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Preface

This is a short course on structural stability theory of differentiable dynami-
cal systems. We attempt to present the essence of this theory in a short but
self-contained way. We focus on Smale’s (2-stability theorem. We begin with
the basic notions of dynamical systems. The first, and probably the most im-
portant example is Smale’s horseshoe diffeomorphism. This is a structurally
stable system for which the limit set, which contains the long run behavior of
all orbits, does not reduce simply to finitely many periodic orbits. This con-
trasts with the classical result of Peixoto for 2-dimensional flows, and presents
a striking new phenomenon: chaos can be compatible to structural stability.
The analytic condition that makes such a chaotic set structurally stable is
hyperbolicity, a concept of central importance to the topic. Hyperbolic sets
have stable manifolds, which handle the way points approach the sets, in for-
ward or backward time. The classical results on hyperbolic periodic orbits are
hence generalized to a modern theory of hyperbolic sets. Smale’s €2-stability
theorem is the first general result based on this theory. Thus our short course
will consist of three parts:

Chapter 1. Preliminaries.
Chapter 2. Hyperbolic sets.
Chapter 3. The 2-stability theorem of Smale.

The material contained in this short course is the part of structural stability
theory that has been best treated in book form, see the survey article [S], and
a number of books [Bo4, F5, GMN, I, KH, Ni, PdeM, Ro7, Sh] cited in the
references. Our treatment for this topic follows these nice books, with more
effort made on uniformity of estimates in Theorem 2.11 through 2.13 to reach
Theorem 2.14.

Dynamical systems develops simultaneously in two closely related settings:
the discrete case (or the diffeomorphism case) and the continuous case (or
the flow case). For simplicity we take the discrete case in our short course
throughout.

These notes came out of a series of lectures given in the Center of The-
oretical Sciences of Taiwan last summer. I thank CTS of Taiwan and City
University of Hong Kong for their kind hospitality.

Lan Wen
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CHAPTER 1

Preliminaries

1.1 Some basic notions in dynamical systems

We review some basic notions in topological dynamical systems. Thus we
consider a compact metric space X, together with a homeomorphism f : X —
X. This generates a family of iterates of f, written as

f"=fofo...of (ntimes), fO=id, f "= (")},
where n ranges over the integers. It is obvious that
fn o fm — fn+m

for any integers n and m. We call the family {f"}32 _ _ a (topological) dy-
namical system. We even simply call f itself a dynamical system.

For any z € X, the set {f™(z)}*° is called the orbit of z under f, denoted
by Orb(z, f), or simply Orb(z). It is easy to see that any two orbits are either
identical, or else disjoint. We call = a periodic point if there is n > 1 such that
f™(xz) = . The minimal positive integer n that satisfies this equality is called
the period of . Periodic points of period 1 are just fixed points. It is easy to
see that a point x is periodic if and only if the orbit of z consists of finitely
many points. We denote the set of periodic points of f by Per(f), and the set
of fixed points of f by Fix(f).

A subset A C X is called invariant under f if f(A) = A. Clearly, any orbit
is invariant. It is easy to see that A is invariant if and only if A is a union of
orbits. Per(f) and Fix(f) are two important invariant set, and so are () and
X.

Theorem 1.1. If A is invariant, so are A, O(A), and int(A).

Proof. Tt is clear that fA C fA = A. Likewise, f 'A C A. Hence fA D A.
This proves fA = A. The other two are similar. This proves Theorem 1.1.

Since the main point of interest in dynamical systems is the limiting be-
havior of orbits, closed invariant sets will be important to us. Unfortunately
the set Per(f) of periodic points is generally not closed. This yields many dif-
ficulties, as well as many interesting phenomena. Nevertheless the set Fix(f)
of fixed points is always closed.

A point y € X is called an w-limit point of a point z € X if there is a
subsequence n; — 400 such that f™(z) — y. The set of w-limit points of
is called the w-limit set of x, and is denoted as w(z). Reversing time defines
the a-limit set a(z) of . Clearly a(z) = w(z, f~1). Hence one usually states



results for w(z) only. Note that any periodic point is its own w (and «)-limit
point.

Theorem 1.2. For any z € X, w(z) is non-empty, closed, and invariant.
Moreowver,
lim d(f™(z),w(z)) = 0,as n — oco.

Proof. The set w(z) is clearly non-empty and closed. To prove the invari-
ance we first prove f(w(z)) C w(x). Take y € w(x). There is a subsequence
n; such that f™(z) — y. Then f™*t(z) — f(y). This proves f(y) € w(z).
Hence f(w(z)) C w(z). A Similar argument yields f~!(w(z)) C w(z). Thus
w(z) is invariant.

Now suppose that the limit of distances is not zero. Then there is ¢g > 0
and a subsequence n; such that

d(f™(z),w(z)) = €o

for all . Taking a subsequence n;, further yields f"* — z ¢ w(z), a contra-
diction. This proves Theorem 1.2.

The w-limit set w(z) and the a-limit set a(x) depend on the point z. To
handle the limiting behavior of all points we need to consider the union of
w(z) and a(z) for all z € X. This union is usually not closed. This leads
us to consider the closure of the union. More precisely, define the limit set of
Newhouse (1972) to be

L(f) = U w(z) U a(zx).

reEM

Thus L(f) contains the long run behavior of all orbits. Clearly,

Per(f) C L(f).

Another important closed invariant set is the non-wandering set of Birkhoff
we now define. A point is called wandering under f if there is a neighborhood
V such that f®(V)NV = for all n # 0. A point that is not wandering is
called non-wandering. Thus z is non-wandering if for any neighborhood V' of
z, there is m # 0 such that f™(V)NV # (). This is the same as to say that for
any neighborhood V of z, there is some orbit that hits V' at least twice. The
set of non-wandering points of f is called the non-wandering set of f, and is
denoted by Q(f).

Theorem 1.3. The non-wandering set Q(f) is a non-empty closed invari-
ant set that contains L(f).

We leave the proof to the reader. It is a good exercise to find an f with Q(f)
strictly larger than L(f). Thus the recurrence exhibited by a non-wandering
point is generally weaker than that exhibited by a limit point.



1.2 Topological conjugacy

Two homeomorphisms f : X — X and g : X — X are called topologically
conjugate to each other if there is a homeomorphism A : X — X such that hf =
gh. Roughly, such two f and g differ by a continuous change of coordinates.
This is clearly an equivalence relation on the space of all homeomorphisms.
The homeomorphism h is called a conjugacy between f and g. A conjugacy h
preserves orbits, that is,

h(Orb(z, f)) = Orb(h(z),9)

for any z € X. In particular, a conjugacy preserves w-limit sets, the periodic
set, and the non-wandering set. That is, h(w(z, f)) = w(h(z), g), h(Per(f)) =
Per(g), and h(Q(f)) = Q(g)-

To classify all homeomorphisms up to conjugacy would be ideal, but is not
realistic. Nevertheless for some extremely simple cases it is easy. Let’s quickly
study the case that X is the unit interval [0, 1]. For simplicity we consider
orientation preserving homeomorphisms only. Such an f : [0,1] — [0,1] is
simply a strictly increasing continuous function that fixes the two end points
of the interval. For more simplicity we consider only those homeomorphisms
that have no fixed points in (0, 1). For such an f, when under iteration, either
every point goes to the right (if the graph of f is above the diagonal), or else
every point goes to the left (if the graph is below). Clearly,

Q(f) = Fix(f) ={0,1}.
Theorem 1.4. Any two orientation preserving homeomorphisms of [0, 1]

without fized points in (0,1) are topologically conjugate.

Proof. Take any z € (0,1) and any homeomorphism

ho : [z, f ()] — [2,9(x)].

For each integer n, define

b+ [f7(2), 7 (2)] — [9" (2), 9" (2)]

to be

hy =g"ohgo f7".
It is easy to see that these h, glue together to give a homeomorphism A :
[0,1] — [0,1] such that Af = gh. This proves Theorem 1.4.

Though it is very simple, this example tells us that the construction of a
topological conjugacy is quite flexible on wandering domains.



1.3 The notion of structural stability

Now we turn to the notion of our main interest, structural stability. This is
formulated in differentiable dynamics.

Let M be a compact manifold without boundary, and f: M — M be a
diffeomorphism. Denote by Diff" (M) the set of difftomorphisms of M, en-
dowed with the C” topology. Roughly, two diffeomorphisms are C" close if
they are close up to their r-th derivatives. Thus a C" neighborhood of f always
contains a C"*! neighborhood of f (when both make sense).

A diffeomorphism f : M — M is called C" structurally stable if there is a
C" neighborhood U of f in Diff"(M) such that every g € U is topologically
conjugate to f.

Thus f is C" structurally stable if C" perturbations can not topologically
change the orbit structure of f. Clearly, if f is C" structurally stable, then
it is O™*! structurally stable. Thus C'! structural stability is the strongest
structural stability. The concept of C? structural stability is vacant because
C° perturbations are too damaging. For instance, a C° perturbation easily
turns an isolated fixed point into a whole neighborhood of fixed points, hence
destroys any structural stability. On the other hand, the conjugacy h is allowed
to be topological. This is because a differentiable conjugacy would be too
restrictive. For instance, a C" perturbation easily changes the eigenvalues of
a fixed point, so no diffeomorphism h would serve as a conjugacy, because a
differentiable conjugacy would preserve eigenvalues of fixed points. Thus the
notion of structural stability is an appropriate one. It limits to less damaging
perturbations, but allows a more powerful conjugacy to fix it up.

For the simplest case considered in the last section, structural stability is
easy to characterize.

Theorem 1.5. For any r > 1, an orientation preserving diffeomorphism
f:0,1] — [0,1] without fized points in (0,1) is C" structurally stable if and
only if f'(0) #1 and f'(1) # 1.

Proof. “if”: Assume f is orientation preserving with f'(0) # 1 and f'(1) #
1. Tt suffices to consider 7 = 1 only. There is a C' neighborhood U of f,
together with a neighborhood U of £ = 0 and a neighborhood V of z = 1,
such that any g € U; is also orientation preserving, and also has a unique fixed
point in U which is £ = 0, and a unique fixed point in V' which is z = 1. Since
f has no fixed points on [0,1] —U —V which is compact, |f(z) — z| assumes a
positive minimum on [0,1] — U — V. Then there is a C! neighborhood Us of f
such that any g € U has no fixed points on [0,1] — U — V. Let U = Uy NUs.
Then any g € U is orientation preserving and has no fixed points in (0, 1). By
Theorem 1.4, g and f are conjugate.

