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PREFACE

The notes presented here are based on lectures delivered over the years by
the author at the Université Pierre et Marie Curie, Paris, at the University of
Stuttgart, and at City University of Hong Kong. Their aim is to give a thorough
introduction to the basic theorems of Differential Geometry.

In the first chapter, we review the basic notions arising when a three-
dimensional open set is equipped with curvilinear coordinates, such as the metric
tensor, Christoffel symbols, and covariant derivatives. We then prove that the
vanishing of the Riemann curvature tensor is sufficient for the existence of iso-
metric immersions from a simply-connected open subset of R

n equipped with
a Riemannian metric into a Euclidean space of the same dimension. We also
prove the corresponding uniqueness theorem, also called rigidity theorem.

In the second chapter, we study basic notions about surfaces, such as their
two fundamental forms, the Gaussian curvature, Christoffel symbols, and co-
variant derivatives. We then prove the fundamental theorem of surface theory,
which asserts that the Gauß and Codazzi-Mainardi equations constitute suffi-
cient conditions for two matrix fields defined in a simply-connected open subset
of R

3 to be the two fundamental forms of a surface in a three-dimensional Eu-
clidean space. We also prove the corresponding rigidity theorem.

In addition to such “classical” theorems, we also include in both chapters
very recent results, which have not yet appeared in book form, such as the
continuity of a surface as a function of its fundamental forms.

The treatment is essentially self-contained and proofs are complete. The
prerequisites essentially consist in a working knowledge of basic notions of anal-
ysis and functional analysis, such as differential calculus, integration theory
and Sobolev spaces, and some familiarity with ordinary and partial differential
equations.

These notes use some excerpts from Chapters 1 and 2 of my book “Mathe-
matical Elasticity, Volume III: Theory of Shells”, published in 2000 by North-
Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his
kind permission to reproduce these excerpts. Otherwise, the major part of these
notes was written during the fall of 2004 at City University of Hong Kong; this
part of the work was substantially supported by a grant from the Research
Grants Council of Hong Kong Special Administrative Region, China [Project
No. 9040869, CityU 100803].

Hong Kong, January 2005
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Chapter 1

THREE-DIMENSIONAL DIFFERENTIAL

GEOMETRY

1.1 CURVILINEAR COORDINATES

To begin with, we list some notations and conventions that will be consistently
used throughout.

All spaces, matrices, etc., considered here are real.
Latin indices and exponents vary in the set {1, 2, 3}, except when they are

used for indexing sequences, and the summation convention with respect to
repeated indices or exponents is systematically used in conjunction with this
rule. For instance, the relation

gi(x) = gij(x)gj(x)

means that

gi(x) =

3∑

j=1

gij(x)gj(x) for i = 1, 2, 3.

Kronecker’s symbols are designated by δj
i , δij , or δij according to the context.

Let E3 denote a three-dimensional Euclidean space, let a ·b and a∧b denote
the Euclidean inner product and exterior product of a, b ∈ E3, and let |a| =√
a · a denote the Euclidean norm of a ∈ E3. The space E3 is endowed with

an orthonormal basis consisting of three vectors êi = êi. Let x̂i denote the
Cartesian coordinates of a point x̂ ∈ E3 and let ∂̂i := ∂/∂x̂i.

In addition, let there be given a three-dimensional vector space in which
three vectors ei = ei form a basis. This space will be identified with R3. Let xi

denote the coordinates of a point x ∈ R3 and let ∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj ,
and ∂ijk := ∂3/∂xi∂xj∂xk.

Let there be given an open subset Ω̂ of E3 and assume that there exist an
open subset Ω of R3 and an injective mapping Θ : Ω → E3 such that Θ(Ω) = Ω̂.

