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PREFACE

The notes presented here are based on lectures delivered over the years by
the author at the Université Pierre et Marie Curie, Paris, at the University of
Stuttgart, and at City University of Hong Kong. Their aim is to give a thorough
introduction to the basic theorems of Differential Geometry.

In the first chapter, we review the basic notions arising when a three-
dimensional open set is equipped with curvilinear coordinates, such as the metric
tensor, Christoffel symbols, and covariant derivatives. We then prove that the
vanishing of the Riemann curvature tensor is sufficient for the existence of iso-
metric immersions from a simply-connected open subset of R™ equipped with
a Riemannian metric into a Euclidean space of the same dimension. We also
prove the corresponding uniqueness theorem, also called rigidity theorem.

In the second chapter, we study basic notions about surfaces, such as their
two fundamental forms, the Gaussian curvature, Christoffel symbols, and co-
variant derivatives. We then prove the fundamental theorem of surface theory,
which asserts that the Gaufl and Codazzi-Mainardi equations constitute suffi-
cient conditions for two matrix fields defined in a simply-connected open subset
of R? to be the two fundamental forms of a surface in a three-dimensional Eu-
clidean space. We also prove the corresponding rigidity theorem.

In addition to such “classical” theorems, we also include in both chapters
very recent results, which have not yet appeared in book form, such as the
continuity of a surface as a function of its fundamental forms.

The treatment is essentially self-contained and proofs are complete. The
prerequisites essentially consist in a working knowledge of basic notions of anal-
ysis and functional analysis, such as differential calculus, integration theory
and Sobolev spaces, and some familiarity with ordinary and partial differential
equations.

These notes use some excerpts from Chapters 1 and 2 of my book “Mathe-
matical Elasticity, Volume III: Theory of Shells”, published in 2000 by North-
Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his
kind permission to reproduce these excerpts. Otherwise, the major part of these
notes was written during the fall of 2004 at City University of Hong Kong; this
part of the work was substantially supported by a grant from the Research
Grants Council of Hong Kong Special Administrative Region, China [Project
No. 9040869, CityU 100803].

Hong Kong, January 2005
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Chapter 1

THREE-DIMENSIONAL DIFFERENTIAL
GEOMETRY

1.1 CURVILINEAR COORDINATES

To begin with, we list some notations and conventions that will be consistently
used throughout.

All spaces, matrices, etc., considered here are real.

Latin indices and exponents vary in the set {1,2,3}, except when they are
used for indexing sequences, and the summation convention with respect to
repeated indices or exponents is systematically used in conjunction with this
rule. For instance, the relation

g;(z) = gij(2)g’ (z)
means that

3
g;(x) =Y gij(x)g’ (x) for i = 1,2,3.
j=1

Kronecker’s symbols are designated by 47, 8;;, or 6/ according to the context.

Let E3 denote a three-dimensional Euclidean space, let a-b and a Ab denote
the Euclidean inner product and exterior product of a,b € E3, and let |a| =
va-a denote the Euclidean norm of a € E3. The space E? is endowed with
an orthonormal basis consisting of three vectors e’ = ¢,. Let z; denote the
Cartesian coordinates of a point € E® and let 0; := 9/07;.

In addition, let there be given a three-dimensional vector space in which
three vectors e! = e; form a basis. This space will be identified with R3. Let x;
denote the coordinates of a point € R® and let 0; := 9/0x;, 0;; := 02 /0x;0z;,
and Oy, = 83/8xi5;vj6xk.

Let there be given an open subset Q of E® and assume that there exist an
open subset Q of R? and an injective mapping © : Q — E3 such that ©(Q) = Q.
Then each point Z € Q can be unambiguously written as

T=0(z), z e,

5



6 Three-dimensional differential geometry [Ch. 1

and the three coordinates z; of x are called the curvilinear coordinates of =
(Figure 1.1-1). Naturally, there are infinitely many ways of defining curvilinear
coordinates in a given open set Q, depending on how the open set 2 and the
mapping © are chosen!

Figure 1.1-1: Curvilinear coordinates and covariant bases in an open set Q C/EB’. The three
coordinates x1,z2,x3 of © € Q are the curvilinear coordinates of T = @(z) € Q. If the three
vectors g,(xz) = 0;0(x) are linearly independent, they form the covariant basis at T = ©(z)
and they are tangent to the coordinate lines passing through .

Ezxamples of curvilinear coordinates include the well-known cylindrical and
spherical coordinates (Figure 1.1-2).

In a different, but equally important, approach, an open subset £ of R3
together with a mapping © : Q — E3 are instead a priori given.

If © € CO%(Q; E3) and O is injective, the set Q= O(Q) is open by the in-
variance of domain theorem (for a proof, see, e.g., Nirenberg [1974, Corollary 2,
p. 17] or Zeidler [1986, Section 16.4]), and curvilinear coordinates inside  are
unambiguously defined in this case.

If © € C1(2; E?) and the three vectors 9;©(x) are linearly independent at all
x € €, the set Qis again open (for a proof, see, e.g., Schwartz [1992] or Zeidler
[1986, Section 16.4]), but curvilinear coordinates may be defined only locally in
this case: Given x € {2, all that can be asserted (by the local inversion theorem)
is the existence of an open neighborhood V of x in €2 such that the restriction
of ® to V is a C!-diffeomorphism, hence an injection, of V onto @(V).

1.2 METRIC TENSOR
Let © be an open subset of R3 and let

®=0,¢:0-E
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Figure 1.1-2: Two familiar examples of curvilinear coordinates. Let the mapping © be
defined by
O : (p,p,2) €Q — (pcosp, psing, z) € EZ.
Then (¢, p, z) are the cylindrical coordinates of T = ©(yp, p, z). Note that (p + 2km,p, 2) or
(¢ + m+2km, —p, z), k € Z, are also cylindrical coordinates of the same point Z and that ¢ is
not defined if Z is the origin of E3.
Let the mapping © be defined by
® : (p,,7) € Q — (rcostpcos o, rcospsing, rsiny) € ES3.
Then (p,, ) are the spherical coordinates of T = @ (¢, v, 7). Note that (¢ + 2km, ) + 24w, 1)
or (¢ + 2km, ¢ + 7w + 24w, —r) are also spherical coordinates of the same point Z and that ¢
and 1) are not defined if Z is the origin of E3.

be a mapping that is differentiable at a point x € Q. If dx is such that (z+dx) €
), then
Oz + 6z) = O(x) + VO(z)dx + o(dx),

where the 3 X 3 matrix VO(z) is defined by

0101 0:0; 030,
V@(x) = 51@2 52@2 (93@2 (x)
81@3 82@3 (93@3

Let the three vectors g;(x) € R3 be defined by

0;01
g,(z) :=90,0(zx) = | 9,02 | (z),
8193

i.e., g;(z) is the i-th column vector of the matrizx VO(z) and let dx = dx'e;.
Then the expansion of ® about x may be also written as

O(z + dx) = O(x) + 0z'g;(x) + o(dx).

If in particular d is of the form dx = dte;, where 6t € R and e; is one of
the basis vectors in R3, this relation reduces to

O(z + dte;) = O(x) + dtg,;(z) + o(dt).



8 Three-dimensional differential geometry [Ch. 1

A mapping © : Q — E? is an immersion at z €  if it is differentiable
at z and the matrix VO(z) is invertible or, equivalently, if the three vectors
g;(x) = 0;0(x) are linearly independent.

Assume from now on in this section that the mapping @ is an immersion
at x. Then the three vectors g,(x) constitute the covariant basis at the point
T =0(z).

In this case, the last relation thus shows that each vector g,(x) is tangent
to the i-th coordinate line passing through © = ©(x), defined as the image
by © of the points of O that lie on the line parallel to e; passing through x
(there exist to and ¢; with ¢ty < 0 < ¢; such that the i-th coordinate line is
given by ¢ € Jto,t1] — f;(t) := O(x + te;) in a neighborhood of Z; hence
£i(0) = 0;0©(x) = g,(x)); see Figures 1.1-1 and 1.1-2.

Returning to a general increment = = dx’e;, we also infer from the expan-
sion of ® about x that (recall that we use the summation convention):

|®(z 4 dz) — O(z)|> = 627 VO (2)T VO (2)dx + 0(|5:c|2)
=0z'g;(z) - g;(x)627 + o(|6x|?).

In other words, the principal part with respect to dx of the length between
the points @(z + &) and O () is {0z'g,(z) - g,;(x)sa?}1/2. This observation
suggests to define a matrix (g;;(x)) of order three, by letting

9ij(x) = g;(x) - g;(z) = (VO(2)" VO(x)),;.

The elements g;;(z) of this symmetric matrix are called the covariant com-
ponents of the metric tensor at 7 = O(z).

Note that the matriz VO(z) is invertible and that the matriz (g;;(x)) is
positive definite, since the vectors g,(x) are assumed to be linearly independent.

The three vectors g,(z) being linearly independent, the nine relations

g'(x) - g;(x) = 5

unambiguously define three linearly independent vectors g*(x). To see this, let
a priori g'(x) = X% (x)g,(x) in the relations g’(x) - g;(x) = 65 This gives
X (x)g;(x) = 0%; consequently, X *(x) = g'* (x), where

(97 (x)) == (gis ()"

Hence g'(z) = ¢"*(x)g,(x). These relations in turn imply that

g'(x)- g’ (x) = (¢"%(2)gy(2)) - (¢’ (2)g,(x))
= g% ()¢ (2)gre(z) = g™ (2)8] = g" (),

and thus the vectors gi(x) are linearly independent since the matrix (g% (x)) is
positive definite. We would likewise establish that g,(z) = g;;(x)g?(z).

The three vectors g*(z) form the contravariant basis at the point 7 = ©(x)
and the elements g (z) of the symmetric positive definite matrix (g% (z)) are
the contravariant components of the metric tensor at z = ©(z).
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To conclude this section, we record for convenience the fundamental relations
that exist between the vectors of the covariant and contravariant bases and the
covariant and contravariant components of the metric tensor:

9ij() = g,(x) - g;(x) and g (z) =g'(x) - g’(x),
9:(x) = gij(2)g’(x) and g'(z) =g (z)g;(x).

1.3 VOLUMES, AREAS, AND LENGTHS IN CURVI-
LINEAR COORDINATES

We now review fundamental formulas showing how volume, area, and length
elements at a point £ = O(z) in the set Q = O(Q2) can be expressed either in
terms of the matrix VO(z) or in terms of the matrix (g;;(z)) or of its inverse
matrix (g% (x)).

These formulas thus highlight the crucial réle played by the matrix (g;;(x))
for computing “metric” notions at the point £ = O(z). Indeed, the “metric
tensor” well deserves its name!

A domain in R” is a bounded, open, and connected subset D of R? with
a Lipschitz-continuous boundary, the set D being locally on one side of its
boundary. All relevant details needed here about domains are found in Necas
[1967] or Adams [1975].

Given a domain D C R? with boundary T, we let dz denote the volume
element in D, dI" denote the area element along I', and n = n;e’ denote the
unit (In] = 1) outer normal vector along T" (dT" is well defined and n is defined
dI'-almost everywhere since I' is assumed to be Lipschitz-continuous).

Note also that the assumptions made on the mapping © in the next theorem
guarantee that, if D is a domain in R? such that D C €, then {D} c Q,
{®(D)}~ = ©(D), and the boundaries 9D of D and 8D of D are related by
dD = ©(dD) (sce, e.g., Ciarlet [1988, Theorem 1.2-8 and Example 1.7]).

If A is a square matrix, Cof A denotes the cofactor matriz of A. Thus
Cof A = (det A)A~T if A is invertible.

A mapping © : Q — E? is an immersion if it is an immersion at each
x € Q, i.e., if O is differentiable in Q and the three vectors g;(z) = 9;0(x) are
linearly independent at each x € Q.

Theorem 1.3-1. Let §) be an open subset of R3, let ® : Q — E3 be an injective
and smooth enough immersion, and let ! = O(Q).

(a) The volume element dT at ¥ = O(x) € Q is given in terms of the volume
element dz at x € Q by

dZ = |det VO(x)|dz = v/g(x)dz, where g(z) := det(gs;(z)).

(b) Let D be a domain in R? such that D C Q. The area element df(%) at
T = 0O(z) € 9D is given in terms of the area element dI'(x) at v € 9D by

dT(7) = | Cof VO(2)n(x)| dT(x) = \/g(x)y/ni(x)g" (x)n; (x) AT (z),
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where n(z) = n;(z)e’ denotes the unit outer normal vector at x € 9D.
(c) The length element d6(Z) at T = O(x) € 2 is given by

A7) = {27 VO (x)T Ve (x)sz}” = {su'g;(x)627}"/?,

where dx = dx"e;.

Proof. The relation dz = |det VO(z)| dz between the volume elements
is well known. The second relation in (a) follows from the relation g(z) =
| det VO(z)|?, which itself follows from the relation (g;;(z)) = VO(z)TVO(z).

Indications about the proof of the relation between the area elements dI'(%)
and dI'(z) given in (b) are found in Ciarlet [1988, Theorem 1.7-1] (in this for-
mula, n(z) = n;(z)e’ is identified with the column vector in R? with n;(x) as
its components). Using the relations Cof (AT) = (Cof A)” and Cof(AB) =
(Cof A)(CofB), we next have:

| Cof VO (z)n(z)|* = n(z)T Cof (V@(x)TVG(x))n(x)

= g(x)ni(x)g" (z)n;(z).

~

Either expression of the length element given in (c) recalls that d¢(z) is
by definition the principal part with respect to dx = dz’e; of the length
|©(x + dx) — O(x)|, whose expression precisely led to the introduction of the
matrix (g;;(z)) in Section 1.2. O

The relations found in Theorem 1.3-1 are used in particular for computing
volumes, areas, and lengths inside {2 by means of integrals inside €2, i.e., in terms
of the curvilinear coordinates used in the open set 2 (Figure 1.3-1):

Let D be a domain in R? such that D C €2, let D := O(D), and let fe Ll(ﬁ)

be given. Then
[ i@z~ [ (Foe)w s
D D

In particular, the volume of Dis given by

vol D ::/ﬁdfz/D\/@dx.

Next, let T' := 9D, let & be a dI-measurable subset of T, let & := () C
9D, and let h € L*(X) be given. Then

[3@dE@) = [ (o ©)@)Vsw)fnsla)g @) () ar (o).
> b))
In particular, the area of S is given by

areaf]::/idf(ﬁ:\)zfx\/@\/m(a:)gij(x)nj(m)df(x).
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Figure 1.3-1: Volume, area, and length elements in curvilinear coordinates. The elements
dz,dI'(Z), and d4(Z) at T = O(z) € Q are expressed in terms of dz, d['(z), and d= at = € Q by
means of the covariant and contravariant components of the metric tensor; cf. Theorem 1.3-1.
Given a domain D such that D C Q and a dI’-measurable subset 3 of D, the corresponding
relations are used for computing the volume of D =©(D) c Q, the area of $=0() cab,

and the length of a curve C = OC) C Q, where C = f(I) and I is a compact interval of R.

Finally, consider a curve C = f(I) in €, where I is a compact interval of R
and f = fze1 I — Q is a smooth enough injective mapping. Then the length
of the curve C := 0(C) C Q is given by

lengthC == /|—® £)(t)|dt = /\/ )i{j()dt

This relation shows in particular that the lengths of curves inside the set
O(Q) are precisely those induced by the Euclidean metric of the space E®.

1.4 COVARIANT DERIVATIVES OF A VECTOR FIELD
AND CHRISTOFFEL SYMBOLS

Suppose that a vector ﬁeld is defined in an open subset Q of E3 by means of its
Cartesian components v; : Q— R, 1 e., this field is defined by its values v;(Z ) g
at each T € (AZ, where the vectors €’ constltute the orthonormal basis of E3; se
Figure 1.4-1. R

Suppose now that the open set 2 is equipped with curvilinear coordinates
from an open subset Q of R3, by means of an injective mapping © : Q — E3
satisfying ©(Q) = Q.
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Figure 1.4-1: A wector field in Cartesian coordinates. At each point T € ﬁ, the vector
0;(Z)€" is defined by its Cartesian components ;(Z) over an orthonormal basis of E® formed
by three vectors €’.

How to define appropriate components of the same vector field, but this time
in terms of these curvilinear coordinates? It turns out that the proper way to
do so consists in defining three functions v; : @ — R by requiring that (Figure
1.4-2)

vi(x)g'(x) := ;(T)e" for all T = O(x), z € Q,
where the three vectors g*(z) form the contravariant basis at T = ©(x) (Section

1.2). Using the relations g*(z) - g,(x) = 6} and e e = 6%, we immediately find
how the old and new components are related, viz.,

vj(z) = vi(x)g'(z) - g;(z) = Bi(Z)e’ - g, (),

PP PPN SN ; ~

1;(7) =1;(x)e’ - e =v;(x)g’ (x) - €.
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Figure 1.4-2: A wector field in curvilinear coordinates. Let there be given a vector field
in Cartesian coordinates defined at each T € Q by its Cartesian components 7, (Z) over the
vectors €' (Figure 1.4-1). In curvilinear coordinates, the same vector field is defined at each
x € Q by its covariant components v;(z) over the contravariant basis vectors g*(z) in such a
way that v;(z)g*(z) = 9;(2)e?, T = O(z).

The three components v;(x) are called the covariant components of the
vector v;(z)g*(x) at T, and the three functions v; :  — R defined in this fashion
are called the covariant components of the vector field Uigi/\: QO — E3.

Suppose next that we wish to compute a partial derivative 0;7;(Z) at a point
7 = ©(z) € Q in terms of the partial derivatives dyvy,(z) and of the values vg(z)
(which are also expected to appear by virtue of the chain rule). Such a task is
required for example if we wish to write a system of partial differential equations
whose unknown is a vector field (such as the equations of nonlinear or linearized
elasticity) in terms of ad hoc curvilinear coordinates.

As we now show, carrying out such a transformation naturally leads to a
fundamental notion, that of covariant derivatives of a vector field.

Theorem 1.4-1. Let Q be an open subset of R? and let © : Q — E3 be an
immersion that is also a C2-diffeomorphism of 2 onto Q := O(Q). Given a
vector ﬁeld v;e’ : Q0 — R3 in Cartesian coordinates with components v; € C1(Q),
let v;g® : Q — R3 be the same field in curvilinear coordinates, i.e., that defined
by

vi(2)e’ = vi(x)g'(z) for all T = O(x), z € Q.

Then v; € CH(Q) and for all x € Q,

-~

0;0:(%) = (v elg*1ilg");) (x), T = O(x),
where

vy = Ojvi — F?j”p and Ffj =g 0,9,
and , ,
[g"(@)]k :==g'(x) - €

denotes the i-th component of g*(z) over the basis {€1, €2, €3}.
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Proof. The following convention holds throughout this proof: The simul-
taneous appearance of T and x in an equality means that they are related by
Z = O(z) and that the equality in question holds for all z € Q.

(i) Another expression of [g'(x)]k = g'(z) - €.

Let ©(z) = ©F(2)é; and O(Z) = O(Z)e;, where © : Q) — E3 denotes the
inverse mapping of © : QO — E3. Since ©(0(z)) = z for all z € €, the chain
rule shows that the matrices VO(z) := (9;0%(z)) (the row index is k) and
VO(7) := (0,0%(2)) (the row index is 1) satisfy

vVO@)Ve(x) =1,
or equivalently,

. . _ _ 0,0 (x) .
5,6/ (2)0,0% () = (31@1(53) 8,01(7) 33@1(53)) 9,02(x) | = d.
9,0%(z)

The components of the above column vector being precisely those of the
vector g;(r), the components of the above row vector must be those of the
vector g'(z) since g'(z) is uniquely defined for each exponent i by the three
relations g*(x) - g;(x) = 0%, j = 1,2,3. Hence the k-th component of g*(z) over
the basis {€1, €2, €3} can be also expressed in terms of the inverse mapping (:),
as: o

9" (2)]k = 0xO" (2).

(ii) The functions '}, = g7 - deg,, € C°(Q).

We next compute the derivatives d¢g?(x) (the fields g? = ¢g9"g,. are of class
C! on Q since O is assumed to be of class C?). These derivatives will be needed

in (iii) for expressing the derivatives é}ﬂz(%) as functions of z (recall that u;(z) =
ug(7)[g"(2)];). Recalling that the vectors g*(x) form a basis, we may write a
priori

eg(w) = ~T}(2)g" (),
thereby unambiguously defining functions I'}, : @ — R. To find their expres-
sions in terms of the mappings ® and (:), we observe that

Iip(z) =T, (2)of" =T, (2)g™ () - gp(x) = —0ug"(z) - g1, (2).

Hence, noting that 0,(g%(z) - g, (z)) = 0 and [g?(x)], = ép@q(ﬁ:\), we obtain

~

I}, (z) = g%(x) - Oegy,(z) = 0,0(2)9pO" () = I}, ().

Since ©® € C?(%;E?) and O c Cl(ﬁ;RB) by assumption, the last relations
show that I'Y, € C°(%).
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(ili) The partial derivatives 0; v;(Z) of the Cartesian components of the vector
field 5;&' € Cl(Q,R3) are given at each T = O(x) € Q by
0;0:(z) = vgje(w)g* ()ilg" ()],
where
vg|e(w) = Ogup (x) — TG (2)vg(x),
and [gF(z)]; and T}, (z) are defined as in (i) and (ii).
We compute the partial derivatives 9, ;0;(Z) as functions of z by means of the

relation U;(7) = vk (x)[g*(x)];. To this end, we first note that a differentiable
function w : 2 — R satisfies

0;w(0(7)) = dpw(2)d;0" (@) = dyw(w)lg (x));,
by the chain rule and by (i). In particular then,

)lg* (@))i + vg(2)95[g* (O(@))];

~

89;0;() = 0;uk(©
)

@
= Opvi(2)[g"(2));[g" (@))i + vq(2) (elg?(2)):) [g" ()]
= (Bevi(x) — T (2)vg(2) [g"(2)]slg" (2)];,
since 9,g%(x) = —T, (x)g"*(z) by (ii). O

The functions
e o— e, — TP
vi|; = O5vi — I'jvp

defined in Theorem 1.4-1 are called the first-order covariant derivatives of
the vector field v;g* : Q — R3.
The functions
Ffj =g"-0ig j
are called the Christoffel symbols of the first kind.
The following result summarizes properties of covariant derivatives and Christof-
fel symbols that are constantly used.

Theorem 1.4-2. Let the assumptions on the mapping ® : Q — E3 be as in
Theorem 1.4-1, and let there be given a vector field v;g® : Q — R? with covariant
components v; € C1(Q).

(a) The first-order covariant derivatives v;); € C°(2) of the vector field
v;g" : Q — R3, which are defined by

v := 0jv; — [hvp, where T, := g7 - g,
can be also defined by the relations
9;(vig") = vi;9" = vy = {9;(ng")} - gs-
(b) The Christoffel symbols I'}; := gP-0;g; =T, € CO(Q) satisfy the relations

09" = —T};g’ and 0,9, =T,g,.
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Proof. Tt remains to verify that the covariant derivatives v;;, defined in
Theorem 1.4-1 by
UZHJ = ajUZ‘ — F%'Up,

may be equivalently defined by the relations
9 (vig") = viy;g"-

These relations unambiguously define the functions v;; = {9;(vkg")} - g; since
the vectors g* are linearly independent at all points of 2 by assumption. To
this end, we simply note that, by definition, the Christoffel symbols satisfy
0igP = —Ffjgj (cf. part (ii) of the proof of Theorem 1.4-1); hence

9;(vig") = (95vi)g" + vid;g" = (Djvi)g’ — vl g" = vyy;g".
To establish the other relations d;g, = Fz-qgi, we note that

0=20;(9"-9,) =109 -g9,+9" 9;9,=—Th + 9" 0,9,

Hence
9i9, = (959, -9")9, =T%.9,,.
O

Remark. The Christoffel symbols I‘fj can be also defined solely in terms of
the components of the metric tensor; see the proof of Theorem 1.5-1. O

If the affine space E® is identified with R? and @ = idg, the relation
9 (vig")(x) = (v;;9")(x) (Theorem 1.4-2 (a)), reduces to 9;(v;(Z)e") = (9;70;(z))e".
In this sense, a covariant derivative of the first order constitutes a generalization
of a partial derivative of the first order in Cartesian coordinates.