“only if”: Assume f'(0) = 1. For any r > 1, we construct a C" perturbation
g of f such that g has more than two fixed points, hence f would not be C"



structurally stable. Take a C* bump function «: [0, 1] — [0, 1] such that
a=1on[0,1/3], a=00n[2/3,1], 0 <a<1on]|0,1]. Let

K = max{|(af)(z)| |z €[0,1],5 = 1,...,r}.

Without loss of generality we assume the graph of f is above the diagonal.
Then for any € > 0, define

9(x) = f(z) — ea(x) f(z).

It is easy to check that, x = 0 and z = 1 remain to be fixed points for g, but
the graph of g near x = 0 is slightly pulled down so that g has also some fixed
point a little bit to the right of x = 0. Moreover, g is C" close to f if ¢ is
small. This proves Theorem 1.5.

Though very simple, Theorem 1.5 is instructive. It indicates that fixed
points are sensitive to perturbations. To survive from perturbations they
need a condition like f/(0) # 1, the so called hyperbolicity. Thus fixed points,
or more generally non-wandering points, are important to us not only because
they exhibit long run behavior of orbits, but also because they need more
attention from the point of view of perturbation. Another interesting feature
is that, for this simplest example, C* structural stability is equivalent to C7
structural stability, for any 4 and j. This is true also for Peixoto’s result on
2-dimensional flows. For general cases, this is unknown so far (it will be true
if the C” stability conjecture is verified).



CHAPTER 2

Hyperbolic Sets

This chapter gives a short but comprehensive account of the theory of hyper-
bolic sets.

2.1 The concept of hyperbolic set

The notion of hyperbolic sets is essential to stability theory. We first give some
informal illustrations for the concept of hyperbolic sets. We start with Smale’s
horseshoe set, the first non-trivial hyperbolic set which appeared historically
and inspired the whole theory. As the reader knows, it is the maximal invariant
set A in a square, for the horseshoe map, see [Sh| and [Sm3].

< i )
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It is well known that topologically, A is a Cantor set with periodic points
dense, and with a dense orbit. In fact f restricted to A is topologically con-
jugate to the 2-shift on the symbolic space ¥5. The horseshoe map can be
defined more globally as a diffeomorphism f : $? — S2?. The upper semi-
sphere Si is embbeded into itself so that the maximal invariant set in Si
consists of the horseshoe A, together with a hyperbolic sink p, as the figure
shows. Thus every point z € S2 — {p} — A gets out of S at a certain time.
The lower semi-sphere S? can be arranged to have only a hyperbolic source
g as the maximal invariant set. One can check that Q(f) = AU {p} U {¢}.
(Generally, every point that goes to a sink or a source is wandering.)

The main differentiable dynamical feature on (f) is a uniform contraction
or expansion of vectors, under the tangent map 7T'f. This will be called hyper-
bolicity. For instance, all vectors in T, M get contracted, while all vectors in
TyM get expanded. More complicated are vectors in TA M. The tangent map
Tf contracts vectors of Ty M that are in the vertical direction, but expands
vectors of TAM in the horizontal direction, with uniform rates. This is like

0N,




a saddle, but moving, even non-periodically. While hyperbolic behavior for a
fixed saddle, or a periodic saddle, was known a long time ago, the surprising
feature that infinitely many orbits, both periodic and non-periodic, fit together
so harmonically and even structurally stably with a uniform saddle-like behav-
ior, became known only a few decades ago, through Smale’s horseshoe, and
another important diffeomorphism found in early sixties, known as Thom’s
automorphism. In contrast to this, uniform contraction in all directions (sink-
like), or uniform expansion in all directions (source-like), can not have such
chaotic features. It can occur only on finite sets, which hence must reduce to
finitely many periodic orbits.

On the other hand, for the horseshoe map, there is no such hyperbolicity
for wandering orbits (It is possible for a wandering orbit to be hyperbolic as
well. A wandering transverse heteroclinic orbit is such an example). In fact
for a system to be structurally stable, wandering orbits need satisfy only a
weaker condition, known as strong transversality.

Now we give the formal definition of hyperbolic set. A compact invariant
set A of f: M — M is called hyperbolic for f if for each x € A, the tangent
space Ty M has a T f-invariant (as family) splitting

T,M = E*(z) ® E*(z)

Tf(E(z)) = E*(f(z)), Tf(E"(x)) = E*(f()),

such that for two uniform constants C' > 0 and 0 < A < 1, the following
estimates hold:

T f*(v)| < CA*ol, Vo € A,v € E*(z),n > 1,

|Tf"(v)] < CN"|v|, Vo € A,v € E*(z),n > 1.

The reader can see that Smale’s horseshoe is hyperbolic. Actually E*(z)
is the vertical direction, E*(z) is the horizontal direction. Moreover, the two
inequalities behave even simpler, because for the horseshoe map C = 1. That
is, the contraction and expansion in the horseshoe are immediate:

ITf(w)| < Al|, Vo € A,v € E*(x),

ITf ()| < Av|, Vz € A,v € E%(x).

A standard result of Mather (see for instance Shub (1987)) says that, by
changing to a suitable equivalent norm, any hyperbolic set behaves in this
immediate way. Such a norm is called adapted to A. If we are assuming, but
not proving hyperbolicity, it is always convenient to use adapted norms.

The definition of hyperbolic set deserves more remarks.



. A hyperbolic fixed point, or a hyperbolic periodic orbit, is a hyperbolic
set. The two general eigenspaces of eigenvalues of norm less than 1
and greater than 1, respectively, serve as E®* and E". Note that the
eigenvalues have something to do with A, but not with C. Also note
that here a purely algebraic definition by eigenvalues is equivalent to a
definition that involves norm. This is because all norms are equivalent
for finite dimensional spaces.

. Any compact invariant subset of a hyperbolic set is hyperbolic. A finite
union of hyperbolic sets is hyperbolic.

. Hyperbolicity allows E® = {0} (source-like), or E* = {0} (sink-like). In
this case A must be finite. (Try a direct proof)

. The second inequality can be written as

ITf"(v)| > C'A™v|, Vv € E%,n > 1.

. Likewise for the first inequality. Hence (the length of) vectors that are
neither in E® nor E" all go to oo in both directions with exponential
rates. Thus vectors in E® and E" are charactered respectively by the
two inequalities in the definition (but not the inequalities in this remark).

. Hyperbolic splitting is unique. That is, if F*(z)®F%(z) is another hyper-
bolic splitting of A, then E*(x) = F*(x), and E"(z) = F"(z). This can
be easily proved either directly, or through some other characterizations
of E? and E" such as

E(z)y={veT,M||Tf"(v)] =0, n— +oo},
E¥z)={veT,M||Tf"(v)] >0, n— +oo}.

. Hyperbolic splitting is continuous. That is, E*(z) and E*(x) vary con-
tinously with x € A, hence E® and E* are subbundles of Ty M. This fol-
lows from the uniqueness, by taking a convergent subsequence of E*(x;).
In particular, dim(E?®(z)) and dim(E"(z)) are locally constant.

. One could define the notion of hyperbolic set the same way, with merely
the compactness of A dropped. Then it is easy to see that the hyperbolic
splitting E*(x)®E“(x) on A extends to the closure A. This is proved also
by taking convergent subsequences and using uniqueness. Nevertheless
most of the hyperbolic sets considered below are compact. As convention
we include the compactness of A into the definition of hyperbolic set, as
we have done. In a few places below we may talk about a hyperbolic
orbit, which might be non-compact. Of course by this we will mean that
the closure of this orbit is a hyperbolic set.



We will present in Section 2.4 six theorems about hyperbolic sets, which
form a basis for the stability theorem. These theorems concern persistence
of hyperbolicity, expansiveness, embedding stability, shadowing property, sta-
bility of isolated hyperbolic sets, and the stable manifolds. These theorems
(except the last one) turn out to be ingenious applications of a simple theorem
(Theorem 2.1 below) on hyperbolic fixed points in Banach spaces.

2.2 Hyperbolic fixed points in Banach spaces

Let F be a Banach space. Let us call a linear homeomorphism A : E — E an
automorphism, for short. An automorphism A : E — E is called hyperbolic if
FE has an A-invariant splitting

E=E°*®E“
A(E®) = ES, A(E") = EY,

such that for some suitable norm |-| and some number 0 < 7 < 1, the following
estimates hold:
|Av| < 7|v|, Vv € E?,

|A™ | < ||, Vv € E®.

The least such number 7 is called the skewness of A. Note that we have used
an adapted norm in the definition, because in this and the next chapter we
assume hyperbolicity.

A setting for perturbation that is easy to work with and also general enough
is A4, where ¢ has small Lipschitz constant. For instance, near a fixed point
z = 0 of f, a C! nearby g is of the form: g = Df(0) + ¢, where ¢ = g— Df(0)
is Lipschitz small near £ = 0. Here is a simple theorem in this setting, which
will find surprising applications to hyperbolic sets in Section 2.4. We denote
components of maps by subscripts, for instance

As = psA, @s = psp, Au=pud, Pu = Pup,
where p; : E — Ef and p, : E — E" are the two projections. Also, denote
Ass = A5|ES> Ay = Au|Eu

Note that
Asz = Agxs = Agsxg, Vx € E.

Finally, we assume the norm to be of box-type, that is,
|[v] = max {|vy], [vul},

where v = v + vy, vs € Es, and v, € E,. This is enough to our purpose
because the Banach spaces used below are section spaces of Tx M for some
invariant set A, and hence have induced norm of box-type.
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Theorem 2.1. Let A: E — FE be a hyperbolic automorphism with skew-
ness T, and ¢ : B(0, r) — E be a Lipschitz map with Lipschitz constant

Lipp <1—r1.
Then A+ ¢ has at most one fized point in B(0, r). If, in addition,
lp(0)] < (1 — 7 — Lipp)r,

then A + ¢ does have a fized point p in B(0, %) (which is unique in
B(0,r)).

Proof. We are solving the equation
(A+p)z ==.
This is equivalent to
AT 4+ s = T5, AyT + ©uxT = Ty,

or,
Agszs + PsT = Ts, Ayy Ty, + Pyl = Ty,

or, what is the same,
—1 —1
AssTs + st = 5, Ay Tu — Ay Pu® = Toy-

This gives a map
T:B(0, r)— E
T(z) = (Ass7s + s, Aq:'ul,x’u, - A,:ulwux).

Since T' and A + ¢ have the same set of fixed points, to prove A + ¢ has at
most one fixed point in B(0, ), it suffices to prove T is a contraction. This
is easily checked as

Tz —Ty|
< max{7|zs — ys| + Lipp|zs — ys|, T|zy — yu| + TLipp|zy — yul}
< (7 + Lipp)|z — y|,

while 7 + Lipp < 1.
Now we assume in addition that

lp(0)] < (1 =7 — Lipp)r.