Then each point x̂ ∈ Ω̂ can be unambiguously written as

x̂ = Θ(x), x ∈ Ω,

5



6 Three-dimensional differential geometry [Ch. 1

and the three coordinates xi of x are called the curvilinear coordinates of x̂
(Figure 1.1-1). Naturally, there are infinitely many ways of defining curvilinear

coordinates in a given open set Ω̂, depending on how the open set Ω and the
mapping Θ are chosen!

Ω

x

x3

x1

x2

e
2

e
3

e
1

R
3

Θ

ê
2

ê
3

ê
1

x̂

Ω̂

g2(x)

g3(x)

g1(x)

E3

Figure 1.1-1: Curvilinear coordinates and covariant bases in an open set bΩ ⊂ E3. The three
coordinates x1, x2, x3 of x ∈ Ω are the curvilinear coordinates of bx = Θ(x) ∈ bΩ. If the three
vectors gi(x) = ∂iΘ(x) are linearly independent, they form the covariant basis at bx = Θ(x)
and they are tangent to the coordinate lines passing through bx.

Examples of curvilinear coordinates include the well-known cylindrical and
spherical coordinates (Figure 1.1-2).

In a different, but equally important, approach, an open subset Ω of R3

together with a mapping Θ : Ω → E3 are instead a priori given.

If Θ ∈ C0(Ω;E3) and Θ is injective, the set Ω̂ := Θ(Ω) is open by the in-

variance of domain theorem (for a proof, see, e.g., Nirenberg [1974, Corollary 2,

p. 17] or Zeidler [1986, Section 16.4]), and curvilinear coordinates inside Ω̂ are
unambiguously defined in this case.

If Θ ∈ C1(Ω;E3) and the three vectors ∂iΘ(x) are linearly independent at all

x ∈ Ω, the set Ω̂ is again open (for a proof, see, e.g., Schwartz [1992] or Zeidler
[1986, Section 16.4]), but curvilinear coordinates may be defined only locally in
this case: Given x ∈ Ω, all that can be asserted (by the local inversion theorem)
is the existence of an open neighborhood V of x in Ω such that the restriction
of Θ to V is a C1-diffeomorphism, hence an injection, of V onto Θ(V ).

1.2 METRIC TENSOR

Let Ω be an open subset of R3 and let

Θ = Θiê
i : Ω → E3
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Figure 1.1-2: Two familiar examples of curvilinear coordinates. Let the mapping Θ be
defined by

Θ : (ϕ, ρ, z) ∈ Ω → (ρ cosϕ, ρ sinϕ, z) ∈ E3.
Then (ϕ, ρ, z) are the cylindrical coordinates of bx = Θ(ϕ, ρ, z). Note that (ϕ + 2kπ, ρ, z) or
(ϕ+ π+ 2kπ,−ρ, z), k ∈ Z, are also cylindrical coordinates of the same point bx and that ϕ is
not defined if bx is the origin of E3.

Let the mapping Θ be defined by
Θ : (ϕ, ψ, r) ∈ Ω → (r cosψ cosϕ, r cosψ sinϕ, r sinψ) ∈ E3.

Then (ϕ,ψ, r) are the spherical coordinates of bx = Θ(ϕ, ψ, r). Note that (ϕ+2kπ,ψ+2`π, r)
or (ϕ + 2kπ,ψ + π + 2`π,−r) are also spherical coordinates of the same point bx and that ϕ
and ψ are not defined if bx is the origin of E3.

be a mapping that is differentiable at a point x ∈ Ω. If δx is such that (x+δx) ∈
Ω, then

Θ(x + δx) = Θ(x) + ∇Θ(x)δx+ o(δx),

where the 3 × 3 matrix ∇Θ(x) is defined by

∇Θ(x) :=




∂1Θ1 ∂2Θ1 ∂3Θ1

∂1Θ2 ∂2Θ2 ∂3Θ2

∂1Θ3 ∂2Θ3 ∂3Θ3


 (x).