1.5 NECESSARY CONDITIONS SATISFIED BY THE
METRIC TENSOR; THE RIEMANN CURVATURE
TENSOR

It is remarkable that the components g;; : 2 — R of the metric tensor of an
open set ©(Q) C E3? (Section 1.2), defined by a smooth enough immersion
® : Q — E3, cannot be arbitrary functions.
As shown in the next theorem, they must satisfy relations that take the
form:
Oilikg — Oklijq + Ffjrkqp - karjqp =01in €,

where the functions T';j, and T'}; have simple expressions in terms of the func-
tions g;; and of some of their partial derivatives (as shown in the next proof,
it so happens that the functions I‘fj as defined in Theorem 1.5-1 coincide with
the Christoffel symbols introduced in the previous section; this explains why
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they are denoted by the same symbol). Note that, according to the rule gov-
erning Latin indices and exponents, these relations are meant to hold for all
i,5,k.q € {1,2,3}.

Theorem 1.5-1. Let Q be an open set in R3, let © € C3(Q;E?) be an immer-
sion, and let
gij = &@ . @@

denote the covariant components of the metric tensor of the set (). Let the
functions T;;, € C1(Q) and Iy € CH(R2) be defined by

1
5(31‘91@ + 0igjq — 949ij),

I}, := g"ijq where (g77) := (gi;) ™.

Lijq =

Then, necessarily,

@Tikq — 8kFijq + Ffjfkqp — kal“jqp =0 1in €.

Proof. Let g; = 0;0. It is then immediately verified that the functions I';;,
are also given by

Lijq = 0ig; - 94
For each x € ), let the three vectors g’ (z) be defined by the relations g7 (z) -
g;(x) = &}. Since we also have g7 = g"/g;, the last relations imply that I'}; =
0:g; - g¥. Therefore, .,
aigj = Fijgp
since 9;g; = (9,9, - g*)g,- Differentiating the same relations yields
Olijq = Oikg; - 94 + 0ig; - Ongy,

so that the above relations together give

9ig; - Ohgy = Ffjgp “Ohg, = Ffjrkqp-

Consequently,
81‘ij "9 = OLijq — Ffjrkqp'
Since 6ikgj = 0;j9;,, we also have
81‘kgj "gq = 8jrikq - karqupa
and thus the required necessary conditions immediately follow. O

Remark. The vectors g, and g’ introduced above form the covariant and
contravariant bases and the functions g/ are the contravariant components of
the metric tensor (Section 1.2). O
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As shown in the above proof, the necessary conditions Rg;j; = 0 thus sim-
ply constitute a re-writing of the relations 0;5g; = Okig; in the form of the
equivalent relations 0ixg; - 9, = Okig; - 94-

The functions

1
Lijq = 5(959iq + 0i9jq — 0a9ij) = 0ig; - 94 = Tiiq
and
Ffj = gpqrijq = 81‘93' gf = F;?i
are the Christoffel symbols of the first, and second, kinds. We saw in
Section 1.4 that the same Christoffel symbols Ffj also naturally appear in a
different context (that of covariant differentiation).
Finally, the functions

Ryiji = 0jlikg — Oklijq + Ffjrkqp - karjqp

are the covariant components of the Riemann curvature tensor of the
set ©(Q). The relations Rgi;x = 0 found in Theorem 1.4-1 thus express that
the Riemann curvature tensor of the set () (equipped with the metric tensor
with covariant components g;;) vanishes.

1.6 EXISTENCE OF AN IMMERSION DEFINED ON
AN OPEN SET IN R? WITH A PRESCRIBED MET-
RIC TENSOR

Let M3 S3, and S2 denote the sets of all square matrices of order three, of
all symmetric matrices of order three, and of all symmetric positive definite
matrices of order three.

As in Section 1.2, the matrix representing the Fréchet derivative at x € Q of
a differentiable mapping © = (0;) : Q — E3 is denoted

VO(z) := (0;0,(x)) € M?,

where £ is the row index and j the column index (equivalently, VO(x) is the
matrix of order three whose j-th column vector is 9,0).

So far, we have considered that we are given an open set Q C R? and a
smooth enough immersion © : Q — E2, thus allowing us to define a matrix field

C=(g;j)=VO'VO:0—S%,

where g;; : €8 — R are the covariant components of the metric tensor of the
open set ®(Q) C E3.

We now turn to the reciprocal questions:

Given an open subset 2 of R? and a smooth enough matrix field C = (g;;) :
Q0 — S, when is C the metric tensor field of an open set ©(Q2) C E*? Equiva-
lently, when does there exist an immersion © : Q) — E3 such that

Cc=velve inQ,
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or equivalently, such that
9ij = 81‘9 . 8j® in Q7

If such an immersion exists, to what extent is it unique?
The answers to these questions turn out to be remarkably simple: If € is
simply-connected, the necessary conditions

O0jlirg — Orllijq + F’i’jl“kq,, — kal“jq,, =0in Q

found in Theorem 1.4-1 are also sufficient for the existence of such an immer-
sion. If ) is connected, this immersion is unique up to isometries in E3.

Whether the immersion found in this fashion is globally injective is a different
issue, which accordingly should be resolved by different means.

This result comprises two essentially distinct parts, a global existence result
(Theorem 1.6-1) and a uniqueness result (Theorem 1.4-1). Note that these two
results are established under different assumptions on the set 2 and on the
smoothness of the field (g;;).

In order to put these results in a wider perspective, let us make a brief
incursion into Riemannian Geometry. For detailed treatments, see classic texts
such as Choquet-Bruhat, de Witt-Morette & Dillard-Bleick [1977], Marsden &
Hughes [1983], or Gallot, Hulin & Lafontaine [2004].

Considered as a three-dimensional manifold, an open set Q C R3 equipped
with an immersion © : Q — E? becomes an example of a Riemannian manifold
(25 (g45)), i-e., a manifold, the set €2, equipped with a Riemannian metric, the
symmetric positive-definite matrix field (g;;) : @ — S2 defined in this case by
9ij = 0;0-0;0 in Q. More generally, a Riemannian metric on a manifold
is a twice covariant, symmetric, positive-definite tensor field acting on vectors
in the tangent spaces to the manifold (these tangent spaces coincide with R? in
the present instance).

This particular Riemannian manifold (€2;(gi;)) possesses the remarkable
property that its metric is the same as that of the surrounding space E3. More
specifically, (€2; (¢i;)) is isometrically immersed in the Euclidean space E?,
in the sense that there exists an immersion © : Q — E3 that satisfies the rela-
tions g;; = 0;© - 0;0. Equivalently, the length of any curve in the Riemannian
manifold (£2; (gs;)) is the same as the length of its image by © in the Euclidean
space E? (see Theorem 1.3-1).

The first question above can thus be rephrased as follows: Given an open
subset 0 of R® and a positive-definite matriz field (gi;) : @ — S2, when is
the Riemannian manifold (€ (gi;)) flat, in the sense that it can be locally
isometrically immersed in a Euclidean space of the same dimension (three)?

The answer to this question can then be rephrased as follows (compare with
the statement of Theorem 1.6-1 below): Let Q be a simply-connected open subset
of R®. Then a Riemannian manifold (; (gij)) with a Riemannian metric (gi;)
of class C? in  is flat if and only if its Riemannian curvature tensor vanishes
in . Recast as such, this result becomes a special case of the fundamental
theorem on flat Riemannian manifolds, which holds for a general finite-
dimensional Riemannian manifold.
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The answer to the second question, viz., the issue of uniqueness, can be
rephrased as follows (compare with the statement of Theorem 1.7-1 in the next
section): Let Q be a connected open subset of R3. Then the isometric immersions
of a flat Riemannian manifold (£ (gi;)) into a Euclidean space E® are unique
up to isometries of E3. Recast as such, this result likewise becomes a special
case of the so-called rigidity theorem; cf. Section 1.7.

Recast as such, these two theorems together constitute a special case (that
where the dimensions of the manifold and of the Euclidean space are both equal
to three) of the fundamental theorem of Riemannian Geometry. This
theorem addresses the same eristence and uniqueness questions in the more
general setting where Q is replaced by a p-dimensional manifold and E? is re-
placed by a (p + ¢)-dimensional Euclidean space (the “fundamental theorem of
surface theory”, established in Sections 2.8 and 2.9, constitutes another impor-
tant special case). When the p-dimensional manifold is an open subset of R?,
an outline of a self-contained proof is given in Szopos [2005].

Another fascinating question (which will not be addressed here) is the follow-
ing: Given again an open subset 2 of R? equipped with a symmetric, positive-
definite matrix field (g;;) : @ — S?, assume this time that the Riemannian
manifold (§; (gi;)) is no longer flat, i.e., its Riemannian curvature tensor no
longer vanishes in Q. Can such a Riemannian manifold still be isometrically
immersed, but this time in a higher-dimensional Fuclidean space? Equivalently,
do there exist a Euclidean space E? with d > 3 and an immersion ® : Q — E¢
such that 9ij = 816) . (9](") in Q7

The answer is yes, according to the following beautiful Nash theorem, so
named after Nash [1954]: Any p-dimensional Riemannian manifold equipped
with a continuous metric can be isometrically immersed in a Fuclidean space
of dimension 2p with an immersion of class C'; it can also be isometrically
immersed in a Fuclidean space of dimension (2p + 1) with a globally injective
immersion of class C1.

Let us now humbly return to the question of existence raised at the beginning
of this section, i.e., when the manifold is an open set in R3.

Theorem 1.6-1. Let ) be a connected and simply-connected open set in R3
and let C = (g;5) € C?(;S2) be a matriz field that satisfies

Ryiji = 0;Tirg — OLijq + T3 Thgp — T Tjgp = 0 in Q,
where

1
Lijq = 5(99iq + 0i9jq — Da9ij ),

I = g™ Tijq with (g"7) := (gi;) ™"
Then there exists an immersion © € C3(Q; E3) such that

C=ve've i Q.
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Proof. The proof relies on a simple, yet crucial, observation. When a smooth
enough immersion ® = (0,) : Q@ — E3 is a priori given (as it was so far), its
components O, satisfy the relations 0;;0, = I' fjap@g, which are nothing but
another way of writing the relations 0;g; = Ffjgp (see the proof of Theorem
1.5-1). This observation thus suggests to begin by solving (see part (ii)) the
system of partial differential equations

&»ng = F%ng n Q,

whose solutions Fy; : @ — R then constitute natural candidates for the partial
derivatives 9;0, of the unknown immersion © = (0;) :  — E? (see part (iii)).

To begin with, we establish in (i) relations that will in turn allow us to
re-write the sufficient conditions

@Tikq — 8kFijq + F%qup — kaqup =0in Q

in a slightly different form, more appropriate for the existence result of part (ii).
Note that the positive definiteness of the symmetric matrices (g;;) is not needed
for this purpose.

(i) Let Q be an open subset of R® and let there be given a field (gi;) €
C3(;S3) of symmetric invertible matrices. The functions Fijq,Ffj, and gP?
being defined by

1 _
Tijq = 5(0i9ia + 0igja = 0agig)s - T4 = 9" Tijg, (¢7) := (955) ",
define the functions

qujk = 8jrikq - 3kfijq + Ffjrkqp _ ]‘—‘Zi)kl_‘jqpa
R o= O;T% — 0yI%, + T4 IY, — T4 IY,.

2

Then
jok = 9" Rqij. and Rgij = quR?ijk'

Using the relations
Ljqe + Tejq = 03940 and Digg = gqgffk,

which themselves follow from the definitions of the functions I';j, and I'};, and
noting that
(9"10;9qt + 9q0959") = 9;(97gqe) = 0,

we obtain
9" ing — Ty Ljgr) = 93T — g9 — T g"1 (D940 — Tajq)
= ;L% + T T%, — T (9710 9gr + 94005 9"7)
¢
= 0, + T I,
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Likewise,

9" (OkTijq — Tf;Thgr) = OKTY, =TT,

and thus the relations jok = gPYRg; i, are established. The relations Ry, =

gpg R, ave clearly equivalent to these ones.
We next establish the existence of solutions to the system

6¢ng = l—‘ijzp in Q.

(ii) Let © be a connected and simply-connected open subset of R® and let
there be given functions Ffj = l"?i € CH(Q) satisfying the relations

;T — 0T, + 5T, =TT}, = 0in Q,
which are equivalent to the relations
0ilirg — Okllijq + l—‘fjl_‘kqp — kal“jq,, =0in Q,

by part (i).
Let a point 2° € Q and a matriz (Féoj) € M2 be given. Then there exists one,

and only one, field (Fy;) € C*(Q;M®) that satisfies
0iFuj(z) = T} (x)Fep(x), x € Q,
Fiy(a) = FY,.

Let 2! be an arbitrary point in the set €, distinct from x°. Since Q is

connected, there exists a path v = (v*) € C1([0,1];R?) joining 2° to x! in Q;
this means that

~(0) = 2%, v(1) = 2%, and v(t) € Qfor all 0 < ¢ < 1.

Assume that a matrix field (Fy;) € CH(Q; M?) satisfies 9; Fy;(x) = T%;(x) Fyp (),
z € Q. Then, for each integer £ € {1,2,3}, the three functions ¢; € C*([0,1])
defined by (for simplicity, the dependence on £ is dropped)

G(t) = Fpj(v(1), 0 <t <1,

satisfy the following Cauchy problem for a linear system of three ordinary dif-
ferential equations with respect to three unknowns:

1) = T2 (+(0)

¢(0) =7,

where the initial values C]Q are given by

dvy?
dt

(t)¢p(t), 0 <t <1,
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Note in passing that the three Cauchy problems obtained by letting £ = 1, 2,
or 3 only differ by their initial values §]Q.

It is well known that a Cauchy problem of the form (with self-explanatory
notations)

St =AW, 0<t<1,

¢(0) =¢’,

has one and only one solution ¢ € C1([0,1];R3) if A € CY([0, 1]; M?) (see, e.g.,
Schwartz [1992, Theorem 4.3.1, p. 388]). Hence each one of the three Cauchy
problems has one and only one solution.

Incidentally, this result already shows that, if it exists, the unknown field
(Fyj) is unique.

In order that the three values (;(1) found by solving the above Cauchy
problem for a given integer £ € {1,2,3} be acceptable candidates for the three
unknown values Fy; (x1), they must be of course independent of the path chosen
for joining x° to x'.

So, let v, € C*([0,1];R3) and ~, € C([0,1];R3) be two paths joining z°
to ! in Q. The open set  being simply-connected, there exists a homotopy
G = (G") : [0,1] x [0,1] — R3 joining v, to v, in Q, i.e., such that

G(,0) =7y, G(,1) =7, G(t,\) € Qforall 0 <t <1,0< A< 1,
G(0,\) =2% and G(1,\) =z! forall 0 <A <1,

and smooth enough in the sense that

7 (5) - m(w

G cC'(]0,1] x [0,1];R®) and — =3

ot ) €€0(10,1] x [0, 1): R).

Let ¢(,A) = (¢ (-, A)) € C1([0,1]; R?) denote for each 0 < A <1 the solution
of the Cauchy problem corresponding to the path G(-, \) joining x° to 2. We
thus have

%(m\) = Ffj(G(t7>\))aaﬁt(t,>\)§p(t,>\) forall0<t<1,0<A<1,

Gi(0,A) = ¢ forall 0 < A < 1.
Our objective is to show that

9

8)\(1,/\):0f0ra110§)\§1,

as this relation will imply that ¢;(1,0) = (;(1,1), as desired. For this purpose,
a direct differentiation shows that, for all0 <t <1,0< A <1,

¢

oGk 6Gl OG? 4 OG?
8A( ot o on o\ Ot C”aA( ot ) oql;

— q 7P p
) = {T4I2, + O0T? s
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where

oG v oG+
ox T
on the one hand (in the relations above and below, FZJ, akI‘”, etc., stand for
IH(G(, ) 06T (G, ), ete.).

On the other hand, a direct differentiation of the equation defining the func-
tions o shows that, for all 0 <¢ < 1,0 <A <1,

8t(8<j) -G+ +{or e +Pq'%}8ak C”at(aGl)

05 =

)\ ot kot Kot S oN )\
But % =T 88C::i (p, SO that we also have
i(3%) = B+ O+ LI T TG ()
Hence, Sulbtractlng thelabove relations and noting that — B\ (88% ) = 82 ( %)
and 82/\ (%) = %(%) by assumption, we infer that
8;; +{O,I%, — yI?, + T¢ T? —TI TV }gpaacik aaczz - gjaa_cfgq =0

The assumed symmetries I'}; = I'}; combined with the assumed relations
0,0, — ORI, + T3, I, — T{;T%, = 0 in Q show that

airgj — 8kl“fj + FZJI‘fq — I‘q Fp =0,
on the one hand. On the other hand,

a¢; ) oGk
SE0.0) = T7, (G0, 1) (0.0 -

since CJQ(OJ\) = CJQ and G(0,\) = 2° for all 0 < X\ < 1. Therefore, for any
fized value of the parameter X € [0,1], each function o;(-, \) satisfies a Cauchy
problem for an ordinary differential equation, viz.,

7,(0,%) = (0,%) =0,

dO’j q 8Gl

—4 =17 <t<
(60 =TH(GEA) (B A (1,4, 0 < 1,
O’j(07>\):0.

But the solution of such a Cauchy problem is unique; hence o (¢, A) = 0 for
all 0 <t < 1. In particular then,

A . oGk
(LX) = T (GL )G (LX) S

=0forall0 <A <1,

o;i(1,\) = (1, A)
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¢
and thus 8_6;(1’)\) =0forall 0 <\ <1,since G(1,\) =a! forall 0 < X < 1.
For each integer ¢, we may thus unambiguously define a vector field (Fy;) :
Q — R3 by letting
Fyi(z') == ¢;(1) for any x* € Q,

where v € C1([0,1];R?) is any path joining 2° to 2! in  and the vector field
(¢;) € C([0,1]) is the solution to the Cauchy problem

S 1) = T2, (1) S (06, (1), 0 < £ < 1,

Cj(o): ?7

corresponding to such a path.

To establish that such a vector field is indeed the ¢-th row-vector field of the
unknown matrix field we are seeking, we need to show that (F gj)?zl € CHO;R?)
and that this field does satisfy the partial differential equations 0;Fy; = I‘ijgp
in  corresponding to the fixed integer ¢ used in the above Cauchy problem.

Let x be an arbitrary point in € and let the integer i € {1,2,3} be fized in
what follows. Then there exist ! € Q, a path v € C([0, 1];R?) joining z° to
zl, 7 €]0,1], and an open interval I C [0,1] containing 7 such that

Y(t)=x+(t—7)e; fort €I,

where e; is the i-th basis vector in R3. Since each function (; is continuously
d¢; dy?
differentiable in [0, 1] and satisfies %(t) =T7,(v()) (;t

(t)Gp(t) for all 0 <t <

1, we have

G = () + (6 =) (7) 4 oft —7)

= G(7) + (t = )T (7(7)) G (1) + o(t — 7)
for all ¢t € I. Equivalently,
Fj(a + (t = 7)ei) = Fyj(x) + (t = 7)1 () Fip(2) + oft — ).

This relation shows that each function Fy; possesses partial derivatives in
the set 2, given at each = € Q by

i Fip(w) = 7 (x) Fgp ().

Consequently, the matrix field (F;) is of class C! in Q (its partial derivatives are
continuous in ) and it satisfies the partial differential equations 0; Fy; = T}, Fyy,
in Q, as desired. Differentiating these equations shows that the matrix field
(Frj) is in fact of class C? in Q.

In order to conclude the proof of the theorem, it remains to adequately
choose the initial values Fj; at 2° in step (ii).
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(iii) Let Q be a connected and simply-connected open subset of R® and let
(9i5) € C?(84;S2) be a matriz field satisfying
Oilikg — Oklijq + Ffjrkqp - karjqp =01in €,

the functions I'y4q, Ffj, and gP? being defined by

Lijq = 5(9i9iq + 8i0jq — 049i)s  Tij = g"Tijq, (") := (g15) "

N =

Given an arbitrary point x° € Q, let (ng) € S% denote the square root of
the matriz (g?j) = (gij(20)) € S2.
Let (Fy;) € C?(2;M3) denote the solution to the corresponding system

8ing(a:) = Ffj(x)ng(x), x € Q,
Fyj(2") = Fyj,

which exists and is unique by parts (i) and (ii). Then there exists an immersion
© = (0y) € C3( E3) such that

aj@g = ng and 9ij = 81@ . 8j@ in Q.
To begin with, we show that the three vector fields defined by
g; = (Fi)i=1 € CH(RY)
satisfy
gi 9; = Gij in 2.
To this end, we note that, by construction, these fields satisfy
_TP o
9ig; =119, in Q,
g,;(z%) = g9,
where g9 is the j-th column vector of the matrix (F};) € S2. Hence the matrix
field (g, - g;) € C*(€; M?) satisfies
o(gi-9;) =TG- 9:) +Thi(g,, - g;) in Q,
(9;-9;)(") = g3;.
The definitions of the functions T';j, and I'}; imply that
Orgij = Dikj + iy and T'yjjq = gpqrfj-
Hence the matrix field (g;;) € C*(£%;S2)) satisfies
OkGij = Ui 9mi + Thigms in €,
Gij (CCO) = Q?j-
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Viewed as a system of partial differential equations, together with initial
values at 20, with respect to the matrix field (gi5) : 2 — M3, the above system
can have at most one solution in the space C?(Q; M?).

To see this, let 2! € Q be distinct from 2% and let v € C*([0, 1];R?) be any
path joining z° to z! in , as in part (ii). Then the nine functions g;;(y(t)),
0 < t < 1, satisfy a Cauchy problem for a linear system of nine ordinary
differential equations and this system has at most one solution.

An inspection of the two above systems therefore shows that their solutions
are identical, i.e., that g, - g; = gi;.

It remains to show that there exists an immersion © € C3(Q; E?) such that

0;® =g, in Q,
where g; == (Fy;)3_;.
Since the functions T'}; satisfy I'}; = T'%;, any solution (Fy;) € C*(Q;M?) of
the system
0iFyj () = I () Fip (), x € Q,
Fyj(2°) = F})
satisfies
81'ng = 8ng¢ in Q.

The open set Q being simply-connected, Poincaré’s theorem (for a proof, see,
e.g., Schwartz [1992, Vol. 2, Theorem 59 and Corollary 1, p. 234-235]) shows
that, for each integer {, there exists a function ©, € C3(Q) such that

8i@g = ng in Q,
or, equivalently, such that the mapping © := (0;) € C3(Q2; E?) satisfies
0;® =g, in Q.

That © is an immersion follows from the assumed invertibility of the matrices
(gij)- The proof is thus complete. O

Remarks. (1) The assumptions

0,10, — hIT, + T I, —T{Th, =0 in Q,
made in part (ii) on the functions I'}; = I'}; are thus sufficient conditions for
the equations 0;Fy; = I’ ijgp in Q to have solutions. Conversely, a simple
computation shows that they are also necessary conditions, simply expressing
that, if these equations have a solution, then necessarily 0;;Fy; = Ok Fy; in 2.

It is no surprise that these necessary conditions are of the same nature as
those of Theorem 1.5-1, viz., aikgj = 0;59,, in Q.

(2) The assumed positive definiteness of the matrices (g;;) is used only in
part (iii), for defining ad hoc initial vectors g?. O
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The definitions of the functions I'j; and T';j, imply that the functions
Rgijie == 0ling — Okl'ijq + Ffjrkqp - in)krjqp
satisfy, for all 4, 5, k, p,

Rgijk = Rjrgi = —Rgikj,
quijOifj:kOrq:i.