We prove T in this case maps B(0, r) into itself. Take any z € B(0, r). Then,
noting that

IT(0)] = (s(0), —Agueu(0)] < le(0)],
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we have

T ()| IT(0) + [T'(z) —T(0)]
[p(0)| + (1 + Lipy)|z|
(1 — 7 — Lipp)r + (1 + Lipp)r

T.

IIVAVANVAN

This proves T' does have a (unique) fixed point p in B(0, r). Moreover,

Ip| < |p(0)| + (T + Lipy)|p|,

hence
lp(0)]

< ———m
I 1—7— Lipp

This proves Theorem 2.1.

A special case of Theorem 2.1 is when ¢ is differentiable. Let f : £ — E
be a C! map, and z be a fixed point of f. We call = a hyperbolic fized point
of f if the derivative Df(z) : E — E is a hyperbolic automorphism. For this
definition to make sense f needs be, and often is, defined only near z, say
f:U— E.

Theorem 2.2. Let x € U be a hyperbolic fixed point of f : U — E. There
are €9 > 0 and &y > 0 such that any C' map g with d*(g, f) < & has at most
one fized point in B(z,eq). Moreover, for any 0 < € < gq, there is § < d
such that any g with d*(g, f) < 0 does have a fized point p in B(z, €), which
is unique in B(z, ).

Another differentiable version of Theorem 2.1 does not even assume that
some unperturbed map f has a fixed point in advance:

Theorem 2.2’. Let g: U — E be a C* map and z € U be a point such
that Dg(z) is a hyperbolic automorphism. There is €9 > 0 such that g has at
most one fized point in B(z,e9). Moreover, for any 0 < € < &g, there is 6 > 0
such that if, in addition, g(z) is in B(x,0), then g does have a fixed point p
in B(z, €), which is unique in B(z, &).

2.3 Lifting and the induced operator

This section prepares a framework within which some results on hyperbolic
sets can be interpreted as results on hyperbolic fixed points in some suitable
Banach spaces. This beautiful idea is due to Moser, Mather, Hirsch, Pugh,
Anosov, and perhaps others. Let A be a compact invariant set of f. As usual,
amap F : TaAM — TxM is called fiber preserving over f on A if nF = fm,
where 7 is the bundle projection. The tangent map T'f : TAM — Th M is fiber
preserving over f on A, and is linear on fibers. Generally a fiber preserving
map F over f on A may not be linear on fibers.
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Any fiber preserving map induces an operator on section spaces. More
precisely, let T'°(T\ M) be the Banach space of bounded sections (vector fields)
v : A — TaM, with the sup norm, induced by the norm on TpM. The
subspace T'0(Ty M) of continuous sections is closed in I'’(T)\ M), hence also
Banach. We will be concerned with both Banach spaces. Briefly, we want
uniqueness in T, but existence in T® — results that are stronger. A fiber
preserving map F' : TaM — TAM over f induces an operator

Fy : TY(TAM) — T°(Ty\ M),
(Fg7)(z) = F(y(f~H(2))), Yz € A.

Likewise for I'Y. This is very natural. Roughly, the map F sends vectors to
vectors, covering a bijection f, so F' (or more precisely, its induced operator
Fy) sends sections to sections. Note that an inverse f~! is involved. This is
because we wish to use = (not fz) to denote a general point, and the vector to
be defined at z is the F-image of the vector at f~!(z). For the tangent map
Tf, the induced operator (T'f)4 is easily seen to be a linear automorphism,
for both I'® and T°.

An important fiber preserving map on A, which is not linear on fibers, is

the lifting of g along f on A
of9 BTN Ty M (rg) — TAM

o/9(v) = empy, g erps(v),

where Th M (1) denotes the set of vectors in TA M with norm less than or equal
to r9. Thus ®/9 sends vectors at € A to vectors at fz € A, hence is fiber
preserving over f on A. Roughly, ®/9 is simply the map g applied to the top of
vectors v with the base point x taken care of by f. Of course to define such a
lifting, g has to be close to f, and g has to be small. More precisely, let p > 0
be a number such that exp, : T,M(p) — B(z,p) is a diffeomorphism for any
z € M. We fix r, >0 and 6, > 0 below in this and the next section such that
for any g, CO-6p-close to f, and any two points z,y € M with d(z,y) < r,,
the inequality d(fz,gy) < p holds, hence the lifting ®/9 : TAM(r,) — TaM
can be defined.
We will be mainly concerned with the non-linear operator

o7 : TP(TAM)(r,) — TP (TaM)

(@I (1))(x) = T9(y(f (), Ve € A
induced by the lift ®/9. Likewise for T°. The reader may have noticed that
this concerns the conjugacy problem. Roughly, a conjugacy from f|x to g

corresponds to a fixed point of <I>f#g . To make it precise let us call an h : A —
M, not necessarily continuous, nor injective, an e-preconjugacy from f to g,
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where 0 < ¢ <, if hf = gh and if d(h(z), z) < e,Vz € A. The image h(A)
is easily checked to be an invariant set of g. Note that a map h : A - M
within 7, of the inclusion ¢p : A — M gives rise to a section v € ['*(Ty M)(r))
through the exponential map, and vice versa:

h(z) = expyy(z), or v(x) = exp, 'h(z).

Besides, h is continuous if and only if v is.

Theorem 2.3. A map h: A — M 1is an e-preconjugacy from f to g if and
only if the corresponding section 7y is a fized point of QQ in TO(TyM)(e).

Proof. This is straightforward. The preconjugacy equation
h(z) = ghf~"(2)
is equivalent to
() = expy’ g expy1,y(f 7 w),
which is the same as
v = (7).
The number ¢ is preserved because d(exp,v,z) = |v|. This proves Theorem 2.3.

Let A be a hyperbolic set of f. We always fix a Riemannian norm on
TM that is adapted to A, which determines the induced sup norm on section
spaces.

Theorem 2.4. Let A be a hyperbolic set of f. Then
(Tf)y : TO(TAM) — TO(TAM)

is a hyperbolic automorphism with the same skewness. Likewise for TC.

Proof. Let TaAM = E® & E" be the hyperbolic splitting for T'f. The
splitting
o (TyM) = T(E®) @ T°(EY)

is clearly invariant for (T'f)x. We check the contraction rates. Take any
v € T®(E®). Then

(THeM| = supeea{|Tf(v(F 2))}
< 7 suppea{lv(f o))}
= 7hl.
The rate on T'’(E) is checked similarly. This proves that (7'f) is a hyperbolic

automorphism of I'°(Ty M) with the same skewness. The proof for I'’ is the
same. This proves Theorem 2.4.
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Note that the zero-section 0 is always a fixed point of @;f , the induced
operator by the self-lifting. A basic analytical observation is the following.

Theorem 2.5. Let A be a hyperbolic set of f with skewness 7. Then Op
s a hyperbolic fized point of

o] - T (TAM)(r,) — TO(TAM)

with the same skewness. Likewise for T'°.

Proof. We prove that
D2/ (0n) = (Tf)4,

then Theorem 2.4 will apply. We take the case of I'® only. The case for T'? is
similar. First we prove Palais’ formula

(DFy(o))(2) = DoF (o(f~'z)) - 7(f '), Y € A,

where F is a fiber preserving map of TAM and DyF(o(f~'z)), the partial
derivative of F at o(f 'z) along fiber direction, is assumed to be continuous.
By definition, this is to prove that

|F(o(f a)+y(f 1)) =F(o(f ) =DaF(o(f 1))y (f 2)| = o(ly(f " 2)])

holds for z € A uniformly. But the left hand side is dominated by

/0 (D2F(o(f7"2) + ty(f'2)) — DaF(o(F~"2)))| - [y(f ') dt.

Since Do F' is continuous and 7y(A) is bounded, it follows that Dy F' is uniformly
continuous on a compact neighborhood of v(A) in Ty M. This proves Palais’
formula. Note that here F' takes care of the calculus along fibers, while f takes
care of, in fact fixes, the base points.

Now the partial derivative Dy®7f at a zero-vector 0, along fiber direction
is calculated as

D@7 (0,) = D((I)ff|TmM(rp))(0x)

= D(exp}?wl [ expz)(0g)
= idoDf(zx)oid
= Tflr,m

Hence by Palais’ formula,
D/ (0n) = (Tf)4.

This proves Theorem 2.5.
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Above is a framework in which a preconjugacy is interpreted as a fixed
point of the induced operator. Before proceeding to the next section we point
out that the framework needs be relaxed to handle a more general situation.
Note that two orbits { f"z} and {¢g"y} remind us of a preconjugacy. We might
wish to simply define a preconjugacy h that takes f"z to g"y. The problem is
that {f"z} may be finite while {¢g"y} may be infinite. In this case such an h
would not be possible (Thanks to C. S. Lin for pointing this out to me). The
same problem arises below for the so called pseudo orbits. To handle this we
consider the pull-back bundle of TM, through {f"z}, to the set Z of integers .
More precisely, let s : Z — M be the sequence that gives the orbit { "z}, that
is, s(n) = f™z. We think of the pull-back bundle s*(T'M) over the integers as
the union

U TfnzMa
nez

and consider the fiber preserving map
%9 : s*(TM)(rp) = s*(TM)
%9 (v) = e:(:p;nl+1m g exping(v), Yv € Ty M.

The map is essentially g regarded as taking tops of vectors at f"z to tops of
vectors at f"t1z. Associated with this are the Banach space of sections

TP(s*(TM)) = {y:Z — M | y(n) € TynyM, and 7 is bounded}
and the induced operator

oy T°(s*(TM))(r,) = T(s*(TM))
(@ (7)) (n) = @*9(y(n - 1)),Yn € Z.

All results obtained above for ®/9 hold for such a more general 9. Thus, even
if {f™x} is finite and {g"y} is infinite, an e-shadowing, that is, the situation
d(f"z, g"y) < € for all n € Z, corresponds to a well defined section vy €
I(s*(TM))(e) with y(n) = e.’L‘pJTan(gny). Several vectors (n) may share the
same base point f™z on the manifold. However, pulled back to the integers,
they have different base points n. We state two results that correspond to
Theorem 2.3 and 2.5.

Theorem 2.3’ The section 7y that corresponds to an e-shadowing between
{s(n)} = {f"z} and {g"y} is a fized point of @;f in TO(s*(TM))(e).

