. The booklet is divided into seven chapters. Chapter 1 is devoted to intro-
duce general characteristics of derivative securities and summarize some knowledge in
probability theory necessary for further reading. In Chapter 2 the main concepts of
the option pricing and hedging and the risk-neutral valuation principle are presented
in the discrete-time market model. Chapter 3 provides a concise and rather complete
summary on It0 calculus, an important tool for an advanced theory of finance. The
celebrated Black-Scholes equation and valuation formulas for option pricing as well as
the practical uses of Black-Scholes formulas are presented in Chapter 4. The martin-
gale methods in option pricing are introduced in the Black-Scholes setting. Chapter
5 deals with the concrete pricing problem of path-dependent exotic options. Some
explicit valuation formulas for barrier options, Asian options and lookback options
are derived by using martingale methods or PDE approches. In Chapter 6 we intro-
duce a general framework for a financial market: the Itd process and diffusion process
models. The martingale methods in contingent claim pricing are fully exhibited and
a brief discussion on the pricing of American contingent claims is made. Chapter 7 is
devoted to introduce the bond market and term structure models for interest rates.
The pricing of interest rate derivatives is briefly presented. In Chapter 8, a new look
at the fundamental theorem of asset pricing, based on Yan (1997), is reported.

After the first version of the lectures was complete, the author learned that three
excellent books on the same subject had been recently published. They are Karatzas
(1997), Karatzas and Shreve (1997), Musiela and Rutkowski (1997). It is the author’s
hope that the present booklet provides an easy access to these books which contain
abundant and much more advanced material. This booklet can be used as a textbook
for graduate courses in financial mathematics, provided the instructor supplements
the omitted proofs, for which the references are indicated. Proofs or skechy proofs for
most of the results are provided, except Chapter 3, for which the reader can find the
omitted proofs in Karatzas and Shreve (1988).

The author wishes to express his sincere thanks to Professor Roderick Wong, Act-
ing Dean of Faculty of Science and Technology, Head of Department of Mathematics,
for inviting him to visit the Liu Bie Ju Center for Mathematical Sciences of the City
University of Hong Kong. He is grateful to Professor Qiang Zhang and Professor
James Caldwell who read the draft carefully and offered valuable comments. The
financial supports from the Liu Bie Ju Center for Mathematical Sciences of the City
University of Hong Kong and the National Natural Science Foundation of China are
acknowledged by the author.

Jia-An Yan
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1. Introduction 1

CHAPTER 1
Introduction

The option pricing theory, originated from options markets, has nowadays become
a powerful and effective tool for quantitative analysis in many economical problems.
For example, problems concerning complicated investments, decision-making and risk
management in a company are closely related to the option pricing. In this chapter
we introduce general characteristics of options and summarize some basic knowledge
in probability theory.

1.1 Basic concepts and terminology of derivative securities

A derivative security or contingent claim is a financial contract written on an underly-
ing asset (such as stock, Treasury bill, foreign currency, stock-index, or even another
derivative security). Its value is derived from, or contingent on, some variables related
to the underlying asset, hence the name. Best-known derivatives are options, futures,
and forward contracts.

1.1.1 What is an option?

Broadly speaking, an option is a contract that entitles its owner with the right but
no obligation to buy or sell a specified quantity of an underlying instrument such as
a stock, currency, commodity, stock-index and index futures for a specified price at
a particular time or within a specified time period. The value of an option depends
on some underlying state variables, such as the price of the underlying asset. There
are two basic types of option : call and put. “Call” refers to the right to buy and
“put” refers to the right to sell. A call (put) option gives its owner the right with no
obligation to buy (sell) a certain amount of the underlying asset by a certain date,
known as the expiration date or maturity, for a certain price, known as the ezercise
price or strike price. If the option can be exercised at any time before maturity, it
is called an American option. If it can only be exercised at maturity, it is called a
FEuropean option.

The above described call or put option is called a standard or vanilla option. An
option that is not a vanilla put or call is called a mon-standard or exotic option.
Most exotic options are path-dependent in the sense that their payoff depends on the
current and past values of underlying state variables. Best-known examples of path-
dependent exotic options are barrier options, Asian options, and lookback options. A
barrier option can either come into existence or become worthless if the price of the
underlying asset reaches a prescribed level (known as a barrier) before expiry. The
payoff of an Asian option depends on a suitably defined average of the asset price
over a certain time period. The payoff of an lookback option depends on asset price
maximum or minimum. An option that has no expiry date (i.e. having an infinite
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time horizon) is called a perpetual option. A Russian option is a perpetual American-
style option which, at any time chosen by the owner, pays the maximum realized asset
price up to that date.

Note that in the above classification of options, the names of continents or coun-
tries have nothing to do with trading-places of options and refer merely to a techni-
cality in the option contract.

1.1.2 Forward contracts and futures contracts

A forward contract is an agreement between two parties whereby the seller (known as
in a short position) agrees to deliver to the buyer (known as in a long position) on a
specified date and at a fixed price, known as delivery price, a specified quantity of an
underlying asset. A long position in a forward contract is equivalent to a long position
in a European call option and a short position in a European put option, both with
the same expiry and exercise price as the forward contract. Here and henceforth, a
long position refers to a position in an asset or contract which one has purchased or
owned, a short position refers to a position in an asset (resp. contract) which one
does not already own but has sold (resp. has written). A futures contract is similar
to a forward contract. One distinction between them is that unlike forward contracts,
futures contracts are not “tailored” to the specific needs of a particular buyer and
seller, they are standardized with regard to the quality of the asset, time to maturity,
price quotation, and delivery procedure. Another distinction is that futures contracts
are traded on exchanges while forward contracts are traded in “ over-the-counter
”markets. But the most important distinction lies in their respective price settlement
procedures. There is no cash transfer between the two parties of a forward contract
until its delivery date. So a forward contract has a market value at any time ¢ before
its delivery date, the initial value being equal to zero. However, futures contracts
have a daily settlement (or so-called marking-to-market) procedure that requires the
buyer and seller to adjust their position daily according to the gains or losses due to
the futures price changes. Here the futures price is the anticipated future unit price
of the underlying asset. One should beware that the futures price is not the price
or market value of the futures contract. Futures prices change continuously in such
a way that they make the market value of a futures contract always equal to zero.
Similarly, the forward price at time t of the underlying asset is not the market value
at time t of the forward contract. It is defined as the derivery price of the forward
contract such that the contract has zero value when it is initiated at time ¢. Due
to the daily settlement the futures price and the forward price are generally not the
same. We will study this problem in Chapter 7.

1.1.3 Option pricing and hedging

An option provides a non-negative payoff which is not identically null. It must have
some value (called price or market value) at any time before maturity. The initial price
of an option is usually called premium. There are two fundamental problems related
to an option: pricing and hedging. Pricing an option is to determine its market value
at any time ¢ before maturity. The minimal value with which one can build a trading
strategy to generate (resp. cover) the payoff of an option is called the fair price
(resp. upper price or selling price) of the option. Such a trading strategy is called
hedging or replicating strategy (resp. super-hedging or super-replicating strategy). Note
that the term hedging has also other meanings in different contexts. For example,
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taking opposite positions in different financial instruments in order to reduce (but
not necessary eliminate) a risk is also called hedging (see Section 1.2 below). To
distinguish these two types of hedge, we sometimes call the previous one a “perfect
hedge”.

In option pricing theory, one of the basic assumptions on the market is the absence
of arbitrage opportunity. It means that there is no riskless and profitable opportunity
in the market. This assumption implies the so-called law of one price, which states
that two financial packages having identical payoffs must sell for the same price. An-
other basic assumption is the existence of a riskless investment that gives a guaranteed
return with no chance of default. A good approximation to such an investment is a
government bond or a deposit in a sound bank. The second one is called the bank
account (or money market account, savings account). The bank account earns interest
at a riskless interest rate.

In option pricing one often needs to choose one asset as a commom unit, on the
basis of which the prices of other assets are expressed. The resulting relative prices
are called the deflated prices or discounted prices. Such an asset is called a numeraire
asset or numeraire, and its price process is called a numeraire. In most cases, one
takes the bank account as a numeraire asset. In this case, an important concept
concerning interest rates is the present value. If the bank account earns a constant
interest rate r, then in continuous-time setting, the present value at time ¢ of a value
€ at a future time T is defined as e "It ¢. If we deposit such amount of money in a
bank at time ¢, we get exactly the value £ at time T'. Similarly, the present value at
time ¢ of a value ) at a past time s is defined as e"t=%)y). For example, if a stock pays
dividends with a time-dependent yield (ds, s < t) (the ratio of the dividend payment
to the stock price), then the present value of the dividends up to time ¢ is equal to

fg e"*dyS,ds, where S, is the stock price at time s.

1.1.4 Put-call relationships

From the above two basic assumptions on the market we can deduce an intrinsic
relationship between the values of a European vanilla call and a vanilla put written
on a same asset with the same maturity 7" and same strike price K. In fact, let S
denote the asset price at time ¢t and let C; and P; denote the values at time ¢ of such
a call and a put, respectively. We assume that the riskless interest rate of the bank
account is a constant r. We consider a portfolio consisting of a long position in a
share of non-dividend-paying stock and in one put option and a short position in one
call option. The value of this portfolio at time T is given by

ST+PT_CT=ST+(K_ST)+—(ST—K)+:K,

Here and henceforth, for a real number a we denote max(a,0) by a*. Thus this
portfolio is riskless. According to the law of one price the wealth of this portfolio
at time ¢ < T should be Ke~"(T—t) because if at time ¢ we invest such money in
the riskless security we get also money K at time 7. Thus we obtain the following
equality:

St + Pt - Ct = Keir(T?t),

which is called put-call parity.
The put-call parity can be generalized to options on a dividend-paying stock and
the result is
St + Pt — Ct = Dt + KG_T(T_t),
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where Dy is the present value at time ¢ of the dividends. For American vanilla options
on a dividend-paying stock, we can only get the following two inequalities:

C,+K+Dy—S8,>P,>C; —S; + Ke (T,

1.1.5 Intrinsic value and time value

At any time t before maturity options are referred to as in the money, at the money,
or out of the money. An in-the-money call (resp. put) option is one whose strike
price is less (resp. greater) than the current price of the underlying asset. An at-the-
money call or put option is one whose strike price is equal to the current price of the
underlying asset. An out-the-money call (resp. put) option is one whose strike price
is greater (resp. less) than the current price of the underlying asset.

Let S; denote the price of an asset at time ¢ and K the strike price of a call (resp.
put) written on that asset. We call (S; — K)* (resp. (K —S;)T) the intrinsic value of
the call (resp. put) option. An in-the-money American option must be worth at least
as much as its intrinsic value since the holder can realize a positive intrinsic value by
exercising immediately. In this case the option is said to have time value, which is
equal to the difference between the market value and the intrinsic value of the option.

1.2 What are options for?

Like futures contracts, three basic uses of options are speculating, spreading, and
hedging. Each of these uses involves the management of risk, with each strategy
changing risk in a different way.

The first use of options is speculating. To see this let us consider a European call
or put option on a stock. Assume that the stock price at time ¢ is S;. The payoff at
maturity T of a call (put) with exercise price K is (St — K)* (resp. (K — St)*).
An investor who believes that the stock price is going to rise can buy certain shares
of the stock or calls. If one believes that the stock price is going to fall, one can
sell short certain shares or buy puts. Here “sell short” means selling shares that one
does not own. In either case, if one is correct, one makes money; If one is wrong, one
loses money. Speculators often prefer options to stocks, because options often provide
larger return rate than stocks, known as leverage effect, when the forecast of stock
price movement is correct, while limiting the loss to the premium of the option when
the forecast is wrong. Speculators take an additional risk in order to obtain leverage.

The second use of options is spreading. A spread trading strategy involves taking
a position in two or more options of the same type (i.e. calls or puts). Spreaders
want a option position that is less risky than a pure long or short option position.
There are two types of spread trading strategy. A calendar or time spread consists
in the simultaneous purchase and sale of options on the same asset with the same
strike price but with different maturities. A strike or price spread consists in the
simultaneous purchase and sale of options on the same assets with the same maturity
but with different strike prices.

The third use of options is “hedging”. In contrast to a “perfect hedge”, here by
hedging we mean a risk-monitoring strategy that aims at offsetting the gains (losses)
on one asset by the losses (gains) on another asset, and thereby reducing the global
risk exposure of the resulting position. For example, an investor possesses shares of
the stock and believes that the stock price is going to fall. If in the time being he/she
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could not (or doesn’t want to) sell shares, he/she can buy put options to hedge against
the possible falling of the stock price. Here, contrary to speculators, hedgers use puts
(resp. calls) to hedge against the falling (resp. rising) of the asset price.

All the above uses of options are provided for option buyers. What about option
sellers (or writers)? They face far greater risk exposures than buyers. In fact, the
writer of an option has the possibility of an arbitrarily large loss with a profit limited
to the premium of the option. One raises naturally the following question : Why
would anyone write options? One reason is that there are always different investors
taking opposite views on the asset price movement. The writer of both call and put
options can at least make benefit from premium paid by those investors with a wrong
forecast. Another reason is that the premium for an option is usually above the
minimal value with which one can build a hedging strategy to cover or generate the
payoff of the option.

In summary, as an important risk monitoring tool, options provide various risk-
return choices for investors and a risk-shifting function among individuals of different
beliefs, preferences, and investment objectives. This risk monitoring has made option
markets popular for both individuals and financial institutions.

1.3 Some knowledge in probability theory

1.3.1 Random variables, expectation and independency

Let Q be an abstract set. A collection F of subests of 2 is called a o-algebra, if it
satisfies the following conditions:

(i) Q e F;

(i) Ae F = A° € F, where A° = Q\ A denotes the complement of A;

(i) 4; € F,j>1,= U2, € F.

The pair (2, F) is called a measurable space.

Let C be a collection of subsets of 2. The smallest o-algebra containing C is called
the o-algebra generated by C, and is denoted by o(C). Let Q be the real line R. The
o-algebra generated by all open sets is called the Borel o-algebra, and is denoted by
B(R). Let f be a real-valued function defined on Q. We denote by o(f) the o-algebra
generated by {f~1(A),A € B(R)}. f is called F-measurable, if for any A € B(R),
fYA) e F,ie. o(f) C F.

A measure on a measurable space (2, F) is a mapping u from F to [0, 00] with
wu(P) = 0 having the countable additivity, i.e. for any countable collection of sets
in F with 4; N A; = 0,Vj # i, we have u(Uj2, 4;) = 372, u(A4;). The triplet
(Q,F,u) is called a measure space. If u(2) = 1, we call u a probability measure, and
(Q,F,u) a probability space. In probability theory, an element A of F is called an
event. If P(A) = 1, we call A a certain event. A property that holds except on a
set of probability zero is said to hold almost surely w.r.t. P, or simply P-a.s.. A
real-valued F-measurable function is called a random variable (abbreviated as r.v.).
Two a.s. equal r.v.’s will not be distinguished.

A finite or countable collection (A;) is called a partition of Q,if A;NA; =0,Vj #i
and |J; Ai = Q. A simpler.v. is ar.v. X of the form

X(w)= ZajIAj (w),
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where (A;) is a finite partition of  with each A; € F, and I, is the indicator of A,
ie. In;(w) =1, when w € Aj, and I4,; (w) = 0 otherwise. In this case the expectation
E[X] of X w.r.t. P is defined as

E[X] = ZajP(Aj).

For a non-negative r.v. X we can find an increasing sequence (X,) of simple r.v.’s
such that lim,_,., X;, = X, a.s.. We define E[X] = lim,,_,, E[X,,] as the expectation
of X wr.t. P. For a general r.v. X, we define E[X] = E[X+] — E[X ], as long as
E[X*] or E[X 7] is finite. If E[X] is finite, X is said to be integrable.

Two events A and B are called independent, if P(AB) = P(A)P(B). Two col-
lections of events A and B are called independent, if any A from A and any B from
B are independent. The events in a collection (A;,¢t € T) are said to be (mutually)
independent, if for any finite subset S of T we have

P( N At) = [[ P40

tes tes

Let (Ci,t € T) be a family of collections of events. If the events in any collection
(A¢,t € T'), with each element A; belonging to C;, are independent, then we call such
a family an independent family. A family (X;,t € T') of r.v.’s is called an independent
family, if (0(X}),t € T') is an independet family. A r.v. X is called independent of a
o-algebra A if 0(X) and A are independent.

An important fact about a finite independent sequence (X;,i = 1,...,n) of inte-

grable r.v.’s is that
E[HX,] = [[ BLxil. (1.1)

1.3.2 Conditional expectations

Let A and B be two events with P(A4) > 0. The probability that B hapens under
the condition that A happens is obviously equal to P(AB)/P(A4). It is called the
conditional probability of B relative to A, and denoted by P(B|A).

Let (Bj)1<j<m be a finite partition of ) with B; € F and P(B;) > 0, V1 < j < m.
Let G be the o-algebra generated by (B;). For an integrable r.v. X, we put

" E[XI5g,]
E[X g = 71[33'3
and call E[X|G] the conditional ezpectation of X relative to G. If (A;)1<i<y is a finite
partitions of Q with all A;’sin F and X = Y"1 | a;I4, is a simple r.v., then it is easy
to show that

m n

E[X | G]=) > aP(Ai|B))I5;. (1.2)

j=1i=1

Now we extend the definition of conditional expectation to the general case. Let
u and v be two finite measures on (Q, F). If for any A € F with u(A4) = 0 we have
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v(A) =0, then v is said to be absolutely continuous w.r.t. u. In this case, there exists
a unique non-negative F-measurable function £ such that

v(A) = /A Edp, VA€ F.

This result is called the Radon-Nikodym theorem. We call £ the Radon-Nikodym

derivative of v w.r.t. u, and denote it by g_;:lj-' or simply g—;. If p and v are mutually

absolutely continuous, we say that p and v are equivalent. In this case g—z can be
. .. dvy—1 __ du

chosen to be strictly positive and we have (g2)™" = Z£.

Let (2, F,P) be a probability space, G a sub-o-algebra of F and X an integrable
r.v.. Put
v(A) =E[X14], VA€eG.

Then v is a signed measure (i.e. the difference of two measures) on (€,G), which
is absolutely continuous w.r.t. P. By the Radon-Nikodym theorem there exists a
unique G-measurable r.v. Y such that

E[YI4] = E[XI4], VA€G. (1.3)

We call Y the conditional expectation of X w.r.t. G, and denote it by E[X|G].
Apart from the linearity, the conditional expectation has the following properties:
1) E[E[X | G]] = E[X];

2) If X and XY are integrable and Y is G-measurable, then
E[XY|d] = YE[X|J]; (1.4)
3) If G; is a sub-c-algebra of G, then
E[E[X | G]| Gi] =E[X | Gi]; (1.5)

4) (Jensen’s inequality) If f is a convex function on R and X and f(X) are
integrable r.v.’s, then

fEIX | G]) <E[f(X) ]| g]. (1.6)

The following two theorems will be frequently used in the sequal.
Theorem 1.1 Let G be a sub-o-algebra of F, g(x, y) a non-negative Borel function
on R? and X a G-measurable r.v.. Then for any r.v. Y we have

E[g(X,Y) | G] =E[g(2,Y) | G]lo=x- (1.7)
In particular, if Y is independent of G, we have
E[g(X,Y) | G] = E[g(z,Y)]lo=x- (1.8)

Proof If A and B are two Borel sets and g(z,y) = I4(z)Ig(y), then from (1.4) we
know that (1.7) holds. The genaral case follows from the fact that any non-negative
Borel function is a limit of an increasing sequence of simple Borel functions.

Theorem 1.2 (Bayes rule) Let Q be a probability measure equivalent to P and
G a sub-g-algebra of F. We put

aQ
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If X is a Q-integrable r.v., then we have

Eq[X|G] = n 'E[X¢| G). (1.9)
Proof For any A € G, we have
E[X{I4] = EqQ[XI4]=Eq[Eq[X|F]l4] = E[Eq[X|G|{I4]
= E[EqQ[X|G]nl4].

Since Eq[X|G]n is G-measurable, we get

E[X¢|G] = EQ[X|G]n,
which gives (1.9).
1.3.3 Martingales
Let (2, F,P) be a probability space and (F,,0 < n < N) an increasing sequence of
sub-o-algebras of F. We call (F,) a filtration. For notational convenience, we put
F_1 = Fo. A sequence (X,,0 < n < N) of r.v.’s defined on (2, F) is said to be
adapted (resp. predictable) if each X, is F,- (resp. Fn—1-) measurable.