These relations in turn imply that the eighty-one sufficient conditions
Rgijk =01in Q for all 4, j, k, ¢ € {1,2,3},
are satisfied if and only if the siz relations
Ri212 = Ri213 = Ri223 = Ri313 = Ri323 = Ra323 = 0 in Q

are satisfied (as is immediately verified, there are other sets of six relations that
will suffice as well, again owing to the relations satisfied by the functions Ry
for all 4, 7, k, q).

To conclude, we briefly review various extensions of the fundamental exis-
tence result of Theorem 1.6-1. First, a quick look at its proof reveals that it
holds verbatim in any dimension d > 2, i.e., with R? replaced by R? and E? by
a d-dimensional Euclidean space E?. This extension only demands that Latin

indices and exponents now range in the set {1,2,...,d} and that the sets of ma-
trices M3, S3, and Si be replaced by their d-dimensional counterparts M¢, S¢,
and S2.

The regularity assumptions on the components g;; of the symmetric positive
definite matrix field C = (g;;) made in Theorem 1.6-1, viz., that g;; € C*(Q),
can be significantly weakened. More specifically, C. Mardare [2003a] has shown
that the existence theorem still holds if g;; € C!(£2), with a resulting mapping ©
in the space C2(Q; E9); likewise, S. Mardare [2004] has shown that the existence
theorem still holds if g;; € WIQO’CO"(Q)7 with a resulting mapping © in the space
W2 (Q; E4). As expected, the sufficient conditions Rgijr = 0 in € of Theorem

loc
1.6-1 are then assumed to hold only in the sense of distributions, viz., as

/Q{_Fikqaj‘/’ + Lijg Ok + Ffjrkqp‘:” - kaquptp}dx =0

for all p € D(Q).

The existence result has also been extended “up to the boundary of the set
Q" by Ciarlet & C. Mardare [2004a]. More specifically, assume that the set
satisfies the “geodesic property” (in effect, a mild smoothness assumption on
the boundary 99, satisfied in particular if 99 is Lipschitz-continuous) and that
the functions g;; and their partial derivatives of order < 2 can be extended by
continuity to the closure Q, the symmetric matrix field extended in this fashion
remaining positive-definite over the set . Then the immersion © and its partial
derivatives of order < 3 can be also extended by continuity to Q.
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Ciarlet & C. Mardare [2004a] have also shown that, if in addition the geodesic
distance is equivalent to the Euclidean distance on 2 (a property stronger than
the “geodesic property”, but again satisfied if the boundary 0f2 is Lipschitz-
continuous), then a matrix field (g;;) € C?(Q;S2) with a Riemann curvature

tensor vanishing in Q can be extended to a matrix field (g;;) € C*(£2;S2) defined
on a connected open set Q containing 0 and whose Riemann curvature tensor
still vanishes in 2. This result relies on the existence of continuous extensions
to Q of the immersion © and its partial derivatives of order < 3 and on a deep
extension theorem of Whitney [1934].

1.7 UNIQUENESS UP TO ISOMETRIES OF IMMER-
SIONS WITH THE SAME METRIC TENSOR

In Section 1.6, we have established the existence of an immersion ® :  C R? —
E3 giving rise to a set ©(f2) with a prescribed metric tensor, provided the given
metric tensor field satisfies ad hoc sufficient conditions. We now turn to the
question of uniqueness of such immersions.

This uniqueness result is the object of the next theorem, aptly called a
rigidity theorem in view of its geometrical interpretation: It asserts that, if
two immersions © € C}(Q; E3) and © € C(Q; E?) share the same metric tensor
field, then the set ©(R) is obtained by subjecting the set ©(f) either to a
rotation (together represented by an orthogonal matrix Q with det Q = 1), or to
a symmelry with respect to a plane followed by a rotation (together represented
by an orthogonal matrix Q with det Q = —1), then by subjecting the rotated
set to a translation (represented by a vector ¢).

Such a geometric transformation is called a rigid deformation of the set
O(9), to remind that it indeed corresponds to the idea of a “rigid” one in E3.
It is also an isometry, i.e., a transformation that preserves the distances.

Let @2 denote the set of all orthogonal matrices of order three.

Theorem 1.7-1. Let Q be a connected open subset of R? and let ©® € C1(Q; E?)
and © € CH(Q; E?) be two immersions such that their associated metric tensors
satisfy

ve've = VO VO in .

Then there exist a vector ¢ € E* and an orthogonal matriz Q € Q3 such
that

O(z) = ¢+ QO(z) for all z € Q.

Proof. For convenience, the three-dimensional vector space R3 is identified
throughout this proof with the Euclidean space E3. In particular then, R? inherits
the inner product and norm of E3. The spectral norm of a matrix A € M3 is
denoted

|A| ;= sup{|Abl; b € R®, |b| = 1}.
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To begin with, we consider the special case where ©:0 - E =R3is
the identity mapping. The issue of uniqueness reduces in this case to finding
© € C'(Q; E?) such that

VO(2)T'VO(z) =1 for all z € Q.

Parts (i) to (iii) are devoted to solving these equations.

(i) We first establish that a mapping © € C1(;E?) that satisfies
VO(z)TVO(z) =1Iforall z € Q

is locally an isometry: Given any point x° € Q, there exists an open neighborhood
V of 2° contained in Q2 such that

®(y) —O(z)| = |y —z| for all z,y € V.

Let B be an open ball centered at 2° and contained in . Since the set B is
convex, the mean-value theorem (for a proof, see, e.g., Schwartz [1992]) can be
applied. It shows that

®(y) — O(z)| < sup |VO(2)|ly — | for all z,y € B.

z€]m,y|
Since the spectral norm of an orthogonal matrix is one, we thus have
[©(y) — O(z)| < |y — x| for all z,y € B.

Since the matrix VO (z?) is invertible, the local inversion theorem (for a
proof, see, e.g., Schwartz [1992]) shows that there exist an open neighborhood
V of 2° contained in € and an open neighborhood V of ©(z°) in E3 such that
the restriction of ® to V is a C!-diffeomorphism from V onto V. Besides, there
is no loss of generality in assuming that V is contained in B and that V is
convex (to see this, apply the local inversion theorem first to the restriction of
® to B, thus producing a “first” neighborhood V' of 2° contained in B, then to
the restriction of the inverse mapping obtained in this fashion to an open ball
V centered at ©(z°) and contained in @ (V")).

Let © ' : V — V denote the inverse mapping of @ : V — V. The chain
rule applied to the relation © *(@(z)) = x for all € V then shows that

VO (7)) =VO(z) ' forall Z=0O(z),z € V.

The matrix VO~ (Z) being thus orthogonal for all Z € V, the mean-value
theorem applied in the convex set V' shows that

©'(5) -0 @) <|j- 3l forall &, € V,
or equivalently, that

ly — x| < |O(y) — O(z)| for all z,y € V.
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The restriction of the mapping © to the open neighborhood V' of z° is thus
an isometry.

(ii) We next establish that, if a mapping © € C1(; E3) is locally an isome-
try, in the sense that, given any z° € Q, there exists an open neighborhood V
of 2° contained in € such that |@(y) — ©(z)| = |y — x| for all z,y € V, then its
derivative is locally constant, in the sense that

VO(z) =VO(°) for all z € V.

The set V' being that found in (i), let the differentiable function F': V. xV —
R be defined for all z = (zp) € V and all y = (y,) € V by

F(x,y) == (©u(y) — Ou())(Oe(y) — Ou(x)) — (ye — ) (ye — ¢).
Then F(z,y) =0 for all z,y € V by (i). Hence

10F _ 00,

(¥)(©c(y) — Ou(x)) = die(ye — ) = 0

for all z,y € V. For a fixed y € V, each function G;(-,y) : V. — R is differen-
tiable and its derivative vanishes. Consequently,

0G; 00, 00,

or equivalently, in matrix form,
VO(y)I've(z)=Iforal z,yc V.
Letting y = 20 in this relation shows that

VO(z) = VO(z") for all 2 € V.

(iii) By (ii), the mapping VO : Q — M? is differentiable and its derivative
vanishes in Q. Therefore the mapping © : Q — E3 is twice differentiable and
its second Fréchet deriwative vanishes in 2. The open set 2 being connected,
a classical result from differential calculus (see, e.g., Schwartz [1992, Theorem
3.7.10]) shows that the mapping © is affine in Q, i.e., that there exists a vector
c € E3 and a matrix Q € M3 such that

O(z) = c+ Qox for all z € Q.

Since Q = VO(z°) and VO (2°)TVO(z°) = I by assumption, the matrix
Q is orthogonal.

(iv) We now consider the general equations g;; = g;; in €, noting that they
also read _ _
vO(x)TVe(z) = VO(x)TVO(z) for all z € Q.
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Given any point z° € Q, let the neighborhoods V of 2° and V of e(zY)
and the mapping © ! : V — V be defined as in part (i) (by assumption, the
mapping © is an immersion; hence the matrix VO (z?) is invertible).

Consider the composite mapping

~ ~

®=000"':V > E
Clearly, ® € Cl(‘7; E?) and
V&) = VO(z)VO \(7)
=VO(x)VO(z)~ ! forall Z=O(z),z € V.
Hence the assumed relations
vO(z)'VO(x) = VO(2)"VO(z) for all z €

imply that . L
Ve@)I'Ve@) =IforallzeV.

By parts (i) to (iii), there thus exist a vector ¢ € R? and a matrix Q € 03
such that

~

®(7) = O(z) = c+ QO(x) for all T = O(z),z € V,

hence such that

1]

(z) :=VO(@)VO(x) ' =Qforallz € V.

The continuous mapping = : V — M? defined in this fashion is thus locally
constant in Q. As in part (iii), we conclude from the assumed connectedness of
Q) that the mapping E is constant in 2. Thus the proof is complete. O

The special case where © is the identity mapping of R3 identified with E? is
the classical Liouville theorem. This theorem thus asserts that if a mapping
O € CY(Q;E?) is such that VO(x) € 03 for all z € Q where  is an open
connected subset of R3, then there exist ¢ € E3 and Q € 02 such that

O(z) =c+ Qox for all x € Q.

Two mappings © € C1(; E?) and © € C1(Q; E?) are said to be isometri-
cally equivalent if there exist c € E? and Q € Q2 such that ©=c+ QO in
2, i.e., such that ® = Jo ©, where J := ¢+ Q id is thus an isometry. Theorem
1.7-1 thus asserts that two mappings © € C*(Q;E3) and © € CH(Q; E?) share
the same metric tensor field over an open connected subset Q of R? if and only
if they are isometrically equivalent.

Remarks. (1) In terms of covariant components g;; of metric tensors, parts (i)
to (iii) of the above proof provide the solution to the equations g;; = d;; in €,
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while part (iv) provides the solution to the equations g;; = 9,0 - 8j(:) in €,
where © € C'(; E?) is a given immersion.

(2) The classical Mazur-Ulam theorem asserts the following: Let € be a
connected subset in R?, and let ® : Q — R? be a mapping that satisfies

[©(y) — O(z)| = |y — z| for all z,y € Q.

Then there exist a vector ¢ € R? and an orthogonal matrix Q of order d such
that

O(z) = c+ Qox for all x € Q.

Parts (ii) and (iii) of the above proof thus provide a proof of this theorem
under the additional assumption that the mapping © is of class C! (the extension
from R3 to RY is trivial). O

While the immersions ® found in Theorem 1.6-1 are thus only defined up to
isometries in E3, they become uniquely determined if they are required to satisfy
ad hoc additional conditions, according to the following corollary to Theorems
1.6-1 and 1.7-1.

Theorem 1.7-2. Let the assumptions on the set  and on the matriz field C
be as in Theorem 1.6-1, let a point xo € € be given, and let Fy € M? be any
matriz that satisfies

FIFy = C(x).

Then there exists one and only one immersion © € C3(Q2; E3) that satisfies

VO (r)T'VO(r) = C(x) for all z € Q,
O(xp) =0 and VO(zg) = Fy.

Proof. Given any immersion ® € C3(Q; E3) that satisfies V®(2)T V®(z) =
C(x) for all z € Q (such immersions exist by Theorem 1.6-1), let the mapping
©® : Q) — R3 be defined by

O(x) :=FoV®(z9) H(®(x) — ®(x)) for all = € .

Then it is immediately verified that this mapping © satisfies the announced
properties.

Besides, it is uniquely determined. To see this, let ® € C3(Q;E?) and
® € C3(Q; E?) be two immersions that satisfy

VO(z)'VO(z) = V®(2)TV®(x) for all 2 € Q.

Hence there exist (by Theorem 1.7-1) ¢ € R? and Q € Q3 such that ®(z) =
c+QO(x) for all z € €, so that V®(z) = QVO(x) for all x € . The relation
VO(zy) = V®(zp) then implies that Q = I and the relation O(xg) = ®(xo)
in turn implies that ¢ = 0. ([
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Remark. One possible choice for the matrix Fg is the square root of the
symmetric positive-definite matrix C(zo). O

Theorem 1.7-1 constitutes the “classical” rigidity theorem, in that both im-
mersions © and © are assumed to be in the space C*(Q; E®). The next theorem
is an extension, due to Ciarlet & C. Mardare [2003], that covers the case where
one of the mappings belongs to the Sobolev space H'(2; E3).

The way the result in part (i) of the next proof is derived is due to Friesecke,
James & Miiller [2002]; the result of part (i) itself goes back to Reshetnyak
[1967].

Let O3 denote the set of all rotations, i.e., of all orthogonal matrices Q € 0?
with det Q = 1.

Theorem 1.7-3. Let Q be a connected open subset of R?, let ® € CH (S E?) be
a mapping that satisfies
det VO > 0 in ,

and let © € HY(Q; E?) be a mapping that satisfies
~ ~T ~
det VO >0 a.e. in Q and VO'VO = VO VO a.e. in (.

Then there exist a vector ¢ € E® and a rotation Q € @i such that

O(z) = ¢+ QO(z) for almost all z € €.

Proof. The Euclidean space E? is identified with the space R? throughout
the proof.

(i) To begin with, we consider the special case where ® = idgq. In other
words, we are given a mapping © € H'(Q2) that satisfies VO(z) € O3 for
almost all x € Q. Hence

CofVO(z) = (det VO(2))VO(z)~" = VO(z)~T for almost all z € Q,
on the one hand. Since, on the other hand,

divCof VO = 0 in (D'(B))*

in any open ball B such that B C  (to see this, combine > the density of C%*(B)
in H'(B) with the classical Piola identity in the space C?(B); for a proof of this
identity, see, e.g., Ciarlet [1988, Theorem 1.7.1]), we conclude that

A® = divCof VO = 0 in (D'(B))*.
Hence © = ((:)J) € (C>°(9Q))3. For such mappings, the identity

A(@Z(:)Jaléj) = 26Zéjaz(Aéj) + 28¢kéj8ikéj,
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together with the relations A(:)j =0 and aiéjaiéj = 3in 2, shows that aikéj =
0 in Q. The assumed connectedness of ) then implies that there exist a vector
c € E? and a matrix Q € O3 (by assumption, VO(z) € O for almost all
x € Q) such that

O(z) = ¢ + Q ox for almost all z € €.

(ii) We consider next the general case. Let xzy € € be given. Since ©
is an immersion, the local inversion theorem can be applied; there thus exist
bounded open neighborhoods U of zy and U of ©(z) satisfying U C © and
{[7}_ C ©(Q), such that the restriction Oy of ©® to U can be extended to a
C'-diffeomorphism from U onto {U}~.

Let @l}l : U — U denote the inverse mapping of @y, which therefore
satisfies %@51(33) =VO(z)~! for all Z = O(z) € U (the notation V indicates
that differentiation is carried out with respect to the variable z € U ). Define
the composite mapping

&);:é.@&l;[/j_,R?

Since © € H'(U) and ©" can be extended to a C'-diffeomorphism from {(/]\}’
onto U, it follows that ® € H'(U;R3) and that

Vo(3) = VO (2)VO, ' (7) = VO(z)VO(z) !

for almost all 7 = ©(z) € U (sce, e.g., Adams [1975, Chapter 3]). Hence
the assumptions det VO > 0 in Q, det VO > 0 ae. in Q, and VOIVO =

~T  ~ ~ ~ ~
VO VO ae. in (), together imply that V®(Z) € Q% for almost all Z € U. By
(i), there thus exist ¢ € E* and Q € 03 such that

®(7) = O(z) = ¢+ Q o for almost all 7 = O(z) € U,
or equivalently, such that
E(z) := VO(2)VO(z) ' = Q for almost all z € U.
Since the point zop € € is arbitrary, this relation shows that E € L ().
By a classical result from distribution theory (cf. Schwartz [1966, Section 2.6]),
we conclude from the assumed connectedness of 2 that Z(x) = Q for almost all

x € Q, and consequently that

O(z) = ¢+ QO(z) for almost all = € Q.
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Remarks. (1) The existence of @ € H'(€; E3) satisfying the assumptions of
Theorem 1.7-3 thus implies that ® € H!(Q; E?) and © € C(Q; E?).

(2) If © € C1(9; E3), the assumptions det VO > 0 in  and det VO > 0 in
2 are no longer necessary; but then it can only be concluded that Q € @3: This
is the classical rigidity theorem (Theorem 1.7-1), of which Liouwville’s theorem
is the special case corresponding to ® = idg.

(3) The result established in part (i) of the above proof asserts that, given
a connected open subset 2 of R3, if a mapping ® € H'(Q;E?) is such that
VO(z) € 0% for almost all z € €, then there exist ¢ € E* and Q € 0% such
that ®(z) = ¢+ Qox for almost all x+ € Q. This result thus constitutes a
generalization of Liouville’s theorem. _

(4) By contrast, if the mapping © is assumed to be instead in the space
HY(Q;E?) (as in Theorem 1.7-3), an assumption about the sign of det VO
becomes necessary. To see this, let for instance 2 be an open ball centered at the
origin in R?, let ©(z) = z, and let ©(z) = z if 1 > 0 and O(x) = (—x1, 22, 3)
if 21 < 0. Then © € HY(QE?) and VO € 0% ae. in Q; yet there does
not exist any orthogonal matrix such that ©(z) = Q oz for all z € Q, since
O(Q) C {z € R3 2, > 0} (this counter-example was kindly communicated to
the author by Sorin Mardare).

(5) Surprisingly, the assumption det VO > 0 in Q cannot be replaced by
the weaker assumption det VO > 0 a.e. in 2. To see this, let for instance 2
be an open ball centered at the origin in R3, let ®(x) = (2123, z2, 23) and let
O(z) = O(z) if 25 > 0 and O(z) = (—z12%, —x9,x3) if 22 < 0 (this counter-
example was kindly communicated to the author by Hervé Le Dret).

(6) If a mapping © € C1(Q;E?) satisfies det VO > 0 in Q, then © is an
immersion. Conversely, if ) is a connected open set and ® € C1(Q; E?) is an
immersion, then either det VO > 0 in Q or det VO < 0 in 2. The assumption
that det VO > 0 in  made in Theorem 1.7-3 is simply intended to fix ideas (a
similar result clearly holds under the other assumption).

(7) A little further ado shows that the conclusion of Theorem 1.7-3 is still
valid if © € H'(Q; E?) is replaced by the weaker assumption © € H (€ E?).

O

Like the existence results of Section 1.6, the uniqueness theorems of this
section hold verbatim in any dimension d > 2, with R3 replaced by R? and E¢
by a d-dimensional Euclidean space.

1.8 CONTINUITY OF AN IMMERSION AS A FUNC-
TION OF ITS METRIC TENSOR

Let Q be a connected and simply-connected open subset of R3. Together, The-
orems 1.6-1 and 1.7-1 establish the existence of a mapping F that associates
with any matrix field C = (g;;) € C*(%;S2) satisfying

Ryiji = 0jTikq — Oklijq + Ffjrkqp =TI} Tjgp =01in Q,
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where the functions T';j, and I'}; are defined in terms of the functions g;; as in
Theorem 1.6-1, a well-defined element F(C) in the quotient set C3(€; E3)/R,
where (@, ©) € R means that there exist a vector a € E3 and a matrix Q € 03
such that @(z) = a + QO(z) for all z € Q.

A natural question thus arises as to whether there exist natural topologies on
the space C2(£2;S?) and on the quotient set C3(Q; E?)/R such that the mapping
F defined in this fashion is continuous.

Equivalently, is an immersion a continuous function of its metric tensor?

The object of this section, which is based on Ciarlet & Laurent [2003], is to
provide an affirmative answer to this question (see Theorem 1.8-5).

Note that such a question is not only clearly relevant to differential geome-
try per se, but it also naturally arises in nonlinear three-dimensional elasticity,
where a smooth enough immersion ® : Q — E? may be thought of as a defor-
mation of the set ) viewed as a reference configuration of a nonlinearly elastic
body (although such an immersion should then be in addition injective and
orientation-preserving in order to qualify for this definition; for details, see, e.g.,
Ciarlet [1988, Section 1.4] or Antman [1995, Section 12.1]). In this context, the
associated matrix

C(z) = (gi5(2)) = VO(2)T VO (2),
is called the (right) Cauchy-Green tensor at x and the matrix
VO(z) = (9,0,(z)) € M?,

representing the Fréchet derivative of the mapping © at x, is called the defor-
mation gradient at x.

The Cauchy-Green tensor field C = VO'VO : Q — S? associated with a
deformation © : Q — E3 plays a major role in the theory of nonlinear three-
dimensional elasticity, since the response function, or the stored energy function,
of a frame-indifferent elastic, or hyperelastic, material necessarily depends on
the deformation gradient through the Cauchy-Green tensor (see, e.g., Ciarlet
[1988, Chapters 3 and 4]. As already suggested by Antman [1976], the Cauchy-
Green tensor field of the unknown deformed configuration could thus also be
regarded as the “primary” unknown rather than the deformation itself as is
customary.

To begin with, we list some specific notations that will be used in this section
for addressing the question raised above. Given a matrix A € M3, we let p(A)
denote its spectral radius and we let

denote its spectral norm.
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Let Q be an open subset of R3. The notation K € € means that K is
a compact subset of Q. If g € C/(%R),£ > 0, and K € €, we define the
SEMI-NoTrms

lgle.xk = sup [0%g(z)| and |g[lex = sup |0%g(w)],
reK reK
lal= <t

where 0% stands for the standard multi-index notation for partial derivatives.
If ©® € CY(LE3) or A € CH(;M3), £>0, and K € €, we likewise set

®lex = sup [0°O(z)] and  [|Of,x = sup [07O(z)],

rzeK rzeK
{\alze {\a|se
[Alex = sup [0°A(z)| and  [[Allex = sup [0%A(z)],
rzeK rzeK
{\alze {\a|se

where |-| denotes either the Euclidean vector norm or the matrix spectral norm.

The next sequential continuity results (Theorems 1.8-1, 1.8-2, and 1.8-3)
constitute key steps toward establishing the continuity of the mapping F (see
Theorem 1.8-5). Note that the functions Ry, ji occurring in their statements are
meant to be constructed from the functions g;; in the same way that the func-
tions Ry;j are constructed from the functions g;;. To begin with, we establish
the sequential continuity of the mapping F at C = 1.

Theorem 1.8-1. Let Q) be a connected and simply-connected open subset of
R3. Let C" = (955) € C2(S;82), n > 0, be matriz fields satisfying Ry =0 in
Q, n >0, such that

lim ||C" —1I||2,x =0 for all K € Q.
Then there exist mappings ®" € C3(;E?) satisfying (VO™)TVO" = C" in
Q, n >0, such that

lim [|®@" —id||3,x =0 for all K € Q
where id denotes the identity mapping of R3, identified here with E3.

Proof. The proof is broken into four parts, numbered (i) to (iv). The first
part is a preliminary result about matrices (for convenience, it is stated here for
matrices of order three, but it holds as well for matrices of arbitrary order).