Theorem 2.5’ Let {s(n)} = {f"z} be a hyperbolic orbit of f with skew-
ness 7. Then the zero-section Og is a hyperbolic fized point of @S#f with the
same skewness.

Similar results hold for shadowing with even pseudo orbits, as seen in
Theorem 2.10 below.
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2.4 Some basic theorems on hyperbolic sets

This section present some basic theorems on hyperbolic sets that are needed
for the stability theorem in chapter 3. We first state the theorem on persistence
of hyperbolicity, which says if A is hyperbolic for f, then a nearby invariant set
A (if any) of a nearby system g is also hyperbolic and with nearby rates. This
can be proved similarly to a theorem on hyperbolic fixed points in Banach
spaces.

Theorem 2.6. Let A be a hyperbolic set of f with skewness 7. For any
T < pu <1, there are a > 0 and § > 0 such that for any g € B'(f,9), any
invariant set A of g contained in B(A,a) is hyperbolic with skewness less than
1

The next three theorems are about expansiveness, embedding stability,
and the shadowing property. We first give simplified versions. Recall a home-
omorphism f : A — A is called ezpansive if there is a constant ¢ > 0 such
that for every pair of different points x # y, there is an integer m such that
d(f™(z), f™(y)) > ¢. The number ( is called an expansive constant of f on
A.

Theorem 2.7. Let A be a hyperbolic set of f. Then f|a is expansive.

Proof. Let T be the skewness of A. We use the uniqueness part of The-
orem 2.2. Note that the numbers r and §y in Theorem 2.2 depend on the
skewness 7 (and f) only. Now any orbit {f"z} in A has skewness 7, hence by
Theorem 2.5°, the 0-section 05 (here s gives the orbit {f™z}) is a hyperbolic
fixed point of

o3 . Tb(s*(TM))(r,) — T¥(s*(TM))

with skewness 7. According to the uniqueness part of Theorem 2.2, there is
¢ = ¢(1) > 0, independent of z € A, such that 0, is the unique fixed point of
@/ in T%(s*(TM))(().
It is easy to see that ¢ is an expansive constant for f|5. Assume there is
y € A such that
d(f"z, f"y) <, for alln € Z.

By Theorem 2.3’, applied to the special case that f = g, this corresponds to
a section y € T®(s*(T'M))(¢), which is a fixed point of <I>5#f. But 0, has just

been said to be the unique fixed point of @;{ in T°(s*(TM))(¢), so v must be
05, hence x = y. This proves Theorem 2.7.

Thus the (-expansiveness of f on A is simply the uniqueness of fixed points
of @;{ in T°(s*(T'M))(¢). Next we prove the embedding stability of hyperbolic
sets. To make statements snappier let us denote by B'(f,d) the set of diffeo-
morphisms g such that d'(g, f) < §, and by B%(ta,€) the set of continuous
maps h : A — M such that d°(h,.a) < €, where A is any closed subset of
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M. Likewise, B%(1a,€) denotes the set of maps h : A — M, not necessarily
continuous, such that d(hz,z) <e, Vz € A.

Theorem 2.8. Let A be a hyperbolic set of f. Then for any € > 0, there
is 0 > 0, such that for any g € BL(f,6), there is an injective map h € B°(ia, )
such that hf = gh on A.

Note that the injective image A = h(A) will be a compact invariant set of g
that is e-conjugate to f|x. The set A comes as the result of h, but not specified
beforehand. For this reason we have used the words embedding stability. On
the other hand, in Theorem 2.14 below the set A will be specified beforehand.

Proof. Let ¢ be the expansive constant of f on A, guaranteed by Theo-
rem 2.7. By Theorem 2.5, the 0-section 0, is a hyperbolic fixed point of
o] - TO(Ty\M)(r,) — TO(TAM).

Note that this time we consider I'°. According to the existence part of Theo-
rem 2.2, for any 0 < ¢ < (/2, there is § > 0, such that for any g € B(f, ),

@7 : TO(Ty M) (r,) — T°(Ta M)

is C! close enough to @;f so that <I>£f has a fixed point 7 in T'9(TyM)(e),
which gives a continuous e-preconjugacy

h:A— M

from f to g. (This is because @ﬁ depends continuously on ¢ in the C' topol-
ogy (Irwin (1980)). It remains to prove that h is injective. This is just a
consequence of the (-expansiveness of f|r. Indeed, assume h(z) = h(y) for
some z, y € A. Then for any integer n,

d(f"z, f"y) < d(f"=z, h(f"x)) +d(h(f"z), h(f"y)) +d(R(f"y), f"y)
= d(f"z, h(f"z)) +d(g"(hz), g"(hy)) +d(h(f"y), ["y)
< C/240+()/2
= (.

Thus z = y by the (-expansiveness of f|x. This proves h is injective. This
proves Theorem 2.8.

A diffeomorphism f : M — M is called an Anosov diffeomorphism if the
whole manifold M is a hyperbolic set of f.

Theorem 2.9. Anosov diffeomorphisms are C'-structurally stable.

Proof. Let f be an Anosov diffeomorphism. By Theorem 2.8, for any
e > 0, there is § > 0 such that for any g € B!(f,§), there is a continuous
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injective map h € B°(ipr,€) such that hf = gh on M. Tt remains to prove
that h is surjective. By invariance of domain, h is an open map. Thus h(M)
is both open and closed in M, hence h(M) = M (We always assume M is
connected). This proves Theorem 2.9.

Note that what is proved here is more than what the theorem states: a
stronger e-structural stability. The same is true for the stability theorem
presented in the next chapter. Now we proceed to the shadowing property
of hyperbolic sets. Recall a §-pseudo orbit of f is a sequence {z,} such that
d(fzn, xni1) <6, and it is e-shadowed by a true orbit { "z} if d(z,,, f"z) <e.

Theorem 2.10. Let A be a hyperbolic set of f. There is a > 0 such that,
for any e > 0, there is § > 0, such that any §-pseudo orbit {z,} of f contained
in B(A,a) is e-shadowed by a true orbit of f.

Proof. We consider the pull-back bundle again. This time it is pulled back
by the pseudo orbit. Thus let s : Z — M be the sequence that gives the
pseudo orbit, that is, s(n) = z,,. Consider the pull-back bundle s*(T'M) over
the integers

U . M,
neZ

and the fiber preserving map

o/ : s*(TM)(r,) — s*(TM)
<I>sf(u) = exp;an f expy, (v), Yv € T, M.

The map is essentially f regarded as taking tops of vectors at z, to tops of
vectors at z,11. Thus f takes care of calculus in fibers, while the pseudo orbit
{z,,} takes care of base points, which remain fixed pointwise when calculus is
carried out in fibers. This is why it is all right if the base points are given by
a pseudo orbit, rather than a true orbit as in Theorem 2.7. Associated are the
Banach space of sections

0(s*(TM)) = {y:Z — M | y(n) € Ty, M, and 7 is continuous}
and the induced operator

@5 TO(s*(TM))(r,) — T(s*(T'M))
(@5 (7)) (n) = @ (y(n — 1)),Vn € Z.

Analogous to Theorem 2.3’, a shadowing between a pseudo orbit {z,} and
a true orbit {f"x} of f corresponds to a section <y, which is a fixed point of
(I);{. To see such a fixed point does exist, we use Theorem 2.2, treating <I>3#f
as g there. Extending the hyperbolic splitting on A to a neighborhood of A,
it is not hard to see that D@;{(Os), where 0, is the zero-section of s*(T'M),
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is a hyperbolic automorphism of T'%(s*(T'M)) with skewness near that of A.
Moreover, |¢;{(05)\ < §, since s is a J-pseudo orbit. Thus the existence part

of Theorem 2.2’ applies and gives such a fixed point of @‘g#f. More detailed
discussion determines the number a. This proves Theorem 2.10.

The reader can see that Theorems 2.7, 2.8, and 2.10 are indeed beautiful
interpretations of certain part of Theorem 2.1. Theorem 2.7 deals with the
uniqueness part, and Theorem 2.8 and 2.10 each deals with the existence part.
Though being very cute and having yielded some good results such as Anosov’s
theorem, theorems stated this way are not adequate to reach Theorem 2.14
below, which is essential to the stability theorem in the next chapter. More
complete statements should include C'-nearby systems with some uniform
estimates. This is perhaps natural from a general point of view of dynamical
systems: evolution in time, in space, and in systems. As the reader may
predict, proofs for such complete statements will not add much difficulty. One
just need re-check the proof of Theorem 2.1 closely. We state such results and
sketch the proofs.

Theorem 2.11. Let A be a hyperbolic set of f. There are a > 0, ( > 0,
and § > 0 such that for any g € B(f,4), any invariant set A of g contained
in B(A,a) is (-expansive.

Proof. Let T be the skewness of A of f. Fix 7 < y < 1. Take a > 0,
¢ >0, and § > 0 small such that for any g € B'(f,6) and any orbit {s(n)} of
g contained in B(A,a), the lifting

% : s*(TM)(¢) — s*(TM)
and the induced operator
oY : (s*(TM))(¢) — T*(s™(TM))
can be defined and
Lip(®3 — D& (05)) < 1— p, on T°(s*(TM))(()-

(Irwin (1980) again). By Theorem 2.6, we may assume that a > 0 and § > 0
have been chosen so that {s(n)} is hyperbolic for g with skewness less than
1, hence By Theorem 2.5’, the zero-section 0, is a hyperbolic fixed point of
@;{’ with skewness less than y. By Theorem 2.1, there is at most one fixed
point of @;}{’ in T®(s*(TM))(¢), which is obviously 0,. This is equivalent to
the (-expansiveness of g. This proves Theorem 2.11.

The following is a complete statement for Theorem 2.8.

Theorem 2.12. Let A be a hyperbolic set of f. Then,
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1. There are ag > 0, g9 > 0, and & > 0 such that for any g1, go in B(f,d)
and any invariant set Ay of g1 contained in B(A,ag), there is at most
one map h € B®(ua,,€0) such that hg; = gah on A;.

2. There is ag > 0 such that, for any e > 0, there is § > 0, such that for any
g1, g2 in BY(f,8) and any invariant set A1 of g1 contained in B(A,ag),
there is an injective map h € B%(1a,,€) such that hgy = goh on A;.

Proof. Let 7 be the skewness of A under f. Fix 7 < u < 1. Take ag > 0,
g9 > 0 and &y > 0 small such that for any g1, g» in B'(f, dy) and any invariant
set Ay of g1 contained in B(A,ay), the lifting

D992 . TA, M(gg) = Ta, M
and the induced operator
B9 : T°(Ta, M)(g0) = T°(Ta, M)
can be defined, and
Lip(®%% — D4 (04,)) < 1 — p, on T*(Ta, M)(eo).