Definition 1.3 An adapted sequence (M,)o<n<n is called a martingale (resp.
supermartingale, submartingale), if for each n, M, is integrable w.r.t. P and

E[Mp41|Fn] = Mu(resp. < M, > M,), Yn< N -—1. (1.10)
Let (X,,) be a supermartingale. Put

An=Xo + Z(anl - E[anj:nfl])a M, =X, + An; n>1,
j=1

and let Ag = 0, My = Xy. Then A is a non-decreasing predictable process with Ag =0
and M is a martingale. We call the expression X = M — A the Doob’s decomposition
of supermartingale X.

The following two propositions will be used in Chapter 2.

Proposition 1.4 Let (M,)o<n<n be a martingale and (H,)o<n<n a predictable
sequence such that HyMy and H,AM,,1 <n < N, are integrable. Put

Xo = HoMo, Xn = HoMo + )  HiAM;, n>1.
i=1
Then (X, )o<n<n is a martingale.
Proof Clearly, (X,,) is an adapted sequence and each X, is integrable. Moreover,
since for n > 0, H, 41 is F,-measurable, we have
E[Xn+1 - Xn|-7:n] = E[Hn+1(Mn+1 - Mn)lfn]
Hn+1E[Mn+1 - Mn|-7:n] =0,

which means that (X,,) is a martingale.

Proposition 1.5 Let (M,) be an adapted sequence of integrable random vari-
ables. If for any bounded predictable sequence (H,) we have E[Zjvzl H;AM;] =0,
then (M,,) is a martingale.

Proof Let 1< j < N. For any A € F;_1, we put H, =0,n # j,H; = I4. Then
(Hp) is a bounded predictable sequence and by assumption E[I4(M; — M;_1)] = 0.
That means E[M;|F;_1] = M;_;. Thus (M) is a martingale.
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CHAPTER 2

The Discrete-Time Model

In this chapter we shall introduce the main ideas related to the theory of option pricing
and hedging in the discrete-time setting. Firstly, we use the binomial tree model
to illustrate the risk-neutral valuation principle. Secondly, we present the general
discrete-time model. This model was introduced by Harrison and Pliska (1981) and
further discussed in the case of finite states by Taqqu and Willinger (1987). We
shall show that the existence of an equivalent probability measure under which the
discounted price process of securities is a martingale is equivalent to the absence
of arbitrage and that the uniqueness of such a martingale measure is equivalent to
the completeness of the market. This unique martingale measure enables one to
uniquely price any contingent claim. We follow closely the first chapter of the book
by Lamberton and Lapeyre (1996).

2.1 The binomial tree model

It is common knowledge that an asset price moves randomly and one cannot predict
future’s values of an asset price. However, by a statistical analysis of historical data
one can establish some models for asset price movements. There are two types of
model: the discrete-time model and continuous-time model. The simplest discrete-
time model is the binomial tree model, introduced by Cox, Ross, and Rubinstein (1979)
as a technique tool for pricing a contingent claim. This model is far from being a
realistic one. We shall only use this model to illustrate two important methods for
pricing options: arbitrage pricing and risk-neutral valuation, which are essentially
equivalent.

Suppose that there are two assets in the market. One is a riskless security with
riskless interest rate r per unit time, another one is a no-dividend-paying stock whose
current price (i.e. the price at time zero) is Sp. Assume that at time n + 1 the stock
price Sp4+1 will be either uS, or dS,,, where d < u are constants. Obviously, the
absence of arbitrage opportunity is equivalent to the condition “d < 1+ 1r < u”. We
are interested in valuing a European contingent claim £ with maturity N. We assume
that £ depends only on the stock price Sy at time N.

2.1.1 The one-period case

In this subsection we consider the one-period (i.e. N = 1) case, the multiperiod case
will be studied in the next subsection. In the one-period case, at time 1 the contingent
claim takes one of the two values, say, &, or £, which corresponds respectively to the
stock prices uSy or dSp at time 1. Consider a portfolio consisting of a long position
in ag shares of the stock and a short position in the contingent claim. The wealth of
the portfolio at time 1 is equal to apS1 — . In order to find a value a that makes
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the portfolio riskless (i.e. the wealth of the portfolio does not depend on the up or
down movements of the stock price) we solve the equation

aoguSe — &y = apdSo — &4,
and obtain ag = (ﬁi ;)Ego . The wealth of the portfolio at time 1 is then X; = %.

Thus, by the law of one price the wealth X, of the portfolio at time zero is equal to
X1 /1 + r. Consequently, the price of the contingent claim & at time 0 is given by

(A+r—d)éu+(u—(1+r))8
(1+47)(u—d) '
This method of pricing by no arbitrage argument is called arbitrage pricing.
A careful reader may notice that the contingent claim pricing formula (2.1) does
not involve the probabilities of the stock price moving up or down. This somewhat
surprising fact stems from the true meaning of arbitrage pricing. An explication of this
fact is that the probabilities of future up or down movements are already embedded
into the current price of the stock.
If we put ¢ = 17=4 then (2.1) can be rewritten as

Co =1+ 1) g + (1~ 9)éa]- (2.2)

If we interpret the values q or 1 —q as the probabilities of the stock price moving up or
down, (2.3) then states that today’s price of the contingent claim is the expectation of
its discounted future value under this new probability measure. Since qu+ (1 —¢q)d =
1+, it is readily seen that this new probability measure is the unique measure under
which the expected rate of return on the stock, i.e. E[S1]/So — 1, is just the same as
the riskless rate r, and the expectation of the discounted price (1 + r)~1S; is equal
to Sp. This new probability measure is called risk-neutral probability measure.

C() = 01050 _XO =

(2.1)

2.1.2 The multiperiod case

Now we turn to the multiperiod binomial tree model, which is shown in the following
figure:

S()u4
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Our objective is to determine the value at any time n of a European contingent
claim £ with maturity N. Let Q denote the set of all stock price paths running from
time zero up to time N. It represents the uncertainty of the stock price movements.
Q contains 2V elements. Each element is a possible realization of the movements of
the stock price. At time m, we have n nodes. We number these nodes from top to
bottom. For each w € Q we denote by w(n) the serial number of the node passed
through by path w at time n. Put

Quy = {w: win) = j}

Then
w,w' € Ny j => Sp(w) = Sp(W). (2.3)

If we regard each node as an origin point and consider one-period-movement of the
stock price from this node, we come to the situation of one-period binomial model.
So by the“backwards induction” and by a repeated application of equation (2.2) we
can give the value of the claim at any time n = 0,1,---, N — 1. More precisely, let us
define a probability measure on {2 by

N-— N-—1

P*(w) = gico (1 N XL @ eq, (2.4)

where a;(w) = 1 or 0, when the stock price goes up or down at the i-th step of path
w. We denote by C,, the value at time n of the contingent claim &. From (2.1), (2.2)
and (2.3) we see that

w,w €y j = Cp(w) = Cp(w'), (2.5)

and
Cnyj=1+7)""gCni1,; + 1 — @)Crp1,j41), (2.6)

where C,, j=Cp(w), Yw € Q, ;. Since
P*(Qn+1,j|ﬂn,j) =4q, P*(Qn+1,j+1|ﬂn,j) =1-gq,
we can rewrite (2.6) as
Cnj = (L+1) 7 [Crt1 P (Qnt1,iQng) + Cntr it P* Qg jia[Qng)]. - (27)

If we denote by F,, the o-algebra generated by the sequence (S;,0 < j < n), or, in
our case, it is the same generated by the family {Q, ;, 1 < j < n}, then (2.7) just
means

Cn=14+7) 'E*Cpry1|Fn)- (2.8)

In other words, the sequence of discounted values of the contingent claim {(1 +
)™ "Cp, 0 < n < N} forms a P*- martingale. Here (1 + r)™" is called the dis-
count factor at time n. In particular, from the last statement of the previous section
we know that P* is the unique probability measure on 2 under which the sequence
{14+ 7)"™S,,0 < n < N} of the discounted stock prices forms a martingale. We
call a probability measure with such property a risk-neutral probability measure or
martingale measure.
From (2.8) we get a formula for pricing the contingent claim &:

Cr = (147) N-ME¢|F,]. (2.9)
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This formula is an example of an important general principle in contingent claim pric-
ing, known as risk-neutral valuation principle, which states that any security depen-
dent on a stock price can be valued on the assumption that the world is risk-neutral.

Assume now £ = f(Sy) with f being a positive function. We are going to deduce
an explicit expression for C,. Put T, = S,,/Sp_1, for n = 1,---,N. Tt is easy to
verify that the random variables T1,---,T, are independent, identically distributed
(i.i.d.) and their distribution is: P*(Ty = u) = ¢ = 1 — P*(Ty = d). In particular,
for each ¢ > n+ 1, T; is independent of F,,. Consequently, since Sy = S, Hfin T
from (2.9) we can apply Theorem 1.1 to get

N
Co = (1+n) B [f(s, [] T |7

i=n+1

= (1+n) "B [f( 11 T)|

i=n+1

=S,

N—n
= (14r)~ ™ ( )@ (1= N f(SpuddN ),
7=0

2.2 Basic concepts of the discrete-time model

Now we turn to the general discrete-time model. Let N be the time horizon. Uncer-
tainty up to time N is represented by a probability space (2, F, P), where Q represents
the set of all possible states. Let F,, be a sub-c-algebra of F, which represents the
information available at time n. Then {F,,0 < n < N} constitutes a filtration, i.e.
an increasing sequence of sub-o- algebras of F. For notational convenience, we put
.7:71 = .7'-0.

Assume that the market consists in (d+1) assets, whose prices at time n constitute
an adapted R%*!-valued non-negative random vector S, = (S9,---,5%). The asset
indexed by 0 is a riskless asset whose price at time n is SO = S3(1 + )", where r > 0
is the riskless interest rate per unit time. Other assets are risky. In the following
we assume Sy = 1 and define 8, = (1 + r)" and denote by 7, the discount factor
(1+7)"™ at time n.

A trading strategy is a predictable R%+!-valued stochastic sequence

where ¢¢ denotes the number of shares of asset i held in the portfolio at time n. The
assumption means that we can only utilize the information available at time (n — 1)
to make a decision on the positions in the portfolio at time n. If ¢2 < 0, we have
borrowed the amount |¢?| in the riskless asset. If i > 1 and ¢!, < 0, we say that we
are short a number ¢!, of asset i. Short-selling and borrowing are allowed.

For a,b € Rd let a - b denote the scalar product of a and b. The wealth of the
portfolio ¢, = (¢°,---,¢%) at time n is

Va($) = ¢n - S = Z¢’ Si,. (2.10)

The discounted wealth is

vn(‘ﬁ) = Y Vn(®) = ¢n - Sn, (2.11)
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where S, = (1,98 -+ 4,89) is the vector of discounted prices.
A strategy (¢y,) is called self-financing if

Gn - Sn=ni1-Sn, VO <N —1. (2.12)

It means that at time n, once the price vector S, is quoted, the investor readjusts
his/her positions from ¢, to ¢,+1 without bringing or withdrawing any wealth. It is
easy to prove that (2.12) is equivalent to

Va(9) = Vo(9) + D i~ AS;, ¥1<n<N, (2.13)

i=1

or n
Va(8) = Vo(¢) + Z¢z’ -AS;, V1 <n <N, (2.14)

i=1

where ASz = Sz - 51;1 and AS,' = S,' - 5171.

In contrast to a self-financing strategy, a strategy with consumption is a strategy
(¢n) with the property that there is a predictable non-negative sequence (c,) null at
n = 0, such that

¢n+l'Sn=¢n'Sn_Cn+l7 OSTLSN—I (215)

Here ¢,, represents the wealth withdrawn for consumption at time n. The wealth at
time n of a strategy with consumption (¢,) is still defined by V;,(¢) = ¢y, - Sp. It is
easy to see that (2.15) is equivalent to

V(@) =Vo(9) + D> ;- AS; =D ¢, 1<n<N. (2.16)

i=1 =1

A strategy (¢,,) is said to be admissible if its wealth process V (¢) is non-negative.
A strategy (¢y,) is said to be tame (or c-admissible) if its discounted wealth process
is bounded from below by some real constant ¢. The above two notions are standard
in the literature. However, it seems that these definitions are too restrictive. For
example, a strategy with a short sale of assets is not necessarily a tame strategy. So
we propose another notion. A strategy (¢,) is said to be allowable if there exists a
positive constant ¢ such that V(¢), > —c 2?20 Si,0<n<N.

An arbitrage strategy is an allowable self-financing strategy with zero initial wealth
and non-zero final wealth. In option pricing theory we always assume that the market
excludes any arbitrage opportunity.

Lemma 2.1 Let I' denote the convex cone of non-negative non-zero random
variables (£ is zero r.v., if P(§£ = 0) = 1). For any (vector-valued) predictable process
( 1“ ety ¢i)OSnSN= we define

n
Gn(@) = 3 _(#jAS] +-+ + ¢]AS]).
j=1
Then there exists a predictable process (¢9) such that (¢%,¢L,---,¢%) constitutes a
self-financing strategy with initial wealth zero and that its discounted wealth process
is just (G (¢)). If the market has no arbitrage, then G (¢) ¢ T.
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Proof We put
n—1

On =D (BA5] -+ 9AS]) = (BSns + - + 0050 0). (2.17)

=1

Then (¢?) is a predictable process. By (2.11) and (2.14) it is readily verified that the
strategy ¢ = (¢°,-- -, ¢?) is a self-financing strategy with initial wealth zero and its
discounted wealth process is just (Gn(¢)).

Now we are going to prove the second statement. Suppose that G ~n(®) €. Put

m = sup{k : P(G(¢) < 0) > 0}.

Here, by convention, sup = 0. We denote by A the event {G,(¢) < 0} and define
a new process ¥ by

|0 ifj<m
vilw) = { La(@)gj(w) if j>m

Then ¢ = (¢1,---,%¥nN) is a predictable process and

I14(Gi(¢) = Gu(9)) ifj>m
Thus, éj(z/;) >0for all j € {0,---,N} and Gn(¥) > 0 on A. This contradicts the

assumption of no arbitrage, because (Gn(1))) is the discounted wealth process of an
admissible self-financing strategy with initial wealth zero.

G- {8

2.3 Martingale characterization for no-arbitrage

Characterizing stochastic processes which can be transformed into martingales by
means of an equivalent change of measure is of particular interest in financial eco-
nomics. Harrison and Kreps (1979), Harrison and Pliska (1981), and Kreps (1981)
studied the relationship between the question of the existence of equivalent martingale
measures for the securities price process and the economic concept of “no-arbitrage”.
Under appropriate assumptions on the price process, such as integrability, they ob-
tained some fundamental results. The most important fact in the option pricing
theory, as was pointed out in Harrison and Kreps (1979), is that the absence of
arbitrage follows from the existence of an equivalent martingale measure for the (dis-
counted) price process of securities. Fortunately, the proof of this fact is quite easy.
The converse fact that the absence of arbitrage implies the existence of an equivalent
measure is however rather difficult. In the discrete-time case, the proof of this fact
for an arbitrary probability space was given by Dalang-Morton-Willinger (1990).

We start with the assumption that  is a finite set and F is the family of all
subsets of  and P({w}) > 0 for all w € . Moreover, we assume Fo = {}, 2} and
Fn = F. Under these assumptions every real-valued random variable takes only a
finite number of values, and is thus bounded.

The following theorem gives a complete characterization of no-arbitrage.

Theorem 2.2 Under the above assumptions, there exists no arbitrage strategy
if and only if there exists a probability measure P* equivalent to P (in the present
case, this means that P*({w}) > 0 for all w € ) such that the R%valued process of
discounted prices (§n)0§n§ v of assets is a P*-martingale.
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Proof Sufficiency. Assume that there exists a probability P* equivalent to P
such that (S,,) is a martingale. By Proposition 1.4 and (2.14), for any allowable self-
financing strategy (¢,), the discounted wealth process Y7n(¢) is a P*-martingale. In
particular, if Vp(¢) = 0, then E[Vx(4)] = 0. Since Vy(¢) > 0 and P({w}) > 0,Vw €
Q, we must have Vy(¢) = 0. That means there exists no arbitrage strategy.

Necessity. Assume there exists no arbitrage strategy. Let V' be the set of random
variables G (¢) with ¢ = (@L,---,¢%) being (R?valued) predictable process. By
Lemma 2.1, VNT = (. In particular, V does not intersect the convex compact set
K={Xel:}Y Xw) =1} Pt C=K-V={—-y:2€ K,y € V}
Since Q@ = {wi, -, wn} is a finite set, we can regard a random variable defined
on ) as a vector in R™. Thus C is a closed convex subset of R™ which doesn’t
contain the origin. By the convex sets separation theorem (see Dudley (1989), p.152
or Lamberton-Lapeyer (1996), p.178) there exists a linear functional f defined on R™
such that f(z) > a,Vz € C with an a > 0. Since C = K —V and V is a subspace of
R™ we must have f(z) = 0,Vz € V and f(z) > a > 0,Vz € K. It means that there
exists (/\(c/.)))wEQ such that (1)VX € K, A(w)X(w) > 0 and (2) for any predictable

& > Mw)Gn () = 0. From (1) we see that A(w) > 0 for all w € Q. Put

Aw)
Ew’EQ )‘(wl) ’

Then P* is equivalent to P and by (2), for any predictable ¢,

P*({w}) =

N
E* Z (ﬁjASj =0.
j=1
Therefore, according to Proposition 1.5, (§n)05n5 ~ is a P*-martingale.

Now we turn to an arbitrary probability space case. In this case we have still a
martingale characterization for no-arbitrage. The result, due to Dalang et al. (1990),
is usually referred to as the fundamental theorem of asset pricing.

Theorem 2.3 There exists no arbitrage strategy if and only if there exists a
probability measure P* equivalent to P such that the R?-valued process of discounted
prices (Sp)o<n<n of assets is a P*-martingale. In this case P* may be chosen such
that the Radon-Nikodym derivative dP*/dP is bounded.

The proof of the “if” part is quite easy, but the proof of the “only if” part is
complicated. So we omit the proof.

Note that the integrability of the price process is not assumed in Theorem 2.3.
Some special cases of Theorem 2.3 were derived previously e.g. by Harrison and
Kreps (1979), Taqqu and Wilinger (1987). The original proof of Theorem 2.3 is
mainly based on a measurable selection theorem. Alternative (elementary) proofs are
due to Schachermayer (1992), Kabanov and Kramkov (1994) and Rogers (1994). For
an extension of Theorem 2.6 to the infinite-horizon case see Scharchermayer (1994).

2.4 Complete markets and option pricing in finite state case

A (European) contingent claim is an F-measurable non-negative random variable.
Let P* be an equivalent martingale measure. A contingent claim £ is said to be
P*-attainable (or replicatable), if the discounted value v,.£ is P*-integrable and there
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exists an admissible self-financing strategy such that its discounted wealth process is
a P*-martingale and its terminal wealth at time N is £. In this case we say that such
a strategy is a P*-hedging strategy for &.

In this section we only consider the case of finite state. In this case, a market
is said to be complete if any contingent claim is attainable. The following theorem
characterizes the completeness of a market. We refer to Lamberton and Lapeyre
(1996) for its proof.

Theorem 2.4 Assume (2 is a finite set. A market with no-arbitrage is complete if
and only if there exists a unique probability measure P* equivalent to P under which
the R¢-valued process of discounted prices (Sn)o<n<n of assets is a P*-martingale.

For an arbitrary probability space case a characterization theorem for the com-
pleteness was obtained by Willinger and Taqqu (1988). In this case one needs to
imposes a condition on the structure of the filtration (F,).

In the following we assume that the market has no arbitrage and is complete. We
denote by P* the unique martingale measure.

Let ¢ be a European contingent claim with maturity N. Assume 7€ is P*-
integrable. Let ¢ be a heading strategy for £. By Proposition 1.4 the discounted

wealth process (V,(¢)) is a P*-martingale. Consequently,

where 7y is the discount factor at time N. This formula gives the value of the
contingent claim £ at any time n < N. If (¢,) is a strategy with consumption, then
the discounted wealth process (V;,(¥)) is a P*-supermartingale.