(i) Let matrices A™ € M3, n > 0, satisfy

lim (A")TA" =1.

n—oo

Then there exist matrices Q™ € Q3, n > 0, that satisfy

lim Q"A" =1.

n—oo
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Since the set @3 is compact, there exist matrices Q™ € @3, n > 0, such that
"A" —1I] = inf RA"™—1|.
QA" —T| = inf | |
We assert that the matrices Q™ defined in this fashion satisfy lim,,_,., Q"A™ =
I. For otherwise, there would exist a subsequence (QP),>o of the sequence

(Q™)n>0 and § > 0 such that

|QPA? — 1| = Rin«g3 IRAP —1I| > ¢ for all p > 0.
€

lim [A7] = lim 1/p((AP)TAP) = /p(D) = 1,
p—00 p—00

the sequence (AP),>( is bounded. Therefore there exists a further subsequence
(A7) 4>0 that converges to a matrix S, which is orthogonal since

Since

STS = lim (A?9)TAY =1.
q— 00

But then

lim STA?=8Ts =1,

q— 00
which contradicts infregs |[RAZ —1I| > § for all ¢ > 0. This proves (i).

In the remainder of this proof, the matrix fields C™,n > 0, are meant to be

those appearing in the statement of Theorem 1.8-1.

(ii) Let mappings O™ € C3 (G E3), n > 0, satisfy (VO™)TVO™ = C" in Q
(such mappings exist by Theorem 1.6-1). Then

lim |®" —id|;,x = lim |@" |y x =0 for all K € Q and for { =2,3.

n—oo

As usual, given any immersion ® € C3(; E?), let g, = 9,0, let g;; = g, "9
and let the vectors g? be defined by the relations g; - g7 = d7. It is then
immediately verified that

1
0;;© = 0,9, = (9ig; - 9,)9" = 5(53‘9@@ + 0igjq — 049:5)9".

Applying this relation to the mappings ©®™ thus gives

0;; 0" = (@-gfq + &g}lq - 3qgfj)(gq)"7 n >0,

N =

where the vectors (g9)" are defined by means of the relations 9;0" - (g9)" = 4.
Let K denote an arbitrary compact subset of 2. On the one hand,

S 10597 + 0195y = Dagljlo.xc =0,
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since lim,, oo |gfj|17K = lim,— oo |gZ — 051,k = 0 by assumption. On the other
hand, the norms |(g?)"|o,x are bounded independently of n > 0; to see this,
observe that (g?)" is the g-th column vector of the matrix (V@™)~!, then that

(VO™) ok = [{p(VO") T(VO")"1)}!/2|o k
= [{o((g5) " o < {I(g) Mo 32,

and, finally, that

lim |(g55) —Xo.x =0 = lim |(g})™" —Tox =0.

n—oo

Consequently,

lim |®" —id|y x = lim |®@"|3,x =0 for all K € Q.

n—oo

Differentiating the relations 9;g; - g, = 1(09iq + 0i9jq — 0q9i;) yields

0ijp® = 8ipgj = (8ipgj 'gq)gq

1
= (5(33'1)91'4 + OipGiq — Opqij) — 81'93‘ : 8p9q)9q-
Observing that lim,, |g{;|g,K = lim,— oo |g1’; — dijle,x = 0 for £ = 1,2 by
assumption and recalling that the norms |(g?)"|o,x are bounded independently
of n > 0, we likewise conclude that

lim |®" —id|3 x = lim |®"|35x =0 for all K € Q.

n—oo

(iii) There exist mappings 0" c C3(Q%; E?) that satisfy (Vén)TV(:)n =C"
mnQ,n >0, and

lim [©®" —id|; x =0 for all K € .
Let " € C3(Q; E®) be mappings that satisfy (V¢")T V4" = C" in Q,
n > 0 (such mappings exist by Theorem 1.6-1), and let =y denote a point in the
set 2. Since lim,, .o, V" (20)T V4" (20) = I by assumption, part (i) implies
that there exist orthogonal matrices Q" (x¢), n > 0, such that
lim Q" (z0) V" (z0) =L

n—oo

Then the mappings 0" c C3(1 E?), n > 0, defined by

0" (2) == Q"(z0)¥"(z), z € Q,

satisfy . .
(Ve )I've =cC"inQ,
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so that their gradients VO € C2(€; M?) satisfy
lim [0, VO o = lim |©" |y 4 =0 for all K € €,
by part (ii). In addition,

lim VO (z0) = lim Q"Va" (x0) = 1.

n—oo

Hence a classical theorem about the differentiability of the limit of a sequence
of mappings that are continuously differentiable on a connected open set and
that take their values in a Banach space (see, e.g., Schwartz [1992, Theorem

3.5.12]) shows that the mappings ve" uniformly converge on every compact
subset of Q toward a limit R € C1(;M?) that satisfies

O;R(z) = lim BiVén(gc) =0 for all z € Q.

n—oo

This shows that R is a constant mapping since €2 is connected. Consequently,
~nNn
R = I since in particular R(zg) = lim,— VO (x9) = I. We have therefore
established that

lim [©" —id|1x = lim [VO" —TI|ox =0 for all K € Q.

(iv) There exist mappings ®" € C3(Q; E?) satisfying (VO™)TVO" = C»
n Q,n>0,and

lim |®" —id|yx =0 for all K €  and for ¢ =0, 1.

The mappings
o= (é" — 10" (o) — xo}) € C3(QE?), n >0,
clearly satisfy
(VO")IVe" =C"inQ,n>0,
lim [®@" —id|; xk = lim |[VO" —1I|o.x =0 for all K € Q,
®"(z¢) = x9, n > 0.

Again applying the theorem about the differentiability of the limit of a se-
quence of mappings used in part (iii), we conclude from the last two relations
that the mappings ®™ uniformly converge on every compact subset of Q toward
a limit © € C}(Q; E3) that satisfies

VO(z) = lim VO"(z) =1 for all z € Q.

n—oo
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This shows that (® — ¢d) is a constant mapping since §2 is connected. Conse-
quently, ® = id since in particular @(xg) = lim,_,o, O"(z9) = 9. We have
thus established that

lim |®@" —id|o,x =0 for all K € Q.

n—oo

This completes the proof of Theorem 1.8-1. O

We next establish the sequential continuity of the mapping F at those matrix
fields C € C?(€2;S%) that can be written as C = VO V@ with an injective
mapping © € C3(; E?).

Theorem 1.8-2. Let ) be a connected and simply-connected open subset of R3.

Let C = (gi;) € C?(§;S2) and C™ = (955) € C2(%S2), n > 0, be matriz fields

satisfying respectively Ryijr = 0 in ) and Ry =0in Q, n >0, such that

lim ||C" — Clla.x = 0 for all K € Q.

Assume that there exists an injective mapping © € C3(Q;E?) such that
vVOIV® = C in Q. Then there exist mappings O™ € C3(QE3) satisfying
(VO")TVO™ =C" in Q, n >0, such that

lim [|®" — O3,k =0 for all K € Q.

Proof. The assumptions made on the mapping © : 2 C R3 — E? imply that
the set Q := ©(Q) C E? is open, connected, and simply-connected, and that
the inverse mapping ©:QCE}-R3 belongs to the space C3 (Q, R3). Define
the matrix fields (g7;) € C2(SA2; S%), n >0, by letting

(95;(x)) = V@(x)_T(gfj(x))VG(x)_l for all T = O(x) € Q.

Given any compact subset K of Q, let K := @(IA( ). Since limy, oo [lg7; —
gijll2,x = 0 because K is a compact subset of , the definition of the functions
§'{‘j : 2 — R and the chain rule together imply that

Jim g5 = dijll5, g = 0

Given = = (7;) € Q, let §; = 0/0z;. Let ﬁgijk denote the functions con-

structed from the functions gj; in the same way that the functions Ry, are
constructed from the functions g;;. Since it is easily verified that these func-
tions satisfy Ry = 0in ), Theorem 1.8-1 applied over the set €2 shows that

there exist mappings © € C3(Q; E®) satistying
“an o~ an o
81@ (93(") ZEZ IDQ,TLZO,

such that U L
lim ||© —id||3f(:0for all K € Q,
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where id denotes the identity mapping of E3, identified here with R3. Define
the mappings ®" € C3(%;S2), n > 0, by letting

~

@"(z) = ©"(2) for all z = O(F) € Q.

Given any compact subset K of 2, let K := O(K). Since lim,_ ||@n —
;(\l||3 # = 0, the definition of the mappings ®" and the chain rule together
imply that

lim [|®" — 0|5k =0,

n—oo

on the one hand. Since, on the other hand, (VO™)TV®" = C" in (), the proof
is complete. (I

We are now in a position to establish the sequential continuity of the mapping
F at any matrix field C € C2(€;S2) that can be written as C = VO’ VO with
O € C3(; E3).
Theorem 1.8-3. Let ) be a connected and simply-connected open subset of R3.
Let C = (gij) € C*(;S2) and C™ = (g}5) € C*(Q,S2), n > 0, be matriz fields
respectively satisfying Rqijr = 0 in £ and Ryix =0 in Q, n >0, such that

lim ||C" — Clla.x = 0 for all K € Q.

Let © € C3(Q;E3) be any mapping that satisfies VOTVO = C in Q (such
mappings exist by Theorem 1.6-1). Then there exist mappings ©" € C3(Q; E?)
satisfying (VO™)TVO™ = C" in Q, n > 0, such that

lim ||@" — O||s.x =0 for all K € Q.

Proof. The proof is broken into four parts. In what follows, C and C"
designate matrix fields possessing the properties listed in the statement of the
theorem.

(i) Let ® € C3(Q;E?) be any mapping that satisfies VOTVO = C in Q.
Then there exist a countable number of open balls B, C Q,r > 1, such that
Q= U:i1 B, and such that, for each r > 1, the set UZ:l B, is connected and
the restriction of © to B, is injective.

Given any z € (), there exists an open ball V,, C € such that the restriction
of @ to V; is injective. Since 2 = J . Ve can also be written as a countable
union of compact subsets of €2, there already exist countably many such open
balls, denoted V;., 7 > 1, such that Q = (J)2, V.

Let 1 :== 1, By := V,,, and ry := 2. If the set B,, UV,, is connected,
let By := V,, and r3 := 3. Otherwise, there exists a path v; in € joining
the centers of V,., and V,., since 2 is connected. Then there exists a finite set
L ={r1(1),71(2),--- ,71(N1)} of integers, with N1 > land 2 < r1(1) < r1(2) <
-+ < r1(Ny), such that

NV v u(Jn).

rely
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Furthermore there exists a permutation o1 of {1,2,..., N1} such that the sets
Vi, U(Usy Vor(e)), L <7 < Ny, and V,, U (Uf;l Vo (s)) U V;, are connected.
Let

B, = 01(r71)a2§T§N1+17 Bny2 =V,
73 1= min {z € {o1(1),...,01(N1)}; i > 3}.

If the set (UNlJr2 B,)UV,, is connected, let By, 13 := V,,. Otherwise, apply
the same argument as above to a path 72 in (2 joining the centers of V;., and
V:4, and so forth.

The iterative procedure thus produces a countable number of open balls
B,, r > 1, that possess the announced properties. In particular, Q = J7~, B,
since, by construction, the integer r; appearing at the i-th stage satisfies r; > 1.

(ii) By Theorem 1.8-2, there exist mappings ®” € C3(By;E%) and ©, €
C3(B2; E3), n > 0, that satisfy

(VO)TVO! = C"in By and lim [|@ —O|3x = 0 for all K € By,
(VO,)TVO, = C"in B, and lim ||©, — O|jsx = 0 for all K € Bo,
and by Theorem 1.7-1, there exist vectors ¢” € E? and matrices Q™ € O3, n > 0,

such that .
O, (z) =c"+Q"O7(z) for all z € By N Bs.

Then we assert that

lim ¢"=0and lim Q" =
n—oo n—oo
Let (QP)p>0 be a subsequence of the sequence (Q™),>0 that converges to
a (necessarlly orthogonal) matrix Q and let ;1 denote a point in the set B; N
. Since ¢? = @2(;101) QPO (z1) and lim,_, @2(;101) = lim,, o0 OF (21) =
G)(;vl), the subsequence (cP)p>0 also converges. Let ¢ := lim,_, c”. Thus

O(z) = lim O (x)
pP—00
= lim (¢’ + QPOY(z)) = ¢+ QO(z) for all z € By N By,

p—00
on the one hand. On the other hand, the differentiability of the mapping ©
implies that

O(x) = O(x1) + VO(z1)(x — x1) + o(|z — z1|) for all z € By N Bs.

Note that VO (1) is an invertible matrix, since VO(z1)TVO(z1) = (gi;(21)).
Let b := O(z1) and A := VO(z1). Together, the last two relations imply
that
b+A(x—z1)=c+ Qb+ QA(x — 1) + o]z — x1]),
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and hence (letting = 1 shows that b = ¢ + Qb) that
A(x — 1) = QA(x — 21) + o]z — x1|) for all © € By N Bs.

The invertibility of A thus implies that Q = I and therefore that ¢ = b—Qb = 0.
The uniqueness of these limits shows that the whole sequences (Q"),>0 and
(c™)n>0 converge.

(iii) Let the mappings ®% € C3(By U Bo; E3), n > 0, be defined by
O (z) := OF(x) for all x € By,
0 (z) := (QM)T (O, (z) — ¢") for all z € B.
Then
(VONTVey =C"in By UB,
(as is clear), and

lim H@g - @”37}{ =0 for all K € B; U Bs.

The plane containing the intersection of the boundaries of the open balls By
and B, is the common boundary of two closed half-spaces in R3, H; containing
the center of By, and Hy containing that of Bs (by construction, the set By U By
is connected; see part (i)). Any compact subset K of B;UBy may thus be written
as K = Kl UKQ, where Kl = (KﬂHl) C B1 and KQ = (KQHQ) C BQ (that
the open sets found in part (i) may be chosen as balls thus play an essential role
here). Hence

Jim [|@; — O3, =0and lim [[@; — O3k, =0,

the second relation following from the definition of the mapping ®% on Bs D Ko
and on the relations lim,,_ H@; —O||3,x, =0 (part (ii)) and lim,_, Q™" =1
and lim,,_,o, ¢” = 0 (part (iii)).

(iv) It remains to iterate the procedure described in parts (ii) and (iii). For
some r > 2, assume that mappings O € C*(|J._, Bs;E?), n > 0, have been
found that satisfy

(Ve;)'ver =C" i | B,

s=1
lim [|©] — O|2x =0 for all K € | ] Bs.
s=1
Since the restriction of ® to B, is injective (part (i)), Theorem 1.8-2 shows
that there exist mappings @:+1 € C3(B,41;E?), n > 0, that satisfy
(Vé:-u)TVé:-H =C" in By,

lim [©.,, —©|sx =0 for all K € By,
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and since the set UZ:} Bs is connected (part (i)), Theorem 1.7-1 shows that
there exist vectors ¢” € E? and matrices Q™ € O3, n > 0, such that

(:):+1(a:) ="+ Q"0 (z) for all z € ( LTJ BS) NB,y1.

s=1

Then an argument similar to that used in part (ii) shows that lim, ., Q" =1
and lim, . ¢” = 0, and an argument similar to that used in part (iii) (note
that the ball B,;1 may intersect more than one of the balls Bs, 1 < s < r)
shows that the mappings ©7,, € C3(U._, Bs; E?®), n > 0, defined by

0. (z) =0 (r) forall z € U B,

s=1

O7, (z) := (Q")T(O, (x) — ¢") for all = € B4,
satisfy

lim [|©],; — O3 x =0 for all K € | ] B
s=1

Then the mappings ©" : Q — E3, n > 0, defined by

Q" (z) := 0O (x) for all z € U Bg,r>1,

s=1

possess all the required properties: They are unambiguously defined since for all
s>r, O (z) = O] (x) for all x € |J._, Bs by construction; they are of class C3
since the mappings ©) : |J._, Bs — E? are themselves of class C?; they satisfy
(VO™MTVO™ = C" in  since the mappings O satisfy the same relations
in (J._, Bs; and finally, they satisfy lim, . [|@" — ©||35x = 0 for all K € Q
since any compact subset of € is contained in | J|_, B for r large enough. This
completes the proof. O

It is easily seen that the assumptions Ry = 0 in €2 are in fact superfluous
in Theorem 1.8-3 (as shown in the next proof, these relations are consequences
of the assumptions R}, = 0 in ©,n > 0, and lim, . [|[C" — Cll2,x = 0 for
all K € Q). This observation gives rise to the following corollary to Theorem
1.8-3, in the form of another sequential continuity result, of interest by itself. The
novelties are that the assumptions are now made on the immersions ", n > 0,
and that this result also provides the existence of a “limit” immersion ©.

Theorem 1.8-4. Let Q) be a connected and simply-connected open subset of
R3. Let there be given immersions ®" € C*(Q;E?), n > 0, and a matriz field
C € C?(%;S2) such that

lim |(VO™")TVO" — C|la.x =0 for all K € Q.
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Then there exist mappings 0" c C3([ E3), n >0, of the form
© =c"+Q"O", c" c E*, Q" € 07,

which thus satisfy (Vén)TVén = (VO"MTVO" in Q for alln > 0, and there
exists a mapping © € C3(Q; E3) such that

VO'VO =Cin Qand lim [|©" — @5 =0 for all K € Q.

Proof. Let the functions RZijk? n > 0, and Ry, be constructed from the
components g/% and g;; of the matrix fields C" := (VO")" VO™ and C in the
usual way (see, e.g., Theorem 1.6-1). Then R}, = 0in Q for all n > 0, since
these relations are simply the necessary conditions of Theorem 1.5-1.

We now show that Ry, = 0 in Q. To this end, let K be any compact subset
of Q. The relations

C"=C(I+C(C"-C)),n>0,

together with the inequalities |AB|l2,x < 4||All2,x||B||2,x valid for any matrix
fields A, B € C2(Q; M3), show that there exists ng = ng(K) such that the matrix
fields (I4+C~1(C" — C))(z) are invertible at all z € K for all n > ng. The same
relations also show that there exists a constant M such that [[(C™) 7! |lo,x < M
for all n > ng. Hence the relations

(CHt-Cct=CcT(C-CM)(C") ™, n>mn,
together with t_he assumptions lim_rHoO |IC™—Cll2,x = 0, in turn imply that the
components g™ n > ng, and g of the matrix fields (C™)~! and C~! satisfy

dim [lg7" — g9 ||2.5 = 0.

With self-explanatory notations, it thus follows that

noo_
1q

lim ||F l"ijq||17K:Oand lim Hl—‘fjn—l—‘fj|1)[(:07
n—o00 n—oo

hence that lim,,_, HRgijk — Ryijillo,x = 0. This shows that Rgjx = 0 in K,
hence that Rg;;x = 0 in €2 since K is an arbitrary compact subset of ).

By the fundamental existence theorem (Theorem 1.6-1), there thus exists a
mapping @ € C3(Q; E?) such that VOTV® = C in Q. Theorem 1.8-3 can now

be applied, showing that there exist mappings © € C3(; E?) such that
(VO")TVO" =C"inQ,n>0, and lim |©" — O3 for all K € €.

Finally, the rigidity theorem (Theorem 1.7-1) shows that, for each n > 0,
there exist ¢” € E? and Q" € Q2 such that 0" =c"+ Q"O" in ) because

the mappings ©®" and ©" share the same metric tensor field and the set Q is
connected. (]
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It remains to show how the sequential continuity established in Theorem
1.8-3 implies the continuity of a deformation as a function of its metric tensor
for ad hoc topologies.

Let Q be an open subset of R3. For any integers £ > 0 and d > 1, the space
C*(£2; R?) becomes a locally convex topological space when its topology is defined
by the family of semi-norms ||-||, -, K € , defined earlier. Then a sequence
(©@™)p>0 converges to © with resbect to this topology if and only if

lim ||@" — O]y =0 for all K € Q.

Furthermore, this topology is metrizable: Let (K;);>0 be any sequence of subsets
of € that satisfy

K; € Qand K; Cint K, ;1 for alli >0, and Q = U K;.

i=0
Then
lim [|®@" —O|,x =0 forall K € N < lim d,(®",0) =0,
where
1 v -0Oleux,
d ,@ = - L .
0= 5 T g ek,

For details, see, e.g., Yosida [1966, Chapter 1].

Let C3(Q; E3) := C3(Q: E3)/R denote the quotient set of C3(€2; E3) by the
equivalence relation R, where (O, é) € R means that there exist a vector
¢ € E? and a matrix Q € 03 such that ©(z) = ¢+ QO(z) for all z € Q. Then
it is easily verified that the set C3(Q;E?) becomes a metric space when it is
equipped with the distance ds defined by

d3(®7¢) = lnf dB(KHX) = inf d3(®76+Q¢)7
KEO ceE?
XEYP Qec0?
where © denotes the equivalence class of ® modulo R.
We now show that the announced continuity of an immersion as a function

of its metric tensor is a corollary to Theorem 1.8-1. If d is a metric defined on
a set X, the associated metric space is denoted {X;d}.

Theorem 1.8-5. Let ) be a connected and simply-connected open subset of R3.
Let
Co(%S2) = {(gs5) € C*(S2); Ryiji = 0 in Q},
and, given any matriz field C = (gi;) € C2(%S2), let F(C) € C3(Q; E?) denote
the equivalence class modulo R of any © € C3(Q; E3) that satisfies velve =
C in Q. Then the mapping
F{C3(Q;82);do} — {CH( Q% E?);ds}

defined in this fashion is continuous.
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Proof. Since {C3(Q;S2);da} and {C?(Q; E?);d3} are both metric spaces, it
suffices to show that convergent sequences are mapped through F into conver-
gent sequences.

Let then C € C3(€%;S%) and C™ € CZ(Q;S2), n > 0, be such that

lim d»(C",C) =0,
i.e., such that lim, . |[|[C" — C|l2,x = 0 for all K € €. Given any © €
F(C), Theorem 1.8-3 shows that there exist @™ € F(C™), n > 0, such that
lim, o ||®@" — Ol|3,x = 0 for all K € 2, i.e., such that

lim d3(®",®) = 0.

Consequently, .
lim ds(F(C"),F(C)) =0.

n—oo

O

As shown by Ciarlet & C. Mardare [2004b], the above continuity result can
be extended “up to the boundary of the set )’ as follows. If €2 is bounded and
has a Lipschitz-continuous boundary, the mapping F of Theorem 1.8-5 can be
extended to a mapping that is locally Lipschitz-continuous with respect to the
topologies of the Banach spaces C2(£2;S?) for the continuous extensions of the
symmetric matrix fields C, and C3(€2; E3) for the continuous extensions of the
immersions © (the existence of such continuous extensions is briefly commented
upon at the end of Section 1.6).

Another extension, motivated by three-dimensional nonlinear elasticity, is
the following: Let € be a bounded and connected subset of R?, and let B
be an elastic body with € as its reference configuration. Thanks mostly to
the landmark existence theory of Ball [1977], it is now customary in nonlinear
three-dimensional elasticity to view any mapping ® € H'(Q; E3) that is almost-
everywhere injective and satisfies det VO > 0 a.e. in 2 as a possible deformation
of B when B is subjected to ad hoc applied forces and boundary conditions. The
almost-everywhere injectivity of ® (understood in the sense of Ciarlet & Necas
[1987]) and the restriction on the sign of det VO mathematically express (in
an arguably weak way) the non-interpenetrability and orientation-preserving
conditions that any physically realistic deformation should satisfy.

As mentioned earlier, the Cauchy-Green tensor field VOTVO e L'(Q;S?)
associated with a deformation ® € H!(Q; E3) pervades the mathematical mod-
eling of three-dimensional nonlinear elasticity. Conceivably, an alternative ap-
proach to the existence theory in three-dimensional elasticity could thus regard
the Cauchy-Green tensor as the primary unknown, instead of the deformation
itself as is usually the case.

Clearly, the Cauchy-Green tensors depend continuously on the deformations,
since the Cauchy-Schwarz inequality immediately shows that the mapping

©c HY(%EY) - veTve e LY S?)
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is continuous (irrespectively of whether the mappings © are almost-everywhere
injective and orientation-preserving).