By Theorem 2.10, we may assume that ag > 0 and dy > 0 have been chosen so
that A; is hyperbolic of g; with skewness less than u, hence By Theorem 2.4,

D4 (0n,) : T°(Ta, M) — T(Ta, M)

is a hyperbolic automorphism with skewness less than y. By Theorem 2.1,
there is at most one fixed point of @%&192 in T(Ta, M)(gp), hence at most one
go-preconjugacy h : Ay — M from g; to go. This proves option 1.

For option 2, we simply take the same number a¢ determined in option 1.
Let € > 0 be given. We may assume ¢ < g9/2. Note that

|8992(0a,)| = d°(g1]a,, g2lay);

because the left hand side is just

SUPgzecA, |ea:p;11$ g2 expg(0z) |

which is
SUPen, €2y, (927)| = sup,en, d(g17, go).

Now take 0 < § < &y small such that for any g1, go in B!(f, §) and any invariant
set A; of g1 contained in B(A,ag),

257 (0a,)| < (1= p = Lip(24* — DRLT (0a,))Iro(1a, M)(e0) )E-
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By Theorem 2.1, there is a fixed point of @g;” in T9(Ta, M)(¢g), which cor-

responds to a continuous map h € B%(ta,,¢) such that hgi = goh on A;.
Moreover, h must be injective. This is just a consequence of expansiveness
in Theorem 2.11. This proves option 2, and completes the proof of Theorem
2.12.

The statement of Theorem 2.12 is complicated. It would be helpful to
keep Theorem 2.1 in mind as model. Thus D®%?'(0a,) corresponds to 4 in
Theorem 2.1, q);&lgz - D@;zgl (0a,) corresponds to ¢, g¢ corresponds to r, fixed
point of @“#92, or preconjugacy h, corresponds to fixed point of A + ¢, and
|@%%2(0a,)| corresponds to [ (0)].

Next is a complete statement for Theorem 2.10. We omit the proof.

Theorem 2.13. Let A be a hyperbolic set of f. Then,

1. There are ag > 0, by > 0, g9 > 0 and §y > 0 such that any dg-pseudo
orbit of any g € B'(f,by) contained in B(A,ag) can be g9-shadowed by
at most one ture orbit of g.

2. There are ag > 0 and by > 0 such that, for any € > 0, there is § > 0,
such that any §-pseudo orbit of any g € B*(f,by) contained in B(A,ag)
is e-shadowed by a true orbit of g.

Theorem 2.12 and 2.13 both concern the conjugacy problem. In fact,
regarding true orbits g"«x as pseudo orbits z,, of f, the uniqueness of shadowing
yields a preconjugacy from g to f, hence Theorem 2.13 gives a similar result
on embedding stability of hyperbolic sets as Theorem 2.12 does. Theorem 2.12
gives conjugacy from f to g, while Theorem 2.13 does backwards, from g to
f. Either one suffices for Theorem 2.14 (we will take Theorem 2.12), which
we now proceed to.

Recall that for any subset S of M (not necessarily invariant), the mazimal
invariant set of f in S is the biggest f-invariant set A (could be empty)
contained in S. Hence A = Npezf™(S). A compact invariant set A of f is
called isolated (or locally mazimal) if A is the maximal invariant set in some
neighborhood U of A in M. In this case U is called an isolating neighborhood
of A. Note that in this case A can be expressed also as N,z f™(K), for any set
K with A C K C U. Any hyperbolic periodic orbit is an isolated invariant set.
The horseshoe is too. Sometimes it is missed that a hyperbolic periodic orbit
in a horseshoe is an isolated invariant set. A good example for non-isolated
hyperbolic invariant sets is the orbit (or its closure) of a transverse homoclinic
point z associated with a hyperbolic fixed point p. It is not hard to prove
that Orb(z) U {p} is hyperbolic. In fact the invariant splitting is given by
the tangent planes to the stable and unstable manifold of p at the iterates of
z. Exponential rates exist because most of the iterates are near p. Now take
m large and e small, and let z be the intersection point of W(f~™xz) with
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WZX(f™x). Then the orbit of z remains in the e-neighborhood of, but different
from, the orbit of . Note that this does not contradict the expansiveness of
hyperbolic sets. In fact {f"z} does not shadow {f"z}. In abuse of language
it “shadows” {f"z} “twice”. Here the difference between a periodic orbit
and a non-periodic one is that, an orbit near a periodic orbit always gives a
shadowing, while an orbit near a non-periodic one may not.

Theorem 2.14. Let A be an isolated hyperbolic set of f with U an isolating
neighborhood. For any € > 0, there is § > 0, such that for any g € B'(f,9),
the mazimal invariant set A of g in U is isolated in U, and g|a is e-conjugate

to fa-

Proof. First we notice a simple topological fact. For U fixed, the maximal
invariant set in U varies upper semicontinuously with f in the C° topology.
That is, if A is the maximal invariant set of f in U, then for any a > 0, there is
§ > 0, such that for any g € B%(f, §), the maximal invariant set A of g in U is
contained in B(A,a). This is because A is the infinite intersection Nypezf"U,
hence for some large positive integer N we have N_ . f"U C B(A,a/2).
Then we can take § > 0 small such that, for any g € B(f,4), NY__¢"U C
B(A,a), hence N5 ¢"U C B(A,a).

Let A be an isolated hyperbolic set of f with U an isolating neighborhood.
By option 1 of Theorem 2.12, there are ag > 0, €9 > 0, and dy > 0 such that
for any g1, g2 in B(f, 8) and any invariant set A; of g; contained in B(A, ag),
there is at most one map h € B®(ta,, &) such that hg; = goh on A;. We may
assume that

B(A,ap+¢€9) CU.

Let € > 0 be given. We may assume ¢ < g¢/2. By option 2 of Theorem
2.12, for this ag > 0, there is 0 < § < &y such that, for any g1, g2 in B(f,0)
and any invariant set A; of g; contained in B(A,ap), there is an injective
map h € B%(ta,,€) such that hg; = goh on A;. Taking a smaller number §
if necessary, we may assume, by the topological fact just mentioned, that the
maximal invariant set of any g € B*(f,d) in U is contained in B(A, ay).

Now let A; and As, respectively, be the maximal invariant sets in U for
g1 and gy in BY(f,6). Thus A; and A, are in B(A,ap), and there are two
continuous injective maps hi : Ay = M with

hig1 = gohy on Ay, and d°(h, ta,) <5,
and ho : Ay — M with
hogo = g1hs on Ay, and do(h, LAQ) <e.

Note that
h1 (Al) C AQ,
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because hi(A1) is clearly go-invariant, because hq (A1) C B(A1,e) C B(A,e+
ag) C U, and because Ay is the maximal invariant set of go in U. Likewise,

hQ(AQ) C Aq.
Combine h; and hy together gives hohy : A — Ay with
(h2h1)91 = gl(hghl), and do(hghl, LAI) <e+e <L g

However, the inclusion ¢a, is already a conjugacy between g; and itself. By
uniqueness of preconjugacy in B®(ta,, o),

hghl =LlAq-
Likewise,
hlhg = LlAy-

This proves g1|a, and go|a, are e-conjugate. In particular, one of them could
be f|a. This proves Theorem 2.14.

Another major result about hyperbolic sets is the stable manifold theorem.
Recall the local stable manifold W7 (z) of size € for a point z is defined as

Wiz, f) = {y € M|d(f"y, f"z) <&, Vn =1},
and likewise, the local unstable manifold W¥(z) of size €
Wiz, f) = {y € Mld(f ™"y, f"z) <&, Vn >1}.
Thus W} (z) consists of points that e-shadow z along forward iterates, and

W2(z) — backward iterates.

Theorem 2.15. Let A be a hyperbolic set of f with splitting E° & E“.
Assume f is C". Then there is 0 < u <1 and € > 0 such that for any = € A,

1. Wi(z) is a C" embedded disc, tangent to E*(z) at x.

2. d(fy, fz) < pd(y,z), ¥y € Wi(z).
3. The family of discs W2 (x) varies continuously with x, in the C" topology.

Likewise for W¥(z). Thus points that shadow a hyperbolic orbit {f"z}
along forward iterates form a disc of the same dimension as E*(z). Moreover,
in this case, forward shadowing implies forward asymptotic approaching, even
exponentially. That the stable manifolds are differentiable is delicate. This
differentiability, C' at least, is essential to us in what follows.

Local stable manifolds visualize beautifully the notion of e-shadowing.
Thus the (-expansiveness is visualized as that for ¢ small, W(z) N W¢(z)
is the single point {z}. A more complete stable manifold theorem includes C”
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perturbations g, which asserts that points whose positive g-orbit e-shadows
the positive f-orbit of z is a disc D{ that is C” close to W2(z), likewise a disc
D? for backward shadowing. The intersection D N DY is hence a single point
y whose g-orbit e-shadows the f-orbit of z. The disc D{ is hence in W (y) for
some ¢'. In this way the correspondence x — y visualizes the e-preconjugacy
h in Theorem 2.8 and 2.12.

Local stable manifolds yield global stable manifolds through iterates. Re-
call the (global) stable and unstable sets are defined topologically as

Wi(z) = {yeM|[d(f*(y), f*(z)) = 0,n = +o0},
W) = {yeM|d(f "(y), f "(=)) = 0,n — +oo}.

Unlike the local stable manifolds, the global stable manifolds are equivalence
classes of the equivalence relation z ~ y iff d(f"(y), f™(xz)) — 0. Thus if
y € W#(z), then z € W#(y). Through iterates, one gets

We(z) = |J Wi ),
n>0
wh(z) = |J W ).

n>0

Thus the global stable manifolds are immersed C" submanifolds of M. Such
a submanifold can wrap around in complicated ways as seen in the horseshoe
map. Associated is the celebrated notion of transverse homoclinic points.

Finally we study the way points approach an isolated hyperbolic set. Let
A be a compact invariant set. The stable set and unstable set of A are defined
as

W3(A) = {ye Mld(f"y,A) = 0, n — +oo},
W*A) = {yeM|d(f"y,A) =0, n — +oo}.

These are points that approach the set A under iteration. This is weaker than
to approach asymptoticly a point z € A, which is what the (global) stable
manifold W#(z) or unstable manifold W*(z) of  means. The next theorem,
known as the In Phase Theorem, says that for isolated hyperbolic sets these
two are the same.