Now we turn to the pricing of an American option with maturity N, which is
defined as an (F,)-adapted non-negative sequence (Z,). This means that the option
pays Z, if it is exercised at time n. We will price the American option by a “backward
induction” argument. The value Uy at time N of the option is obviously Zy. If a
writer of an American option wants to cover his/her positions at times N — 1 and
N, he/she must earn at time N — 1 the maximum between Zy_; and the amount
necessary at time N — 1 to replicate Zy at time N. By (2.18), the latter amount is
7;,1_1E*[ZN|.7N,1]. So from the writer’s account the value Uny_1 at time N — 1 of
the option should be defined as

UN,1 = max(ZN,l, ﬁNflE*[zN|fN,1]) .

By induction, for n = 0,---, N — 1, we define the value at time n of the American
option by

U, = max(Zn, ﬁnE*[fyn+1Un+1|}'n]). (2.19)

It is easy to prove the following theorem.

Theorem 2.5 The sequence (Up)o<n<n is a P*-supermartingale. It is the small-
est P*-supermartingale that dominates the sequence (Zn)OSHS N.

Remark 2.6 By Doob’s decomposition of U it is easy to see that there is a
strategy with consumption (¢, ) such that V,(¢) = U, for all 0 < n < N. Obviously,
this strategy super-hedges the American option in the sense that V,(¢) > Z, for all
0 < n < N. On the other hand, if a strategy with consumption (¢, ) super-hedges the
American option (Z,), then we can prove that V,,(¢) > U, for all 0 <n < N. This
means that the value sequence (U,) of the American option defined by (2.19) is the
minimal wealth sequence within all wealth sequences of the super-hedging strategies.
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CHAPTER 3

Brownian Motion and Ité Calculus

In the previous chapter we have studied discrete-time models for financial markets.
However, the price changes in the market are actually so frequent that a discrete-time
model can barely follow the moves. Over the past three decades, the continuous-time
model has proven to be a convenient and productive tool in finance. In fact, the
continuous-time approach often leads to closed form solutions or analytical expres-
sions, suitable for numerical computations and allows the use of stochastic calculus,
which sometimes facilitates the derivation of more precise theoretical solutions than
can otherwise be derived from its discrete-time counterpart.

In this chapter we will give a short presentation of Itd calculus. We will review
some fundamental results on continuous-time martingales and summarize the con-
struction of the stochastic integrals with respect to Brownian motion; present some
useful tools for Itd calculus, such as Ité’s formula, the martingale representation
theorem, Girsanov’s theorem and the Feynman-Kac formula; and introduce It sto-
chastic differential equations. Finally, we make a short presentation of continuous
semimartingales. The proofs of all results are omitted. Readers can find the omitted
proofs in Karatzas and Shreve (1988) and Revuz and Yor (1991).

3.1 Brownian motion and martingales

In the continuous-time case, we encounter two types of time horizons: [0, 7] or [0, c0),
where T' > 0 is a constant. We will work on a given complete probability space
(Q,F,P), as well as a filtration (F;) satisfying the usual conditions. Here a filtration
is an increasing family of o-algebra included in F, and by the usual conditions we mean
that each JF; contains the null sets of F and (F;) is right-continuous (i.e. Ng>tFs =
Fi). A complete probability space (2, F,P) together with a usual fltration (F;) will
be called a filtered probability space and denoted by (Q, F, (F;), P).

Definition 3.1 A (standard) Brownian motion (B;);>o on a complete probability
space (Q,F,P) is a real valued continuous process, with independent and stationary
increments, such that By = 0 and for s > t,B; — By is normally distributed with
mean zero and variance (s — t).

If (Bi),1 < i < d are independent Brownian motions, we call the R?-valued
process (B;) = (B},---,B{) a d-dimensional Brownian motion. Let FZ denote the
o-algebra generated by the union of o(Bs,s < t) and the null sets of F. We call
(FP)t>0 the natural filtration of the Brownian motion (B;). It is well-known that
(FP)i>0 satisfies the usual condition.

Let (F:) be a usual filtration on a probability space (2, F,P). We shall also need
a definition of Brownian motion w.r.t. (F).

Definition 3.2 An R%valued continuous process (X;) with Xo = 0 is an (JF)-
Brownian motion or Wiener process, if for any t > 0, X; is F;-measurable, and for
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s > t, X, — X; is independent of the og-algebra F; and is normally distributed in R¢
with mean zero and covariance matrix (s — t)I.

In Chapter 1 we have defined the notions of martingale, supermartingale or sub-
martingale for discrete-time processes. For continuous time processes the same no-
tions can be defined in a similar fashion. We will sometimes need the notion of a
local martingale. In order to give its definition we need the notion of a stopping time.
An (F;)-stopping time is a non-negative random variable 7 with the property that
for any t > 0, the set [T < t] belongs to F;. A real-valued right-continuous process
(M) is called a local martingale w.r.t. the filtration (F3), if there exists an increasing
sequence (7,) of stopping times tending to oo such that for each n > 1 the stopped
process X™ is a martingale, where X/ = X;a.,. Note that almost all paths of
a local martingale have finite left-hand limits on (0,00) and any non-negative local
martingale is a supermartingale.

When (M) is a right-continuous adapted process defined only on a finite interval
[0,T7, it is called a local martingale if there exists an increasing sequence (7,,) of
stopping times tending to T such that P(7, = T) — 1 and for each n > 1 the stopped
process X' is a martingale.

Now we present subsequently Doob’s optional sampling theorem, the Doob in-
equality and the Doob-Meyer decomposition, which are fundamental in the martingale
theory.

Theorem 3.3 If (M) is a right-continuous martingale (resp. supermartingale)
w.r.t. the filtration (F;) and if 71 and 7» are two bounded stopping times such that
71 < 79, then M, is integrable and

E[M,,|Fr] = M;, (resp. < M,,), P-as..

Theorem 3.4 Let T > 0 be a real number. If (M;)o<¢<7 is a right-continuous

martingale, then
E[ sup |M|*] <4E[M7|?].
0<t<T

Theorem 3.5 A right-continuous supermartingale X can be expressed in the
form X = M — A, where M is a martingale and A is an adapted non-decreasing
process null at 0. If X is continuous, then such a decomposition is unique and M and
A are also continuous.

The following theorem is called Lévy’s martingale characterization for Brownian
motion.

Theorem 3.6 Let (X;) be an R%valued (F;)-adapted continuous process. Then
X is an (F;)-Brownian motion, if and only if for any 1 <i,j < d,(X}) and (X}X] —
di;t) are (local) martingale.

3.2 Stochastic integration and martingale representation

Now we turn to the construction of stochastic integrals . Let T' > 0 be a real number
and (By)o<i<7 an (F;)-Brownian motion. We want to define (indefinite) integrals of
the type fg 0(s)dB; for a certain class of measurable processes §. Here by measura-
bility we mean the joint measurability w.r.t. the product o-algebra B([0,T]) x Fr.

We start with a simple process (6(t)). Here we mean that there is a partition of
[0,T]: 0=1t¢ < t1 <,---,< ty =T, such that for all j >0,

0(t) =&, te (t),tjtl,
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where ; is an J;;-measurable bounded random variable. For such a process it is
reasonable to define, for any ¢ <t < tg41,

t
| 0B = S € (B Bu)+ B Bu).
0 0<j<k—1
Obviously, for any ¢ € [0,T] the above expression can be rewritten as
t
/ 0(s)dB, = Z &i(Bijint — Bijae)-
0

0<j<N

One can check that ( s)dB;) is a continuous martingale w.r.t. (F;), and
0 g

/e dB /0 ds (3.1)

Consequently, by the Doob inequality (Theorem 3.4) we get

/9 )dB,

Now we extend the above integral to a lager class of measurable adapted processes.
Let £ denote the set of all measurable adapted processes defined on [0,7]. Put

sup
t<T

5 4E[/t0(s)2ds]. (3.2)
0

H? = {9:9 €L, E[/TH(S)zds] <oo}.
0

An important fact is that if 6 is in #2, then there exists a sequence (™) of simple
process such that

lim E[/OT 16(s) — 0"(3)|2ds] =0.

n— 00
For a proof see Karatzas and Shreve (1988), p.134. By using this fact and (3.2) we can
find a subsequence of ("), denoted again by (6"), such that fo 0™ (s)dBs converges

a.s. to a continuous process, which is denoted by fo s)dB; or simply (6.B);. We
call it the stochastzc integral of @ w.r.t. Brownian motlon (B;). One can prove that
fo ) is a continuous martingale w.r.t. (F3), and (3.1) and (3.2) are still valid.

Let (Bt) be a d-dimensional (F;)-Brownian motion and H = (H!,---, H%) be an
RZ-valued process in (#2)?. We can define the stochastic integral of H w.r.t. B,
denoted again by H.B, as

t d t
/ Hsst=Z/ HIdBj.
0 =170

Now we put

£2 {9 He£/0 ds<oo}

£l 0 ee.c/ |ds<oo}
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If § € (£?)? we can still define the stochastic integral of § w.r.t. B. In this case,
( f(f 0(s)dB;) is a local martingale. A process of the form

X, = Xo+ /0 0(s)dB, + /0 " o(s)ds (3.3)

with X, being Fy-measurable and 6 € (£?)4, ¢ € L! is called an Ité process. Since
a continuous local martingale with finite variation must equal its initial value, the
decomposition of an It process into a local martingale and a process of finite variation
is unique.

Finally, the stochastic integral can be defined on the infinite interval [0,00). In
fact, if 6 is a measurable adapted process such that for any ¢ > 0, f(f 16(s)|> < oo,
then 6.B is a local martingale on [0, 00).

The following is the martingale representation theorem for a Brownian motion.

Theorem 3.7 Let (B;) be a d-dimensional Brownian motion and (F?) its natural
filtration. Then (B;) has the martingale representation property in the sense that for
any local martingale w.r.t. (FF), there exists some 6 in (£2)? such that

t
M, = My + / 8(s)dB,, t> 0. (3.4)
0

Moreover, such a € is unique in the sense that if ' is another process satisfying (3.4),
then f(f |6(s) — 6'(s)|?ds = 0,¥t > 0. In particular, any local (F£)-martingale is
continuous.

3.3 Itd’s formula and Girsanov’s theorem

Let (X;) be an Itd process given by (3.3) and (H;) a measurable and adapted process
such that Hf € (£2)¢ and H¢ € L£'. Then we can define the stochastic integral of H
w.r.t. Itd process X as

t t t
/ H,dX, = / H,0(s)dB, + / H,(s)ds
0 0 0

The following theorem provides the change of variables formula for Ité processes,
called Ité formula, which is a powerful tool in It calculus.

Theorem 3.8 Let B = (B!,---,B%) be a d-dimensional (F;)- Brownian motion
and X = (X1!,---,X™) be an R™-valued Itd processes with

d t t
X} :X3+Z/ 9% (s)dB] +/ #'(s)ds, 1<i<m. (3.5)
=170 0

If f = f(t,z) is a function on Ry x R™ such that it is twice differentiable w.r.t. x
and once differentiable w.r.t. ¢, with continuous partial derivatives in (¢,z), then we
have

f(t,X:) = f(t, Xo) /a (s, X5) ds+2/ 5)dX}

Z / 6%% X,)d(X?, X"y,

zkl



3. Brownian Motion and Ité Calculus 21

where, by definition
d t
(X', x4, =3 /0 i ()65 (s)ds (3.6)
j=1

is the so-called quadratic covariation process of X* and XF.
As a particular case of Itd’s formula, we obtain the integration by parts formula.
Theorem 3.9 Let X and Y be two Itd processes. Then

t t
XY, = XoYs + / X,dY, + / X,dY, + (X,Y),. (3.7)
0 0

The following theorem is an simple application of 1t6’s formula.
Theorem 3.10 Let X be an Ito process. Put

E(X); = exp {Xt _ X — Lx, X)t}. (3.8)

2

Then £(X) is the unique solution to the following stochastic integration equation:

t
Z, =1 +/ Z,dX,.
0

Expression (3.8) is called Doléans-Dade’s exponential formula. In particular, if X is
a local martingale, then £(X) is also a local martingale.

The following Nowikov Theorem gives a useful sufficient condition for £(X) to be
a martingale.

Theorem 3.11 Let (B;)o<¢<r be a d-dimensional Brownian motion. If § € (£2)?
and satisfies Novikov’s condition

B[ exp (% /OT 6(s)2ds )] < oo, (3.9)

then £(0.B) is a martingale ( or equivalently, E[£(6.B)r] =1 ).

The following is called Girsanov’s Theorem, which describes the structure of a
Brownian motion under an equivalent change of probability measure.

Theorem 3.12 Let (B;)o<¢<r be a d-dimensional (F;)-Brownian motion. If

6 € (£%)? and E[£(0.B)r] = 1, then B; = B, — [, 6(s)ds is a d-dimensional (F;)-
Brownian motion under a new probability measure P* with dd%* o= E(6.B)r.

T
As an application of Girsanov’s theorem we obtain the following formula:

E[f(B*.)g(Br)] = E[£(6.B) f(B.)g(Br)], (3.10)
where f is a Borel function on C([0,T], R%) and g is a Borel function on R, because
BB )50 = B[ (Gp |, ) F(B*)0(BA)] = BIE0.8)0f (B )g(B7),

and (Bj) is a Brownian motion under P*.

The following theorem is due to Fujisaki-Kallianpur-Kunita (1972). A proof of
this result can also be found in Yan (1980b).

Theorem 3.13 Under the assumption of Theorem 3.12, if (F;) is the natural
filtration of (Bi), then (Bf) has the martingale representation property w.r.t. (F)
under P*.
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3.4 1t6 SDEs and the Feynman-Kac formula

Let (B¢)i>0 be a d-dimensional (F;)-Brownian motion. Let b : Ry x R™ — R™
and o : Ry x R™ — M™? be Borel measurable maps, where M™% is the set of all
real matrices with m rows and d columns. An R™-valued continuous (F;)-adapted
process X is said to be a solution of the following Itd stochastic differential equation

dX; = b(t, Xt)dt + O'(t,Xt)dBt, X =¢, (311)

with £ = (€,---, &™) being Fo-measurable, if X satisfies

t d t
Xi=¢ +/ bi(s, X,)ds + Z/ 0i(s,X,)dB], 1 <i<m,t>0. (3.12)
0 . 0

Such a solution is sometimes called a strong solution. There is also what is known
as a weak solution, which we don’t discuss here, because in financial mathematics we
have no need for it.

In the sequel we denote

m d m
2> =Y a7, PP =ty =D (v9)?

i=1 j=1 i=1

for € R™ and v € M™7,
Theorem 3.14 If b and ¢ are Lipschtiz in x:
bt z) —b(t,y)| + |o(t,z) —o(t,y)| < K|z —y| (3.13)

and satisfy the linear growth condition in x:

b(t, )| + |o(t, 2)| < K(1+ |z), (3.14)

where K is a constant, then (3.11) has a unique solution X. Moreover, if E[|£|?] < oo,
then for all 0 < T' < 0o we have Esupg<;<7 | X¢]?] < co.

Remark 3.15 If b and o are only locally Lipschitz in the sense that for each
positive constant L there is a constant K such that (3.13) is satisfied for  and y with
|z| < L,|y| < L, then (3.11) still has a unique solution.

The unique solution to (3.11) is a continuous strong Markov process, which is
usually called an Ité diffusion. We denote by a(t,z) the (d x d) matrix o (¢, z)o” (¢, ).
We call a the diffusion matriz and b the drift vector of the diffusion. For every ¢t > 0,
we associate with the diffusion (X;) a second-order differential operator

d 5 d
> ain(t e +Zb,~(t,a¢)a (”f), feC?*RY.  (3.15)

8.7: or or
i k=1 et g

(Acf)(z

l\DI»—l

If b and o do not depend on ¢, the equation (3.11) and its solution are said to be
time-homogeneous. In this case, the operator Ay, t > 0, is reduced to

2 d

AN =13 e I

ik=1

> feC’Q(Rd) (3.16)
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A is called the generator of the diffusion (X}).
The following theorem provides a generalized version of the Feynman-Kac formula,
which provides a probabilistic representation for the solution of the Cauchy problem
Ou

s ku= Awu+g, (t,z) €[0,T)x R? (3.17)

subject to the terminal condition
uw(T,z) = f(z), =€ R (3.18)

Here f : R - R,k : R — Ry, and g : [0,7] x R? are continuous functions,
and f and g satisfy the polynomial growth condition in z (see below (3.19)) or are
non-negative.

Theorem 3.16 Let u be a continuous, real valued function on [0,7] x R%, of
class C12 on [0,T) x R? satisfying (3.17) and (3.18). Assume that u satisfies the
polynomial growth condition in z:

sup |u(t,z)| < M(1+ |z|**), =€ R, (3.19)
0<¢<T

for some constant M > 0, p > 1. Then v admits the representation

u(t,r) = E””[f(XT exp{ JE k6, X, de}

+ ft 9(s, X exp{ J; k6, Xp) d0}ds] (3.20)

where {P%* t > 0,2 € R%} is the family of probability measures associated with the
Markov process (X;). In particular, such a solution to (3.17) and (3.18) is unique.
In particular, if £ does not depend on ¢, then

u(t,r) = E%® [f(Xt exp{ fo (Xo d@}

(3.20)/
+ fotg(t —-s5X exp{ fo }ds]
is the unique solution of the Cauchy problem
Ou d ,
e +ku=Au+g, (t,z)€[0,T)xR (3.17)

subject to the initial condition
u(0,z) = f(z), =€ R (3.18)’

For a proof we refer the reader to Karatzas and Shreve (1988), pp. 366-368 and
268-270.

For a one-dimensional SDE (i.e. m = d = 1), the following result due to Ya-
mada and Watanabe (1971) weakens considerably the conditions on the existence
and uniqueness of the solution to (3.11).

Theorem 3.17 Assume m = d = 1. In order for (3.11) to have a unique solution
it suffices that b is continuous and Lipschitz in 2 and o is continuous with the property

|(T(t,ZL’) - U(t7y)| < p(lm - y|)7
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for all z and y and ¢, where p : Ry — R is a strictly increasing function with

p(0) = 0 and for any € > 0,
/ p~%(x)dx = oo.
(0,¢)

For example, p(z) = /z satisfies this condition. We shall use this result later in
the study of the term structure of interest rates.

3.5 Semimartingales

Definition 3.18 A right-continuous adapted process X is called a semimartingale, if
X can be expressed as X = Xog+ M + A, where M is a local martingale with My =0
and A is a process with finite variation.

It turns out that the semimartingales constitute the largest class of integrators,
w.r.t. which stochastic integrals of predictable processes can be reasonably defined.
Moreover, the semimartingale property and the stochastic integrals are invariant un-
der an equivalent change of probability.

In the following we only consider continuous semimartingales. Since a continuous
local martingale with finite variation must equal its initial value, the decomposition of
a continuous semimartingale into a local martingale and a process of finite variation
is unique. In this case, we call the expression X = Xg + M + A the canonical
decomposition of X and M the martingale part of X.

If M is a square-integrable continuous martingale, then M? is a submartingale.
So by the Doob-Meyer decomposition (Theorem 3.5), there exists a unique increasing
continuous process C' such that M? — C is a martingale. Consequently, if M is a
continuous local martingale, then there exists a unique increasing continuous process
C with Cy = 0 such that M2 — C is a local martingale. We denote C by (M, M) and
call it the quadratic variation process of M. Through polarization, one can define the
quadratic covariation process (M, N) of two continuous local martingales M and N.
Note that if \/(M, M), is integrable, then M is a uniformly integrable martingale.

Let X and Y be two continuous semimartingales with the canonical decomposi-
tions X = Xo+ M+ AandY =Y, + N + B. Then we put (X,Y) = (M, N) and call
it the quadratic covariation process of X and Y. This definition is consistent with
that for It6 processes, see Theorem 3.8.

Now we turn to the definition of stochastic integral for continuous semimartingales.
A process H is said to be progressively measurable or simply progressive, if YVt > 0,
restricted on Q x [0,¢], H is F; x B([0,t])-measurable. Let M be a continuous local
martingale. If H is a progressive process such that f(f H2d(M,M)s; < oo, Vt >0,
then we can define a unique continuous local martingale, denoted by H.M, such that
(H.M)o = HyM, and for any continuous local martingale N we have (H.M,N) =
H.(M,N). In this case, we say that H is integrable w.r.t. M and call H.M the
stochastic integral of H w.r.t. M. For a continuous semimartingale X with the
canonical decomposition X = Xy + M + A, the definition of the stochastic integral of
a progressive process H w.r.t. X is defined by H. X = HoXo+ H.M + H.A, provided
the two integrals in the right side make sense. With this definition of stochastic
integral the It6’s formula is still valid .
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CHAPTER 4

The Black-Scholes Model

In the early 1970’s Black and Scholes (1973) made a breakthrough in option pricing
theory by deriving explicit formulas for pricing European vanilla options. Since then
there has been a rapid progress in theoretical studies and empirical researches on
option pricing as well as its practical applications. This chapter provides the main
ideas and results of option pricing in the Black-Scholes setting. First, we derive
the Black-Scholes differential equation and valuation formulas for European options.
Second, we present practical uses of the Black-Scholes formulas. Third, we introduce
a martingale approach to the option pricing. Fourth, we make a brief discussion on
the problem of pricing American options.