Then Ciarlet & C. Mardare [2005a] have shown that, under appropriate
smoothness and orientation-preserving assumptions, the converse holds, i.e., the
deformations depend continuously on their Cauchy-Green tensors, the topologies
being those of the same spaces H'(;E3) and L'(Q;S?) (by contrast with the
orientation-preserving condition, the issue of non-interpenetrability turns out to
be irrelevant to this issue). In fact, this continuity result holds in an arbitrary
dimension d, at no extra cost in its proof; so it will be stated below in this more
general setting. The notation E? then denotes a d-dimensional Euclidean space
and S? denotes the space of all symmetric matrices of order d.

This continuity result is itself a simple consequence of a monlinear Korn
inequality, which constitutes the main result of ibid.: Let  be a bounded
and connected open subset of R? with a Lipschitz-continuous boundary and let
® < C'(;EY) be a mapping satisfying det V® > 0 in Q. Then there exists
a constant C(@) with the following property: For each orientation-preserving
mapping ® € H'(;E?), there exist a d x d rotation R = R(®,0) (i.e., an
orthogonal matrix of order d with a determinant equal to one) and a vector
b= b(®,0) in E? such that

T T 1/2
[® — (b+RO)|y1 (e < C(O)|VE VP - VO VG)HLl(Q;Sd)'

That a vector b and a rotation R should appear in the left-hand side of such
an inequality is of course reminiscent of the classical rigidity theorem (Theorem
1.7-1), which asserts that, if two mappings © € C*(; E%) and © € C1(Q; E?)
satisfying det VO > 0 and det VO > 0 in an open connected subset 2 of
R? have the same Cauchy-Green tensor field, then the two mappings are iso-
metrically equivalent, i.e., there exist a vector b in E¢ and a d x d orthogonal
matrix R (a rotation in this case) such that ®@(z) = b+ RO(x) for all x € Q.
__ More generally, we shall say that two orientation-preserving mappings
O ¢ HY(Q;EY) and ©® € HY(Q;E?) are isometrically equivalent if there ex-
ist a vector b in E? and a d x d orthogonal matrix R (again a rotation in this
case) such that

©(z) = b+ RO(z) for almost all z € Q.

One application of the above key inequality is the following sequential conti-
nuity property: Let ©F ¢ HY(Q;EY), k> 1, and © € C'(Q; E?) be orientation-
preserving mappings. Then there exist a constant C(®) and orientation-pres-

~k
erving mappings @ € H'(;E?), k > 1, that are isometrically equivalent to
©" such that
~k
18" - |41 (@ < C(O)|(VOH)T VO - VO VOl 00
~ k
Hence the sequence (© )32, converges to © in HY(Q;E?) as k — oo if the
sequence (VOM)TV@O*)> | converges to VOV in L1(Q;S%) as k — oo .
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Should the Cauchy-Green strain tensor be viewed as the primary unknown
(as suggested above), such a sequential continuity could thus prove to be use-
ful when considering infimizing sequences of the total energy, in particular for
handling the part of the energy that takes into account the applied forces and
the boundary conditions, which are both naturally expressed in terms of the
deformation itself.

They key inequality is first established in the special case where © is the
identity mapping of the set 2, by making use in particular of a fundamental
“geometric rigidity lemma” recently proved by Friesecke, James & Miiller [2002].
It is then extended to an arbitrary mapping ® € C'(Q; R") satisfying det VO >
0 in ©, thanks in particular to a methodology that bears some similarity with
that used in Theorems 1.8-2 and 1.8-3.

Such results are to be compared with the earlier, pioneering estimates of
John [1961], John [1972] and Kohn [1982], which implied continuity at rigid body
deformations, i.e., at a mapping © that is isometrically equivalent to the identity
mapping of Q. The recent and noteworthy continuity result of Reshetnyak [2003]
for quasi-isometric mappings is in a sense complementary to the above one (it
also deals with Sobolev type norms).






Chapter 2

DIFFERENTIAL GEOMETRY OF SURFACES

2.1 CURVILINEAR COORDINATES ON A SURFACE

In addition to the rules governing Latin indices that we set in Section 1.1, we
henceforth require that Greek indices and exponents vary in the set {1,2} and
that the summation convention be systematically used in conjunction with these
rules. For instance, the relation

da(mia’) = (Mgja — bapnz)a’ + (n3ja + bns)a®
means that, for @ = 1, 2,

3 2

aa(Zmai) = ;(nga — bagns)a’ + (773|a +> bfm)ag-

i=1 B=1

Kronecker’s symbols are designated by 62, 6,3, or %7 according to the con-
text.

Let there be given as in Section 1.1 a three-dimensional Euclidean space E3,
equipped with an orthonormal basis consisting of three vectors €' = €;, and let
a - b,lal, and a A b denote the Euclidean inner product, the Euclidean norm,
and the vector product of vectors a, b in the space E3.

In addition, let there be given a two-dimensional vector space, in which two
vectors e® = e, form a basis. This space will be identified with R%. Let yq
denote the coordinates of a point y € R? and let d, := 9/Jy, and up =
9 9yays.

Finally, let there be given an open subset w of R? and a smooth enough
mapping 6 : w — E3 (specific smoothness assumptions on 6 will be made later,
according to each context). The set

w:=0(w)
is called a surface in E3.
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If the mapping 0 : w — E? is injective, each point ¥ € & can be unambigu-
ously written as
y=0(y), yew,

and the two coordinates y, of y are called the curvilinear coordinates of 7
(Figure 2.1-1). Well-known ezamples of surfaces and of curvilinear coordinates
and their corresponding coordinate lines (defined in Section 2.2) are given in
Figures 2.1-2 and 2.1-3.

Figure 2.1-1: Curvilinear coordinates on a surface and covariant and contravariant bases of
the tangent plane. Let @ = @(w) be a surface in E3. The two coordinates y1,y2 of y € w are
the curvilinear coordinates of ¥ = 0(y) € . If the two vectors an(y) = 0.0(y) are linearly
independent, they are tangent to the coordinate lines passing through 7 and they form the
covariant basis of the tangent plane to @ at ¥ = 0(y). The two vectors a®(y) from this tangent
plane defined by a®(y) - ag(y) = dg form its contravariant basis.

Naturally, once a surface & is defined as @ = 6(w), there are infinitely many
other ways of defining curvilinear coordinates on &, depending on how the do-
main w and the mapping 0 are chosen. For instance, a portion & of a sphere
may be represented by means of Cartesian coordinates, spherical coordinates, or
stereographic coordinates (Figure 2.1-3). Incidentally, this example illustrates
the variety of restrictions that have to be imposed on @ according to which kind
of curvilinear coordinates it is equipped with!
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Figure 2.1-2: Several systems of curvilinear coordinates on a sphere. Let ¥ be a sphere
of radius R. A portion of ¥ contained “in the northern hemisphere” can be represented by
means of Cartesian coordinates, with a mapping 6 of the form:
0:(z,y) €w — (z,y,{R? — (22 + y*)}!/?) € B3
A portion of ¥ that excludes a neighborhood of both “poles” and of a “meridian” (to fix
ideas) can be represented by means of spherical coordinates, with a mapping 6 of the form:
0: (p,1) €w — (Rcoscosy, Rcosysin g, Rsiny) € ES3.
A portion of ¥ that excludes a neighborhood of the “North pole” can be represented by
means of stereographic coordinates, with a mapping 6 of the form:
2 2 2 2 2
0:(u7v)€w—>(22Ru , 2R , u v R)EES.
u?+ 02+ R2 w2402+ R? u?+02+ R?
The corresponding coordinate lines are represented in each case, with self-explanatory
graphical conventions.
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Figure 2.1-3: Two familiar ezamples of surfaces and curvilinear coordinates. A portion @
of a circular cylinder of radius R can be represented by a mapping € of the form
0: (p,2) €w— (Rcosy, Rsing, z) € E3.
A portion @ of a torus can be represented by a mapping 0 of the form
0:(p,x) Ew— ((R+7cosx)cosp, (R+rcosx)sing,rsiny) € E3,

with R > r.

The corresponding coordinate lines are represented in each case, with self-explanatory
graphical conventions.
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2.2 FIRST FUNDAMENTAL FORM

Let w be an open subset of R? and let
=02 :wcRkR®—0w) =0cCE?

be a mapping that is differentiable at a point y € w. If dy is such that (y+dy) €
w, then
0(y + 0y) = 0(y) + VO(y)dy + o(dy),

where the 3 x 2 matrix VO(y) is defined by

(91 91 (92 91
VG(y) = 8192 (9292 (y)
0103 0203

Let the two vectors a,(y) € R3 be defined by

N

aa(y) == 0.0(y) = | dab2 | (y),
Oab3

ie., a,(y) is the a-th column vector of the matriz VO(y) and let dy = dy“e,.
Then the expansion of @ about y may be also written as

0(y + dy) = 0(y) + 0y”aa(y) + o(dy).

If in particular dy is of the form dy = dte,, where §t € R and e, is one of
the basis vectors in R2, this relation reduces to

0(y + dten) = O(y) + dtan(y) + o(4t).

A mapping 6 : w — E? is an immersion at y € w if it is differentiable at
y and the 3 x 2 matrix VO(y) is of rank two, or equivalently if the two vectors
a,(y) = 0,0(y) are linearly independent.

Assume from now on in this section that the mapping 0 is an immersion
at y. In this case, the last relation shows that each vector a,(y) is tangent
to the a-th coordinate line passing through y = 0(y), defined as the image
by 6 of the points of w that lie on a line parallel to e, passing through y
(there exist tg and t; with ¢ < 0 < ¢; such that the a-th coordinate line is
given by t € Jto,t1] — fo(t) := 6(y + te,) in a neighborhood of ¥; hence
F1(0) = 0,0(y) = an(y)); see Figures 2.1-1, 2.1-2, and 2.1-3.

The vectors aq(y), which thus span the tangent plane to the surface & at
y = 0(y), form the covariant basis of the tangent plane to & at ¥; see
Figure 2.1-1.

Returning to a general increment dy = dy®e,, we also infer from the expan-
sion of @ about y that

10(y + 8y) — 0(y)|* = oy VO(y)" VO (y)dy + o(|5y|?)
= 6y“aa(y) - as(y)dy’ + o(|6y|?).
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In other words, the principal part with respect to dy of the length between
the points 8(y + dy) and O(y) is {0y®aa(y) - as(y)dy”}'/2. This observation
suggests to define a matrix (aqo3(y)) of order two by letting

aas(y) = aaly) -asly) = (VO(y)"VO(y)) ;-

The elements aqpg(y) of this symmetric matrix are called the covariant
components of the first fundamental form, also called the metric tensor,
of the surface @ at g = 0(y).

Note that the matriz (aag(y)) is positive definite since the vectors aq(y) are
assumed to be linearly independent.

The two vectors a,(y) being thus defined, the four relations

a®(y) - ap(y) = 95
unambiguously define two linearly independent vectors a®(y) in the tangent
plane. To see this, let a priori a®(y) = Y*?(y)a,(y) in the relations a®(y) -
ag(y) = 65. This gives Y (y)aog(y) = 05; hence Y*?(y) = a*?(y), where

(@’ (y)) = (aas(y) "

Hence a®(y) = a® (y)a,(y). These relations in turn imply that

a®(y) - a’(y) = a® (v)a”" (y)as(y) - ar(y)
= a® (y)a”" (y)aor(y) = a® ()] = a*(y),

and thus the vectors a®(y) are linearly independent since the matrix (a®”(y))
is positive definite. We would likewise establish that a,(y) = aas(y)a’(y).
The two vectors a®(y) form the contravariant basis of the tangent plane
to the surface @ at § = 6(y) (Figure 2.1-1) and the elements a®?(y) of the
symmetric matrix (a®?(y)) are called the contravariant components of the
first fundamental form, or metric tensor, of the surface @ at § = 0(y).
Let us record for convenience the fundamental relations that exist between
the vectors of the covariant and contravariant bases of the tangent plane and
the covariant and contravariant components of the first fundamental tensor:

aap(y) = aa(y) -ap(y) and a*(y) = a(y) - a(y),
au(y) = aap(y)a’(y) and a®(y) = a*®(y)ag(y).

A word of caution. The presentation in this section closely follows that
of Section 1.2, the mapping 6 : w C R? — E? “replacing” the mapping © : Q C
R3 — E3. There are indeed strong similarities between the two presentations,
such as the way the metric tensor is defined in both cases, but there are also
sharp differences. In particular, the matrix V(y) is not a square matrix, while
the matrix VO (z) is square! O
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2.3 AREAS AND LENGTHS ON A SURFACE

We now review fundamental formulas expressing area and length elements at
a point ¥ = 0(y) of the surface @ = O(w) in terms of the matrix (ang(y)); see
Figure 2.3-1.

These formulas highlight in particular the crucial réle played by the ma-
trix (aqp(y)) for computing “metric” notions at ¥ = 0(y). Indeed, the first
fundamental form well deserves “metric tensor” as its alias!

A mapping 0 : w — E? is an immersion if it is an immersion at each
Yy € w, le., if 0 is differentiable in w and the two vectors 0,0(y) are linearly
independent at each y € w.

Figure 2.3-1: Area and length elements on a surface. The elements da(y) and dé(7) at
¥ = 0(y) € & are related to dy and dy by means of the covariant components of the metric
tensor of the surface QA; cf. Theorem 2.3-1. The corresponding relations are used for computing
the area of a surface A = 8(A) C & and the length of a curve C' = 6(C) C &, where C = f(I)
and I is a compact interval of R.

Theorem 2.3-1. Let w be an open subset of R?, let 0 : w — E3 be an injective
and smooth enough immersion, and let © = 8(w).

(a) The area element da(y) at y = 0(y) € & is given in terms of the area
element dy at y € w by

da(y) = Va(y)dy, where a(y) := det(aap(y))-
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~

(b) The length element d4(y) at ¥ = O(y) € @ is given by
. o 1/2
A0(G) = {6y aap()oy”}"*.

Proof. The relation (a) between the area elements is well known. It can
also be deduced directly from the relation between the area elements dI'(Z) and
dI'(z) given in Theorem 1.3-1 (b) by means of an ad hoc “three-dimensional
extension” of the mapping 6. R

The expression of the length element in (b) recalls that d¢(y) is by definition
the principal part with respect to dy = dy“e,, of the length |0(y + dy) — 0(y)|,
whose expression precisely led to the introduction of the matrix (ang(y)). O

The relations found in Theorem 2.3-1 are used for computing surface inte-
grals and lengths on the surface & by means of integrals inside w, i.e., in terms
of the curvilinear coordinates used for defining the surface @ (see again Figure
2.3-1).

Let A be a domain in R? such that A C w (a domain in R? is a bounded,
open, and connected subset of R? with a Lipschitz-continuous boundary; cf.
Section 1.3), let A := 0(A), and let f € L'(A) be given. Then

/A (@) da@) = / (Fo 0)(y)v/alm) dy.
A A

In particular, the area of Alis given by

areagzz/gda@):/A\/@dy.

Consider next a curve C = f(I) in w, where I is a compact interval of R
and f = f%ey : I — w is a smooth enough injective mapping. Then the length
of the curve C := 0(C) C & is given by

~ o B
lengthC::/I‘%(Oof)(t)‘dt:/l\/aag(f(t))% (t)% (1) dt.

The last relation shows in particular that the lengths of curves inside the
surface O(w) are precisely those induced by the Euclidean metric of the space E3.
For this reason, the surface 6(w) is said to be isometrically imbedded in E3.

2.4 SECOND FUNDAMENTAL FORM; CURVATURE
ON A SURFACE

While the image © () C E? of a three-dimensional open set Q C R3 by a smooth
enough immersion ® : Q C R3 — E? is well defined by its “metric”, uniquely
up to isometries in E3 (provided ad hoc compatibility conditions are satisfied by
the covariant components g;; : 0 — R of its metric tensor; cf. Theorems 1.6-1
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and 1.7-1), a surface given as the image 6(w) C E? of a two-dimensional open
set w C R? by a smooth enough immersion 6 : w C R? — E? cannot be defined
by its metric alone.

As intuitively suggested by Figure 2.4-1, the missing information is provided
by the “curvature” of a surface. A natural way to give substance to this oth-
erwise vague notion consists in specifying how the curvature of a curve on a
surface can be computed. As shown in this section, solving this question relies
on the knowledge of the second fundamental form of a surface, which naturally
appears for this purpose through its covariant components (Theorem 2.4-1).

e
s
N

Figure 2.4-1: A metric alone does not define a surface in E3. A flat surface @g may be
deformed into a portion @i of a cylinder or a portion W9 of a cone without altering the length
of any curve drawn on it (cylinders and cones are instances of “developable surfaces”; cf.
Section 2.5). Yet it should be clear that in general &@o and &1, or @ and W, or &1 and Wo,
are not identical surfaces modulo an isometry of E3!

»
NN

A

“o

Consider as in Section 2.1 a surface @ = 0(w) in E?, where w is an open
subset of R? and @ : w C R? — E? is a smooth enough immersion. For each
Y € w, the vector

_ai(y) Naa(y)
%W = ) A as(y)]

is thus well defined, has Euclidean norm one, and is normal to the surface & at
the point ¥ = 0(y).
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Remark. The denominator in the definition of as(y) may be also written as

la1(y) A az(y)| = Valy),
where a(y) := det(ans(y))- O

Fix y € w and consider a plane P normal to @ at § = 6(y), i.e., a plane that
contains the vector as(y). The intersection C = PN& is thus a planar curve
on .

As shown in Theorem 2.4-1, it is remarkable that the curvature of C at
y can be computed by means of the covariant components aq(y) of the first
fundamental form of the surface @ = 6(w) introduced in Section 2.2, together
with the covariant components bog(y) of the “second” fundamental form of ©.
The definition of the curvature of a planar curve is recalled in Figure 2.4-2.

A~ . . 1 .
If the algebraic curvature of C' at ¥ is # 0, it can be written as i and R is

then called the algebraic radius of curvature of the curve C at y. This means
that the center of curvature of the curve C at ¥ is the point (7 + Ras(y));
see Figure 2.4-3. While R is not intrinsically defined, as its sign changes in any
system of curvilinear coordinates where the normal vector as(y) is replaced by
its opposite, the center of curvature is intrinsically defined.

If the curvature of C at ¥ is 0, the radius of curvature of the curve C at v
is said to be infinite; for this reason, it is customary to still write the curvature

1, thi
as — in this case.
R

1
Note that the real number I is always well defined by the formula given in

the next theorem, since the symmetric matrix (aqg(y)) is positive definite. This
implies in particular that the radius of curvature never vanishes along a curve
on a surface @(w) defined by a mapping 0 satisfying the assumptions of the next
theorem, hence in particular of class C% on w.

It is intuitively clear that if R = 0, the mapping 8 “cannot be too smooth”.
Think of a surface made of two portions of planes intersecting along a segment,
which thus constitutes a fold on the surface. Or think of a surface 6(w) with
0 € wand 6(y1,y2) = |y for some 0 < o < 1, so that 6 € Cl(w; E3) but
0 ¢ C?(w; E?): The radius of curvature of a curve correspondmg to a constant
yo vanishes at y; = 0.

Theorem 2.4-1. Let w be an open subset of R?, let @ € C?(w; E3) be an injective
immersion, and let y € w be fized.

Consider a plane P normal to & = 0(w) at the point i = O(y). The in-
tersection P NG is a curve C on ©, which is the image C = 0(C) of a curve
C in the set w. Assume that, in a suﬁciczently small neighborhood of vy, the re-
striction of C' to this neighborhood is the image f(I) of an open interval I C R,
whgre f = f%q : I — R is a smooth enough injective mapping that satisfies
% (t)eq # 0, where t € I is such that y = f(t) (Figure 2.4-3).
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Figure 2.4-2: Curvature of a planar curve. Let v be a smooth enough planar curve,
parametrized by its curvilinear abscissa s. Consider two points p(s) and p(s + As) with
curvilinear abscissae s and s + As and let A¢(s) be the algebraic angle between the two
normals v(s) and v(s + As) (oriented in the usual way) to v at those points. When As — 0,
the ratio A(i)—(s) has a limit, called the “curvature” of v at p(s). If this limit is non-zero, its
inverse R is czsﬂled the “algebraic radius of curvature” of v at p(s) (the sign of R depends on
the orientation chosen on 7).

The point p(s) + Rr(s), which is intrinsically defined, is called the “center of curvature”
of v at p(s): It is the center of the “osculating circle” at p(s), i.e., the limit as As — 0 of the
circle tangent to v at p(s) that passes through the point p(s+ As). The center of curvature is
also the limit as As — 0 of the intersection of the normals v(s) and v(s+ As). Consequently,
the centers of curvature of v lie on a curve (dashed on the figure), called “la développée” in
French, that is tangent to the normals to ~.

1 N~ ,
Then the curvature = of the planar curve C at Y is given by the ratio

a B
L b S 0 Sw
dse . df?

as(F)5 (05

3

(t)

where aqp(y) are the covariant components of the first fundamental form of @
at y (Section 2.1) and

bap(y) := az(y) - Oaap(y) = —0aaz(y) - ag(y) = bga(y).
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Figure 2.4-3: C(Curvature on a surface. Let P be a plane containing the vector
_ a1(y) Nax(y)
la1(y) A az(y)|’

B of the planar curve C=PN&= 6(C) at y = 6(y) is given by the ratio

a3z(y) = which is normal to the surface @ = 6(w). The algebraic curvature

o 8

L b 0 L
« B
aan (GO 0 L)

where aq3(y) and bog(y) are the covariant components of the first and second funda-

d «
mental forms of the surface @ at y and d—{ (t) are the components of the vector tangent to

1 ~
the curve C' = f(I) at y = f(t) = f*(t)eq. If ) # 0, the center of curvature of the curve C
at 7 is the point (§ + Ras(y)), which is intrinsically defined in the Euclidean space ES.

1
Proof. (i) We first establish a well-known formula giving the curvature — of

a planar curve. Using the notations of Figure 2.4-2, we note that
sin Ag(s) =v(s) - T(s+ As) = —{v(s+ As) —v(s)} - (s + As),

so that ) A LA d
o A0 sinAds)

R Asco As  AsSo As _E(S) 7 (s):
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(ii) The curve (0 o f)(I), which is a priori parametrized by ¢ € I, can be
also parametrized by its curvilinear abscissa s in a neighborhood of the point 7.
There thus exist an interval I C I and a mapping p : J — P, where J C R is
an interval, such that

(@0 f)(t) =p(s) and (aso f)(t) =v(s) forallt € I, s € J.

1 ~
By (i), the curvature I of C' is given by

1 dv

2= () (o),
where

W (= Moo d) aa3<f<t>>i{ 0
rs) = P = 1020 g )ds
B B
= 90705 () & =as(r ) S () T

Hence

1 e df? 2
OO AU ACIE
To obtain the announced expression for }%, it suffices to note that

—0aa3(f(t)) - ap(f(t)) = bap(F(1)),

by definition of the functions b3 and that (Theorem 2.3-1 (b))

dse

dff 12
)

ds = {5y°‘aag(y)5y5}l/2 = {aaﬁ(.f(t)) a

O

The knowledge of the curvatures of curves contained in planes normal to @
suffices for computing the curvature of any curve on &. More specifically, the
radius of curvature R at 7 of any smooth enough curve C' (planar or not) on the
0sp

1
surface @ is given by =5 where ¢ is the angle between the “principal

~ . .
normal” to C at § and as(y) and R s givenin Theorem 2.4-1; see, e.g., Stoker

[1969, Chapter 4, Section 12].

The elements byg(y) of the symmetric matrix (bog(y)) defined in Theorem
2.4-1 are called the covariant components of the second fundamental form
of the surface @ = O(w) at g = 0(y).
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2.5 PRINCIPAL CURVATURES; GAUSSIAN CURVA-
TURE

The analysis of the previous section suggests that precise information about the
shape of a surface @ = 0(w) in a neighborhood of one of its points ¥ = 0(y)
can be gathered by letting the plane P turn around the normal vector as(y)
and by following in this process the variations of the curvatures at gy of the
corresponding planar curves P N @, as given in Theorem 2.4-1.

As a first step in this direction, we show that these curvatures span a compact
interval of R. In particular then, they “stay away from infinity”.