Theorem 2.16. Let A be an isolated hyperbolic set of f. Then

W) = W),
TEA
we(A) = | W)

TEA
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Proof. We take W#, and prove the C part only. Let U be an isolating
neighborhood of A. Take r > 0 such that B(A,r) C U. By Theorem 2.10, there
are ag and 0 > 0 such that any d-pseudo orbit of f contained in B(A, ag) is 7/2-
shadowed by a true orbit of f. We may assume ag < r/2. Now let z € W*(A).
Denote a = min(ag,d). For a large N, the forward orbit {fV*+"(z)} of fV(z)
remains in B(A,a). Take any point y € A with d(y, f¥(z)) < a. Then the
backward orbit of f~'y and the forward orbit of fV¥(z) together form a -
pseudo orbit of f contained in B(A,ap), hence is r/2-shadowed by a true
orbit {f"z} of f. Thus fN(z) € Wf/z(z), hence z € W?*(z). It remains
to prove z € A. But this is obvious because the orbit of z is contained in
B(A,a0+1/2) C U, and A is maximal in U. This proves Theorem 2.16.
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CHAPTER 3

The ()-stability theorem of Smale

In this chapter we prove the Q-stability theorem of Smale (1970), which asserts
that Axiom A and no-cycle systems are {2-stable. Naturally, a diffeomorphism
f: M — M is called Q-stable if there is a C! neighborhood U of f such that
for any g € U, glq(g) is topologically conjugate to f|q(y)-

3.1 Axiom A systems

A diffeomorphism f : M — M is called an Aziom A system if Q(f) is hyper-
bolic and if Q(f) = Per(f).

The north-south pole map is axiom A, and so is the horseshoe map defined
on the 2-sphere. Any Anosov diffeomorphism f is Axiom A. To see this we
only need check Q(f) = Per(f). This follows from the shadowing property.
Let  be any non-wandering point x of f. We prove there is a periodic point
z arbitrarily close to z. Now there is y € M and m € N such that both
y and f™y are arbitrarily close to z. Repeating the finite orbit y, fy, ... ,
f™ 1y in both forward and backward directions gives a periodic pseudo orbit
of f, which is shadowed by a unique true orbit {f"z}. The m-shift of the
pseudo orbit is then shadowed by the m-shift of the true orbit {f"*™z}. But
the pseudo orbit is periodic hence its m-shift is itself. By uniqueness the two
true orbits {f™z} and {f"t™z} must be the same, which means z is periodic.
This proves any Anosov diffeomorphism is Axiom A. Note that this argument
does not show that, generally, if Q(f) is hyperbolic then Q(f) = Per(f). The
reason is that the (periodic) pseudo orbit in this case is not known to be near
a hyperbolic set (which is Q(f) in this case), hence the shadowing property
may not hold. In fact it remained to be an important problem whether or
not the hyperbolicity of Q(f) implies Q(f) = Per(f). Newhouse and Palis
(1973) showed this is right in dimension 2. Dankner (1978) constructed later
a counterexample in dimension 3.

3.2 The isolation of Axiom A non-wandering sets

One of the main features of an Axiom A system is that the non-wandering set
is isolated. We start with the A-lemma of Palis, which grasps a crucial feature
of chaotic dynamics hence has many applications.

Theorem 3.1 (The A-lemma). Let p € M be a hyperbolic periodic point.
For any u-disc B in W*(p), any point x € W*(p), any u-disc D transverse to
W4(p) at z, and any € > 0, there is N such that if n > N, f™(D) contains a
u-disc that is C'-¢ close to B.
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Here for simplicity we have denoted s = dim W*(p) and v = dim W*(p).
The A-lemma says that, no matter how big B is, how small D is, and how
weakly transverse (small angle) D to W*(p) is, the conclusion is always true.
Though the geometrical fact seems easy to swallow, the proof is delicate (see
the book of de Melo and Palis).

Here is an application of the A-lemma, which has a beautiful name, the
cloud lemma.

Theorem 3.2. Let p and q be hyperbolic periodic points of f. Assume
x is a point of transverse intersection of W*(p) and W"(q), and y is a point
of transverse intersection of W*(q) and W*(p). Then x and y are both non-
wandering.

Proof. Replacing f by an iterate if necessary, we may assume p and g are
fixed. Take a u-disc D of center z in W*%(q). By the A-lemma, there is n; such
that f1(D) intersects transversely with W#(q) at a point z. Take a u-disc D
of center z in f™ (D). By the A-lemma again, there is ny such that f™2(D;)
contains a u-disc that is arbitrarily C''-close to D. This proves z € Q(f). The
proof for ¥ is similar. This proves Theorem 3.2.

The cloud lemma extends to m hyperbolic periodic points p1,p2, - ,Pm
such that W*(p;) and W*(p; 1) intersect transversely at z; for each i. Then
each z; is non-wandering. The case m = 1 is the celebrated transverse homo-
clinic point. Thus every transverse homoclinic point is non-wandering. In fact
Birkhoff-Smale theorem asserts that any transverse homoclinic point is in a
horseshoe.

The reader may have noticed that, to guarantee that an individual point
of intersection, say x;, is non-wandering, transversality at the other z;,j # 1,
would be enough. In particular, any homoclinic point, whatever transverse or
not, is non-wandering.

The following general fact is a consequence of the stable manifold theorem.

Theorem 3.3. Let A be a hyperbolic set. There are ¢ > 0 and § > 0
such that for any two points  and y in A with d(z,y) < 6, Wi (z) and W2 (y)
intersect transversely at a single point.

Proof. By Theorem 2.15, Wf(z) and Wk(z) are tangent to E°(z) and
E%(x) at x, respectively, and vary continuously with z in the C* topology.
There is clearly € > 0 such that, for all z € A, W(z) and WY(z) intersect
transversely at the single point z. So there is d(z) > 0 such that if y € A
and d(z,y) < 6(z) then W2(z) and W(y) intersect transversely at a single
point. Since A is compact, § can be chosen independent of z. This proves
Theorem 3.3.

We may call such a pair of numbers (g, d) an adapted size of the hyperbolic
set A. Note that if (g, d) is an adapted size, so is (&,d") for any 0 < §' < § and,
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for any 0 < &’ < ¢, there is 0 < ¢” < ¢’ such that (¢',4"”) is an adapted size.
We say a hyperbolic set A has local product structure, if there is an adapted
size (g,0) of A such that, for every pair of points z and y in A with d(z,y) < 4,
the single point of transverse intersection of W5(z) and W (y) remains in A.

Theorem 3.4. If f is Aziom A, then Q(f) has local product structure.

Proof. Take any adapted size (g,0) of Q(f). Let  and y be in Q(f) with
d(z,y) < 6. If z and y are both periodic, the two intersection points are
non-wandering, by the cloud lemma. Since Q(f) = P(f), the theorem follows.

The following is the well known shadowing lemma of Bowen.

Theorem 3.5. If a hyperbolic set A has local product structure, then
for every € > 0, there is § > 0, such that any §-pseudo orbit in A can be
e-shadowed by a true orbit in A.

This theorem can be found in many text books. The proof is an elegant ge-
ometrical construction of shadowing using local product structure. It assumes
more than plain hyperbolicity of A as Theorem 2.10 does. It asserts more too
that the shadowing orbit is in A. It yields as a consequence the following

Theorem 3.6. A hyperbolic set has local product structure if and only if
it is isolated.

Proof. Let A be a hyperbolic set with local product structure. Let { > 0
be the expansiveness constant of A. By the shadowing lemma, there is § > 0
such that any é-pseudo orbit in A can be {/2-shadowed by a true orbit in A.
Take 0 < a < (/2 small enough such that for any orbit {f"z} in B(A,a),
letting z,, to be the closest point to f"z in A, {z,} form a é-pseudo orbit.
Then there is z € A such that {f"z} (/2-shadows {z,}. Since {f"z} and
{f™z} both (/2-shadow the same sequence {z,}, they (-shadow each other.
By (-expansiveness, x = z. Thus x € A. This proves A is isolated.

Let A be an isolated hyperbolic set. By definition there is ¢ > 0 such
that if an orbit {f™z} is contained in B(A,a), then the orbit is actually in A.
Now let (g,d) be an adapted size of A. We may assume ¢ < a. Let z be an
intersection of W2(z) and W¥(y), z,y € A. Then z e-shadows the positive
orbit of z and the negative orbit of y. Then {f"z} is contained in B(A,a).
Thus z € A. This proves A has local product structure. This proves Theorem
3.6.

As a consequence of Theorem 3.4 and 3.6 we obtain the main result of this
section.

Theorem 3.7. If f is Aziom A, then Q(f) is isolated.

This important theorem is first proved by Hirsch-Palis-Pugh-Shub. The
above proof using shadowing lemma (Theorem 3.5) is due to Bowen. The
next theorem says, for Axiom A systems, every point £ € M shares the same
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asymptotic behavior with some non-wandering point.

Theorem 3.8. If f is Aziom A, then
M= ) W)= |J W"2).

2€Q(f) z€Q(f)

Proof. Since every point x € M approaches to the non-wandering set for
both forward and backward time, this is an immediate corollary of the In
Phase Theorem 2.16. This proves Theorem 3.8.

Thus if f is Axiom A, W*(z) is an immersed submanifold of M for any
x € M. This gives a decomposition of M into immersed submanifolds. Like-
wise for the unstable manifolds. The decomposition can be very complicated.
The horseshoe map on S? can be taken as illustration. While two stable man-
ifolds never intersect as different equivalence classes, a stable manifold may
well intersect an unstable manifold. An Axiom A system f is said to satisfy
the strong transversality condition if W*(z) and W*(y) intersect transversely
for every pair of points z,y € M. Now we can state without proof the cele-
brated stability theorem of Robbin and Robinson, which is a central result of
Dynamical Systems obtained in the early seventies.

Theorem 3.9. If f satisfies Axiom A and the strong transversality con-
dition, then f is C' structurally stable.

3.3 Spectral decomposition

Another main feature for Axiom A systems is that the non-wandering set
decomposes into a finitely many disjoint transitive sets. This is the spectral
decomposition theorem of Smale. Here a compact invariant set A is called
transitive if there is a point z € A such that the orbit of z is dense in A.
Any transitive set can not be decomposed into two disjoint closed invariant
sets. (Though some non-transitive set can not be decomposed into two disjoint
closed invariant sets either.) We insert Birkhoff’s theorem on transitivity.

Theorem 3.10. A compact invariant set A is transitive if and only if for
any two open sets U and V in A, there is an integer m such that f™(U)NV # 0.

Note that the condition formulated in the theorem amounts to say that
the orbit of any open set U (by this we simply mean the union of orbits of
for all z € U) is dense.