4.1 The Black-Scholes PDE and valuation formulas

Consider a financial market which consists of two instruments: a risky asset, called
simply asset, and a bank account. Assume that the asset pays no dividends and its
price process satisfies the It6 SDE

dSt = St(/,tdt + O'dBt), (41)

where Sy > 0, and o are constant, (By) is a Brownian motion defined on a filtered
probability space (2, F, (F;),P). Such a process (S;) is called a geometric Brownian
motion. It is also called a log-normal process because by Theorem 3.10,

2
Sy = Soexp {(u - %)t + aBt}, (4.2)

so that log(S;) is normally distributed. We call u the (instantaneous) expected rate
of return and o the wvolatility of S. Here one should beware that the continuously
compounded rate of return logg—(‘J is different from the expected rate of return. The
value process (3;) of the bank account is assumed to satisfy

dB; = rfdt, (43)

where r is the constant interest rate. In the sequel, we always assume By = 1 so that
ﬂt — e,

We assume that the market is frictionless. It means that there are no transaction
costs, no bid/ask spread, no restrictions on trade such as margin requirements or
sort, sale restrictions, there are no taxes, and borrowing and lending are at the same
interest rate. In addition, we assume that trading in assets takes place continually in
time. A trading strategy is a pair of F;-adapted processes {a, b} such that a € £? and
b € £, where a(t) denotes the number of units of the asset held at time ¢, and b(t)
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the amount of the money in the bank account at time ¢. The wealth V; at time ¢ of a
portfolio {a(t),b(t)} is defined as

Ve = a(t)S; + b(t) 5.

A trading strategy {a, b} is said to be self-financing if the change of its wealth is only
due to the changes in the assets prices weighted by the portfolio, meaning that for all
t

dVy = a(t)dSt + b(t)dﬂt (44)

The definition of admissible or tame strategy is similar to the discrete time case. A
trading strategy is said to be allowable, if there exists a positive constant ¢ such that
Vi > —(e™ + S;), for all t € [0,T], where V; is the wealth at time ¢ of the strategy.

Consider a European contingent claim of the form & = f(Sr) with maturity T,
where f : Ry — Ry is a continuous function. We want to determine its price Y; at
any time ¢t < T. We anticipate that Y; = F'(¢,5;),t < T with an unknown F being a
CY2-function on [0,T) x (0,00). By Itd’s formula,

dy; = [Ft(t, St)+ Fy(t, St)uSt+%Fww(t, St)O'QStQ] dt+ F,(t,S;)05,dBy, t <T. (4.5)
On the other hand, assume there is a self-financing trading strategy {a,b} with
a(t)Se +b(t) Bt = Y = F(t,S). (4.6)
From (4.1), (4.3) and (4.4) we obtain
dY; = [a(t) St + b(t)Byr]dt + a(t)oSidBy. (4.7

Identifying coefficients in dB; and dt of (4.5) and (4.7) leads to
1
alt) = Fult, S1), b(t) = (Bir) " [Filt, S0) + 5 Fea(t, S1)0°SE|. (4.8)
On the other hand, by (4.6) we have
b(t) = By [F(t,S;) — Fa(t, Si)Si)- (4.8)'

Equations (4.8) and (4.8)" imply
1
Ft(t, St) + 1S F, (t, St) + §O2S?Fzm(t, St) - T’F(t, St) =0. (49)

In order for (4.9) to hold and Yr = F(T,Sr), it suffices that F satisfies the
equation

1
Ei(t,z) + raF,(t,z) + 502372Fm(t, z)—rF(t,z) =0 (4.10)
for (¢t,z) € [0,T) x (0,00) with the final condition
F(T,z) = f(z), z € (0,00). (4.11)

Equation (4.10) is called the Black-Scholes partial differential equation.
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Now we consider a European call option £ = (St — K)*, whose price at time ¢
is denoted by ¥; = C(t,S¢). In order to obtain an explicit expression for C(¢,x) we
solve the Black-Scholes equation

1
Ci(t,z) + rzCy(t, z) + 502;1020m(t, z) —rC(t,z) =0 (4.12)
subject to the final condition
C(T,r)=(z—K)", z€(0,00). (4.13)

This final condition is not enough for determining a unique solution of (4.12). From
the financial meaning of the option prices, it is readily seen that C' should satisfy the
following boundary conditions at = 0 and = = oo

C(t,0) =0, C(t,z) ~z asx — oo. (4.14)
For solving equation (4.12), we make the following substitutions:
r=Ke¥, t =T —27/0?, C(t,z) = Ke*" P2U(r,y),
where a = —3(k1 — 1), B = —4(k1 + 1)® with k = 2r/o®. Then the problem is
reduced to solve the heat equation
1
U, =Uyy, (1,9) € (0, 502T] xR

subject to the initial condition

U(0,y) = max(ez(:a+1y _g30ai=1y (), (4.15)

Conditions (4.14) allow us to express the unique solution of this heat equation by

1 o0
U(r,y) = ﬁ/ U(O,z)e_(y_z)2/47dz. (4.16)

From (4.16) we get the Black-Scholes formula for a European call option:
C(t,z) = aN(dy) — Ke "M YN (dy), (4.17)
where N(z) is the cumulative standard normal distribution function and
_ log(z/K) + (r + 103)(T —t) dy = log(z/K) + (r — 0?)(T — t)‘
oVT —t ’ oVT —t

By using the put-call parity formula we can get the corresponding Black-Scholes
formula for a European put option:

P(t,z) = Ke " T=YN (=dy) — xN(—d; ).

dq

(4.18)

One important feature of the Black-Scholes model is that the expected rate of
return on the asset does not enter the Black-Scholes equation and Black-Scholes for-
mulas. A careful reader may further notice that if we replace the constant y in (4.1)
by an adapted process (u(t)), the same argument as above still leads to the validity of
(4.9), because two terms involving p; in (4.5) and (4.7) will remain to be equal. Con-
sequently, the Black-Scholes equation and Black-Scholes formulas are applicable to
this case. This remarkable fact was first observed by Merton (1973). An economical
explanation for this somewhat surprising fact is similar to that for the binomial tree
model. As in the latter case, this fact leads to a risk-neutral valuation (see Section
4.4 below).
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4.2 A generalized Black-Scholes model

In this section we generalize Black-Scholes model to the case where the bank account
earns a time-dependent interest rate r(t) and the underlying asset pays dividends and
has time-dependent expected rate of return, volatility and dividend yield. We denote
them by u(t),o(t) and g(t) respectively. Then the asset price process satisfies

dS; = St[u(t)dt + O'(t)dBt], (41)*
and the value process (3;) of the bank account satisfies
dﬂt = ’I“(t)ﬂtdt. (42)*

In the present case, a trading strategy {a(t),b(t)} is said to be self-financing if its
wealth process V; = a(t)S; + b(t) 3 satisfies:

dV; = a(t)dS; + b(t)dB: + q(t)a(t)Ssdt. (4.4)*

The last term in the right side of equation (4.4) means that the gain from dividends
is reinvested in the market.

We assume that r(t), u(t),o(t),q(t) are deterministic functions of ¢. Consider
again a European contingent claim £ = f(St). We anticipate that its price Y; at time
t can be expressed as F(t,S;) with F being a C1-?-function on [0,7) x (0,00). By a
similar derivation as that for equation (4.10) we obtain the following PDE:

—r(t)F(t,x) + Fy(t,z) + (r(t) — q(t))zFp (¢, z) + %az(t)zﬁFm(t, z)=0. (4.12)*

By making the following substitutions of variables:
T T -
y =ze Jo @O, =/ o2 (s)ds; U(r,y) = F(t,z)ele "%,
t

equation (4.12)* becomes

1
Uy = 5yzUyy, (4.12)'

which is a standard Black-Scholes equation.
If we consider a European call option & = (S — K)T, then its price at time ¢ is
equal to C(t, S;), where C(t, z) is given by a generalized Black-Scholes formula:

C(t,2) = EN(d) - Ke TN (dy), (4.17)

where

T
_ 1
T = zxe ft q(s)ds, ’F:—T_t \ T(S)ds,

and d; and d» have the same expressions as (4.18), the only difference is that z,r
and o2 therein are replaced by Z,7 and ﬁ tT o2(s)ds, respectively. We refer the
reader to Wilmott-Dewynne-Howison (1994) for more details on the derivation of this

formula.
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4.3 Practical uses of the Black-Scholes formulas

4.3.1 Historical and implied volatilities

Note that the only unknown parameter in Black-Scholes formulas is the volatility,
which is difficult to measure. One might use historic data of the asset prices to
calculate the standard deviation of asset returns as an estimate of the volatility, known
as historical volatility. In doing so one needs the data over a long time period. This
violates the assumption of constant volatility. However, forecasting the volatility is a
critical factor in trading options. What can we do? Fortunately, the market “knows”
implicitly the volatility through the quoted option prices. That means, admitting
that the Black-Scholes model is correct and the option prices are fair, we can take
the quoted prices of options on the same asset with different maturities and/or strike
prices to deduce, from the Black-Scholes formula, estimates of the volatility. By
taking some kind of weighted average over these estimates we obtain an estimate of
the volatility, known as implied volatility. The latter can be considered as a forecast
of the future volatility. Empirical studies have shown that implied volatilities are
better suited than historical volatilities for predicting an asset’s future volatility. Once
one knows approximately the future volatility, one can use the Black-Scholes formula
once again to detect under- and over-priced options and to build investment strategies
accordingly. It is one of the primary uses of the Black-Scholes formula by practitioners,
including arbitragers and brokerage houses. Here we should mention that a statistical
method of forecasting volatility, called GARCH method, has also received attention in
the financial community. GARCH stands for “generalized autoregressive conditional
heterocedasticity”.

4.3.2 Delta hedging and option’s price sensitivity

Another primary use of the Black-Scholes formula is that it provides useful measures
of the sensitivity of an option’s price to various parameter changes. These sensitivity
measures prove to be very useful and effective tools for monitoring an option’s position
risk exposure. By definition, the delta of an option measures the change in the option
price for a unit change in the underlying asset’s price. The sensitivity of delta to
changes in the value of the underlying asset is called the gamma. The sensitivity of
the option price to changes in the time to maturity (resp. in the volatility, in the
interest rate) is called the theta (resp. Vega, rho).

From the Black-Scholes formula we see that the price of a call option depends on
S, K, 0,7, and T — t, the time to maturity of the option. Since we have

aN'(dy) = Ke "TYN'(d,),

it is easy to prove that

ocC
= — = N
9z (dl) > 0,
92C 1 .
I= o> zoT — tN () >0,
y=9¢ _ z/rN'(dy) > 0,
oo
p= o _ p_ te "T"UKN(dy) > 0,

or
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_oC¢ _ —LN(dl) — Kre "IN (dy) < 0.

==
ot 2T —t

From (4.8) we obtain immediately a hedging strategy {a(t),b(t)} for the call op-
tion, where a(t) is given by the delta (¢, S;) at time of the option. So this hedging
is also called the delta hedging. In practice, in using this delta hedging strategy, there
are two things one should keep in mind. First, due to transaction costs, one should
rebalance the portfolio only when the position’s delta has moved noticeably from its
target level. To this point, the option’s gamma help us to know how frequently one
should rebalance the portfolio. The higher the gamma, the more frequent rebalancing
of the portfolio. Second, one should recalculate the (implied) volatility as often as
possible.

The theta of a call option is always negative. This suggests that a long position in
a call will loss its time value with the passage of time. This loss can only be avoided
by setting a theta-neutral position consisting of short and long holdings in options
that have the same theta. If one believes that the volatility is not constant, one should
also take the Vega into consideration.

Another sensitivity measure of an option’s price is the so-called elasticity or
lambda, denoted by A. It also refers to the leverage of the option position. It measures
the percentage change in the option price for 1 percentage change in the underling
asset’s price. In the Black-Scholes setting, we have

yo 9z _aN(di)

S0z C C
From (4.17) we see that A > 1 always holds. This phenomenon is called leverage
effect. For a put option, A = —%%, where P stands for the price of the put. It is

always negative, but not necessary less than —1. It means that a put option doess
not necessarily have a leverage effect.

4.4 Martingale method in contingent claim pricing

In this section we assume that the filtration (F;) is the natural filtration of the Brown-
ian motion (B;). We introduce a martingale method for the contingent claim pricing
and hedging in a generalized Black-Scholes model. For the clarity of the presentation
we only consider the case where the risky asset pays dividends at a constant rate ¢ and
other parameters of the model are all constants. The price process of the risky asset
is still assumed to obey equation (4.1), but the wealth process V; of a self-financing
strategy {a, b} satisfies (4.4)* with ¢(t) = g. If we put

pg =p+q, X;=e"S,

then (4.1) is reduced to
dXt = Xt(/,l,th + O'dBt), (41)’

and the self-financing condition (4.4)* becomes
dV; = a(t)e” dX; + b(t)dp;. (4.4)

We denote by )Z't the discounted value of X4, i.e. )Z’t =e "tX,.
In the present case where the risky asset pays dividends the definition of allowable
strategy should be modified. A strategy is said to be allowable, if there exists a
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positive constant ¢ such that V; > —c(e™ + X;), for all ¢t € [0,T], where V; is the
wealth at time ¢ of the strategy. The definition of arbitrage strategy is similar to the
discrete-time case.

The starting point of martingale methods for option pricing is the following ob-
servation.

Lemma 4.1 A trading strategy {a, b} is self-financing if and only if its discounted
wealth process (V;) satisfies

dV; = a(t)e~"dX,. (4.19)

Proof Assume {a,b} is self-financing. Since V; = ="'V}, by (3.7), (4.4)" and
(4.3) we have

dvt = —Vire "'dt +e "tdV,
= —[a(t)e™ " X; + b(t)e ™ re "t dt + e " [a(t)e—qtd Xy + b(t)e " rdt]
= a(t)e [ Xyd(e™™) + e "M d X
= a(t)e "dX,.

Similarily, we can prove “if” part.
We will prove that there exists a unique probabilty measure P* equivalent to P
such that the process X; is a P*-martingale. In fact, we can rewrite (4.1)" as

dX; = X[(uuq — r)dt + 0dB;).

Consequently, if we put 4|7, = £(—0.B)r with 6(t) = 6 = (g —r)/0, then by the
Girsanov’s theorem (Theorem 3.12) By = B; + 6t is a P*-Brownian motion and

dX, = X,0dB;. (4.20)

Thus ()Z't) is a P*-martingale. It is easy to see that such a probability measure is
unique. By Lemma 4.1, the discounted wealth process of a self-financing strategy
is a local martingale under P*. Thus, for an allowable self-financing strategy, its
discounted wealth process is a P*-supermartingale, because it can be expressed as
the difference of a non-negative local P*-martingale and a P*-martingale. From this
it is easy to prove that the market has no arbitrage.

We call the probability measure P* the equivalent martingale measure for the
market. By contrast, P is called the objective or physical probability measure. On
the other hand, (4.1) can be rewitten as

dS; = S[(r — q)dt + odB;). (4.21)

It means that under this measure P* the expected rate of return of the risky asset
is equal to 7 — ¢, i.e. the expected rate of rturn of the risky asset plus the dividend
rate is equal to the interest rate of the bank account. For this reason the equivalent
martingale measure P* is also called a risk-neutral probability measure.

Note that (4.1) can be expressed as

dSt = St[(’f' —q+ O"I’])dt + O'dBt],

where n = % We call ) the market price of risk or risk premium of the risky asset.
It represents the excess rate of return above the risk-free rate of return per unit of
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extra risk. To further explain the economic meaning of the market price of risk, we
add a new risky asset in the market. We assume that this asset pays no dividends
and its price process (W;) is the following Itd process

th = Wt[atdt + ,BtdBt]
Thus the discounted price process (Wt) satisfies
AWy = Wil(ay —r)dt + BidBy).

So in order for the new market to have no arbitrage, (Wt) must be a P*-martingale.
Consequently, we must have 8; !(a; — ) = . This means that in an arbitrage-free
market the assets having the same sources of uncertainty must have the same market
price of risk.

The following theorem is the main result of the risk-neutral valuation.

Theorem 4.2 Let £ be a European contingent claim which is integrable under
P*. Then there exists an admissible self-financing strategy {a, b} replicating & such
that its wealth process (V;) is given by

Ve = E*[e T¢I R, (4.22)

or equivalently, (17}) is a P*-martingale. Moreover, such an admissible self-financing
strategy {a, b} replicating & is essentially unique. More precisely, we have

-1 d<‘77 §>t
dt

In particular, if V; = F(t,S;) with F € C12([0,T) x Ry, then a(t) = F,(t,S;). It
implies that we are in a delta hedging situation.

Proof We define V; by (4.22). Then (V;) is a P*- martingale. Since (F;) is also
the natural filtration of (Bj), by the martingale representation theorem (Theorem
3.7) there exists an H € £? such that

a(t) = (625?2) (4.23)

t
Vo=Vo+ [ HdB, teloT) (4.24)
0

Put
a(t) = He/(0Sy), b(t) =V, —a(t)S;. (4.25)

Then {a,b} is a hedging strategy for & and (V;) is its wealth process. By (4.21) and
(4.25) we have

a(t)e""dX, = a(t)e " X,0dB;} = H,dB} = dV,.
Thus by Lemma 4.1 the strategy {a, b} is self-financing and admissible.
Now let {a,b} be an admissible self-financing strategy replicating £. Then by
(4.19) and (4.20) we have
dV, = a(t)e~ "0 X,dB; = a(t)oS,dB;,

from which we get immediately (4.23).
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Now assume that V; = F(t,S;), where F € C12([0,T) x RT. We claim that
a(t) = F,(t,St). In fact, by Itd’s formula,

v, = d(e*”F(t,St)) = e TtF,(t,S,)dS; + “dt” term
dS, + “dt” term

e_qtd)N(t + “dt” term

e_qtd)?t

§t0'de<.

= F,
= F,
= F,
= F,

t, S
t, S
t, St
t, S

~ o~ o~ o~
~— — e

Here the equality before the last is due to the fact that (17}) and X; are P*-martingales,
which implies that the “dt” term must vanish. Thus the claim follows from (4.23).

Remark It is natural to define V; as the “fair 7 price at time ¢t of the contingent
claim £, because with this price there does not exist any arbitrage opportunity for
both the seller and buyer of the contingent claim. This method of pricing contingent
claims is called pricing by arbitrage or arbitrage pricing. Equation (4.22) is called the
risk-neutral valuation formula.

Corollary 4.3 If £ = f(St), then V; = F(t,S;), where

Jo (T—t) * o(T—t) . (r—o/2)(T—t)+oyvVT—t €7y2/2d 4.26
t,z) =e " e 0 Vwet - )W :
(t.2) / 4 ) ey (4:26)

Proof We express St as
Sr=e TXr =e TX (X7 X7 = e 1T VS, exp{(r—0°/2)(T —t)+0(Bi— B})}.

Since S; is measurable w.r.t. F; and B} — B is independent of F;, by (4.20) and
Theorem 1.1 we have

Ve =B [e 700 f(e 0T Dz exp{(r — 0*/2)(T — ) + o(B} — B}

)
=S,

from which we get V; = F(t,Sy).

4.5 Pricing American contingent claims

Now we turn to the problem of pricing American contingent claims in the Black-
Scholes framework. We assume that the asset pays no-dividends. In the continuous-
time case, an American contingent claim is naturally defined as an adapted non-
negative process (h¢)o<¢<7. For simplicity, we only consider an American contingent
claim of the form h; = g(S;). For a call, we have g(z) = (z — K)™*, and for a put,
g() = (K —a)*.