Note that this compact interval contains 0 if, and only if, the radius of
curvature of the curve P N & is infinite for at least one such plane P.

Theorem 2.5-1. (a) Let the assumptions and notations be as in Theorem 2.4-
1. For a fized y € w, consider the set P of all planes P normal to the surface

W = 0(w) at y = O(y). Then the set of curvatures of the associated planar

~ . . 1 1
curves PNw, P € P, is a compact interval of R, denoted | ——, ——

Ri(y)” Ra(y))’
(b) Let the matriz (b3(y)), a being the row index, be defined by

bg (y) = a’’ (¥)bao (y),

where (a*?(y)) = (aap(y)) "t (Section 2.2) and the matriz (bas(y)) is defined as
in Theorem 2.4-1. Then

=bi(y) +b3(y),

det(bas(y))
= bl (y)bE(y) — BE(y)bl(y) = — 2B
Rl(y)R2(y) l(y) Q(y) l(y) Z(y) det(aag(y))
1 1

¢) If —— # ———, there is a unique pair of orthogonal planes P, € P

IR 7 Rl '
and Py € P such that the curvatures of the associated planar curves P1 N© and

1

P> N are precisely and

Ri(y) Ra(y)’

Proof. (i) Let A(P) denote the intersection of P € P with the tangent plane
T to the surface & at 7, and let C (P) denote the intersection of P with &. Hence
A(P) is tangent to é(P) at y € w.

In a sufficiently small neighborhood of § the restriction of the curve C (P)
to this neighborhood is given by 6(P) = (8o f(P))(I(P)), where I(P) C R
is an open interval and f(P) = f*(P)e, : I(P) — R? is a smooth enough
) (t)eq # 0, where t € I(P) is such that

dt
y = f(P)(t). Hence the line A(P) is given by

injective mapping that satisfies

ar) = {7430 T N ix e ) = (74 A0 antri A € B).
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o ._ dfe(P)
where £% 1= T R

Since the line {y+pué®eq; u € R} is tangent to the curve C(P) := 8~ (C(P))
at y € w (the mapping 6 : w — R3 is injective by assumption) for each
such parametrizing function f(P) : I(P) — R? and since the vectors a,(y)
are linearly independent, there exists a bijection between the set of all lines
A(P) Cc T, P € P, and the set of all lines supporting the nonzero tangent
vectors to the curve C'(P).

Hence Theorem 2.4-1 shows that when P varies in P, the curvature of the
corresponding curves C' = C(P) at y takes the same values as does the ratio
bap(y)§*€”
aap(y)€*EP

(ii) Let the symmetric matrices A and B of order two be defined by

A = (aas(y)) and B = (bas(y)).

Since A is positive definite, it has a (unique) square root C, i.e., a symmetric
positive definite matrix C such that A = C2. Hence the ratio

bap(y)é¢” €'BE  n"C'BC '
aap(y)€2E T AEL n'n
is nothing but the Rayleigh quotient associated with the symmetric matrix

C~!BC~!. When 7 varies in R? — {0}, this Rayleigh quotient thus spans the
compact interval of R whose end-points are the smallest and largest eigenvalue,

(t) and £%e, # 0 by assumption.

when £ := ((,) varies in R? — {0}.

, where n = C¢,

1 1
respectively denoted and , of the matrix C™'BC~! (for a proof,
w0 " R (
see, e.g., Ciarlet [1982, Theorem 1.3-1]). This proves (a).

Furthermore, the relation
cic'BCHc'=BC?=BA!

shows that the eigenvalues of the symmetric matrix C"'BC~! coincide with
those of the (in general non-symmetric) matrix BA~!. Note that BA™! =
(b3(y)) with b3(y) = a®(y)bas(y), @ being the row index, since A~! =

(a*(y))-
Hence the relations in (b) simply express that the sum and the product of
the eigenvalues of the matrix BA ™! are respectively equal to its trace and to its

det(bqy .
determinant, which may be also written as detbas(y) since BA™! = (b2(y)).
det(aas(y))
This proves (b).
(iii) Let m, = (nf) = C&, and my = (1) = CE,, with & = (¢f) and
& = (55 ), be two orthogonal (nTn, = 0) eigenvectors of the symmetric matrix

C~'BC™!, corresponding to the eigenvalues

and ———, respectively.

1
Ri(y) Ry (y)
0=min, =& CTCE =¢] AL, =0,

Hence
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since CT = C. By (i), the corresponding lines A(P;) and A(P,) of the tangent

plane are parallel to the vectors {{'a,(y) and 526 ag(y), which are orthogonal
since

{eaa(y)} - {€fas(y)} = ans(y)Enel = €1 AE,.

1 1
f —— # ———, the directions of the vectors n; and 7, are uniquely
Ri(y) "~ Ra(y) ' ?
determined and the lines A(P;) and A(P») are likewise uniquely determined.
This proves (c). O

We are now in a position to state several fundamental definitions:

The elements b2 (y) of the (in general non-symmetric) matrix (b2 (y)) defined
in Theorem 2.5-1 are called the mixed components of the second funda-
mental form of the surface @ = 8(w) at y = 6(y).

The real numbers and (one or both possibly equal to 0) found
Ry(y) Ra(y)
in Theorem 2.5-1 are called the principal curvatures of & at 7.

1 1 ~ .
If —— = ———, the curvatures of the planar curves PN are the same in

Ri(y)  Ra(y) . )
all directions, i.e., for all P € P. If =
Ri(y)  Ra(y)

1
called a planar point. If —— = ——— #£ 0,7 is called an umbilical point.
Ri(y)  Ra(y)

It is remarkable that, if all the points of @ are planar, then & is a portion
of a plane. Likewise, if all the points of & are umbilical, then & is a portion of
a sphere. For proofs, see, e.g., Stoker [1969, p. 87 and p. 99].

Let § = O(y) € @ be a point that is neither planar nor umbilical; in other
words, the principal curvatures at g are not equal. Then the two orthogonal
lines tangent to the planar curves Py N and P, N& (Theorem 2.5-1 (c)) are
called the principal directions at 7.

A line of curvature is a curve on & that is tangent to a principal direction
at each one of its points. It can be shown that a point that is neither planar
nor umbilical possesses a neighborhood where two orthogonal families of lines
of curvature can be chosen as coordinate lines. See, e.g., Klingenberg [1973,
Lemma 3.6.6].

If # 0 and

= 0, the point §¥ = 0(y) is

0, the real numbers R and R are called
Ri(y) Ra(y) # 1(y) 2(y)

~ ~ 1

the algebraic principal radii of curvature of W at y. If, e.g., R—() =0,
1y

the corresponding radius of curvature R;(y) is said to be infinite, according

to the convention made in Section 2.4. While the algebraic principal radii of

curvature may simultaneously change their signs in another system of curvilinear

coordinates, the associated centers of curvature are intrinsically defined.

The numbers ( , which are the principal

1 n 1 ) q 1
Ri(y)  Ra(y) R1(y)Ra(y)
invariants of the matrix (b2(y)) (Theorem 2.5-1), are respectively called the
mean curvature and the Gaussian, or total, curvature of the surface &
at 7.
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Figure 2.5-1: Different kinds of points on a surface. A point is elliptic if the Gaussian
curvature is > 0 or equivalently, if the two principal radii of curvature are of the same sign;

the surface is then locally on one side of its tangent plane. A point is parabolic if exactly one
of the two principal radii of curvature is infinite; the surface is again locally on one side of its
tangent plane. A point is hyperbolic if the Gaussian curvature is < 0 or equivalently, if the
two principal radii of curvature are of different signs; the surface then intersects its tangent

plane along two curves.
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A point on a surface is elliptic, parabolic, or hyperbolic, according as its
Gaussian curvature is > 0,= 0 but it is not a planar point, or < 0; see Figure
2.5-1.

An asymptotic line is a curve on a surface that is everywhere tangent to
a direction along which the radius of curvature is infinite; any point along an
asymptotic line is thus either parabolic or hyperbolic. It can be shown that,
if all the points of a surface are hyperbolic, any point possesses a neighborhood
where two intersecting families of asymptotic lines can be chosen as coordinate
lines. See, e.g., Klingenberg [1973, Lemma 3.6.12].

As intuitively suggested by Figure 2.4-1, a surface in R® cannot be defined
by its metric alone, i.e., through its first fundamental form alone, since its
curvature must be in addition specified through its second fundamental form.
But quite surprisingly, the Gaussian curvature at a point can also be expressed
solely in terms of the functions aog and their derivatives! This is the celebrated
Theorema egregium (“astonishing theorem”) of Gauf [1828]; see Theorem 2.6.2
in the next section.

Another striking result involving the Gaussian curvature is the equally cel-
ebrated GauB3-Bonnet theorem, so named after Gaufi [1828] and Bonnet
[1848] (for a “modern” proof, see, e.g., Klingenberg [1973, Theorem 6.3-5] or
do Carmo [1994, Chapter 6, Theorem 1]): Let S be a smooth enough, “closed”,
“orientable”, and compact surface in R® (a “closed” surface is one “without
boundary”, such as a sphere or a torus; “orientable” surfaces, which exclude for
instance Klein bottles, are defined in, e.g., Klingenberg [1973, Section 5.5]) and
let K : S — R denote its Gaussian curvature. Then

/S K(y)da(y) = 2m(2 — 29(95)),

where the genus g¢(S) is the number of “holes” of S (for instance, a sphere
has genus zero, while a torus has genus one). The integer x(S) defined by
X(S) := (2 —2¢(S5)) is the Euler characteristic of &.

According to the definition of Stoker [1969, Chapter 5, Section 2], a devel-
opable surface is one whose Gaussian curvature vanishes everywhere. Devel-
opable surfaces are otherwise often defined as “ruled” surfaces whose Gaussian
curvature vanishes everywhere, as in, e.g., Klingenberg [1973, Section 3.7]). A
portion of a plane provides a first example, the only one of a developable surface
all points of which are planar. Any developable surface all points of which are
parabolic can be likewise fully described: It is either a portion of a cylinder,
or a portion of a cone, or a portion of a surface spanned by the tangents to a
skewed curve. The description of a developable surface comprising both planar
and parabolic points is more subtle (although the above examples are in a sense
the only ones possible, at least locally; see Stoker [1969, Chapter 5, Sections 2
to 6]).

The interest of developable surfaces is that they can be, at least locally,
continuously “rolled out”, or “developed” (hence their name), onto a plane,
without changing the metric of the intermediary surfaces in the process.
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2.6 COVARIANT DERIVATIVES OF A VECTOR FIELD
AND CHRISTOFFEL SYMBOLS ON A SURFACE;
THE GAUSS AND WEINGARTEN FORMULAS

As in Sections 2.2 and 2.4, consider a surface @ = @(w) in E3, where 6 : w C
R? — E3 is a smooth enough injective immersion, and let

3(y) = ai(y) A az(y)

Tl raaly)] Y

az(y) = a
Then the vectors a,(y) (which form the covariant basis of the tangent plane to
w at ¥ = 0(y); see Figure 2.1-1) together with the vector a3(y) (which is normal
to @ and has Euclidean norm one) form the covariant basis at ¥.

1

Figure 2.6-1: Contravariant bases and vector fields along a surface. At each point § =
O(y) € @ = O(w), the three vectors a’(y), where a®(y) form the contravariant basis of the

P AN
tangent plane to & at g (Figure 2.1-1) and a3(y) = aiy) Aax(y).
lai(y) A az(y)l
basis at y. An arbitrary vector field defined on @ may then be defined by its covariant

components 7; : w — R. This means that n;(y)a’(y) is the vector at the point 7.

, form the contravariant

Let the vectors a®(y) of the tangent plane to @ at § be defined by the rela-
tions a®(y) -ag(y) = 3. Then the vectors a®(y) (which form the contravariant
basis of the tangent plane at ¥; see again Figure 2.1-1) together with the vec-
tor a®(y) form the contravariant basis at 7; see Figure 2.6-1. Note that the
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vectors of the covariant and contravariant bases at y satisfy
a'(y) - a;(y) = 0;.

Suppose that a vector field is defined on the surface ©. One way to define
such a field in terms of the curvilinear coordinates used for defining the surface
@ consists in writing it as ma’ : w — R3, ie., in specifying its covariant
components 7; : w — R over the vectors a’ of the contravariant bases. This
means that 7;(y)a’(y) is the vector at each point 7 = (y) € & (Figure 2.6-1).

Our objective in this section is to compute the partial derivatives 9, (n;a’)
of such a vector field. These are found in the next theorem, as immediate conse-
quences of two basic formulas, those of Gauff and Weingarten. The Christoffel
symbols on a surface and the covariant derivatives on a surface are also natu-
rally introduced in this process.

Theorem 2.6-1. Let w be an open subset of R? and let 8 € C*(w; E?) be an
1MmMersion.

(a) The derivatives of the vectors of the covariant and contravariant bases
are given by

daaps = CZ3a, + bapaz and dna’ = —CP8 a’ +bla?,

aaa?: = aaa3 = _baﬁaﬁ = —bgag,

where the covariant and mized components boz and b2 of the second fundamental
form of & are defined in Theorems 2.4-1 and 2.5-1 and

75 = a’ - daas.

(b) Let there be given a vector field n;a’ : w — R with covariant components
n; € CH(w). Then ma’ € C*(w) and the partial derivatives do(m;a') € C°(w) are
given by
5a(77iai) = (Oamp — Cgﬁno - baﬁ773)aﬁ + (Oans + bgﬁﬁ)GB
= (775|a - baBWB)aﬂ + (773|a + bgng)a3,
where
N8la = Oanp — Copno and 1jq = dal)s.

Proof. Since any vector ¢ in the tangent plane can be expanded as ¢
(c-ag)a” = (c-a”)a,, since d,a® is in the tangent plane (9,a®-a® = 39, (a
a?®) = 0), and since d,a® - ag = —bsps (Theorem 2.4-1), it follows that

3.

d,a° = (8aa3 . ag)aﬁ = —baﬂa*ﬂ.

This formula, together with the definition of the functions 2 (Theorem 2.5-
1), implies in turn that

Oaas = (0pas3 - a’)a, = _baﬂ(aﬁ -a%)a, = —bagaﬂ”ag =-bla,.
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Any vector ¢ can be expanded as ¢ = (¢-a')a; = (¢-aj)a’. In particular,
Onap = (0nas - a”)a, + (Onas - a’)az = Capao + bapas,
by definition of CF; and bag. Finally,
D00’ = (040" - a,)a’ + (04a” - az)a® = —C? a” +bPa?,

since
dad’ a3 = —a” - dha3 = b a, .a’ = bg.

That n;a’ € C(w) if 7; € C'(w) is clear since a’ € C'(w) if @ € C?(w; E?).
The formulas established supra immediately lead to the announced expression
of Oy (n;at). O

The relations (found in Theorem 2.6-1)
Oqnap = ngaa + bapas and 3aaﬁ = —ngag + bga?’

and
Opas = Oua® = —bagaﬁ = —-bla,,

respectively constitute the formulas of Gaufl and Weingarten. The functions
(also found in Theorem 2.6-1)

NBla = Oallg — Cgﬁntf and N3)a = Oall3

are the first-order covariant derivatives of the surface vector field n;a’ :
w — R3, and the functions

o

C’gﬁ =a’ - 0yap = —0,a’ - ag
are the Christoffel symbols of the first kind.

Remarks. (1) The Christoffel symbols Cf; can be also defined solely in
terms of the covariant components of the first fundamental form; see the proof
of Theorem 2.7-1

(2) The notation Cg; is preferred here instead of the customary notation
I'75, so as to avoid confusion with the “three-dimensional” Christoffel symbols
I}, introduced in Section 1.4. O

The definition of the covariant derivatives 145 = dsna — I'g5ns of a vector
field defined on a surface 6(w) given in Theorem 2.6-1 is highly reminiscent of
the definition of the covariant derivatives v;); = 0;v; — I'j;u, of a vector field
defined on an open set () given in Section 1.4. However, the former are
more subtle to apprehend than the latter. To see this, recall that the covariant
derivatives v;; = djv; — I‘fjvp may be also defined by the relations (Theorem
1.4-2)

vil;9° = 0;(vig")-
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By contrast, even if only tangential vector fields naa® on the surface 6(w)

are considered (i.e., vector fields n;a’ : w — R? for which 3 = 0), their covariant
derivatives 1y = Opna — Lo e satisfy only the relations

Najpa” = P{95(naa)},

where P denotes the projection operator on the tangent plane in the direction
of the normal vector (i.e., P(c;a") := c,a®), since

Ip(Naa®) = najpa® + binaa®

for such tangential fields by Theorem 2.6-1. The reason is that a surface has in
general a nonzero curvature, manifesting itself here by the “extra term” bgnaa3.
This term vanishes in w if @ is a portion of a plane, since in this case b3 = bap =
0. Note that, again in this case, the formula giving the partial derivatives in
Theorem 2.9-1 (b) reduces to

da(nia’) = (1ija)a’.

2.7 NECESSARY CONDITIONS SATISFIED BY THE
FIRST AND SECOND FUNDAMENTAL FORMS:
THE GAUSS AND CODAZZI-MAINARDI EQUA-
TIONS; GAUSS’ THEOREMA EGREGIUM

It is remarkable that the components aqg : w — R and bag : w — R of the first
and second fundamental forms of a surface 8(w), defined by a smooth enough
immersion 0 : w — E3, cannot be arbitrary functions.

As shown in the next theorem, they must satisfy relations that take the
form:

8[300407' - 800a[37 + CZBOUT# — CgoOﬂT,u = bagbgq- — baﬂb(ﬂ- in w,
8Bbao - 8oba5 + Cgo'bﬁu — ngba'u =0in w,

where the functions Cog; and C7 4 have simple expressions in terms of the
functions aqg and of some of their partial derivatives (as shown in the next
proof, it so happens that the functions Cg ; as defined in Theorem 2.7-1 coincide
with the Christoffel symbols introduced in the previous section; this explains
why they are denoted by the same symbol).

These relations, which are meant to hold for all o, 3,0,7 € {1,2}, respec-
tively constitute the Gauf3, and Codazzi-Mainardi, equations.

Theorem 2.7-1. Let w be an open subset of R?, let @ € C3(w; E3) be an im-
mersion, and let

010 N 020 }

o 1= 00 - 030 0p 1= 0apl - { =
Qop 0, 8[3 andbg 3[3 {|510/\(929|
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denote the covariant components of the first and second fundamental forms of
the surface O(w). Let the functions Cynp, € Cl(w) and Cos € CH(w) be defined
by
1
Caﬂr = 5(8ﬂam- + 8aaﬁT — a,-aaﬁ),

Cop = a""Copr where (a77) 1= (aag) ™t
Then, necessarily,

8[30&07 - 8000457' + Ogﬁco"r,u - ngcﬁr,u = baabﬁ‘r - baﬁbo‘r in w,
8ﬁbag — &Tbag + Oggbgu — Ogﬁbo'# =0 in w.

Proof. Let aq, = 0,0. It is then immediately verified that the functions
Cop- are also given by
Copr =0q0a3 - ar.

a; N\ as

Let as = and, for each y € w, let the three vectors a’ (y) be defined

a1 A as| ,
by the relations a’(y)-a;(y) = &!. Since we also have a” = a*’a,, and a® = a3,
the last relations imply that Cg; = 0,ap - a”, hence that

Odaap = Cgza, + bapas,
since Oqag = (Oqag - a%)as + (Oaag - a®)az. Differentiating the same relations

yields
aUCaﬂT = OaoQp * Qr + 8aaﬁ . 80017-,

so that the above relations together give
dnag - Opar = 5ﬁaﬂ - Oyar +bopas - 0,a, = CZBCUW + bagbor.
Consequently,
Oacas - ar = 0,Capr — CgﬂCgm —bagbor.
Since Jpoas = Jupas, we also have
Oacp - ar = 08Caor — Ch Cary — bacbpr.
Hence the Gauf equations immediately follow.
Since d,az = (0aaz - ax)a’ + (O,as - az)a® and d,a3 - ay, = —byy =

—0a,a, - as, we have
8aa3 = —bagag.

Differentiating the relations bog = 0,a3 - a3, we obtain

80'bo¢[3 = aozoaﬁ -as + aaag . 80-613.
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This relation and the relations d,ag = Cgﬁag + bagas and Oqa3 = —by,a’
together imply that
8(1(15 . 30(13 = —Czﬁbgu.
Consequently,
Oacap - a3 = Oybap + C’gﬁbm.

Since Oqoag = Oupas, we also have
Ga(,ag a3 = 8ﬁbag + Cgabﬁu'

Hence the Codazzi-Mainardi equations immediately follow. O

Remark. The vectors a, and a” introduced above respectively form the
covariant and contravariant bases of the tangent plane to the surface 8(w), the
unit vector as = a® is normal to the surface, and the functions a®® are the
contravariant components of the first fundamental form (Sections 2.2 and 2.3).

O

As shown in the above proof, the Gaul and Codazzi-Mainardi equations
thus simply constitute a re-writing of the relations dasag = Jagas in the form
of the equivalent relations Jnsap - @r = 0ngaos - ar and Onoag- a3 = Jupac - as.

The functions

1
Caﬂr = 5(8[3@&7 + 8ozaﬁ7' - 87'&04[3) = 8aaﬂ cQr = Oﬂon'
and
Cop =a” Capr = Oaag-a’ = Cf,

are the Christoffel symbols of the first, and second, kind. We recall that
the same Christoffel symbols Cg 5 also naturally appeared in a different context
(that of covariant differentiation; cf. Section 2.6).

Finally, the functions

S‘raﬁa = 8[30040'7' - 8000457' + Ogﬁco"r,u - ng-cﬁr,u

are the covariant components of the Riemann curvature tensor of the
surface O(w).

Remark. Like the notation C74 vs. T}, the notation Cog, is intended to
avoid confusions with the “three-dimensional” Christoffel symbols I';;, intro-
duced in Section 1.4. O

Letting a =2, 8 =1, 0 =2, 7 = 1 in the Gaufl equations gives in particular
S1212 = det(bag).

Consequently, the Gaussian curvature at each point @(y) of the surface 8(w)
can be written as
1 ~ Si212(y)

Ri(y)Ra(y)  det(ans(y))’

Y€ w,
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1 det(bq . . .
since _ detlbas(y) (Theorem 2.5-1). By inspection of the function

Ri(y)Ra(y)  det(aas(y))
S1212, we thus reach the astonishing conclusion that, at each point of the surface,

a notion involving the “curvature” of the surface, viz., the Gaussian curvature,
is entirely determined by the knowledge of the “metric” of the surface at the
same point, viz., the components of the first fundamental forms and their partial
derivatives of order < 2 at the same point! This startling conclusion naturally
deserves a theorem:

Theorem 2.7-2. Let w be an open subset of R?, let @ € C3(w; E3) be an im-
mersion, let ang = 0,000 denote the covariant components of the first funda-
mental form of the surface @(w), and let the functions Cogr and S1212 be defined

by
1
CaBT = 5(8504(17' + aaaﬁ‘r - 87'@(16);
1
S1212 = 5(2512%2 — 11022 — Dagan1) + a®?(Cr2aCr2p — Cr1aCazp).-

Then, at each point 8(y) of the surface 8(w), the principal curvatures #(y)

and #(y) satisfy
1 _ S1212(y)
Ri(y)R2(y)  det(aas(y))

Theorem 2.7-2 constitutes the famed Theorema Egregium of Gauf} [1828],
so named by Gaufl who had been himself astounded by his discovery.

, Y €Ew.

2.8 EXISTENCE OF A SURFACE WITH PRESCRIBED
FIRST AND SECOND FUNDAMENTAL FORMS

Let M?,S2, and S2> denote the sets of all square matrices of order two, of all
symmetric matrices of order two, and of all symmetric, positive definite matrices
of order two.

So far, we have considered that we are given an open set w C R? and a
smooth enough immersion 6 : w — E3, thus allowing us to define the fields
(Gap) : w — S2> and (bog) : w — S?, where an5 : w — R and bag : w — R
are the covariant components of the first and second fundamental forms of the
surface O(w) C E3.