[134

Proof. The “only if’ part is obvious. we prove the “if” part. Take a
countable basis Uy, Uy, ... of A. Then for any i > 1, Upezf"(U;) is both open
and dense in A. By Baire’s theorem,

B=(U rw)

i>1nez



30

is dense in A. It is easy to see that every z € B has orbit dense in A. This
proves Theorem 3.10.

Now we prove the spectral decomposition theorem.

Theorem 3.11. If f satisfies Aziom A, then the non-wandering set
decomposes uniquely into a finite union of disjoint transitive sets

Qf) = U~ UQ.

These sets 2; are called the basic sets of f.

Proof. First we prove the uniqueness of the decomposition. Assume there
is another such decomposition

Q(f) = A U---UA,

Take z; € €2; such that the orbit of z; is dense in ;. There is a unique 7 with
z; € Aj, hence

This proves k < [. Similarly, | < k. Thus k = [. Since U); = UA, the above
inclusion ©; C A; is actually an equality. This proves uniqueness.

Consider the binary relation ~ on the set P = P(f) of periodic points
defined as z ~ y if and only if W*(z) and W*"(y) intersect transversely, and
W (xz) and W#(y) intersect transversely. The relation is reflective, symmetric
and, by the A-lemma, transitive, hence an equivalence relation. Thus P de-
composes into equivalence classes P;. By Theorem 3.3, there is § > 0 such that
if two periodic points z and y are within J, then x ~ y. Hence the following
three properties are clear.

(1). There are only finitely many equivalence classes P;, say N of them. In
fact, o

(3). For any 4, there is a unique j such that f(P;) = P;. The correspondence
1 — j is an N-permutation.

We only prove (3). Note that if z ~ y, then fz ~ fy. Hence for any i,
there is a unique j such that fP;, C P;. But fP = P. So fP; = P;. Then
f(P;) = Pj, and i — j is an N-permutation.

Note that P; is not invariant in general. But the N-permutation is a
product of cyclic permutations. Putting together the P;’s that are associated
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with the same cyclic permutation gives a finitely disjoint union of compact
invariant sets

Q(f) = QU UQ.

It remains to prove each (); is transitive. Let €2; be the (cyclic) union
Q; :Fz'l U--'Uﬁi”

such that f(P;,) = P;,,,. We use Birkhoff’s theorem. For any open set U of
P;, and any open set V of P;,, 1 <p < q <r, we need to show there is n € Z
such that f"(U) NV # (. Let W = f97P(U). We show there is m such that
f™(W)NV # 0. But this is clear if we take two periodic points z € W and
y € V, and note that = ~ y. This proves Theorem 3.11.

We end this section with an example that shows Axiom A systems are
not C'-dense in Diff'(M). The example is taken from Newhouse’s lecture
notes [GMN]. The idea is to have a basic set A such that, C' persistently,
there are homoclinic tangencies z € W*(xz) N W*(y) — A for some z,y € A.
Such a z obstructs the hyperbolicity of the non-wandering set. Here we use
a more flexible notion of basic set which may not known to come from the
spectral decomposition of an Axiom A system. It is simply defined to be
an isolated transitive hyperbolic set. It is easy to see using shadowing that
periodic points are dense in a basic set. An analogous fact to the case of
a hyperbolic periodic point is that, any homoclinic point of a basic set A is
non-wandering. Here by a homoclinic point of a basic set A we mean a point
z € W5(A) N W"(A) — A. By the In Phase Theorem, z € W*(z) N W"(y) — A
for some z and y in A. Of course generally we can not expect homoclinic
points to be non-wandering, without constraints put on the set A. In general
any wandering point approaches to Q(f) for both forward and backward time,
hence is in W3 (Q(f)) N W*(Q(f)) — Q(f). This would not be interesting.
An extreme example could be the north-south pole map on the sphere with
Q(f) = {5, N}.

To make the example more intuitive, we need a non-trivial hyperbolic at-
tractor in lower dimension. Plykin’s attractor in the plane is a good choice.
Here by an attractor A we mean a transitive set that has a neighborhood U
such that f(U) C U and A = N,,>0f"U. Note that in this case the intersection
of positive iterates of U is the same as the intersection of all iterates. Thus an
attractor A is always isolated. Moreover, W*(A) always contains a neighbor-
hood of A. If the attractor is hyperbolic, it is a basic set, and by the In Phase
Theorem, the family W*(x),z € A, fill out a neighborhood of A. A classical
hyperbolic attractor is the solenoid of Smale. It comes from a map f that
maps a neighborhood U of the circle S! in R? into itself that stretches the S*
direction, while shrinks the normal direction. Bob Williams has extended S*
to any branched 1-manifold. This gives an amazing variety of 1-dimensional
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hyperbolic attractors. Moreover, Williams shows any 1-dimensional hyper-
bolic attractor arises this way (Later Williams extended his theory to higher
dimensional attractors). Let A be the Plykin’s hyperbolic attractor in the
plane, which is locally a Cantor set cross an interval, as the figure shows.
Thus the family of stable intervals W*(z), z € A, fill out a neighborhood U of
A in the plane.

w' (p)

Take a periodic point p € A. Add one more dimension to the problem so
that W*(p) has dimension 2 (the map is still denoted by f). Push W"(p) with
a finger till it has immerged a little bit under U so that W"(p) intersects U
at a small circle. Thus W*(p) is tangent to a (actually two) stable interval
W#(x) at some homoclinic tangency z, for some x € A. This feature persists
under C' perturbations.

3.4 No-cycle condition, filtration, and the (2-stability theorem

Only Axiom A does not guarantee (2-stability. The following example is due
to Palis and Smale. It is a diffeomorphism f on S? with the non-wandering
set Q(f) of six hyperbolic fixed points as the figure shows.
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z

Thus f is Axiom A. There are two saddle-connections that form a “cycle”.
A small C" perturbation (any r) near a wandering point z on one of the
connection (f composed with a small rotation localized by a bump function)
may make the connection transverse at z, hence make all points on the other
connection non-wandering, thus an 2-explosion.

We define cycles formally. Let Aq,--- , Ag be a finitely many disjoint com-
pact invariant sets of f. Define a binary relation — as

k
A; — A if and only if W*(A;) N W*(A;) — | J A #0.
=1

Roughly, A; — A; means there is some point outside these A;’s that goes from
A; to Aj. Note that this binary relation is not reflexive, nor symmetric, nor
transitive. We say A;,,---,A;,, form a cycle if

Ail _>A12_>_)Azm _)Ail-

We say Aq,--- , Ay satisfy the no-cycle condition if there are no cycles between
them. Note that an Axiom A system does not have 1l-cycle to any of its
basic set. This is because points on the 1-cycle would be homoclinic to this
basic set and hence non-wandering, but the whole non-wandering set has been
decomposed into basic sets.

When {A;} satisfy the no-cycle condition, one may reindex so that A; — A;
implies i > j. We call such an ordering of {A;} a filtration ordering. The idea
is simple. Let us call A; a lower extreme if there is no A; such that A; — A;.
Here we think of the binary relation — as going downwards, hence use the
term “lower”. Since there are no cycles between Ap,---, Ay, there must be
some lower extremes (Otherwise one would trace out a cycle since there are
only finitely many A;). Collect all lower extremes of Ay, -+ , Ay and put them
in any order as Aj,..., Ag,. The rest of the A; still have no cycles, hence still
have some lower extremes (respecting to the rest of the A;). Put them as
Aky41, -y Ag,, etc. This gives a filtration ordering.

Generally, if the union of finitely many disjoint compact invariant sets A;
is sufficiently large, even without the no-cycle condition, it yields a decompo-
sition of M:
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Theorem 3.12. Let Ay, ..., Ay be finitely many disjoint compact invariant
sets of f, whose union contains the limit set L(f). Then

The conclusion is wearker than Theorem 3.8. It concludes that every
point approaches a (single) set A; in forward or backward time, rather than
asymptotic to a point of A;. Nevertheless it does not assume Axiom A as
Theorem 3.8 does.

Proof. For each i, take a neighborhood U; of A; such that for any i # j,
U;nU; =0, (fU;) nT; =0.

Let € M. Since w(z) C U¥_|A;, there is N such that f"z € UF_,U; for all
n > N. Let f¥z € A;. Then f"z € U, for all n > N, since (fU;) NU; = 0,
for i # j. Then w(z) C A;. Hence z € W*(A;). Likewise for W*. This proves
Theorem 3.12.

If, moreover, the no-cycle condition is added, it turns out to yield (see
Theorem 3.15 below) a strong global dynamics, — the filtration structure we
now define.

A finite nested sequence

@ZM()CMlC"'CMk:M
of compact subsets M; of M is called a filtration of f, if
fM; C intM;.

In this case we call M; — M;_1 the i-th layer of the filtration, and denote

Ki=Ki(f)= () f"(M;— M)

n=-—00
the maximal invariant set of f in the ¢-th layer.

Theorem 3.13. Let {M;}¥_ be a filtration of f. Then K; are mutually
disjoint isolated invariant sets of f, with the i-th layer M; — M;_1 an isolating
neighborhood of K;. The union of K; contains the chain recurrent set R(f) of
f, and {K;} satisfies the no-cycle condition.

Recall a point £ € M is called chain recurrent if for any € > 0, there is an
e-chain going from z to z itself. The chain recurrent set R(f) is compact and
f-invariant, and it contains Q(f).
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Proof. Since fM; C intM;, it follows that
FrHHMG) C f(int ;).

Then
o o
(| M= () finth).
n=—00 n=—0o0

Therefore K; can be equivalently expressed to be

K; = ﬂ [ (M; — M)

From the second expression we see K; is compact. From the third expression
we see M; — M;_1 is an isolating neighborhood of K;.

Now let x € M be a point whose orbit is not contained in any single layer,
say ¢ ¢ M;, but f¥z € M;. Then fN*1(z) € fM; C intM;. Tt is then easy to
see z can not be chain recurrent. This proves that the union of K; contains
the chain recurrent set R(f) of f. It is also easy to see that {K;} satisfies the
no-cycle condition. This proves Theorem 3.13.

The filtration structure is C° robust. More precisely,

Theorem 3.14. Let {M;}F_, be a filtration of f. Then

(1). There is a C° neighborhood U of f such that, for any g € U, {M;}r_, is
also a filtration of g.

(2). For any neighborhood U; of K;(f), there is a C° neighborhood U of f
such that, for any g €U, K;(g) C U; for anyi=1,...,k.

The proof is obvious and omitted. Now we proceed to a converse of The-
orem J3.13.