Similar to the discrete-time case, for pricing American contingent claims we should
introduce the strategy with consumption. By such a strategy we mean a trading
strategy ¢ = {a, b} with the property that

a(t)Se + b(t) B = a(0)Sy + b(0) + /0 a(s)dSs + /0 b(s)dBs — Cy

for all t € [0,T], where (C;) is an adapted, continuous, non-decreasing process null
at t = 0. C; represents the cumulative consumption up to time t. We denote by
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Vi(¢) the wealth at time t of ¢, namely, Vi(¢) = a(t)S; + b(t)B:- A strategy with
consumption ¢ = {a,b} is said to super-hedge the American contingent claim (h;),
if for all ¢t € [0,T],V¢(#) > h¢, a.s.. So a super-hedging strategy is automatically
admissible.

Let 7¢,r be the set of all stopping times taken values in [t,T]. Put

o(t,o) = sup E*[e 7 Og(wexp{(r - (o2/2)(r — 1) + o(Br — B)})]
TET:,T

where we assume g(z) < A + Bz so that ®(t,z) is well defined. It is easy to prove
that the process e "' ®(t, S;) is a supermartingale that dominates the process g(S;)
for all ¢t € [0, 7).

The following theorem is the main result concerning the pricing American contin-
gent claims. For a proof we refer the reader to Karatzas and Shreve (1988), p.376-378.

Theorem 4.4 There is a trading strategy with consumption ¢ such that ¢ super-
hedges (9(St)) and Vi(¢) = ®(¢t, Si), V¢t € [0,T]. Moreover, for any trading strategy
with consumption ¢ super hedging (g(S:)), we have V;(¢)) > ®(¢t, S) for all ¢ € [0,T].

We call ®(t, S;) the selling price at time t of the American contingent claim. The
following theorem shows that the American call option and the European call option
have the same price at any time ¢, if the underlying asset pay no dividend.

Theorem 4.5 In the call option case, i.e. g(z) = (z — K)*, we have ®(¢,z) =
C(t,z), where C is defined by (4.17).

Proof We only consider the case ¢ = 0, other cases being similar. Since §t is
martingale under P*, for any stopping time taking values in [0,7], we have

S, —e ™K =E*[e " (Sr — K)|F;] <EB*[e " (Sr - K) Y| F],
from which we get
(Sr —e "TK)T < (S; —e "TK)Y <E*[e (St — K)*|F].
By taking expectations we obtain
E*[(S; —e""K)*] < E*e™"T(Sp — K)*].

This implies the result.
We will further study the problem of pricing American put options in Chapter 6.
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CHAPTER 5

Exotic Options

Any option which is not vanilla is called an exotic option. Exotic options are widely
used today by banks, corporations and institutional investors, in their management of
risk. The simplest type of exotic options are the binary or digital options. The payoff
at time ¢ of a binary option is given by BH(S; — K), where H(-) is the Heaviside
function, S; is the price at time ¢ of the underlying asset and B is a constant. Other
types of exotic options are the barrier options, Asian options and lookback options,
which will be defined shortly. They are all path-dependent in the sense that their
payoff at exercise or expiry depends on history of the underlying asset. Note that any
American-style option is path-dependent but not necessarily exotic.

In this chapter we will study the problem of pricing path-dependent exotic options.
These are barrier options, Asian options, and lookback options. For simplicity, we
continue to work in the Black-Scholes setting and consider only European-style op-
tions. For some options we can get explicit expressions for their prices. For others we
can only deduce PDEs which govern their prices. We shall use at ease the notations
of Chapter 4 concerning the Black-Scholes model.

5.1 Barrier options

Barrier Options are options that are either worthless ( “out”) or established (“in”),
when the price of the underlying asset crosses a particular level (“barrier”). Common
examples of single-barrier options are “down-and-out”, “down-and-in”, “up-and-out”
and “up-and-in” options for calls or puts. A double-knock binary option or up-and-
down out binary option is a simplest double-barrier option. It is characterized by
two barriers, L (lower barrier) and U (upper barrier): the option knocks out if either
barrier is touched. Otherwise, the option gives at maturity the usual binary payoff.
Barrier options have become increasingly popular over the last few years. Since their
price is less expensive than the standard options, barrier options may be an appro-
priate hedge in a number of situations. For instance, a down-and-in put with a low
barrier offers an inexpensive protection against a downward move of the underlying
asset. Pricing barrier options in the Black-Scholes setting is not difficult, as will be
seen below. Closed-form solutions for all types of single-barrier options have been
offered by Goldman et al. (1979) a long time ago (see also Rubinstein (1991). Two
different analytic expressions for double-barrier options have been worked out recently
by Geman and Yor (1996) and Hui (1996).
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5.1.1 Single-Barrier options

We only consider a down-and-out option with strike price K, maturity 7', and an
out-barrier X < K, the other cases can be treated in a similar way. The payoff at
expiry of this option is the same as that for call option (i.e. (St — K)1), provided
that S; never falls below X before T'. Therefore, if, instead of C(¢,S;), we denote
by C(t,S;) the price at time ¢ of the barrier option and make the same change of
variables as in Section 4.2 of Chapter 4, the present problem reduces to the solution
of the following heat equation

1
Ur =Uyy, (1,y)€ (0, iazT] xR
with ) )
U(0,y) = max(ez:1+1)¥ — 2=y )y > Jog(X/K),
Ult,y) ~ e(1=Y=F7 4q y — 00,

and
U(t,log(X/K)) =0,

where k1 = % In dealing with this last boundary condition by the so-called method
of images we can obtain

Ct,z) = Clt,z) - (%)7('“71)0(7:,)(2 /z). (5.1)

See Wilmott-Dewynne-Howison (1993) or Rubinstein (1992) for more details about
the derivation.

5.1.2 Double-barrier options

In this subsection we follow closely Hui (1996). We consider a double-knock option
with two barriers L, U, maturity T, and the binary payoff g(St). For a call or put,
the strike price K satisfies L < K < U. We assume that the asset pays a dividend
at rate Dg. If the price at time ¢ of the double-knock option is given by C(t,S),
then the corresponding PDE remains as (4.12)'. The only change is the boundary
conditions:

Cit,L)y=C@t,U)=0, t<T; CT,z)=g(z), L<z<U.
By making a similar change of variables as in Section 4.3 of Chapter 4 (replacing K
by L), the pricing problem is reduced to the solution of the following heat equation
1
Ur = Uy, (7:y) €(0,50°T] x (0,log(U/L)

subject to the boundary conditions

U(r,0) = 0, U(T,log%):(), >0

and the initial condition

g(LeY)e~ ¥

U(an) = U

, 0<y<log(U/L).
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Now we assume the function g is continuous and satisfies the linear growth condition.
Then since the boundary conditions are homogeneous, we can use the method of
separation of variables to solve this equation. The solution is:

Ur,y) = Z bn(7) sin (”—V?), (5.2)

where W = log(U/L), ba(t) = bnexp{—(%5#)}, and (b,) is the sequence of the
Fourier coefficients of U (0,y), namely,

2 " nmy
-_< Yo~ gin (2
bn, LW/O g(LeY)e sm( W )dy.

Thus we can get an expression for C(t,z). If g(z) = R is a constant, then

br

_ 2mR [1— (=1)"W—
- LW? [OP + (nm/W)? ] '
In this case, the n-th term in the series (5.2) is of the order n~te~n (T~

We refer the reader to Geman and Yor (1996) for a probabilistic approach to
this problem. Their result is expressed in terms of the Laplace transform w.r.t. the
maturity 7T'.

5.2 Asian options

By an Asian option we mean an option whose payoff depends on a suitably defined
average of the asset price. There are two kinds of average: geometric and arithmetic.
For each kind of average there are two types of options: the average strike and average
rate options. They are similar to a European vanilla option, the only difference is that
in the payoff, for the former, the strike price is replaced by the average, and for the
latter, the asset price is replaced by the average. The sampling for the average can
be discrete or continuous. In this section we only consider the average rate options
with continuous sampling.
There are two types of average rate call options whose payoffs are equal to

I i
&L= (exp {T/o log(Su)du} - K)
1T "

respectively. The first one uses the geometric average, while the second one uses the
arithmetic average. We denote by Ct(’) the price at time t of &;,7 =1, 2.

We consider the geometric average case first. We denote by P* the equivalent
martingale measure for S. Then we have

and

oY = e T T-OE [ |F). (5.3)
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Put ;
I = / log(Su)ds. (5.4)
0
Then
1 1 [T . Tt +
& = (exp{TIt+ T/t log(S,S; *)du + logSt} —K) ,
= (XY, - K)T,
where
1 [T
X, =e/TST/T Y, = exp {T / log SUS;ldu}. (5.5)
t
Note that )
g *
Sy = Sp exp {(7‘ - 7)t—|— oB; },
we have
1 T 02 *
= — - _ * _ p* — o (T—t)+2,
Yt—exp{T/t [(r 2)(u t) +o(B; Bt)]du} e
with R .
. o* T —1 1 s
r=- )t g T/t o(B% — BY)du. (5.6)

Since Z; is independent of F; and X; is JF;-measurable, by Theorem 1.1 we have
C’t(l) = e "T-YF(t, X;), where

F(t,z) = B*[(ze” (T-D+% _ )+
Note that Z; is a Gaussian random variable with mean zero and variance ¢*2(T —t),

with
*2 02 (T - t)2
g

= 7 | 5.7
3T (5.7)
We have
. o * — T + _ 2
F(t,z) =eo (I8 [ (e" VI-ty _ e (T t)) \/%—We z dy (5.8)
= 2el"+FIT-ON(d}) - KN(d3),
where
1 K * 4+ o*?)(T - 1 K)+r(T—t
P C S R s TC A S CECOT SRS\ R
o*T —t o*/T —t

Now we turn to the pricing of an arithmetic average rate call option. In this case
we have

o =B [e Y (% /0 " St — K)Jr‘ 7. (5.10)

Following Rogers and Shi (1995) we put

M, = E* [(/OT Sudu — TK)JF‘ }}]. (5.11)
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Since ftT S; 1S, du is independent of F;, we have

M, = S,E* [(/tT S71Sudu — S7H(TK — /Ot Sudu))+|ft] =5, f(t,Y2),
where r
fi,z) =E* [(/ S Sudu — :c) +] (5.12)
t

andY; = S, ' (TK — f(f Sydu). For the case z < 0, we have

fit,z) =E* [(/tT S Sudu — w)] = /T ey — g =r~ e T — 1) — .

t

It remains to treat with the case z > 0. Since

dS; ' = —8,2dS; + S;2d(S, S); = S; *[(¢® — r)dt — 0dB}],

we have ‘
avi = (Tx - / Sudu)dS; — dt = Yi[(o* ~ 0dBy] — dt.
0
Consequently,
d(Y,Y), = Y 0 dt
and

d(S, f(JY)>t = fw(tay;f)d<s7 Y)t = —fz(t,Kf)StKeUth-

In the following we use the notation A ~ B to mean the fact that A — B is a local
martingale under P*. Therefore, by It&’s formula we obtain

dM;

Sedf (t,Y:) + f(t,Y:)dS; + d(S, f(-,Y.))

Syt Vo)t + Fu6,YOY: + 3 fua e, YAV, V]
+f(t,Y3)dSe + d(S, f(-, Y ))e

St (ft —(1+7Yy) fs + %a%zfm + rf) (t,Y;)dt.

e

Since (M) is a martingale under P*, the above term on the right hand side must
vanish. This leads to the following PDE:

(72.%'2
fi— (U +ra)fs + Tfm +rf=0, z>0. (5.13)

The first boundary condition is (by (5.12))
f(T,z) =0.

The second one is
F(£,0) =r~H (e ™D — 1),
because

E*[S;'S,] = E* [exp{a(BZ - B}) — (%2 —r)(u— t)}] — orlu—t).



5. Exotic Options 40

In addition, since
T
falt,z) = —P*(/ S; Sudu > 3),
t
we have the third boundary condition:

lim f,(¢t,z) =0.

T—00

Unfortunately, the analytic expression for the solution of (5.13) has not been found
yet. However, a lower bound for the option price was provided in Rogers and Shi
(1995).

5.3 Lookback options

By a lookback option we mean an option whose payoff depends on the maximum or
minimum realised asset price over the option’s life. Like Asian options, there are two
types of options: the lookback strike and lookback rate, in both call and put varieties.
They are similar to a European vanilla option, the only difference is that in the payoff,
for the former, the strike price is replaced by the sampled maximum or minimum, and
for the latter, the asset price is replaced by the sampled maximum or minimum. The
sampling of the underlying asset price can be discrete or continuous. In this section
we only consider the continuous sampling.

5.3.1 Lookback strike options
The payoff of a lookback strike call (resp. put) is defined by
& = St —ming<s<7Ss, (resp. n = maxo<s<1Ss — ST).

We denote the prices at time ¢ of a call and a put by C; and FP; respectively. By
Theorem 4.2, we have

Co=e "T OB ¢|F], B=e "TYEy|F) (5.14)

We are going to deduce an explicit expression for P; from the following well known
result due to Shepp (1966)

P(maxsst(aBs +s) < :17) = N(%) - em/fN(%), (5.15)

where z > 0 and N(z) is the cumulative standard normal distribution. We let A =

r — 10? and set

Mt = maXOSSStSS, Lt = maxtisSTSs. (516)
Then M; is Fs-measurable. Since
S; 'Ly = exp{max;<s<r(0(B*s — B}) + A(s — 1)},
S, 1L, is independent of F;. By using these notations we have

P = e*r(Tft)E*[MT = St|Fi] = eiT(T*t)StE*[maX(St_lMt; St_lLt)lft] — 5
e T B max(y, 57 L)l st ar, = St -
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We denote P(maxsst(aBs +As) < :c) by F;(z), then we have

B [max(y, ST L] = B [explmax(logy, maxi<,<rlo (B — Bf) + As — 1])}]
= E[exp{max(logy, maxo<s<7—_¢(0B;s + As)) }]
= yFT_t(logy)-i—/ e"Fp_,(z)dx.
logy

After computations we get
Pt: St(—1+N(d3)(1+U2/2T))

+Mte—r(T—t)( (d1)—02/2'l“( lMt)(zT/o'Z) 1N(dg)) (5.17)
where
g = log(My/S;) — (r — 50°)(T — 1)
1 - U\/T— )
L —log(Mi/S) = (r = )T - 1)
2 oVT —t ’
b log(My/S) + (1 + 3o*) (T — 1
T oVT —t '

Similarily, from the result

P<mins§t(aBS +As) < —m) = N<_52\;E)\t) n 6_2/\z/02N<—52\-i/-i)\t)

we obtain an explicit expression for Cj.
The explicit expressions for P; and C; were derived by Goldman-Sosin-Gatto
(1979).

5.3.2 Lookback rate options

We only consider the sampled maximum and call option case. In this caes, the payoff
of a lookback rate call option is defined by

é' = (maXOSSSTSS - K)+

We denote by C; its price at time t. By Theorem 4.2, we have

C; = e " TTOE* ¢ | Fy). (5.18)
Using the notations of the previous subsection and letting K; = max(My, K) we have
E* ¢ | F] = Emax(Mr,K)— K |F]

Il

E*max(Ky, L) — K¢ | Fi]+ Ky — K

= B ((Li—K)t | ]+ K — K

= SE*(S,'Li —S;'K))* | Fi] + Ki — K
= SE(S7'Le— )] |,es-1k, +Ki— K

+
- S,E* [exp { (maXtSSST(a(B; —B)+As—1) - y) }] v K - K
= SiElexp{(maxo<s<r—t(0Bs + As) —y)"H + K; — K

oo

— 4~ Prollog) + [ eFp(@)da.

logy



5. Exotic Options

From the same computations as in the previous subsection we get

Ci =SN(ds)(1+0°/2r))
+Ke (Tt (N(dl) — 02 /2r(S{1Kt)(zr/‘TQ)*lN(dz)) —e"T-HEK, (

where

d1 = )
oT —1t

4y — —log(Ky/S;) — (r — 30°)(T — 1)
oVT —1t ’

dy = —log(K¢/S) + (r + 50°)(T — 1)
oVT —1t

42

5.19)
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CHAPTER 6

The Ito6 Process and Diffusion Models

In this chapter we will introduce a general framework for a financial market. In the
first section we present some basic concepts and fundamental results on martingale
methods in the pricing and hedging of European contingent claims under the It
process setting. In the second section we show that within the diffusion process
framework the pricing and hedging of European contingent claims can be reached
through a PDE approach. In the third section we address the problem of pricing
American contingent claims in the diffusion model. Finally, we make a brief discussion
on stochstic volatility models.

6.1 The It6 process model

6.1.1 The numeraire and self-financing strategies

We fix a finite time-horizon T. Let B = (B!,---, B%) be a Brownian motion on a
complete probability space (2, F,P). We denote by (F;) the natural filtration of
(B;) and by L the set of all measurable (F;)-adapted processes. We adopt the same
notations £! and £2 as defined in Chapter 3. For an Itd process X with the canonical
decomposition

t t
X, = Xo +/ a(t)dB, +/ b(t)dt,
0 0

we put
LX) = {o €L:0ac (L2, 0b € cl}. (6.1)

We consider a financial market which consists of m + 1 assets. The price process
(S}) of each asset i is assumed to be a strictly positive Itd process. Since its logarithm
is also an It6 process, we can represent (S}) as

dsi = i [ai(t)dBt n ,ﬂ'(t)dt], Si=p;, 0<i<m. (6.2)

We call u = (u°,---,u™) the vector of expected rate of return and o the wvolatility

matriz.
We specify arbitrarily one of the assets, say, asset 0, as the numeraire asset. We
set v, =(SP) ! and call ; the deflator at time t. By It6’s formula we have

dy = 1[0 (OB, + (1) — |0 (1))t
We set Sy = (S,---,S™) and Sy = (S},---,S™), where Sf = ,Si. Then we have

dSi = Si [ai(t)dBt + bi(t)dt], 1<i<m, (6.3)



6. The It6 Process and Diffusion Models 44

where
a'(t) = o' (t) = a°(t); V(1) = p'(t) = p°(t) + [o° (D) = o' (1) - °(8).
In particular, if asset 0 is a bank account with interest rate process (r(t)), then
a'(t) =o'(t), b(t)=u'(t) —r(®).
A trading strategy is a pair ¢ = {6°,6} of Fi-adapted processes, where
0(t) = (6"(1),---,0™(), 0" € LX(S), VO<i<m.

%(t) represents the numbers of units of asset i held at time ¢. The wealth V; at time
t of a trading stratey ¢ = {6°,0} is

Vi = 6°(1)S°(t) + 0(t) - (). (6.4)

Its deflated wealth at time ¢ is V; = Viy. A trading strategy ¢ = {6°, 0} is said to be
self-financing, if

t t
Vi =Vo + / 6° (u)dS? + / 0(u)dS,. (6.5)
0 0

Put S7*t! =377 Si. As in the discrete-time case, a strategy ¢ = {6°,6} is said
to be allowable, if there exists a positive constant ¢ such that the wealth process (V;)
is bounded from below by —cS™*'. The definition of admissible or tame strategy is
similar to the discrete-time case.

Similar to the case of Black-Scholes model (see Lemma 4.1), we have the following
characterization of the self-financing strategy.

Lemma 6.1 A trading strategy ¢ = {6°,60} is self-financing if and only if

dV, = 0(t)dS;. (6.6)

Proof Assume that ¢ = {6°,6} is a self-financing strategy. We rewrite dS; and
dy as
dSt = O'S(t)dBt + /Ls(t)dt,

d’)’t = O'fy(t)dBt + /J/»y(t)dt.
Applying Itd’s formula to the product V;7; we obtain (noting that d(S?v;) = 0)
dVy = Vidy +7dVy + d(V,7)s
(6(t) - S)dye +1:0()dSe + [6(t) T o5 ()]0 (t)dt + 6°(£)d(S; )

[4%4

Similarly, we can prove the “if” part.

6.1.2 Equivalent martingale measures and no-arbitrage

Assume that asset j is taken as the numeraire asset. Let Q be a probability measure
equivalent to the “objective” probability measure P. If the deflated price process is
a (vector-valued) Q-martingale, we call Q an eguivalent martingale measure for the
market. We denote by M/ the set of all equivalent martingale measures. Here the
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superscript j indicates that asset j is taken as the numeraire. We will see below in
Theorem 6.9 that for any pair (i, j) of indices from {0, ---,m} there exists a bijection
from M? onto M.