Note that the immersion 6 need not be injective in order that these matrix
fields be well defined.

We now turn to the reciprocal questions:

Given an open subset w of R? and two smooth enough matrix fields (asg) :
w — S2 and (bag) : w — S?, when are they the first and second fundamental
forms of a surface 6(w) C E3, i.e., when does there exist an immersion 6 : w —
E? such that

(910/\820 } in w?

o 1= 00 - 930 0f 1= Oapl - §
Qop 0, 35 andbg (9[3 {|610A529|
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If such an immersion exists, to what extent is it unique?

The answers to these questions turn out to be remarkably simple: If w is
simply-connected, the necessary conditions of Theorem 2.7-1, i.e., the Gaufl
and Codazzi-Mainardi equations, are also sufficient for the existence of such an
immersion. If w is connected, this immersion is unique up to isometries in E3.

Whether an immersion found in this fashion is injective is a different issue,
which accordingly should be resolved by different means.

Following Ciarlet & Larsonneur [2001], we now give a self-contained, com-
plete, and essentially elementary, proof of this well-known result. This proof
amounts to showing that it can be established as a simple corollary to the fun-
damental theorem of three-dimensional differential geometry (Theorems 1.6-1
and 1.7-1).

This proof has also the merit to shed light on the analogies (which cannot
remain unnoticed!) between the assumptions and conclusions of both ezxistence
results (compare Theorems 1.6-1 and 2.8-1) and both uniqueness results (com-
pare Theorems 1.7-1 and 2.9-1).

A direct proof of the fundamental theorem of surface theory is given in
Klingenberg [1973, Theorem 3.8.8], where the global existence of the mapping 0
is based on an existence theorem for ordinary differential equations, analogous
to that used in part (ii) of the proof of Theorem 1.6-1. A proof of the “local”
version of this theorem, which constitutes Bonnet’s theorem, is found in, e.g.,
do Carmo [1976].

This result is another special case of the fundamental theorem of Rieman-
nian geometry alluded to in Section 1.6. We recall that this theorem asserts that
a simply-connected Riemannian manifold of dimension p can be isometrically
immersed into a Euclidean space of dimension (p + ¢) if and only if there exist
tensors satisfying together generalized Gauf, and Codazzi-Mainardi, equations
and that the corresponding isometric immersions are unique up to isometries in
the Euclidean space. A substantial literature has been devoted to this theorem
and its various proofs, which usually rely on basic notions of Riemannian geom-
etry, such as connections or normal bundles, and on the theory of differential
forms. See in particular the earlier papers of Janet [1926] and Cartan [1927]
and the more recent references of Szczarba [1970], Tenenblat [1971], Jacobowitz
[1982], and Szopos [2005].

Like the fundamental theorem of three-dimensional differential geometry,
this theorem comprises two essentially distinct parts, a global existence result
(Theorem 2.8-1) and a uniqueness result (Theorem 2.9-1), the latter being also
called rigidity theorem. Note that these two results are established under dif-
ferent assumptions on the set w and on the smoothness of the fields (aq3) and
(bag)-

These existence and uniqueness results together constitute the fundamen-
tal theorem of surface theory.

Theorem 2.8-1. Let w be a connected and simply-connected open subset of R2
and let (ang) € C3(w;S2) and (bag) € C*(w;S?) be two matriz fields that satisfy
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the Gaufl and Codazzi-Mainardi equations, viz.,
8[30&07 - 8000457' + Ogﬁco"r,u - ngcﬁr,u = baabﬁ‘r - baﬁbo‘r in w,
8Bbao - 8o—baﬁ + ngbﬁll — Cgﬁbo'u =0 in w,

where

1
Caﬂr = 5(8ﬂam- + 8aaﬁT — a,-aaﬁ),

O'T)

Cop = a’" Copr where (a77) := (aag) ™"

«
Then there exists an immersion 6 € C3(w;E3) such that

010 A 020 Y .

05 = 08+ 030 and boy = 0,58 - { S0 i,

aag = 0.0 - 030 and b.g = Oap 9,6 1 0,0] inw

Proof. The proof of this theorem as a corollary to Theorem 1.6-1 relies

on the following elementary observation: Given a smooth enough immersion
0:w — E3 and € > 0, let the mapping © : w x |—¢,¢[ — E? be defined by

O(y, x3) := O(y) + w3as(y) for all (y,z3) € w x |-, €[,

010 N 020

AT 2T and let
EX

where a3 :=

Gij ‘= 816) . (9]6
Then an immediate computation shows that
Jop = Gap — 273bap + T3¢0 and gi3 = &i3 in w X |—¢, €[,

where a3 and b, are the covariant components of the first and second funda-
mental forms of the surface 8(w) and cag := 0" bacbsr.

Assume that the matrices (g;;) constructed in this fashion are invertible,
hence positive definite, over the set w x |—¢, €] (they need not be, of course; but
the resulting difficulty is easily circumvented; see parts (i) and (viii) below).
Then the field (g;;) : wx ]—e,e[ — S2 becomes a natural candidate for applying
the “three-dimensional” existence result of Theorem 1.6-1, provided of course
that the “three-dimensional” sufficient conditions of this theorem, viz.,

Ojlirg — Orllijq + l—‘fjl_‘kqp — karjqp =0in £,

can be shown to hold, as consequences of the “two-dimensional” Gaufl and
Codazzi-Mainardi equations. That this is indeed the case is the essence of the
present proof (see parts (i) to (vii)).

By Theorem 1.6-1, there then exists an immersion © : w x |—¢, e[ — E? that
satisfies g;; = 0;©-0;© in w x |—¢, g[. It thus remains to check that 8 := ©(-,0)
indeed satisfies (see part (ix))

810 AN 820 } .
m w.
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The actual implementation of this program essentially involves elementary,
but sometimes lengthy, computations, which accordingly will be omitted for the
most part; only the main intermediate results will be recorded.

For clarity, the proof is broken into nine parts, numbered (i) to (ix).

(i) Given two matriz fields (aqp) € C*(w;S2) and (bag) € C*(w;S?), let the
matriz field (g;;) € C*(w x R;S?) be defined by

JaB ‘= Gapg — 223bag + a:gcag and g;3 :=d;3 inw xR
(the variable y € w is omitted; x3 designates the variable in R), where
cap = blbgr and b], := a"" by in w.

Let wy be an open subset of R? such that Wy is a compact subset of w. Then
there exists eg = eo(wo) > 0 such that the symmetric matrices (gi;) are positive
definite at all points in g, where

QO = wp X ]-60,60[.
Besides, the elements of the inverse matriz (gP4) are given in Qo by

P = Z(n + 1)25a® (B™)? and ¢ = 63,
n>0

where
(B)? := b and (B")Z :=b3"---b _ forn>2,

[og

i.e., (B™)? designates for any n > 0 the element at the o-th row and [(3-th
column of the matrizx B™. The above series are absolutely convergent in the
space C%(Qp).

Let a priori g*% =3, o, x3hP where h%? are functions of y € Wy only, so
that the relations go‘ﬁggT = 0% read

hyPag, + x3(hPag, — 205 bs,)
+ " af (hePag, — 2087 bar + hS2 yes,) = 62
n>2
It is then easily verified that the functions h®? are given by
hy? = (n+1)a* (B")7, n > 0,

so that
gP = Z(n + Daga® bt --- b?nfl.
n>0
It is clear that such a series is absolutely convergent in the space C2(wg x
[—€0,¢€0]) if € > 0 is small enough.
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ii) The functions C¢ 5 being defined by
af
C’gﬁ = a""Copr,

where

(a7) = (aag)fl and Cogr := =(080ar + 0atpr — O0raag),

NN

define the functions

bils = b7, + CF, b — C b7,

baﬁ‘g = agbag — Oggbﬁﬂ — ngba,u = bﬁa\a-
Then
b;lﬁ = aUTbm,m and baa\ﬁ = a'o"rb;|ﬁ.

Furthermore, the assumed Codazzi-Mainardi equations imply that
b;|ﬁ = bg|a and bOtUW = bamg.

The above relations follow from straightforward computations based on the
definitions of the functions b],|s and b, p|,. They are recorded here because they
play a pervading réle in the subsequent computations.

(ili) The functions g;; € Cz@o) and g € C? (QO) being defined as in part (i),
define the functions T;j, € C*(Qo) and I} e CH() by

1
Lijq = 5(9i9ia + 0igjq — 049ij) and I := g"Lijq.

Then the functions I'yjq = I'jiq and Ffj = Fé')i have the following expressions:

Faﬁ(f = Lape — !’Eg(bﬁﬁaq—(, + 20;51970) + (E%(bﬁgbq—g + C;ﬂc”‘r)’

Iaps = —Tazg = bag — 3cag,

Fass =T'sps = I's34 =0,

[og=Cig = _ 23 bg|s(B")7,
Fig = bapg — 3Cas,

Loz =—> _ 25(B )7,

Fga =T%3 =0,

where the functions cqg, (B™)2, and bl |3 are defined as in parts (i) and (ii).

All computations are straightforward. We simply point out that the assumed
Codazzi-Mainardi equations are needed to conclude that the factor of z3 in the
function I'y g, is indeed that announced above. We also note that the compu-
tation of the factor of 23 in Iy, relies in particular on the easily established
relations

0aCpo = bjlabor + b |abus + OZacvu + C¥_cap.
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(iv) The functions T;;, € CH(Qp) and Iy € CY(Qo) being defined as in
part (iii), define the functions Ry;j, € C°(Qp) by

Ryijk = 0iTing — Oklijq + T3 Thgp — TiLigp-
Then, in order that the relations
Ryiji = 0 in Qo
hold, it is sufficient that
Ri212 =0, Ra2p3 =0, Rasps=0in Qo.

The above definition of the functions Ry, and that of the functions I'j,
and l"fj (part (iii)) together imply that, for all ¢, j, k, g,

Rgiji = Rjrgi = —Rgikj
quijOifj:kOrq:i.

Consequently, the relation Rq212 = 0 implies that R,g,- = 0, the relations
Raop3 = 0 imply that Rgir = 0 if exactly one index is equal to 3, and finally,
the relations Ra3s3 = 0 imply that Ry, = 0 if exactly two indices are equal
to 3.

(v) The functions
Rasps = 051330 — 03T3p0 + T35 50p — [53T 50y

satisfy
Raggg =0in ﬁo.

These relations immediately follow from the expressions found in part (iii)
for the functions I';j, and T'};. Note that neither the Gau§ equations nor the
Codazzi-Mainardi equations are needed here.

(vi) The functions
RaQﬂS = 8[3F23a - 83F2[3a + F55F3ap - Fggrﬁap

satisfy
Ra2p3 =0 in ﬁo.

The definitions of the functions gng (part (i)) and I';;, (part (iii)) show that
03230 — 031250 = (02bap — Oubag) + ©3(0ac2p — 02Cag).
Then the expressions found in part (iii) show that
Fgﬁr?rap - F12)3Fﬁap =T, 2p0 — I'9slap0
- ggbZU - Oggbom
+ x3 (bg|ﬁbao - bg'BbQU + Cgﬁcao - ngcza),
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and the relations R,33 = 0 follow by making use of the relations

9aCpo = bjlabor +5labus + Clhscon + Chscpp
together with the relations

O2bap — Oabap + Cggbas — C35bac = 0,
which are special cases of the assumed Codazzi-Mainardi equations.
(vii) The function

Ri212 := 010921 — @2T211 + T8 To1p, — TH,T1p,

satisfies _
Ri210 = 0in Q.

The computations leading to this relation are fairly lengthy and they require
some care. We simply record the main intermediary steps, which consist in
evaluating separately the various terms occurring in the function R212 rewritten
as

Ri212 = (01221 — 02T'211) + (T{2T126 — I'{1T226) + (T'123123 — T113T223).
First, the expressions found in part (iii) for the functions I'ygs easily yield

[1930193 — T118T203 = (bl — bi1b2o)

+ @3(b11ca2 — 2b12¢12 + baacir) + 23 (c3y — c11022).

Second, the expressions found in part (iii) for the functions I'ag, and I'4
yield, after some manipulations:

[T 120 = I T220 = (CTLCT, — CT1C35)aor
+ 23{(C71b3]2 — 207,07 [2 + C5,07 |1)aor
+2(C1 03, — CLCT)bor }
+ a3 {07 (105 |2 — b7 |2b7 |2)aor
+ (CT1b3 ]2 = 20757 |2 4 C5507[1)bor
+ (C11C3 — CTaCh)cor }-

Third, after somewhat delicate computations, which in particular make use
of the relations established in part (ii) about the functions b7, |s and byg)s, it is
found that

01T221 — 021211 = 01Ca21 — 92C011
— 23{S12120 + (CT1b3]2 — 207507 |2 + Cb7[1)aer
+2(CT1C35 — CTLC)bor }
+ 23{Sor1207b3 + (b7 [163]2 — b7 [207 |2)a~
+ (CT1b3 |2 — 207567 |2 + C5,b7 [1)bo
+ (C11C35 — CTaCa)cor b
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where the functions
S‘raﬁo = 850(107' - aacaﬁ‘r + Ccho'ru - ngcﬁrp,

are precisely those appearing in the left-hand sides of the Gaufl equations.
It is then easily seen that the above equations together yield

Ri212 = {S1212 — (b11b22 — b12bi12)}
— x3{S1212 — (b11b22 — b12b12)b0 }
+ ﬂfg{Smub‘l’b; + (012012 — 011022)}.
Since
Ser12b7b5 = S1212(b1b5 — biby),

c12¢12 — c11¢22 = (b11b12 — b11b2o)(b1b3 — b3b3),

it is finally found that the function Rj212 has the following remarkable expres-
sion:

Ris12 = {S1212 — (b11baz — biab12) H{1 — ws(b] + b3) + 23 (b1b3 — biby)}.
By the assumed Gauf8 equations,
S1212 = b11b2a — b12b12.
Hence Ri212 = 0 as announced.

(viii) Let w be a connected and simply-connected open subset of R%. Then
there exist open subsets wp, £ > 0, of R? such that @, is a compact subset of w
for each £ >0 and

w = U wy.

>0

Furthermore, for each £ > 0, there exists €4 = €4(wy) >_() such that the symmet-
ric matrices (gi;) are positive definite at all points in €, where

Q= wy X |—€p, 4]

Finally, the open set

Q:=[J
£>0
s connected and simply-connected.
Let wy, £ > 0, be open subsets of w with compact closures Wy C w such that
w = Jypsqwe. For each £, a set Q0 := wy x |—ey, &¢[ can then be constructed in
the same way that the set Qo was constructed in part (i).
It is clear that the set  := (J,~, Q¢ is connected. To show that € is simply-

connected, let v be a loop in Q, i.e., a mapping v € C°([0, 1]; R3) that satisfies
Y(0) =~(1) and y(¢t) e Qforall 0 < ¢ < 1.
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Let the projection operator w : @ — w be defined by = (y,z3) = y for all
(y,z3) € €, and let the mapping ¢, : [0,1] x [0,1] — R3 be defined by

pot,A) = (1= X)y(@t) + Am(y(t)) forall 0 <t <1,0< A< 1.

Then ¢, is a continuous mapping such that ¢ ([0,1]x [0, 1]) C £, by definition of
the set Q. Furthermore, ¢,(t,0) = v(t) and ¢y (t,1) = w(y(¢)) for all ¢ € [0,1].
The mapping
q :=mo~y € C%0,1];R?)

is a loop in w since ¥(0) = w(v(0)) = w(v(1)) = (1) and () € w for
all 0 < ¢t < 1. Since w is simply connected, there exist a mapping ¢, €
C°([0,1] x [0,1];R?) and a point y° € w such that

@, (t,1) =7 and ¢, (t,2) =y forall 0 <t < 1

and
pit, ) ewlorall 0<t<1,1<A<2.

Then the mapping ¢ € C°([0,1] x [0,2]; R3) defined by

= py(t,A) forall 0<t<1,0<A<1,
pi(t,\) forall 0<t<1,1<A<2

€
—~
St
NN
|

is a homotopy in  that reduces the loop = to the point (y°,0) € Q. Hence the
set  is simply-connected.

(ix) By parts (iv) to (viii), the functions T';jq € CH(Q) and Iy € CH(Q)
constructed as in part (iil) satisfy

9iTing — OkTijqg + T Thgp — T Tjgp = 0

in the connected and simply-connected open set ). By Theorem 1.6-1, there thus
exists an immersion © € C3(Q; E3) such that

gij = 0,0 -0;0 in Q,
where the matriz field (g;;) € C*(€2;S2) is defined by
Gaf = Gap — 223bas + x%caﬁ and g¢;3 = d;3 in Q.
Then the mapping 6 € C3(w; E3) defined by
0(y) = O(y,0) for all y € w,
satisfies

810/\820 } .
m w.
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Let g, := 0;0. Then 0330 = 0395 = I‘§3gp = 0; cf. part (iii). Hence there
exists a mapping 8! € C3(w; E?) such that
O(y,x3) = O(y) + 230" (y) for all (y,x3) € Q,

and consequently, g, = 000 +130,0" and gs = 0'. The relations g;3 = g;,°g; =
0;3 (cf. part (i)) then show that

(060 + £30,0") -0' =0 and 6" - 0' = 1.
These relations imply that 0,0 - 0' = 0. Hence either 8' = a3 or 8' = —as

in w, where

e D100 D20
571010 A 0x0]

But 8! = —as is ruled out since
(8,0 A 920} - 0" = det(gij)|zs—0 > 0.
Noting that
000 - a3 = 0 implies 0,0 - Ogas = —0,30 - as,
we obtain, on the one hand,

Gap = (6a0 + (E38aa3) . (850 + (E3aga3)
= aoﬁ . 850 - 23338(1[30 -as + x%&aag . 850,3 in €.
Since, on the other hand,
9o = Gap — 2T3bas + Ticap in Q
by part (i), we conclude that
Qop = 8a0 . 350 and bag = aaﬂe - as in w,

as desired. This completes the proof. O

Remarks. (1) The functions cog = bl bgr = Oaas-0gas introduced in part (i)
are the covariant components of the third fundamental form of the surface O(w).

(2) The series expansion ¢g*’ = > _ (n + 1)z5a® (B")? found in part (i)
is known; cf., e.g., Naghdi [1972]. a

(3) The Gauf equations are used only once in the above proof, for showing
that R1212 =0in part (Vll) O

The definitions of the functions C¢ 5 and Cogr imply that the sizteen Gaufs
equations are satisfied if and only if they are satisfied for a« = 1,0 = 2,
o =1, 7 =2 and that the Codazzi-Mainardi equations are satisfied if and only
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if they are satisfied for a =1, 3 =2, c =land a =1, § =2, 0 = 2 (other
choices of indices with the same properties are clearly possible).

In other words, the Gauf} equations and the Codazzi-Mainardi equations in
fact reduce to one and two equations, respectively.

The regularity assumptions made in Theorem 2.8-1 on the matrix fields (aqs)
and (bag) can be significantly relaxed in several ways. First, C. Mardare [2003b]
has shown by means of an ad hoc, but not trivial, modification of the proof
given here, that the existence of an immersion 8 € C3(w; E?) still holds under
the weaker (but certainly more natural, in view of the regularity of the result-
ing immersion @) assumption that (bas) € C'(w;S?), all other assumptions of
Theorem 2.8-1 holding verbatim.

In fact, Hartman & Wintner [1950] have shown the stronger result that the
existence theorem still holds if (aag) € C'(w;S2) and (bag) € C%(w;S?), with a
resulting mapping 0 in the space C?(w; E3). Their result has been itself super-
seded by that of S. Mardare [2004], which asserts that if (aag) € Wb>(w;S2)
and (bag) € Li2,(w; S?) are two matrix fields that satisfy the Gaufl and Codazzi-
Mainardi equations in the sense of distributions, then there exists a mapping
6 € W2 (w) such that (anp) and (bag) are the fundamental forms of the sur-

loc

face O(w).

2.9 UNIQUENESS UP TO ISOMETRIES OF SURFACES
WITH THE SAME FUNDAMENTAL FORMS

In Section 2.8, we have established the ezistence of an immersion 6 : w C R? —
E3 giving rise to a surface @(w) with prescribed first and second fundamental
forms, provided these forms satisfy ad hoc sufficient conditions. We now turn
to the question of uniqueness of such immersions.

This is the object of the next theorem, which constitutes another rigidity
theorem, called the rigidity theorem for surfaces. Like its “three-dimensional
counterpart” (Theorem 1.7-1), it asserts that, if two immersions 8 € C?(w; E®)
and 0 € C%(w; E?) share the same fundamental forms, then the surface 6(w)
is obtained by subjecting the surface O(w) to a rotation (represented by an
orthogonal matrix Q with det Q = 1), then by subjecting the rotated surface
to a translation (represented by a vector ¢). Such a “rigid” transformation is
thus an isometry in E3.

As shown by Ciarlet & Larsonneur [2001] (whose proof is adapted here),
the issue of uniqueness can be resolved as a corollary to its “three-dimensional
counterpart”, like the issue of existence. We recall that @3 denotes the set of all
orthogonal matrices of order three and that Q3 = {Q € 0%;det Q = 1} denotes
the set of all 3 x 3 rotations.

Theorem 2.9-1. Let w be a connected open subset of R? and let 6 € C*(w; E?)
and 0 € C?(w; E3) be two immersions such that their associated first and second
fundamental forms satisfy (with self-explanatory notations)

QapB = ’daﬁ and bag :Zaﬂ n w.
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Then there exist a vector ¢ € E® and a rotation Q € @i such that

0(y) = c+ QO(y) for all y € w.

Proof. Arguments similar to those used in parts (i) and (viii) of the proof
of Theorem 2.8-1 show that there exist open subsets wy of w and real numbers
g¢ >0, £ >0, such that the symmetric matrices (g;;) defined by

Gop = Gap — 223bap + Ticap and gi3 = dj3,

where cog = a”"basbg,, are positive definite in the set

Q= U we X |—¢eg, €0

The two immersions ® € C}(Q;E?) and © € C'(Q;E3) defined by (with
self-explanatory notations)

O (y, 1) := 6(y) + w3as(y) and O(y, v3) = O(y) + v3a(y)
for all (y,z3) € Q therefore satisfy
9ij = gij in (L.

By Theorem 1.7-1, there exist a vector ¢ € E3 and an orthogonal matrix
Q € 03 such that

O(y,x3) = ¢+ QO(y, x3) for all (y,23) € Q.
Hence, on the one hand,
det VO(y, z3) = det Qdet VO(y, z3) for all (y, z3) € Q.

On the other hand, a simple computation shows that
det VO(y, x3) = \/det(aap(y){1 — z3(by +03)(y) + z5(b105 — bTb3)(y)}

for all (y,z3) € 2, where

b3 (y) = a” (y)bao (y), ¥ € w,

so that _
det VO (y, z3) = det VO(y, x3) for all (y,x3) € Q.

Therefore det Q = 1, which shows that the matrix Q € O3 is in fact a
rotation. The conclusion then follows by letting x5 = 0 in the relation

O(y,z3) = ¢+ QO(y, z3) for all (y,z3) € .



Sect. 2.9] Uniqueness of surfaces with the same fundamental forms 89

As a preparation to our next result, we note that the second fundamental
form of the surface 6(w) can still be defined under the weaker assumptions that

N
0 € C(w; E?) and a3 = ﬁ € C'(w; E?), by means of the definition
1A\ a2

bag := —aq - Ogas,

which evidently coincides with the usual one when 0 € C?(w; E3).

Theorem 2.9-1 constitutes the “classical” rigidity theorem for surfaces, in the
sense that both immersions @ and 6 are assumed to be in the space C?(w; E?).

Following Ciarlet & C. Mardare [2004a], we now show that a similar re-
sult holds under the assumptions that @ € H'(w;E3) and as := %

1A a

H'(w; E®) (with self-explanatory notations). Naturally, our first task will be to
verify that the vector field a3, which is not necessarily well defined a.e. in w for
an arbitrary mapping 8 € H'(w;E?3), is nevertheless well defined a.e. in w for
those mappings 0 that satisfy the assumptions of the next theorem. This fact
will in turn imply that the functions byg := —a. - Ogas are likewise well defined
a.e. in w.