Theorem 3.15. Let Aq,...,A; be mutually disjoint compact invariant
sets of f, the union of which contains the limit set L(f) of f. If A; satisfy
the no-cycle condition and the ordering by indices is a filtration ordering, then
there is a filtration {M;}F_, of f such that K; = A;.

Proof. The proof is a prototype of global arguments in topological dy-
namics. The idea is to analyze through stable and unstable sets the basins
of certain attracting sets, as seen in Step 4 below. Steps 1 through 3 are
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preparations. For each ¢, take a neighborhood U; of A; such that for any
L F Js o -
UuinU; =0, (fU;)NU; =0.
Step 1. If f*z € U; for all n > 0, then z € W¥(A;).
Proof. The same as in the proof of Theorem 3.12.

Step 2. If W(A;) NW*™(A;) # 0, then Wu(A;) N A; # 0.
This means that if W*(A;) approaches W"(A;), it climbs up to A;.

Proof. Wu(A;) is closed and invariant, so whenever it contains a point
z € W*(A;), it contains a(z), which is contained in Aj;. This proves
Step 2.

Step 3. IFWu(A))NA; £ 0, and if i # j, then We(A;) N (W3(A;) — A;) # 0.

This means that if W*(A;) approaches A;, and if ¢ # 7, then it climbs
up to W*(A;).

Proof. Let z € W%(A;) N Aj. Then there are z, € W*(A;)) NUj, k =
1,2,..., such that z; — x. But ¢ # j, so for each k, there is ny such that
Tk, f_lmka ) f_nk+1 (a"k‘) € U]a

but
7 (@) ¢ U

Then o
z =" (ax) € fTU; - U C f7I0; - U

Since z € A;, it follows that
ng — +00.

Take a limit point z of {2} in the compact set f~'U; — U;. Then
z € Wu(Aj) — Aj. Since for all k, the positive orbit of z;, up to the
ny-th iterate, is contained in ﬁj, it follows that f"z € VJ for all n > 0.
By Step 1,

AS WS(AJ)
This proves Step 3.
Step 4. For anyi1=1,2,...,k,

(1) U< W*(A1) is compact and invariant.
(2) Ui W#(A1) is an (invariant) open neighborhood of \J;<; W*(Ar).
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(8) For any compact set Q; with
Uw ) cicJwe(a,

1<i 1<i

one has
) Qi) = JW" (M)
n>0 I<i
This means roughly that the W"-union from the bottom is a compact
attracting set with basin the corresponding W#*-union from the bottom.
Note that here [, but not ¢, serves as the dummy index.

Proof. (1) The invariance is obvious. We prove the compactness. Take
any m < 4, we prove

We(Am) C | JWH(A).

1<i

Suppose not, then there is 5 > m such that

W (Am) N WH(A;) £ 0.
We show in this case W*(A,,) would climb up higher and higher without
end, a contradiction.

We may assume j to be the maximal index that satisfies the last inequal-

ity. Of course j # m. By Step 2 and 3, there is z € W¥%(Ap,) N(W?(A;) —
A;). By Theorem 3.12, z € W"(A,) (hence W¥*(A,,) N W*(A,) # 0) for
some r. Then A, — A;. Hence r > j by the filtration ordering. This
contradicts that j is the maximal index with this property. This proves
(1).

(2) Replacing f by f~! it follows that Uisip1 W?(Ay) is closed in M. By
Theorem 3.12, J,.; W*(A;) is open in M. Now for any m < i,

W (Am) N (W (M) =0
>4

by the filtration ordering. This proves (2).

(3) The “D” part is obvious. We prove the “C” part. Let z € Ny>0f"(Q:)-
Then f~™"z € @Q; for any n > 0. But @Q; is compact and disjoint
from UjsiA; (even Up<;W#(A;) is disjoint from Ujs;A;), it follows that
x ¢ Ups;W¥(A;). This proves (3), and finishes Step 4.

Step 5. If a compact invariant set P of f has a compact neighborhood Q with
Nn>0f"Q = P, then P has a compact neighborhood V with V. C intQ
such that fV C intV.

While this result seems somewhat natural, the proof is delicate. We omit
the proof (See [Sh]).
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Now we complete the proof of Theorem 3.15. For each i = 1,2, ..., k, take
a compact set @; with

UwH () cint@: c Qi c | W (A).

1<i 1<i

By Step 4,
() Qi) = JW*(Ay).
n>0 1<i

By Step 5, the compact invariant set U;<;/W*(A;) has a compact neighborhood
V; with V; C intQ; such that

fVi CintV;.

Let
M; =W
1<i
It is easy to see that {M;} is a filtration of f. We prove K; = A;.

Since A; C M;—M;_1 (It is obvious that A; C M;. On the other hand, A; is
disjoint from Uj<;_1W?*(A;), which contains M;_,), and since A; is invariant,
it follows that A; C K;. It remains to prove A; D K;. Take any z € K;.
Then f"r € M; — M;_; for all integer n. By Theorem 3.12, there is j such
that £ € W*%(A;). It is easy to see j = i. Likewise z € W"(A;). Then
x € W3(A;) N W¥(A;). By the no-cycle condition, x € A;. This proves
A; D K;, and completes the proof of Theorem 3.15.

Now we proceed to the central issue of this short course, the Q-stability
theorem of Smale.

Theorem 3.16. If f satisfies Aziom A and the basic sets have no cycles,
then f is C" Q-stable, for any r > 1.

Proof. Tt suffices to prove that f is C! Q-stable. Let €,...,Q; be the
basic sets of f. Since there is no cycle between €2;, by Theorem 3.15, there is

a filtration
Q)ZMQCM1C"'CMk=M
of f with
Ki(f) = Q.
By Theorem 3.13, €; is isolated with isolating neighborhood M; — M;_;.

By Theorem 3.14, there is a C° neighborhood U° of f such that for any
gelu, {Mi}fzo is also a filtration of g. Denote

o0

Ki(g)= () ¢"(M;— M;_y).

n=—oo
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Let € > 0 be given. By Theorem 2.14, there is § > 0 such that for any
g € BY(f,6) and any i = 1,2, ..., k, there is a homeomorphism

h; = hi(g) : Ki(f) = Ki(g)

such that
d(h;,id) < e and h;f = gh;.

These h; together give an e-conjugacy

It remains to prove
k
U Kig) = (9).
=1

The “D” part is given by Theorem 3.13. The “C” part is given by

This proves Theorem 3.16.

Note that to prove the “C” part we could not have argued as that h is
a conjugacy from Q(f) to UF ;K;(g) and that a conjugacy “preserves the
non-wandering set”, hence U¥ | K;(g) C Q(g). This is because h is defined
merely on €)(f), hence the non-wandering set it preserves is Q(f|q(s)), which
is generally different from €2(f) as the concept of non-wandering point depends
on neighborhoods. On the other hand, the concept of periodic point does not,
hence the above last second “C ” goes through.

3.5 More about spectral decompositions and cycles

In this section we present some further development on the topic of spectral
decompositions and cycles. First we remark that the spectral decomposition
is really for P.

Theorem 3.17. If P is hyperbglz'c, ﬁlen P decgmposes uEz'quely nto a
finitely many disjoint transitive sets P4 U Py U --- U Py. Also, P is isolated.

Proof. The proof for decomposition is the same as in Theorem 3.9. The
proof for isolation is a refinement of the proof of Theorem 3.4 as we now
indicate. By Theorem 3.6 we only check the local product structure. Let p and
q be two periodic points that are close enough so that their stable and unstable
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manifolds intersect transversely at  and y. We need to show z and y are in P.
This is a refinement of the cloud lemma, and is guaranteed by Birkhoff-Smale
theorem on homoclinic points, which asserts that any transverse homoclinic
point is in a horseshoe, see Guckenheimor(1980). This proves Theorem 3.17.

We know by Dankner’s example that Q-hyperbolicity does not imply Q =
P. The following results of Newhouse (Theorem 3.18 and 3.19) and Franke-
Selgrade (Theorem 3.20) give some important contrast.

Theorem 3.18. If L(f) is hyperbolic, then L(f) = P(f).

Proof. This can be proved by shadowing. Let z € L. There is y € M
and some integer N such that y and f~ (y) are both close to z and the whole
finite orbit v, fy,--- , fV (y) remains near L. Repeating this finite orbit gives
a periodic pseudo orbit near L. Then shadowing works to give a periodic point
z near x. This proves Theorem 3.18.

Note that the proof is like the proof that for Anosov diffeomorphisms
) = P. We have noticed that this method does not prove that -hyperbolicity
implies Q@ = P. Now it does prove that L-hyperbolicity implies L = P.
Combined with Theorem 3.17, this shows if L(f) is hyperbolic, then f has an
L-decomposition L1 U Ly U -+ - U Ly, which is just the P-decomposition.

Theorem 3.19. If L is hyperbolic, and if there are no cycles in the L-
decomposition, then P(f) = L(f) = Q(f) = R(f). In particular, f is Aziom
A and no-cycle.

Proof. Let L1, ..., Ly be the basic sets in the L-decomposition of f. By
Theorem 3.15, there is a filtration {M;} of f such that K; = L;. By Theo-
rem 3.13, L(f) contains R(f), hence L(f) = Q(f) = R(f). Combining with
Theorem 3.18 this proves Theorem 3.19.

Theorem 3.20. If R(f) is hyperbolic, then P(f) = L(f) = Q(f) = R(f).
Actually R(f) is hyperbolic if and only if f is Aziom A and no-cycle.

Proof. Let R(f) be hyperbolic. Then L = P is hyperbolic and hence
decomposes into
LiULyU---U Ly,

each transitive. By Theorem 3.19, it suffices to prove there are no cycles
between the L;. Suppose there is a cycle, say

Li,Lo,...,Ly; x1,22," ,ZTm,

It is easy to see every z; is chain recurrent (since L; is transitive). Now R(f) is
assumed to be hyperbolic, so the stable and unstable manifolds of z; intersect
transversely at z;. Then it is not hard to see (In Phase Theorem, A-lemma,
Birkhoff-Smale theorem) each z; is in P, a contradiction.
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Conversely, if f is Axiom A and no cycle, then P = L = . Then Theorem
3.19 applies. This proves Theorem 3.20.

A delicate problem is: Can any Axiom A system be C" approximated by
an Axiom A and no-cycle system? Newhouse and Palis (1973) prove that this
is true for any > 1 if M is 2-dimensional. Patterson (1988) constructed a
C? counterexample in 3-dimension. The case r = 1 for dimension 3 or higher
is unknown.
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