A market is said to have arbitrage opportunity if there exists an allowable self-
financing strategy such that its initial wealth V4 is zero but its terminal wealth V7 is
non-negative and P (Vr > 0) > 0.

In the following we specify asset 0 as the numeraire. By Lemma 6.1, the deflated
wealth process of any self-financing strategy is a local Q-martingale for each Q € M°.
As a consequence, for any Q € M?, the wealth process of any allowable self-financing
strategy is a Q-supermartingale.

If MO # (), we say that the market is a fair market. The following theorem shows
that the fairness of a market implies no-arbitrage.

Theorem 6.2 A fair market has no arbitrage.

Proof Let P* € M°. Let ¢ = {6°,6} be an allowable self-financing strategy
with initial wealth zero. As mentioned above, its deflated wealth process (17,5) is a
P*-supermartingale. Therefore, we must have E*[‘~/T] < 0. So there is no arbitrage.

Remark For a general semimartingale model of financial market, Frittelli and
Lakner (1994) showed that the fairness of a market is equivalent to “no-free-lunch”,
slightly weaker than no-arbitrage. By using a theorem of Kusuoka (1993) and Delbaen
(1992) Yan (1997) gives a new characterization of fairness of a market. In view of the
economic meaning of no-free-lunch, an equivalent martingale measure is also called a
risk-neutral probability measure.

One raises naturally a question: what conditions should we impose on coefficients
a and b of the diffusion (S;) such that the market is fair? The following theorem gives
a partial answer to this question.

Theorem 6.3 If the market is fair, the linear equation

a(t)y(t) = b(t), dt x dP—a.e.,a.s. on [0,T] x Q (6.7)

has a solution v € (£2)?. Conversely, if

T
exp{%/ﬂ |ai(t)|2dt}

and equation (6.7) has a solution 1 € (£2)? satisfying

exp {% /OT |¢(t)|2dtH < o0, (6.8b)

then the probability measure Q with Radon-Nikodym derivative Z—g =&(—y.B)r is
an equivalent martingale measure.
Proof Let Q € M°. Put

E <00, 1<i<m, (6.8a)

E

M, =B(227).

Then (M) is a P-martingale. By the martingale representation theorem for Brownian
motion there exists ¢ € (£2)¢ such that dM; = ¢(t)dB;. Set 1(t) = —¢(t)/M;. Then
M = &£(—1.B) and by Girsanov’s theorem B} = B, +f(f ¥(s)ds is a Brownian motion
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under Q. Moreover, by Theorem 3.13 (Bj) has also the martingale representation
property w.r.t. (F;) under Q. Thus there exists some o* € (£2)™*? such that

dS, = o*(t)dB} = o*(t)(dB; + 1(t)dt).

According to the uniqueness of the representation of It process (S;) and the invari-
ance of the stochastic integral under a change of probability, from (6.3) we know that
o*(t) = Sa(t), dtxdP-a.e., as., and consequently, a(t)y(t) = b(t), dt x dP-a.e., a.s..
So (¥(t)) is a solution of equation (6.7).

Now assume that a satisfies (6.8a), 1) is a solution of (6.7) and verifies (6.8b). By
the Novikov theorem (Theorem 3.11) £(—1.B) is a P-martingale. So we can define
a probability measure Q such that 3—3 = &(—¢.B)r. In order to prove that (§t) isa

Q-martingale, it suffices to prove that the product £(—.B)S is a P-martingale. By
(6.3) and (3.8) we have

Si=Sexp | /Ot[ai(s)st +bi(s)ds] — %/Ot a'(s)?ds )}

Thus from (6.7) we know that
o~ o~ t . t .
£(-0.8),5 = Syexp{ [ (@i(s) = w(a)ap, - 5 [ a'(e) ~v(w)as}.

Once again by the Novikov Theorem &(—1).B)S! is a P-martingale.

This theorem leads us to pose the following definition.

Definition 6.4 If a satisfies (6.8a) and equation (6.7) has a solution ¢ which
satisfies (6.8b), the market is called standard.

According to Theorem 6.3 and 6.2 a standard market is fair.

Remark Assume that asset 0 is a bank account with the interest rate r(t) and
equation (6.7) has a solution n € (£2)¢. We call such a 1 a market price of risk
(process). Note that in this case equation (6.7) is reduced to

a(t)n(t) = p(t) —r(t), dt x dP—a.e.,a.s. on [0,T] x Q. (6.7)

So the economic meaning of a market price of risk is that n provides a proportional
relationship between mean rates of change of prices u—r and the amounts ¢ of “risk”
in asset price changes. If Q is an egivalent martingale measure and ‘;—3 =&(—n.B)r,
then 7 is just a market price of risk.

The following theorem provides a sufficient condition for the existence of a unique
equivalent martingale measure.

Theorem 6.5 Assume that m > d, a satisfies (6.8a) and a”(t)a(t) are non-
degenerated for a.e. t, where a”(t) stands for the transpose of a(t). Put ¢(t) =
(aT(t)a(t)) ta(t)b(t). If 1) satisfies (6.7) and (6.8b), then there exists a unique
equivalent martingale measure P* for the market. Moreover, we have

apP*
dp

E[ ]—'t] =exp{—/0t¢(s)st—%/0t |¢(s)|2ds}, 0<t<T.

Proof Under the assumptions of the theorem, the market is standard, so by
Theorem 6.3 there exists an equivalent martingale measure. To prove the uniqueness,
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let Q be an equivalent martingale measure. There exists a § € (£2)? such that
‘;—3 = £(0.B)r. By Theorem 6.3, we have a(t)0(t) = b(t). Consequently, applying
(aT(t)a(t))~taT(t) to both sides of this equation we get 6(t) = ¢(t). The uiqueness
is thus proved.

Remark If m = d, then ¢ satisfies (6.7) automatically.

By a Furopean contingent claim we mean a non-negative Fpr-measurable random
variable.

Definition 6.6 Let Q € M° A European contingent claim ¢ is said to be
Q-replicatable (or attainable) if there exists an admissible self-financing strategy such
that its terminal wealth is equal to ¢ and its deflated wealth process is a Q-martingale
for some Q € M°. Such a trading strategy is called a Q-hedging strategy for &.

Now assume that there exists a unique equivalent martingale measure P* for the
market. According to a theorem due to Jacod and Yor (1977), the uniqueness of
equivalent martingale measure implies the martingale representation property under
the equivalent measure. From this result we can prove that the market is complete
in the sense that any European contingent claim & with the deflated value v,.£ being
P*-integrable is P*-replicatable. In our case we can prove this result directly, as will
be shown below.

Theorem 6.7 If the conditions in Therorem 6.5 are satisfied, then the market is
complete.

Proof Let P* be the unique equivalent martingale measure. By Theorem 6.5 we
have % = &(—.B)r, where

»(t) = (a” (t)a(t) " a” (£)b(2).

We put Bf = By + [, ¢(s)ds. Then (B]) is a P*-Brownian motion. Let ¢ be a
non-negative contingent claim such that E*[y,.£] < co. We put

Ve = v "B €| A

Then the deflated value process (YZ) is a P*-martingale. Since by Theorem 3.13 (Bj})
also has the martingale representation property w.r.t. (F;) under P*, there exist two
processes H and K in (£2)™*? such that

dV, = HydB; = H,(dB; + (t)dt),
dS; = K;dB; = K,(dBy + 1(t)dt).
From (6.3) we know that K; = S;a(t) and a(t)y(t) = b(t). Thus we have
S (a” (t)a(t)) " aT (t)dS, = dBy + 1(t)dt.
Set

8(t) = HiS; M (@ (t)a()"LaT (1), 6°(t) =8P [Vi — Vo — / t 0(u)dS.].
0

Then ¢ = {6°,6} is a hedging strategy for &, whose wealth process is (V). By
definition, the market is complete.

Remark If m = d and the market is standard, then the market is complete
if and only if a(t,w) is non-singular, for (t,w) € [0,T] x Q, a.e., a.s.. See Karatzas
(1997).
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6.1.3 Pricing and hedging of European contingent claims

In this subsection we study the problem of the pricing and hedging of European
contingent claims. We assume that the market is fair.

Let £ be a contingent claim. One raises naturally a question: what is a “fair”
price process of £? Assume that v,.£ is P*-integrable for some P* € M°. We put

Vi = B[y, | Fi. (6.9)

If we consider (V}) as the price process of an asset, then the market augmented with
this asset is still fair, because the deflated price process of this asset is a P*-martingale.
So it seems that (V;) can be considered as a candidate for a“fair” price process of &.
However this definition of “fair” price depends on the choice of the equivalent measure.
We will show that for replicatable contingent claims this definition is reasonable.

Theorem 6.8 Let P*,Q € M and ¢ be a P*- and Q-replicatable contingent
claim. Let (V;) (resp. (U;) be the wealth process of a P*- (resp. Q-)hedging strategy
for £. Then (V) and (U;) are the same. Moreover, V4 is given by (6.9).

Proof Put 17,5 = vV, (7,5 = mnU;. Then (I7t) is a P*-martingale and a Q-
supermartingale and (U;) is a Q-martingale and a P*-supermartingale. Note that
Ur = Vp = £ we have

E*[Vr| 7] = Vi > Eq[Vr| 7] = U,

Thus we have V; > Uy, a.s.. Similarily, we have U; > V4, a.s.. Hence V = U. The last
assertion of the theorem is obvious.

Remark According to Theorem 6.8, for a P*-replicatable contingent claim & it
is natural to define its “fair” price at time ¢ by (6.9). We call this method of pricing
the risk-neutral valuation (or pricing by arbitrage, or arbitrage pricing).

The following theorem shows that the risk-neutral valuation is invariant under the
change of numeraire.

Theorem 6.9 Let j € {0,1,...,m}. For a P* € M° we define a probability

measure Q by
aQ S8 ;
= =2(89)7" S5 6.10
e =5 D78 (6.10)
We denoted it by h;j(P*). Then hj is a bijection from M° onto MJ. Moreover, if
P* € MO and ¢ is a P*-replicatable contingent claim, then £ is a h;(P*)-replicatable
contingent claim, and its “fair” price process is invariant under the change of nu-
meraire. ]
Proof We let v, = (S7)~! and put

Si=~Si, 0<i<m.

Let P* € M°. We define a probability measure Q by (6.10). Since (§2) 157 is a
P*-martingale, we must have

o * dQ _ S(()] 0\—1qJ
M, :=E [dP* ft] = S_S(St) 7. (6.11)
From the fact that )
5o

MS; = MijS; = goSi
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we know that Q is an equivalent martingale measure for the market with asset j as
the numeraire asset, i.e. Q € M7. Now assume that £ is a P*-replicatable contingent
claim. We have

So

0 .
Eq[(v,) €] = E*[Mr(v,)"'¢] = ?E*[%&] = (S5) ™' Va.
0

This implies that a P*-hedging strategy for £ is also a Q-hedging strategy for £. So
¢ is a Q-replicatable contingent claim. Moreover, by the Bayes rule we have

() 'Baly €l 7] = ()M B (M€ 7
= % Bl L

This proves that the “fair” price process of ¢ is invariant under the change of nu-
meraire.

Now assume that the conditions in Theorem 6.5 are satisfied. So there exists a
unique equivalent martingale measure P* for the market and by Theorem 6.7 the
market is complete. Let £ be a European contingent claim such that v,& is P*-
integrable. From the proof of Theorem 6.7, there exists actually a P*-hedging strategy
for £. So in this case, the “fair” price process of £ is given by (6.9).

In general, if a contingent claim & is not replicatable, we can not define its “fair”
price process. In this case we need new kinds of trading strategies. Similar to the
discrete-time case, a strategy with consumption is a trading strategy ¢ = ¢ = {6°,6}
with the property that for all ¢ € [0,T7,

t t
69(£)S + 6(t) - S; = 6°(0)SC + 6(0) - So + / 6°(u)dS® + / 8(u)dS, — C;
0 0

where (C;) is an adapted , continuous, non-decreasing process null at ¢t = 0. C;
represents the cumulative consumption up to time t. By contrast, a strategy with
reinvestment is a trading strategy ¢ = {6°,6} with the property that for all ¢ € [0, 7],

t t
6°(t)SY +6(t) - Sy = 6°(0)S3 + 6(0) - Sp + / 6° (u)dS? + / 6(u)dS, + Ry
0 0

where (R;) is an adapted, continuous, non-decreasing process null at ¢t = 0. R;
represents the cumulative reinvestment up to time ¢. For a strategy ¢ of these two
kinds we denote by V;(¢) the wealth at time t of ¢, namely, Vi(¢) = 6°(t)S? +
0(t) - S;. Similar to the discrete-time case, the deflated wealth process of a strategy
with consumption is a Q-supermartingale for any equivalent martingale measure Q.
By contrast, the deflated wealth process of a strategy with reinvestment is a local
Q-submartingale for any equivalent martingale measure Q. We denote by G. the
set of all admissible strategies with consumption and by G, the set of all admissible
strategies with reinvestment.

The following definition seems to be reasonable.

Definition 6.10 Let £ be a European contingent claim such that £ is Q-integrable
for some Q € M°. We put

V;fs = GSSinf{‘/t(qs) : ¢ € gw VT(¢) 2 f}a
VP = esssup{V;(¢) : ¢ € G, V() < &}
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We call V;? and V}? the seller’s price (or upper-price) and buyer’s price (or lower-price)
at time ¢ of £, respectively.

Note that there exists a version of V?® (resp. V?®) such that V* (resp. V?) is a
Q-supermartingale (resp. local Q-submartingale).

We refer the reader to Karatzas (1997) or Musiela and Rutkowski (1997) for an
account of this subject. Note that our definition of buyer’s price is a little different
from that given in the above two books.

6.2 PDE approach to contingent claim pricing

In this and the next section we assume that the market consistes of m + 1 assets,
one of which is a bank account. We denote by S? the value process of the bank
account and S; = (S, --,S™) the price processes of the other assets. We take (S?)
as the numeraire. Assume that the interest rate process is of the form r(¢,.S;) where
r: Ry xR™ — R, is Borel measurable and (S;) is a diffusion process. Moreover, we
assume that there exists a unique equivalent martingale measure P* for (§t) Then
under P*, (S;) can be expressed as:

as; = 5i[o(t, $)dB; +r(t, S)dt], Sy=pi, 1<i<m, (6.12)

where ¢ : Ry x R™ — M™% is Borel measurable and (B;}) is a d-dimensional
Brownian motion under P*. If r(t,z)z and the matrix (z°c?) are Lipschtiz in = and
satisfy the linear growth condition in z, then according to Theorem 3.14, (6.12) has
a unique solution.

We shall show how the problem of European contingent claim pricing in this model
is related to a parabolic PDE. Let a European contingent claim & be of the form g(St)
with a non-negative Borel function on R%. Assume that E*[y, g(St)] < co. By (6.9),

the price at time ¢ of an contingent claim £ is given by
T
V= B |e o r@5ds g ‘]—'t] . (6.13)

If V; can be expressed as V; = F(t,S;), then by Markovian property of the diffusion
(Sy), intuitively we should have

T
F(t,0) =E*[e Jo 599 g(5118, = a.

By using the notation in (3.20) we can rewrite this expression as

Ft,z) = E*tofe Jo m&S0ds g (6.14)

Consequently, under some purely technical conditions, F'(¢,z) solves the following
parabolic PDE
ou
ot
subject to the terminal condition u(T, z) = g(z), where (A;f)(z) is defined by (3.15)
with a(t,z) = zo(t,z)(zo(t,z))T and b;(t,z) = r(t,z)z;. The Black-Scholes differen-
tial equation (4.10) is a particular case of (6.15).

+ru=Aw, (t,z)€0,T)xRL (6.15)
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6.3 Pricing American contingent claims

Now we address the problem of pricing American contingent claims in the diffusion
model setting. We will use the same notations adopted in the previous section. Recall
that an American contingent claim is defined as an adapted non-negative process
(ht)o<t<T- For simplicity, we only consider an American contingent claim of the form
hi = g(t,S). If m = 1, for an American call , we have g(t,z) = (z — K)T, and for an
American put, g(t,z) = (K —z)T.

Let T;,1 be the set of all stopping times taking values in [¢,T]. Put

o(t;z) = sup onll Pl AR CE DL A (6.16)
T€Ti, T

where function g is assumed to be good enough such that ®(t, z) is well defined. It is
not difficult to prove that the process v;®(¢, S;) is the supermartingale that dominates
the process y:9(¢,S;) for all t € [0,T.

The following two theorems are main results concerning pricing American contin-
gent claims. For a proof we refer the reader to Karatzas (1988).

Theorem 6.11 There exists a trading strategy with consumption ¢ such that ¢
super-hedges (g(¢, S¢)) and its wealth process V;(¢) is given by Vi(¢) = ®(¢,S;), Vt €
[0,T]. Moreover, for any trading strategy with consumption ¢ which super-hedges
(g(t,St)), we have Vi (¢p) > g(t,S;) for all ¢ € [0,T].

We call (0, So) the upper price or selling price at time 0 of the American contin-
gent claim.

Theorem 6.12 Under some technical conditions, ®(¢,z) solves the following
system of partial differential inequalities:

% + A —ru <0, u>g in[0,T] x R™, (6.17)
ou . m

(E + A —ru)(g —u) =0, in [0, T] x R™, (6.18)
u(T,z) = g(T,z) in R™. (6.19)

Now we turn to the optimal exercise problem on American contingent claims. Let
T € To,r- If one exercises the American contingent claim at the stopping time 7, the
initial value of the payoff g(7,S;) is given by

Vi = E* [efo r(sS)ds g ST)] .

Put
™ = inf {t €[0,T]: ®(t,S;) = g(t,St)}. (6.20)

Then 7* is a stopping time which maximizes V within 7o 7. So it is reasonable to
consider 7* as the optimal exercise time for the American contingent claim. For an
American put option in the Black-Scholes setting, we set

s(t) = sup {m €R,: B(t,z) = (K—x)+}. (6.21)
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The function s¢(t) is called the critical price (or optimal stopping boundary), which
is not known a priori. It turns out that

7* = inf {t €[0,T]: S = sf(t)}, (6.22)
and & satisfies the following free boundary condition
L 0%
®(t,57(t) = (K —57()", 5-(t57(1)) = ~1. (6.23)

So the problem of pricing and optimal exercising American put options is reduced to
solving a free boundary problem for a PDE. We refer the reader to Wilmott-Dewynne-
Howison (1993) for a detailed treatment of this problem.

6.4 Stochastic volatility models

The simplist diffusion model for the price process (S;) of a risky asset is
dS; = S; [M(t, St)dt + U(t, St)dB(t)] (624)

We call p(t,S;) and o(t,S;) the stochastic expected rate of return and volatility of
the asset price. Let o, = o(t,S;). If o(t,x) is a C12-function then by Itd’s formula oy
itself is a diffusion process. But this diffusion process is driven by the same Brownian
motion (By). More generally, we should model the price process (S;) of a risky asset
by the following equation:

dS; = St[/,t(t, St)dt + O'tdBt], (625)
with the volatility (o) itself modeled by a diffusion process:
doy = a(t, O't)dt + b(t, Ut)th. (626)

Here B and W are two different one-dimensional Wiener processes defined on some fil-
tered probability space (Q, F, (F;), P), with the quadratic covariation process (B, W),
= pt, where p is a constant with |p| < 1. Such a model is called a stochastic volatility
model. Many authors have proposed various models of stochastic volatility, such as

dO’t = E(V—Ut)dt-f'eth,
doy = IiUt(U—Ut)dt+00tth.

Unfortunately, since the volatility is not a tradable asset, markets with stochastic
volatility models are incomplete. Consequently, many contingent claims can not be
priced by arbitrage. However, for a general volatility model specified by (6.25)—(6.26),
if two Wiener processes B and W are independent, the price process V; of a European
option written on the risky asset can be shown to be expressed as F(t,S,0¢) with
F(t,z,y) being a C1>2-function on [0,7) x (0,00) x R satisfying the following PDE:

1 1
—rF + F, + raF, + (a + Ab)y*F, + §x2y2Fm + EbZFyy =0 (6.27)
(cf. Hull and White (1987)), where A = A(¢,y) and A(¢, o) represents the market

price of the volatility risk, which needs to be exogenously specified. In some cases, a
closed-form expression for the option’s price is available.
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CHAPTER 7

Term Structure Models for Interest Rates

In the Black-Scholes model, it was assumed that the interest rates are a constant
or a deterministic function. For short-dated options on stock-like assets, it is an
acceptable approximation. However, for interest rate derivatives, it is an unreasonable
assumption. Therefore, we must address the problem of random interest rates. There
are different approaches to model the term structure of interest rates. They can
be divided into two types: short-rate models and forward rate models. These two
approaches are pioneered by Vasicek (1977) and Heath-Jarrow-Morton (1987, 1992),
respectively. Recently, Flesaker and Hughston (1996) introduced a new approach to
model the term structure of the interest rates. In this chapter we will present these
three approaches. Some best-known models for the term structure of interest rates are
presented and the valuations of some interest rate devivatives are briefly discussed.
We omit the discussion about hedging, for which we refer the reader to Duffie (1996),
p. 140-141. Very recently, Rogers (1997) proposed the potential approach to the
term structure of interest rates and foreign exchange rates. This genaral approach
will not be presented here because it is somewhat beyond our scope.