Theorem 2.9-2. Let w be a connected open subset of R? and let 6 € Ct(w; E?)
be an immersion that satisfies as € C1(w; E3). Assume that there exists a vector

field 6 € H'(w; E3) that satisfies

Gop = Gap a.e. inw, az€ HY(w;E?), and bag = bap a.e. in w.
Then there exist a vector ¢ € E3 and a matriz Q € (O):jr such that

0(y) = ¢+ QO(y) for almost all y € w.

Proof. The proof essentially relies on the extension to a Sobolev space setting
of the “three-dimensional” rigidity theorem established in Theorem 1.7-3.

(i) To begin with, we record several technical preliminaries.
First, we observe that the relations aog = aqp a.e. in w and the assumption
that @ € C(w; E?) is an immersion together imply that

lar A aq| = \/det(aag) = \/det(aag) >0 a.e. inw.

Consequently, the vector field as, and thus the functions Eag, are well defined
a.e. in w.
Second, we establish that

bag = bge in w and Zag = Ega a.e. in w,
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i.e., that a, - Ogas = ag - Oqas in w and a, - dgas = ag - Jyas a.e. in w. To
this end, we note that either the assumptions 8 € C!(w; E3) and a3 € C!(w; E?)
together, or the assumptions @ € H!(w; E?) and a3 € H'(w; E3) together, imply
that a, - 9gas = 0,0 - gas € L] (w), hence that 9,0 - Izas € D' (w).

Given any ¢ € D(w), let U denote an open subset of R? such that supp o C U
and U is a compact subset of w. Denoting by x/(-,-)x the duality pairing

between a topological vector space X and its dual X', we have
D/(w){0ab - Opas, )pw) = / 00,0 - Ozasdy

= / 040 - 0s(pas)dy — /(86@)8a0 -agdy.

Observing that 0,0 - a3 = 0 a.e. in w and that

—/ 040 - 03(pas)dy = —/ 040 - 05(pas)dy
w U

= m-1uE)(08(0a0), vas)m (e,
we reach the conclusion that the expression p/(,,)(0a8-0sas, ©)p(.) is symmetric
with respect to o and 8 since 0,30 = 93,0 in D'(U). Hence 9,0 - pas =
930 - Dpas in Li _(w), and the announced symmetries are established.

loc
Third, let
Eag = 8a63 . 8[3&3 and Cap ‘= 8aa3 . agag.

Then we claim that ¢og = cap a.e. in w. To see this, we note that the matrix
fields (@) := (dag) ! and (a®?) := (anp) " are well defined and equal a.e. in
w since @ is an immersion and a,3 = aqg a.e. in w. The formula of Weingarten

(Section 2.6) can thus be applied a.e. in w, showing that o3 = a7 beabrg a.c.
in w. _
The assertion then follows from the assumptions bog = bag a.e. in w.

(ii) Starting from the set w and the mapping 6 (as given in the statement
of Theorem 2.9-2), we next construct a set  and a mapping © that satisfy the
assumptions of Theorem 1.7-2. More precisely, let

O(y,x3) = 0(y) + z3as(y) for all (y,z3) € w x R.

Then the mapping © := w x R — E3 defined in this fashion is clearly continu-
ously differentiable on w x R and

det VO(y, z3) = \/det(aap(y){1 — z3(by + 3)(y) + 23(b1b5 — bTby)(y)}

for all (y,z3) € w x R, where

b3(y) == a” (Y)bao(y),y € w.

Let w,, n > 0, be open subsets of R? such that @,, is a compact subset of w
and w = Un>0 wy. Then the continuity of the functions aqg, a®f, bas and the
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assumption that € is an immersion together imply that, for each n > 0, there
exists €, > 0 such that

det VO(y,z3) > 0 for all (y,x3) € Wy, X [—&n, €.

Besides, there is no loss of generality in assuming that ¢, < 1 (this property
will be used in part (iii)).
Let then
0= U (W X |=€n,en])-

n>0

Then it is clear that § is a connected open subset of R3 and that the mapping
© € CH(Q; E3) satisfies det VO > 0 in ).

Finally, note that the covariant components g;; € C°(£2) of the metric tensor
field associated with the mapping @ are given by (the symmetries bog = bga
established in (i) are used here)

Jop = Gap — 2T3bag + T3Cap,  gaz =0, gsz = 1.

(iii) Starting with the mapping 6 (as given in the statement of Theorem
2.9-2), we construct a mapping © that satisfies the assumptions of Theorem
1.7-2. To this end, we define a mapping © : Q — E3 by letting

O(y, z3) := O(y) + z3as(y) for all (y,23) € Q,

where the set Q is defined as in (ii). Hence ® € H(Q; E3), since Q C wx]-=1,1].
Besides, det VO = det VO a.e. in (2 since the functions Eg = Eﬁggag, which are
well defined a.e. in w, are equal, again a.e. in w, to the functions b2. Likewise, the
components g;; € L'(2) of the metric tensor field associated with the mapping
2) satisfy g;; = g¢i; a.e. in Q since aog = aap and gag = bap a.e. in w by
assumption and ¢,3 = cqg a.e. in w by part (i).

(iv) By Theorem 1.7-2, there exist a vector ¢ € E® and a matrix Q € 0%
such that

0(y) + z3as(y) = ¢+ Q(O(y) + zsas(y)) for almost all (y,z3) € Q.

Differentiating with respect to z3 in this equality between functions in H(Q; E?)
shows that a3(y) = Qas(y) for almost all y € w. Hence 8(y) = ¢+ QO(y) for
almost all y € w as announced. |

Remarks. (1) The existence of 8 € H'(w; E?) satisfying the assumptions
of Theorem 2.9-2 implies that @ € C(w;E3) and as € C*(w;E3), and that
0 € H'(w; E?) and a3 € H'(w; E?).

(2) It is easily seen that the conclusion of Theorem 2.9-2 is still valid if the
assumptions 6 € H'(w;E®) and a3 € H'(w;E3) are replaced by the weaker
assumptions 6 € HL (w; E®) and a3 € HL_(w; E®). O
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2.10 CONTINUITY OF A SURFACE AS A FUNCTION
OF ITS FUNDAMENTAL FORMS

Let w be a connected and simply-connected open subset of R?. Together, The-
orems 2.8-1 and 2.9-1 establish the existence of a mapping F' that associates
to any pair of matrix fields (ans) € C*(w;S2) and (bap) € C?(w;S?) satis-
fying the Gaul and Codazzi-Mainardi equations in w a well-defined element
F((aunp), (bap)) in the quotient set C*(w; E3)/R, where (6,0) € R means that
there exists a vector ¢ € E3 and a rotation Q € 03 such that 6(y) = ¢+ Q8(y)
for all y € w.

A natural question thus arises as to whether there exist ad hoc topologies on
the space C?(w;S?) x C?(w;S?) and on the quotient set C3(w; E?)/R such that
the mapping F' defined in this fashion is continuous.

Equivalently, is a surface a continuous function of its fundamental forms?

The purpose of this section, which is based on Ciarlet [2003], is to provide
an affirmative answer to the above question, through a proof that relies in an
essential way on the solution to the analogous problem in dimension three given
in Section 1.8.

Such a question is not only relevant to surface theory, but it also finds
its source in two-dimensional nonlinear shell theories, where the stored energy
functions are often functions of the first and second fundamental forms of the
unknown deformed middle surface (for an overview of nonlinear shell theories,
see, e.g., Ciarlet [2000]). For instance, the well-known stored energy function
wg proposed by Koiter [1966, Equations (4.2), (8.1), and (8.3)] for modeling
nonlinearly elastic shells made with a homogeneous and isotropic elastic material
takes the form:

3
€ aBor(~ ~ € aBor (T 7
Wr = 5@ R (aUT_aUT)(aaﬁ_aaB) + Ea R (bo‘r_bar)(baﬁ_baﬁ)a
where 2¢ is the thickness of the shell,

afoT = 4>\,u
A2

A >0 and p > 0 are the two Lamé constants of the constituting material, anp
and b, are the covariant components of the first and second fundamental forms
of the given undeformed middle surface, (a®?) = (aqap) !, and finally G,p and

aaﬁao‘r + 2‘u(ao¢oa5‘r+a}a7aﬂd)7

bas are the covariant components of the first and second fundamental forms of
the unknown deformed middle surface.

An inspection of the above stored energy functions thus suggests a tempting
approach to shell theory, where the functions ang and bns would be regarded
as the primary unknowns in lieu of the customary (Cartesian or curvilinear)
components of the displacement. In such an approach, the unknown components
Gap and byg must naturally satisfy the classical Gauf$ and Codazzi-Mainardi
equations in order that they actually define a surface.

To begin with, we introduce the following two-dimensional analogs to the
notations used in Section 1.8. Let w be an open subset of R3. The notation k € w
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means that  is a compact subset of w. If f € C*(w;R) or 8 € C*(w; E?),¢ > 0,
and Kk € w, we let

[fllew = sup [0°f(y)l , [Ollen:= sup [076(y)|,
YER YER
laf <2 laf <2

where 0% stands for the standard multi-index notation for partial derivatives and
|-| denotes the Euclidean norm in the latter definition. If A € C*(w;M?),¢ > 0,
and Kk € w, we likewise let

[Alles = sup [0%A(y)],
YER

o <t

where || denotes the matrix spectral norm.

The next sequential continuity result constitutes the key step towards estab-
lishing the continuity of a surface as a function of its two fundamental forms in
ad hoc metric spaces (see Theorem 2.10-2).

Theorem 2.10-1. Let w be a connected and simply-connected open subset of R2.
Let (aap) € C*(w;S2) and (bag) € C*(w;S?) be matriz fields satisfying the Gaufs
and Codazzi-Mainardi equations in w and let (ag5) € C*(w;S2) and (bas) €
C%(w;S?) be matriz fields satisfying for each n > 0 the Gaufi and Codazzi-
Mainardi equations in w. Assume that these matriz fields satisfy

lim |lay5—aagll2,x =0 and lim [|bg3—bagll2,x = 0 for all k € w.
n—oo n—oo
Let 6 € C3(w; E3) be any mapping that satisfies

0 10,0
Gag = 08 - 990 and bos = Do - { 016 7 0, finw

010 1 0,0

(such mappings exist by Theorem 2.8-1). Then there exist mappings 0" €
C3(w; E3) satisfying

010™ N 920"

afg = 00" - 930" and b5 = 9ap0" - {W

}inw,nZO7

such that
lim [|0"—0||3, =0 for all kK € w.

Proof. For clarity, the proof is broken into five parts.

(i) Let the matriz fields (gi;) € C*(wxR;S?) and (g75) € C*(wxR;S%),n >0,
be defined by

Jop = aag—Za:gbag—i—x%cag and ¢;3 = &;3,
9op diz,m >0

anp — 2x3bg s + x%cgﬁ and g4
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(the variable y € w is omitted, x3 designates the variable in R), where

Cap = babgr, bh :=a"bag, (a77) = (aaﬂ)_l’

g =0T bR = a7, (a%T") = (aly) " n > 0

oo

Let wy be an open subset of R? such that Wy € w. Then there exists g =
eo(wo) > 0 such that the symmetric matrices

C(y,z3) == (9i(y, x3)) and C"(y, x3) := (g;3(y,73)), n > 0,
are positive definite at all points (y,x3) € Qo, where
0o := wo X |—€0, 0] -

The matrices C(y, z3) € S* and C"(y, z3) € S* are of the form (the notations
are self-explanatory):

C(y,z3) = Coly) + z3C1(y) + 23Ca(y),
C"(y, x3) = Cy(y) + 23CY (y) + 23C5(y), n > 0.
First, it is easily deduced from the matrix identity B = A(I+ A~}(B—A))

and the assumptions lim, . [|af3—@aglloz, = 0 and lim,, .« [|6% 5—basll0,z, =
0 that there exists a constant M such that

1(CE)Mlozo + ICT oy + 1C5 llog, < M for all n > 0.

This uniform bound and the relations

C(y, x3) = Co(y){I+ (Co(y)) ' (—223C1(y) + 23C2(y))},
C"(y,x3) = Ci(y){I+ (C{(y)) " (—225CY (y) + 23C5 (y))}, n > 0,

together imply that there exists €9 = €9(wp) > 0 such that the matrices C(y, z3)
and C"(y,x3), n > 0, are invertible for all (y, z3) € Wy x [—¢€o, €0].

These matrices are positive definite for x3 = 0 by assumption. Hence they
remain so for all x5 € [—eg, go] since they are invertible.

(ii) Let we, £ > 0, be open subsets of R? such that ©, € w for each ¢ and
w = U;sqwe. By (i), there exist numbers eg = eg(we) > 0, £ > 0, such that the
symmetric matrices C(z) = (gi;(x)) and C™(x) = (g75(x)), n > 0, defined for all
r = (y,r3) € wx R as in (i), are positive definite at all points v = (y,x3) € Qp,
where Qg := wy X |—ey¢, 4], hence at all points x = (y,x3) of the open set

Q:=]J,

>0

which is connected and simply connected. Let the functions Ry, € CO(S2) be
defined from the matriz fields (gi;) € C*(€;S2) by

Ryiji = 0jlikg — Oklijq + Ffjrkqp =I5 Tep



Sect. 2.10] A surface as a function of its fundamental forms 95

where

1 . _
Lijq := 5(039iq+0i9ja=049is) and T := g"Lijq, with (g7) = (945) h

and let the functions Ry, .. € C%(Q), n > 0 be similarly defined from the matriz
fields (g7;) € C*(9;S2), n > 0. Then
Rgijr =01in Q and Ry;;, = 0 in Q for all n > 0.

qij

That Q is connected and simply-connected is established in part (viii) of the
proof of Theorem 2.8-1. That Ry, = 0 in 2, and similarly that Ry =0in Q
for all n > 0, is established as in parts (iv) to (viii) of the same proof.

(ili) The matriz fields C = (gij) € C*(2;S2) and C™ = (g};) € C*(%S2)
defined in (ii) satisfy (the notations used here are those of Section 1.8)

lim ||C"—C]||2,x =0 for all K € .
n—oo
Given any compact subset K of (2, there exists a finite set Ax of integers
such that K C Jyecp, 2. Since by assumption,
lim HCLZﬁ—CLagHQ,w( =0 and lim Hbgﬁ_baﬁnlwe = O7 y4 S AK,
n—oo n—oo
it follows that

lim HCZ_CPHQ)EZ = O7 ! e Ak, p= 07 1,2,

where the matrices C, and Cj, n > 0, p =0, 1,2, are those defined in the proof
of part (i). The definition of the norm |[|-[|, g, then implies that

Jim [[C"—Cll,5, =0, £ € Axc.

The conclusion then follows from the finiteness of the set Ag.
(iv) Conclusion.
Given any mapping 0 € C3(w; E?) that satisfies

010 N 0,0 }
in w,

Aap = 8(19 . 660 and baﬁ = 80160 ’ {m

let the mapping © : Q — E? be defined by

O(y, z3) := O(y) + z3a3(y) for all (y,23) € Q,

016 N 020

B 1
|819/\829|,and et

where as :=

Gij = 816) . 8j®
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Then an immediate computation shows that
JaB = GaB — 223bapg + x%cag and g;3 = d;3 in

where aog and b, are the covariant components of the first and second funda-
mental forms of the surface 8(w) and cop = a”"basbsr.

In other words, the matrices (gi;) constructed in this fashion coincide over
the set Q0 with those defined in part (i). Since parts (i) and (iii) of the above
proof together show that all the assumptions of Theorem 1.8-3 are satisfied
by the fields C = (gi;) € C*(S%) and C* = (gfy) € C*(Q;S2), there exist
mappings ®" € C3(; E?) satisfying (VO™)TVO" = C" in Q, n > 0, such
that

lim ||©@"—0|3x =0 for all K € Q.

We now show that the mappings
0" () :=O"(-,0) € C*(w; E?)
indeed satisfy

als = 00" - 030" and by = 0050" - { 0,6 1 946 | binw.

[010™ A 520™
Dropping the exponent n for notational convenience in this part of the proof,
let g, :== 0;0®. Then 0330 = 0393 = Fgggp = 0, since it is easily verified that
the functions I'f;, constructed from the functions g;; as indicated in part (ii),
vanish in Q. Hence there exists a mapping 8" € C3(w; E3) such that
O(y,x3) = O(y) + 30" (y) for all (y,z3) € Q.

Consequently, g, = 8,0+ 239,0" and gs = 6'. The relations g3 = g, g5 = 0;3
then show that

(060 + 230,0")-0' =0 and 6" - 0' = 1.

These relations imply that 0,0 - 0' = 0. Hence either 8' = a3 or 8! = —as
in w. But 8' = —aj is ruled out since we must have

{810 A 020} - 0" = det(gi;)|zs—0 > 0.
Noting that
040 - a3 = 0 implies 0,0 - 0gas = —0,30 - as,
we obtain, on the one hand,

9as = (00 + x304a3) - (050 + x303a3)
= 0,0 - 030 — 2230,30 - a3 + x%@aag -Ogas in Q.
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Since, on the other hand,
Jop = Gap — 273bag + T3C0p in Q,
we conclude that
aag = 0,0 - 080 and bog = 0,30 - a3 in w,

as desired.
It remains to verify that

lim ||6"—0||5, =0 for all kK € w.

But these relations immediately follow from the relations
lim ||©@"—0O|3x =0 forall K € Q,

combined with the observations that a compact subset of w is also one of €2,
that ©(-,0) = 0 and ©"(-,0) = 6", and finally, that

10" =03~ < [©"=O3x-

O

Remark. At first glance, it seems that Theorem 2.10-1 could be established
by a proof similar to that of its “three-dimensional counterpart”, viz., Theorem
1.8-3. A quick inspection reveals, however, that the proof of Theorem 1.8-2 does
not carry over to the present situation. O

In fact, it is not necessary to assume in Theorem 2.10-1 that the “limit” ma-
trix fields (aap) and (bap) satisfy the Gaufl and Codazzi-Mainardi equations (see
the proof of the next theorem). More specifically, another sequential continuity
result can be derived from Theorem 2.10-1. Its interest is that the assumptions
are now made on the immersions 8" that define the surfaces 8" (w) for all n > 0;
besides the existence of a “limit” surface O(w) is also established.

Theorem 2.10-2. Letw be a connected and simply-connected open subset of R2.
For each n > 0, let there be given immersions 8" € C3(w; E?), let ang and byg
denote the covariant components of the first and second fundamental forms of
the surface 8" (w), and assume that b} € C*(w). Let there be also given matriz

fields (anp) € C*(w;S2) and (bag) € C*(w;S?) with the property that

lim [laps—aagsll2,x =0 and lim [bg5—bagsll2,x = 0 for all k € w.
n—00 n—0o0

Then there exist immersions 8 € C3(w; E3) of the form

" n ngn .n 3 n 3
0 =c"+Q"9", c"cE’, Q" O}
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~n

(hence the first and second fundamental forms of the surfaces 8 (w) and 8" (w)
are the same for all n > 0) and an immersion 6 € C3(w,E3) such that ans and
bas are the covariant components of the first and second fundamental forms of
the surface (w). Besides,

lim [|6" — 0|3, = 0 for all k € w.

Proof. An argument similar to that used in the proof of Theorem 1.8-4 shows
that passing to the limit as n — oo is allowed in the Gaufl and Codazzi-Mainardi
equations, which are satisfied in the spaces C°(w) and C*(w) respectively by the
functions af,; and b5 for each n > 0 (as necessary conditions; cf. Theorem
2.7-1). Hence the limit functions ang and beg also satisfy the Gaufl and Codazzi-
Mainardi equations.

By the fundamental existence theorem (Theorem 2.8-1), there thus exists an
immersion 8 € C3(w; E?) such that

010 N 0,60
ap = 000 - 030 and bap = 0ap0 - {m}.

Theorem 2.10-1 can now be applied, showing that there exist mappings (now
denoted) " € C3(w; E?) such that

96" N 3.0"

'y =000 - 030 and b, = 0, 5"-{ﬁ
g ’ P 1000 A 30|

}inw,n>0,

and .
lim |0 —0||3, =0 for all kK € w.

Finally, the rigidity theorem for surfaces (Theorem 2.9-1) shows that, for
each n > 0, there exist ¢ € E3 and Q" e @3_ such that

~n -
0 =c"+Q"0" in w,

since the surfaces 6n(w) and 0" (w) share the same fundamental forms and the

set w is connected. g

It remains to show how the sequential continuity established in Theorem
2.10-1 implies the continuity of a surface as a function of its fundamental forms
for ad hoc topologies.

Let w be an open subset of R%2. We recall (see Section 1.8) that, for any
integers ¢ > 0 and d > 1, the space C*(w; R?) becomes a locally convex topological
space when its topology is defined by the family of semi-norms [|-[|, ., x € w,
and a sequence (8™),,>¢ converges to 8 with respect to this topology if and only
if

lim ||6"—0)||¢,, =0 for all kK € w.
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Furthermore, this topology is metrizable: Let (k;);>0 be any sequence of
subsets of w that satisfy

oo
ki €w and k; C int k41 for all i > 0, and w = U Ki-

i=0
Then
lim [|0"—6||¢,. =0 for all Kk € w <= lim d,(8",0) =0,
where
— 1 e —Ollex,
de(,0) := —
(0= 5 Tl

Let C3(w; E®) := C3(w; E?)/R denote the quotient set of C3(w; E?) by the
equivalence relation R, where (0, 0) € R means that there exist a vector ¢ € E3
and a matrix Q € O3 such that 6(y) = ¢+ QO(y) for all y € w. Then the

set CB(w; E3) becomes a metric space when it is equipped with the distance ds
defined by

d3(97,¢) = lnf dB(KHX) = inf d3(076+Q,¢)a
KEO ccE?
{X€¢ Qe0’®
where 6 denotes the equivalence class of 8 modulo R.
The announced continuity of a surface as a function of its fundamental forms

is then a corollary to Theorem 2.10-1. If d is a metric defined on a set X, the
associated metric space is denoted {X;d}.

Theorem 2.10-3. Let w be connected and simply connected open subset of R2.
Let

C2(@382 X 52) 1= {((0ap), (bap)) € C2(w;82) x C2(w; §%);
850010'7 - a(TCOtBT + CZ[}CO'T;,L - ngcﬁ‘ru = bag—bﬁq— - baﬁb(TT in w,
O0gbac — Osbap + Ch bgu — Cgﬁbgu = 0in w}.
Given any element ((aag), (bag)) € Ci(w;S2 x S?), let F(((aap), (bap))) €

C3(w; E3) denote the equivalence class modulo R of any 6 € C3(w;E3) that
satisfies

810 A (920 } .
m w.

afl — 010' 0 aB = 010' - @
(025961 0 85 andbg 85 {|819A620|

Then the mapping
F: {Cg(w;SQ> x §%);dy} — {6;3(w;E3);d3}

defined in this fashion is continuous.
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Proof. Since {C3(w;S2 x S);ds} and {C?(w; E?); d®} are both metric spaces,
it suffices to show that convergent sequences are mapped through F' into con-

vergent sequences.
Let then ((anp), (bag)) € C3(w;S2 x S?) and ((ang): (bng)) € C3(w;S2 x
S?), n > 0, be such that

Jim_dz(((agp), (b6p)); ((aap), (bap))) = 0,

i.e., such that

lim |lag5—aagll2,x =0 and lim [bys—bagll2,x = 0 for all k € w.
n— 00 n—00

Let there be given any 6 € F(((aqg), (bag))). Then Theorem 2.10-1 shows
that there exist 8" € F'(((ags), (b)), n > 0, such that

lim ||0"—0||5, =0 for all kK € w,

i.e., such that
lim d3(6",0) = 0.

Consequently,
lim_d3(F(((ahg), (Vhp))), F(((aap); (bap)))) = 0,
and the proof is complete. O

The above continuity results have been extended “up to the boundary of the
set w” by Ciarlet & C. Mardare [2005b].
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