7.1 The bond market

Throughout the sequel, we fix a time horizon [0,7] and consider a d-dimensional
Brownian motion B on a complete probability space (2, F,P). We denote by (F;)
the natural filtration of B.

We consider a financial market, called bond market, which consists of a bank
account and discount bonds with all possible maturities. By a discount bond (or zero-
coupon bond) we mean a financial security which pays no dividends and is sold at a
price lower than the face value paid at maturity. In the following we call a discount
bond maturing at time s an s-bond, denote its price at time ¢ by P(t,s) and assume
that P(s,s) is equal to 1 (i.e. one unit of bank account).

The yield-to-maturity (or simply, yield) at time ¢ < s of an s-bond is defined as

_log(P(t,5))

Y(t,s) = p—

(7.1)
It is a measure of future values of interest rates at current time ¢. The difference
in yields at different maturities reflects market beliefs about future interest rates. A
yield curve at time ¢ is the graph of Y (¢, s) against maturities s. The dependence of
the yield curve on the time to maturity, s — ¢, is called the term structure of interest
rates. The short rate r(t) at time t is defined as limgssy st Y (,5), when the limit
exists a.s.. In the sequel, we assume that r(¢) exists for all ¢t € [0,7] and admits a

. T
measurable version. Moreover we assume [; r(t)dt < co.
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If P(t, s) is differentiable w.r.t. s, then another measure of future values of interest
rates is the forward rates f(t,s), for t < s, which is defined by

_Olog P(t,s) (0P(t,s))/0s

f(t,s) = B =Pl (7.2)

Given the forward rates f(t, s), we can recover the bond prices P(¢,s) by

P(t,s) = exp{ - /ts f(t,u)du}. (7.3)

An interest rate derivative is a financial contract whose payoffs are contingent
on future interest rates or bond prices. In order to be able to price an interest rate
derivative, we need to model the dynamic behavior of interest rates and/or bond prices
over the derivative’s life. The basic principle is to assure the absence of arbitrage in
the bond market. If P(t, s);<s, for s < T, are known deterministic smooth functions,
then under no-arbitrage condition, P(t,s) must have the form

P(t, 5) = exp{— /t " (u)dul,

where 7(t) is the short rate at time ¢. It means that in this case the bond prices
are completely determined by the short rates. However, in the uncertain world, this
is no longer true. In fact, assume we are given a short rate process (r(t)), which
is a measurable (F;)-adapted non-negative process. If P* is a probability measure
equivalent to P* and we put

P(t,s) = E*[e ] 700

R, t<s<T, (7.4)

then P(t,s)i<s, s < T defines bond prices and P* is an equivalent martingale measure
for this bond market. So different equivalent probabilitiy measures lead to different
models for bond prices. We will see below (in Section 7.2) that selecting an equivalent
probability measure consists in specifying the market price of risk.

7.2 Short rate models
7.2.1 One-factor models

We assume that the short rate process (r(t)) is modeled, under the objective proba-
bility measure P, by a diffusion process

dr(t) = po(t,r(t))dt + o(t,r(t))dB;, t<T, (7.5)

where (B;) is a one-dimensional Brownian motion. Since the only state-variable in
equation (7.5) is the short rate, we call such kind of model a one-factor model. In order
to model a bond market related to this short rate process, first we select appropriately
a probability measure P* equivalent to P as an equivalent martingale measure for the
bond market, and then according to the risk-neutral valuation formula (7.4) to model
bond price processes. For simplicity, we only consider those equivalent probability
measures P* whose Radon-Nikodym derivatives w.r.t. P have the form

f; =exp{ - /0 N r(w))dB, — % /O Y (u,(u)) s}, (7.6)
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where A(t,z) is a Borel function on [0,7] x R. Consequently, selecting such a prob-
ability measure consists in specifying a function A. The latter can be estimated by
using the market deta, because A(t,r(t))o<¢<s is the market price of risk for the s-
bond (see Chapter 6 for the meaning of the market price of risk). Once we know
function )\, the short rate process (r(t)) modeled by (7.5), can be remodeled, in the
“risk-neutral” world, as

dr(t) = p(t,r(t)dt + o(t,r(t))dBF, t<T, (7.7)

where u(t,x) = po(t,z) — o(t, ) A(t, ), (Bf) is a one-dimensional P*-Brownian mo-
tion, and

t
B;‘:Bt+/ u, (1)) du.
0

By Feynman-Kac formula we know that, under some regularity conditions, the s-
bond price process can be expressed as P(t,s) = F(t,7(t);s), where F(t,z;s) is a
C12-function F(t,z;s) on [0,T] x R, for any fixed s € (0,7], and is the unique
solution of the PDE

1
Fy(t,z;8) + p(t,x)Fy (¢, x;8) + §U(t’ 2)Fyy (t,2;8) —rF(t,2;8) =0, (7.8)

with the terminal condition F'(s,x;s) = 1.

As examples of one-factor models we present now two best-known models: the
Vasicek and CIR models. In the Vasicek model, it is assumed that the short rate
process r(t) in the risk-neutral world (i.e under the equivalent martingale measure
P*) satisfies a stochastic differential equation (SDE) of the form

dr(t) = a(b— r(t))dt + odB;, (7.9)

where a,b,0 are positive constants, (B;) is a Brownian motion under P*. Such a
process is called an Ornstein-Uhlenbeck process. It seems that the short rate behaves
like a stock price. But one important difference between the short rates and stock
prices is that short rates appear over time to be pulled back to some long-run average
level, a phenomenon known as mean reversion. In fact, if the market price of risk is
a constant A then from (7.9) we know that the short rate is pulled to a level b + 22
at rate a, because By = By + At. It is easy to verify that the unique solution to (7. 9)
is given by

t
r(t) = r(0)e " +b(1 — e~ ) + ge ! / e dBr. (7.10)
0

Since r(t) is normally distributed, we have P(r(t) < 0) > 0, which is obviously
unreasonable. Nevertheless, this simple model has an advantage that it provides an
explicit expression for the s-bond’s prices as follows:

P(t, 8) — eA(t,s)—B(t,s)r(t), (7.11)

where (s—t)
1 — e als—
B(t,s) = eT (7.12)

nd
" A(t,5) = B8 = 82§a2b /) 0234(2’ 3’ (7.13)
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These formulas can be derived either from solving equation (7.8) or calculating the
conditional expectation in (7.4) by using (7.10).

As mentioned above, a drawback of the Vasicek model is that the short rate can
become negative. In order to overcome this problem, Cox-Ingersoll-Ross (1985) has
proposed to model the behavior of the short rate, in the risk-neutral world, by the
following SDE:

dr(t) = a(b — r(t))dt + o+/r(t)dB], (7.14)
where a, b, o are positive constants. According to Theorem 3.17, equation (7.14) has

a unique solution, which must be non-negative. By solving equation (7.8) we obtain
the same expression (7.11) for the s-bond prices, where

2(e7(s—1) — 1)

B(t,s) = (’y+a)(e’Y(3—t) —1) + 2y

(7.15)

and (a+7)(s—t)/2
2ab 2ye'\@TYNE=
A(t,s) = Do e

2 P GraEEI -1 +2
with v = Va2 + 202.
In both models, B(t,s) and A(t, s) are deterministic functions of s and ¢, and the
bond prices have the form (7.11). The yield curve Y (¢, s) at time ¢ is a linear function
of the short rate r(t):

(7.16)

Yt 5) = — - [Blt,5)r(0) — A(t,5)]

s —
Therefore, both models are said to possess an affine term structure. For such a model,
possible shapes of the yield curve are upward-sloping, downward-sloping, and slightly
humped. We refer the reader to Duffie (1992) for a detailed disscussion on such
models.

In practice, practitioners use the historical data of the short rate to estimate the
parameters b,a, and o, then calculate values for a set of traded bonds and options
based on estimated parameters and compare them with market values, and finally
adjust values of parameters. This procedure should be repeated until the model fits
well the historical data. However, it is very difficult to adjust values of the parameters
so that the bond prices fit today’s observed bond prices. In order to overcome this
shortcome Hull and White (1990) have extended these models to the case of time-
dependent coefficients as follows:

dr(t) = (8(t) — a(t)r(t))dt + o(t)dB;,

dr(t) = (®(t) — a(t)r(t))dt + o(t)\/r(t)dB;.

These extended modeles still possess an affine term structure.
7.2.2 Multi-factor models

The one-factor short rate models presented above provide explicit expressions for bond
prices. However these models do not fit the real interest rate movement well. A more
realistic short rate model should include some other economic variables, such as the
long-term interest rate (or long rate), the yields on a fixed number of bonds, the sort
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rate volatility, etc. The sources of uncertainty are represented by a multi-dimensional
Brownian motion. Such a model is called a multi-factor model.

The first of multi-factor models, proposed by Brennan and Schwartz (1979) is
a two-dimensional diffusion model, in which the state variables are the short rate
and long rate. The latter is represented by the reciprocal of the price of a consol. A
consol is a special kind of coupon-bearing bond with no final maturity date. However,
a recent result of Dybvig et al. (1996) shows that the long rate is non-decreasing.
So it can never be modeled by a diffusion. A three-factor model has been recently
proposed by Chen (1996). In this model, in addition to the short rate, two other
factors are the short-term mean rate and the short rate volatility.

In the last few years, there have been many papers dealing with the so-called
higher-dimensional squared-Gauss-Markov prosses model, which is described as

dXt = (a(t) + CtXt)dt + UtdB;;

1
r(t) = §|Xt|2,

where (Bj) is a d-dimensional Brownian motion under the equivalent martingale
measure P*, and o, C are R? x R%valued functions on R* and a is an R%valued
function. This model has the advantage that it leads to an explicit formula for bond
prices. We refer the reader to Rogers (1995) for references on this model.

7.3 The HIM model

Heath, Jarrow, and Morton have proposed in 1987 another way to model the term
structure (see Heath-Jarrow-Morton (1992)). The HIJM model represents the term
structure in terms of the forward interest rates. In this way, the model fits automati-
cally today’s yield curve. A discrete-time analog of the HJM model has been proposed
by Ho and Lee (1986). Given a stochastic model f of forward interest rates, we will
assume that r(t) = limys s f(t,s) defines the short rate at time ¢. For each fixed
maturity s the HJM model for forward interest rates is described, in the risk-neutural
world, by an Ito process:

t t
£(t,5) = £0,9)+ [ ntw,9ydu+ [ otu,5)dB;, t<s, (7.17)
0 0

where (Bj) is a d-dimensional Brownian motion under the equivalent martingale
measure P* {u(t,s) : 0 <t < s} and {o(t,s) : 0 < ¢t < s} are measurable adapted
processes valued in R and R? respectively such that (7.17) is well defined as an
Itd process, and the initial forward curve, f(0,s), is deterministic and satisfies the
condition that fOT f(0,u)du < oco.

Assume that (r(t)) is the interest rate process. Put

Wt _ [e_ fos r(u)du ]_.t] —e” fo T(u)duP(t, S)

Since (Wi)o<i<s is a strictly positive martingale, by the martingale representation
theorem for Brownian motion, there exists a R%valued adapted process (H;) such
that

t 1/t
Wy = Wy exp { / H(u,s)dB; — 5/ |H(u,s)|2du},
0 0
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namely,
d,P(t,s) = P(t,s) [r(t)dt + H(t,s)dB;|. (7.18)

On the other hand, by (7.4), we have
W, =e j: r(u)dufj: f(t,u)du‘

Thus, under some technical conditions ensuring the applicability of a stochastic Fubini
theorem, by comparing the martingale parts of the two expressions of log W; we obtain

H(t,s) = /t ot u)du. (7.19)

As a consequence, u(t,s) must be expressed as

ult, s) = o(t, 5) - /t ot w)du. (7.20)

For more details of the proof we refer the reader to Duffie (1996), p.151-153. From
(7.17) and (7.20) we obtain

r(t) = f(0,t) + /Ota(v,t) . /ta(v,u)du dv + /Ota(v,t)dB:.

In particular, when o(t,s) is a constant then we obtain the continuous-time limit of
the Ho-Lee model:
dr(t) = ®(t)dt + odBy,

where
®(t) = o’t.

7.4 The Flesaker-Hughston model

Recently, Flesaker and Hughston (1996) have proposed a new approach to the term
stucture modelling of interest rates. The key point of this approach stems from the
following observation on (7.4): Let the s-bond price process P(t,s) be defined by
(7.4). Set

dpP
m= =5 » 0<t<T,
dP* | .
then by the Bayes rule,
P(t,s) = A;'E[A, | Fi], s>t, (7.21)
where s
As =, exp{ —/ r(T)dT}. (7.22)
0

Since (1) is a P-martingale, (A;) is a P-supermartingale. Note that the expression
(7.22) is nothing but the product decomposition of the supermartingale (A4;). Now
assume that (A;) is a strictly positive P-surmatingale and the bond price P(t, s) is
modeled by (7.21). If the product decomposition of the supermartingale A is of the
form (7.22) with 5 being a P-martingale and r being a nonnegative process, then
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the corresponding short rate process must be r, and the probability measure P* with
density process ™! is an equivalent martingale measure for price processes of bonds
with different maturities. As an example (due to Flesaker and Hughston (1996)), let

Ay = f(t) +9(t) My, t€[0,T], (7.23)

where f,¢:[0,T] = Ry are strictly positive decreasing functions with f(0) + g(0) =
1, and (M) is a strictly positive martingale defined on a filtered probability space
O, F, (F:),P), with My = 1. Then it follows immediately from (7.21) that

Fs) +9(s) My
f@) +9t)M

This model fits easily the initial curve: it suffices to choose f and g such that

P(t,s) = t €10,s]. (7.24)

P(0,s) = f(s) +g(s), s€]0,T]. (7.25)

In order to get an explicit expression for the short rate we assume that (F;) is the
natural filtration of a Brownian motion (B;). Since (M) is a strictly positive martin-
gale, it must be of the form M; = £(0.B);, where o is an adapted measurable process.
Let A; = n:C} be the product decomposition of the supermartingale A, where 7 is a
strictly positive local martingale and C is a strictly positive decreasing process with
no = Co = 1. 1 must be of the form 7, = £(.B);. Thus by Itd’s formula, we have

T]tdct + Ct’l’]t’)’tdBt = dAt = fl(t)dt + Mtgl(t)dt + g(t)MtUtdBt. (726)

By comparing the “dB;” terms and the remaining terms on both sides of (7.26) we

find that
_ o1g(t) My

M@+ gmMy
! !
M,
f'() +4' )M, dt. (7.27)
f(&) + g(t) M,
Consequently, if n is a martingale and we define a probability measure P* by % =
n;l, then P* is the unique probability measure such that

dCt = Ct

P(t,s) = C; 'E*[Cs | F)- (7.28)
C can be solved from (7.27) and the result is
t g1 !
f'(r) +g' (1) M;
Cy = o2~ Tdrs.
e {/0 iy g, 7}

Then from (7.28) we can derive an explicit expression for the short rate process (r(t)):

') +4' )M,
f@) +g(t)M

In particular, it is readily verifiable that r(¢t) = f(¢,t), where f(t,s) is the forward
interest rates.

r(t) = (7.29)
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The main advantage of the Flesaker-Hughston model is that we can use directly
the supermartingale A to express the price at time ¢ of a interest rate derivative &
with maturity s < T as

Vi = A7'E[¢A | Fi], Vt€0,s]. (7.30)

This equation enables us to obtain closed-form expressions for the prices of some
interest rate derivatives, such as caps and swaptions. We refer the reader to Rutkowski
(1997) for this subject.

7.5 Pricing interest rate derivatives

For pricing an interest rate derivative with maturity date 7' there are two possible
choices of the numeraire: the bank account or the 7-bond. When a derivative is
written on interest rates and the model for the interest rates is represented by an
It6 SDE (such as the Vasicek model or the CIR model), we choose the bank account
as the numeraire. We are going to show that in this case the value of an interest
derivative can be expressed in terms of the solution of a PDE. We assume the short
rate process obeys a one-factor model specified by (7.14). Consider an interest rate
derivative with maturity 7 < T, which has the dividend rate h(t,r(t)) at any time
t < 7 and the terminal payoff g(7,7(7)). By the definition of the equivalent martingale
measure P*  the value at time ¢ of the derivative is given by

Fr) =B | [ duahlo,ro)ds + ouoatrre)| 7] @30

where ¢;,; = exp{— [;’ r(u)du}. Under suitable conditions, the Feynman-Kac formula
assures that F' solves the following PDE

DF(t,x) — zF(t,z) + h(t,z) =0, (t,z) € [0,7) x R? (7.32)
subject to the boundary condition
F(r,z) = g(1,2), = €RY, (7.33)

where .
DF(t,z) = Fi(t,x) + Fp(t, ) p(t, z) + iFm(t,x)a(t,x)z. (7.34)

In particular, the value at time ¢ of the T-bond is given by P(t,T) = f(t,r(t)), where
f solves equation (7.32) with h = 0 subject to the boundary condition f(r,z) = 1.
Now we assume that the term structure of interest rates is represented by the
HJM model. In this case we can take the T-bond as the numeraire. More precisely,
let P(¢,T) be the bond price at time t. We define oy = P(¢,T)/P(0,T) as the
normalised T-bond with ag = 1. We take (a;) as the numeraire. We denote by §; the
value process of the bank account. Now we seek a probabilty measure Q equivalent
to P* such that the value process of the bank account discounted by the numeraire
oy is a Q-martingale. To this end we define a probability measure Q on (2, Fr) by

daQ ar _ 1
dP*  Br  P(0,T)Ar
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Since the associated P*-martingale is obviously

dQ
dP*

_ PtT) o
] = pos = 3

Lt:E*[

(Be/ ) is a Q-martingale. Now by (7.16),
dL, = L,H(t,T)dB;.

Thus by Girsanov’s theorem,
A t
B, = B} —/ H(u,T)du
0

is a d-dimensional Q-Brownian motion. If an interest derivative with maturity 7" has
only the terminal payoff £, then by the Bayes rule its value at time ¢ is given by

Vi = BE* B¢ | Fi] = B:Ly 'EQ[LrB7 € | Fi] = P(t,T)Eq[¢ | Fi]-

The following are some examples of best-known interest derivatives, to which the
above mentioned valuation methodes are applicable.

(1) A European call option with exercise price K is a contract having the terminal
payoff (P(r,T) — K)*.

(2) An interest-rate swap is a contract between two counterparties (referred to as
A and B), to exchange a series of cash payments. A agrees to pay B interest at a fixed
rate and receive interest at a floating rate. The same notional principal is used in
determining the size of the payments, and there is no exchange of principal. From A’s
point of view, it is a derivative which pays dividends at a rate h(¢,r(t)) = r(t) — r*,
where r* is the fixed interest rate agreed upon at time zero. It is easy to see that the
value of the swap at time ¢ is V; =1 — P(t,7) —r* [, P(t,s)ds.

(3) An interest rate cap is a financial instrument that effectively places a maximum
amount on the interest payments on floating-rate debt. In other words, a cap is a
loan at a variable interest rate that is capped at some level 7. If the short rate r(t) is
assumed to obey equation (7.14), then per unit of the principal amount of the loan,
the value of the cap is given by (7.31)—(7.32) with h(t,z) =min(z,7) and g(7,2) = 1.

(4) An interest rate floor is a financial instrument which effectively places a mini-
mum amount on the interest payments on floating-rate debt. It is a contingent claim
with a “floored” rate max(r(t),r) as the dividend rate and with the terminal payoff
1.

(5) An interest rate collar is a long position on a cap and a short position on a
floor with the same settlement dates and reset interval.

7.6 Forward price and futures price

Consider a forward contract with maturity 7" written on one unit of a particular
asset whose price process is (S;). Assume that the short-term interest rate process
r(t) is bounded and the discounted process (S;) is a martingale under the equivalent
martingal measure P*. Let F; be the forward price at time ¢ of the underlying asset.
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Then by definition the payoff at maturity 7" of this contract is equal to St — F;. Since
the value at time ¢ of this forward contract should be zero, we have

T

0= [exp{- /t (s)ds}(Sr — F)| 7]

Consequently,
B [exp{~ J}" r(s)ds}St| 7]

fi= E*[exp{—ftT r(s)ds}‘}}] ’

which gives
Sy

F, =
ET PR, T)

Now we study the futures price. Consider a futures contract with maturity T
written on one unit of a particular asset whose price process is (S;). Let ®; be the
futures price at time ¢ of the underlying asset. Assume that the settlements during
the time period (¢,T] take place at the time t; < t2--- < ty = T'. Since the value at
time ¢ of the futures contract is zero, we must have

(7.35)

N ”
- [; exp{— /0 r(s)ds} (@, — ,,,) | 7],

where tg = t, &7 = St. In order to get an approximation of the value ®,, we consider
a continuous settlement which is purely fictitious. In this case, we should have

T
O:E*[/t Y,d®,

where Y, = exp{— [ r(r)dr}. It means that the stochastic integral fg’ Y,d®, is a
P*-martingale. Since there are constants ki, ks > 0 such that k2 <Y < ki, &, is
also a martingale. Therefore we have

ft] )

¢ = E*[®r | 7] = E*[Sr | F4]. (7.36)

From (7.35) and (7.36) we see that if » and St are independent, then the forward
price and the futures price are the same. For example, if r is a deterministic function,
then this is the case.
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CHAPTER 8

The Fundamental Theorem of Asset
Pricing

In this chapter we follow Yan (1997) to present the fundamental theorem of asset pric-
ing. In order to fully understand the content of this chapter an advanced knowledge
of semimartingales and stochastic integrals is required.

8.1 Introduction

In the early 70’s Black and Scholes (1973) made a breakthrough in option pricing
theory by deriving the celebrated Black-Scholes formula for pricing European options
via a “hedge approach”. This work was further elaborated and extended by Merton
(1973). Cox and Ross (1976) is the overture of a modern theory of option pricing—the
risk-neutral valuation or arbitrge pricing. A key step in this direction was made in
Harrison and Kreps (1979). They remarked that the hedge approach is not mathe-
matically rigorous unless one excludes doubling-like strategies. Harrisson and Kreps
imposed some “admissibility” condition on the trading strategy and showed that the
existence of an equivalent martingale measure for the deflated price processes implies
the absence of arbitrage. Since then many attempts have been devoted to show the
converse statement. Harrisson and Pliska (1981) solved this problem in discrete-time
and finite-state case. This result is referred to as the fundamental theorem of asset
pricing. In the general state and discrete-time with finite and infinite horizon case,
this problem has been solved by Dalang-Morton-Willinger (1990) and Schachermayer
(1994) respectively. However, in the continuous-time case and the discrete-time with
infinite horizon case the absence of arbitrage is no longer a sufficient condition for the
existence of an equivalent martingale measure. A “no-free-lunch” condition, slightly
stronger than no-arbitrage condition, was introduced by Kreps (1981). Under a mild
but irrelevant separability assumption Kreps proved that if the deflated price process
is bounded then the market is fair if and only if the market has no free-lunch. See
Schachermayer (1994) for a transparent proof of this result. Without knowing this
result of Kreps, the problem was attacked by Stricker (1990), who discovered that a
result of Yan (1980) (or more precisely, the method of its proof) is an appropriate tool
for solving the problem. The result of Stricker was re-examinated and extended by
Delbaen (1992), Kusuoka (1993), Lakner (1993), Delbaen and Schachermeyer (1994),
Frittelli and Lakner (1994).

In this chapter we consider a semimartingale model for a market. The market
is said to be fair if there exists an equivalent martingale measure for the deflated
price process. In section 8.2 we show that the fairness of a market is invariant under
the change of numeraire and give a characterization of self-financing strategies. In
section 8.3, by augmenting the original market with a new asset we show that the
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characterization of the fairness of a market can be reduced to the case, where the
deflated price process is bounded. By using a theorem of Delbaen and Schachermayer
(1994) we obtain an intrinsic characterization of the fairness of a market. A theorem of
Delbaen (1992) implies a more elegant result. In section 8.4 we show that a fair market
has no arbitrage with allowable strategies and the arbitrage pricing of replicatable
contingent claims is independent of the choice of numeraire and equivalent martingale
measure.

8.2 The characterization of self-financing strategies and fair
market

We fix a finite time-horizon [0,T] and consider a security market which consists of
m+1 assets whose price processes (S¢),i = 0, - - -, m are assumed to be strictly positive
semimartingales, defined on a filtered probability space (2, F,F;, P) satisfying the
usual conditions. Moreover, we assume that Fy is the trivial o-algebra. For notational
convenience, we take asset 0 as the numeraire asset. We set 1,=(SY)~! and call v,
the deflator at time t. We set S; = (S%,---,5™) and S; = (S,---,8™), where
§§ =S}, 1 <i<m. We call (§t) the deflated price process of the assets. Note that
the deflated price process of asset 0 is the constant 1.

The continuous trading is modeled by a stochastic integral. In order to be able
to define a trading strategy we need the notion of integration w.r.t. a vector-valued
semimartingale (see Jacod (1980)). Such integral is defined globally and not compo-
nentwise. A basic fact is that a vector-valued predictable process H is integrable w.r.t.
a vector-valued semimartingale X if and only if the sequence (I[g|<n)H).X converges
in the semimartingale topology. In this case the limit gives the integral H.X. Conse-
quently, if H = (H°,---, H™) is integrable w.r.t. a semimartingle (X°,---, X™) and
HY is integrable w.r.t. X° then we have

H(X -, X™ =H° X+ (H',--- ,H™).(X,---, X™). (8.1)
A trading strategy is a R™*1-valued Fy-predictable process ¢ = {6°,0}, where
o(t) = (6'(t),---,6™ (1)),
such that ¢ is integrable w.r.t semimartingale (S°,S) with § = (S,---,8™). 6i(t)
represents the numbers of units of asset ¢ held at time ¢. This notion of trading

strategy is not very realistic. However it is convenient for mathematical studies. The
wealth V;(¢) at time ¢ of a trading stratey ¢ = {6°,6} is

Vi(¢) = 0°(t)SP +0(t) - Sy, (8.2)

where 6(t) - Sy = Y7, 6%(t)Si. The deflated wealth at time t is Vi(¢) = Vi(¢)vi- A
trading strategy {6°,6} is said to be self-financing, if

t
Vi(d) = Vo(d) + / $(u)d(S0, 5.,). (3.3)

In this chapter we always use notation fot H,dX, or (H.X); to stand for the intergral
of H w.r.t. X over the interval (0,¢]. In particular, we have (H.X)q = 0.
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It is easy to see that for any given R™-valued predictable process # which is
integrable w.r.t (S;) and a real number z there exists a real-valued predictable process
(6?) such that {6°,8} is a self-financing strategy with initial wealth .

A process {6°,6} is said to be elementary, if there exist a finite partition of [0, T]:
0=+t <t < --- <t, =T and a sequence of R™*'-valued random variables
(&1,-++,&n), with each &; being Fy,_,-measurable, such that

0'(t) = > &l 0 (®), t€[0,T], 0<i<m.
k=1

If we take stopping times ¢}, s instead of deterministic times, the corresponding process
is said to be simple. If furthermore (&,---,&,) are elementary random variables (i.e.
taken only a finite number of values), the corresponding process is said to be very
simple.

Definition 8.1 A security market is said to be fair if there exists a probability
measure Q equivalent to the “objective” probability measure P such that the deflated
price processes (S;) is a (vector-valued) Q-martingale. We call such a Q an equivalent
martingale measure for the market.

We denote by M7 the set of all equivalent martingale measures for the market, if
asset j is taken as the numeraire asset.

The following theorem shows that the definition of fair market does not depend
on the choice of numeraire.

Theorem 8.2 The fairness of a market is invariant under the change of numeraire.

Proof Assume that M? # (). For a P* € M° we define a probability measure Q
by

aQ _ S§

0\—1qJj
JP* Sg (S7)~"S7- (8.4)

We denote Q by h;(P*). We are going to show that h; is a bijection from MO onto
M. Let v} = (S})~! and put

S’\ti:’)/éstia 0<i<m.
Since (S9)~1S7 = §/ is a P*-martingale, we must have

dQ S 1 i
| R =2Sshst, o<t < (8.5)

M, := E* [ _
S

From the fact that

j
M5} = My(S{)'S} = §—§§t 0<i<m
we know that Q € M. The theorem is proved.

A strategy is said to be admissible, if its wealth process is non-negative. A strategy
is said to be tame, if its deflated wealth process is bounded from below by some real
constant. The weakness of the notion of tame strategy is that it is not invariant under
the change of numeraire. Moreover, all bounded elementary or simple strategies are
not tame. We propose below to extend the notion of tame strategy to a notion of
“allowable strategy”.
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Definition 8.3 A strategy ¢ = {6°,6} is said to be allowable, if there exists a
positive constant ¢ such that the wealth (V;(¢)) at any time ¢ is bounded from below
by —¢ Y, Si.

It is easy to see that all bounded elementary or simple strategies are allowable,
and the notion of allowable strategy does not involve the numeraire.

Definition 8.4 A market is said to have no arbitrage with allowable strategies
if there exists no allowable self-financing strategy with initial wealth zero and a non-
negative terminal wealth V7 such that P(VT > 0) > 0.

A key point of arbitrage pricing of contingent claims is the following characteri-
zation of the self-financing strategy.

Theorem 8.5 A strategy ¢ = {0°,0} is self-financing if and only if its wealth
process (V) satisfies

dV, = 0(t)dS;, (8.6)

where V, = Vive- In particular, the deflated wealth process of an allowable self-
financing strategy is a local Q-martingale and a Q-supermartingale for any Q € M°.

Proof Assume that ¢ = {6°,6} is a self-financing strategy. First of all, by Ito’s
formula, we have

d(1,8;) = d(%S?,7:St) = d(S?, Si) + (SP, Se)dve + d([S°, Ve, [SyV]e)- (8.7)

Secondly, by (8.1) we have _ B
p(t)d(1, S¢) = 6(t)dS:. (8.8)

Thirdly, by (8.3) we have

AV, = 6°(t)AS? +6(t) - AS;,
which together with (8.2) implies

Vie =60°()SY_ +6(t) - S;_. (8.9)
Finally, applying 1t6’s formula to the product Vyy; we get from (8.3) and (8.7)-(8.9)

dav; Vi (9)dye + ve—dVy + d[V, 7]

(0°(£)SE_ + O(t) - Si=)dye + y— (6°(t), 0(£))d(SP, Sy)
+6°(t)d[S°,~]¢ + 6(2) - d[S, ]¢)
= 0(t)dS,.

Similarly, we can prove the “if” part.
Now assume that ¢ = {#°,6} is an allowable self-financing strategy. By definition
there exists a positive constant ¢ such that Vi(¢) > —c> i~ S;, t € [0,T]. Put

Bi=0+c 0<i<m, ¢=1{69,6:}.

Then by (8.6) we have dV;(¢1) = 61 (t)dS; and

m

Vi(¢r) = Vi(g) +¢)_Si > 0.

=0
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By a theorem of Ansel and Stricker (1994), (Vi(¢1)) is a local Q-martingale and
Q-supermartingle. Thus so is (V;) because >, §,§) is a Q-martingale.

As a corollary we obtain:

Theorem 8.6 A fair market has no arbitrage with allowable strategies.

Proof Let Q € M°. Let {6,6°} be an allowable self-financing strategy with initial
wealth zero. By Theorem 8.5 the deflated wealth process of ¢ is a Q-supermartingale.
Therefore, we must have Eq[Vr] < 0. So the market has no arbitrage with allowable
strategies.

8.3 The fundamental theorem of asset pricing

The fairness of a security market is the basis of the so-called “pricing by arbitrage”.
By the fundamental theorem of asset pricing we mean a characterization of the fairness
of a market. Roughly speaking, such a characterization states that the market is fair
if and only if the market has no “free-lunch”. In the literature several notions of
“free-lunch” have been introduced in different circumstances. A common feature of
these notions is that they involve an appropriate topological closure of the set V —L°,
where V is the set of all achievable gains by a certain bounded elementary (or simple)
strategy. If the deflated price process is a bounded (vector-valued) semimartingale,
several characterizations of the fairness are available.
Now we introduce a new asset, indexed by m + 1, whose price process is:

Syt =3" sk (8.10)
=0

We augment the market with this new asset. It is readily seen that the new market is
fair if and only if the old one is fair. According to Theorem 8.2 in order to characterize
the fairness of the new market one can choose asset m + 1 as the numeraire asset. In
doing so the deflated price process becomes bounded. This trick not only reduces the
problem to the easy case but also leads to an intrinsic characterization of the fairness
of a market in the sense that no numeraire asset is involved.

In the following we consider the augmented market and choose the new asset as
the numeraire asset. We denote by (X}) the deflated price process of asset i (i.e.
X} = (St ~18)) and set X; = (XP,---, X[").

A theorem of Lakner (1993, Theorem 8.1) implies immediately the following char-
acterization of the fairness of a market.

Therore 8.7 Let process (X;) be defined as above. Put

V ={(H.X)r: H is a very simple process}. (8.11)
Then the (original) market is fair if and only if
VLT NLY = {0}, (8.12)

where V' — L% is the closure of V — LY in the o(L*°, L*(P))-topology.

Remark Condition (8.12) can be interpreted as “no-free-lunch” in a certain
sense. In fact, if condition (8.12) is violated, then there is an fo € L \ {0} and a net
(¢a)acs of very simple self-financing strategies with initial wealth 0 such that at the
terminal time the agent “throws away” the amount of money haS}”Jrl with hy € LY
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the random variable (S7*')~1Vr(¢s) — ha becomes close to fo w.r.t o(L>®, L'(P))-
topology. On the other hand, according to Schachermayer (1994) the Kreps’ “no-free-
lunch” condition can be stated as follows:

(Vo — LO) N L= N L = {0}, (8.13)

where
Vo = {(H.X)r : H is an elementary process}. (8.14)

So the economic meaning of Lakner’s no-free-lunch condition (8.12) is more con-
vincing than the Kreps’ one. We refer the reader to Kusuoka (1993) for another
“no-free-lunch” condition which is similar to condition (8.12). In view of the eco-
nomic meaning of no-free-lunch, an equivalent martingale measure is also called a
risk-neutral probability measure.

As pointed out in Delbaen and Schachermayer (1994) the drawback of a variant
of Kreps’ theorem is twofold. First it is stated in terms of nets or topological closure,
a highly non intuitive concept. Second it involves the use of very risky positions.
The main theorem of Delbaen and Schachermayer (1994) remedies this drawback. By
using this theorem we obtain the following intrinsic characterization of the fairness of
a market.

Theorem 8.8 The market is fair if and only if there is no sequence (¢,,) of allow-
able self-financing strategies with initial wealth 0 such that Vy(¢,) > —1 37 St a.s.,
for all n > 1 and such that Vr(¢,) a.s. tends to a non-negative random variable &
satisfying P(£ > 0) > 0.

Proof Consider the market augmented with asset m + 1 and choose asset m + 1
as the numeraire asset. Let ¢ = {¢°,---,¢™} be an “admissible” integrand for the
vector semimartingle X = (X°,--., X™), in the sense of Delbaen and Schachermayer
(1994) that there is a positive constant ¢ such that (¢.X)r > —c. We can introduce a
predictable process ¢™*! such that ¢ together with ¢™+! constitutes a self-financing
strategy with initial wealth O for the augmented market. By Theorem 8.5 we have

T
(S™) 7 Vi (g, 671 = / $()dX,. (8.15)

On the other hand, we have
Vi(¢, ™) = Vi(g) + " tE S 0<t<T.
Thus, if we put . '
£=¢i+ e, 0<i<m,

then we have V;(¢') = V;(¢, $™ ). Consequently, by (8.15) ¢' is an allowable strategy
for the original market. It is easy to see that ¢' is self-financing and its initial wealth
is 0. Conversely, for any allowable strategy ¢ for the original market, {¢,0} is a
self-financing strategy for the augmented market and we have

(SIHYTI) = (ST 0,0) = [ el

Thus, by the vector versions of Theorem 1.1 and Collorary 3.7 of Delbaen and
Schachermayer (1994) we can conclude the theorem.
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Remark According to Delbaen and Schachermayer (1994) the condition in The-
orem 8.8 is called the condition of no free lunch vith vanishing risk.

If the asset price process is continuous, a theorem of Delbaen (1992) (Theorem
5.1) gives us a more elegant characterization of the fairness of a market.

Theorem 8.9 Assume that the asset price process is continuous. Then the
market is fair if and only if the following condition is satisfied:

If (¢,,) is a sequence of very simple self-financing strategies such that Vy(¢,) =0,
[V (pn)| < S™1¥n > 1 and Vr(¢,)~ — 0 in probability, then Vr(¢,)T — 0 in
probability.

8.4 Arbitrage pricing of contingent claims in a fair market

In this section we will study the problem of the pricing of European contingent claims
in a fair market. By a (Furopean) contingent claim we mean a non-negative Fr-
measurable random variable. Let £ be a contingent claim. One raises naturally a
question: what is a “fair” price process of £? Assume that v,.£ is P*-integrable for
some P* € M°. We put

Ve = "B 7€ | Fil- (8.16)

If we consider (V;) as the price process of an asset, then the market augmented with
this asset is still fair, because the deflated price process of this asset is a P*-martingale.
So it seems that (V;) can be considered as a candidate for a“fair” price process of &.
However this definition of “fair” price depends on the choice of equivalent martingale
measure. We will show that for replicatable contingent claims (see Definition 8.10)
this definition is reasonable.

Definition 8.10 Let P* € M°. A European contingent claim ¢ is said to be
P*-replicatable (or attainable) if v,.& is P*-integrable and there exists an admissible
self-financing strategy ¢ such that its terminal wealth is equal to £ and its deflated
wealth process is a P*-martingale (i.e. E*[v,.£] = 70 Vo(¢)). Such a strategy is called
a P*-hedging strategy for &.

The following theorem shows that the “fair” price process of a replicatable con-
tingent claim is uniquely determined.

Theorem 8.11 Let P* P’ € M° and ¢ be P*- and P’-replicatable. Let (V})
(resp. (U:)) be the wealth process of a P*- (resp. P’-)hedging strategy for £&. Then
(V;) and (Uy) are the same. Moreover, V; is given by (8.16), and we have

V; = essinfqe oy "EqQ[v,€|Fi]- (8.17)

Proof Put V, = Y Vs, U, = YUz Then (17}) is a P*-martingale and a P’-
supermartingale and (U;) is a P'-martingale and a P*-supermartingale. Note that
Ur = Vr = £ and we have

E*[Vr| Fi] =V, > E'[Vr| Fi] = E'[Ur| F] = U

Thus we have V; > Uy, a.s.. Similarly, we have Uy > V¢, a.s.. Hence V = U. The last
assertion of the theorem is obvious.

Remark According to Theorem 8.11, for a P*-replicatable contingent claim & it
is natural to define its “fair” price at time ¢ by (8.16). We call this method of pricing
the arbitrage pricing (or pricing by arbitrage, or risk-neutral valuation).
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The following theorem shows that the arbitrage pricing of replicatable contingent
claims is independent of the choice of numeraire.

Theorem 8.12 Let P* € M and ¢ be a P*-replicatable contingent claim and ¢
be a fair hedging strategy for {£. Then for any 0 < j <m & is an h;(P*)-replicatable
contingent claim, and its “fair” price process remains the same.

Proof We keep the notations in the proof of Theorem 8.2. We have by (8.16)

! * ! SO * !
Eq[v. &) = E* [Mry.£] = S—‘;E [v2€] = Vo
0

This implies that a P*-hedging strategy for £ is also a Q-hedging strategy for £. So
¢ is a Q-replicatable contingent claim. Moreover, by the Bayes rule we have

(7)) "EqQvLé| ] = (v) ' M, 'E*[Mroyl €| R
= v 'E*[v.¢| R

This proves that the “fair” price process of £ is invariant under the change of nu-
meraire.
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