Let the three vectors gi(x) ∈ R3 be defined by

gi(x) := ∂iΘ(x) =




∂iΘ1

∂iΘ2

∂iΘ3


 (x),

i.e., gi(x) is the i-th column vector of the matrix ∇Θ(x) and let δx = δxiei.
Then the expansion of Θ about x may be also written as

Θ(x + δx) = Θ(x) + δxigi(x) + o(δx).

If in particular δx is of the form δx = δtei, where δt ∈ R and ei is one of
the basis vectors in R3, this relation reduces to

Θ(x + δtei) = Θ(x) + δtgi(x) + o(δt).
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A mapping Θ : Ω → E3 is an immersion at x ∈ Ω if it is differentiable
at x and the matrix ∇Θ(x) is invertible or, equivalently, if the three vectors
gi(x) = ∂iΘ(x) are linearly independent.

Assume from now on in this section that the mapping Θ is an immersion

at x. Then the three vectors gi(x) constitute the covariant basis at the point
x̂ = Θ(x).

In this case, the last relation thus shows that each vector gi(x) is tangent

to the i-th coordinate line passing through x̂ = Θ(x), defined as the image

by Θ of the points of Ω̂ that lie on the line parallel to ei passing through x
(there exist t0 and t1 with t0 < 0 < t1 such that the i-th coordinate line is
given by t ∈ ]t0, t1[ → f i(t) := Θ(x + tei) in a neighborhood of x̂; hence
f ′

i(0) = ∂iΘ(x) = gi(x)); see Figures 1.1-1 and 1.1-2.
Returning to a general increment δx = δxiei, we also infer from the expan-

sion of Θ about x that (recall that we use the summation convention):

|Θ(x + δx) −Θ(x)|2 = δxT
∇Θ(x)T

∇Θ(x)δx+ o
(
|δx|2

)

= δxigi(x) · gj(x)δxj + o
(
|δx|2

)
.

In other words, the principal part with respect to δx of the length between
the points Θ(x + δx) and Θ(x) is {δxigi(x) · gj(x)δxj}1/2. This observation
suggests to define a matrix (gij(x)) of order three, by letting

gij(x) := gi(x) · gj(x) = (∇Θ(x)T
∇Θ(x))ij .

The elements gij(x) of this symmetric matrix are called the covariant com-

ponents of the metric tensor at x̂ = Θ(x).
Note that the matrix ∇Θ(x) is invertible and that the matrix (gij(x)) is

positive definite, since the vectors gi(x) are assumed to be linearly independent.
The three vectors gi(x) being linearly independent, the nine relations

gi(x) · gj(x) = δi
j

unambiguously define three linearly independent vectors gi(x). To see this, let
a priori gi(x) = X ik(x)gk(x) in the relations gi(x) · gj(x) = δi

j . This gives

X ik(x)gkj(x) = δi
j ; consequently, X ik(x) = gik(x), where

(gij(x)) := (gij(x))−1.

Hence gi(x) = gik(x)gk(x). These relations in turn imply that

gi(x) · gj(x) =
(
gik(x)gk(x)

)
·
(
gj`(x)g`(x)

)

= gik(x)gj`(x)gk`(x) = gik(x)δj
k = gij(x),

and thus the vectors gi(x) are linearly independent since the matrix (gij(x)) is
positive definite. We would likewise establish that gi(x) = gij(x)gj(x).

The three vectors gi(x) form the contravariant basis at the point x̂ = Θ(x)
and the elements gij(x) of the symmetric positive definite matrix (gij(x)) are
the contravariant components of the metric tensor at x̂ = Θ(x).
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To conclude this section, we record for convenience the fundamental relations
that exist between the vectors of the covariant and contravariant bases and the
covariant and contravariant components of the metric tensor:

gij(x) = gi(x) · gj(x) and gij(x) = gi(x) · gj(x),

gi(x) = gij(x)gj(x) and gi(x) = gij(x)gj(x).

1.3 VOLUMES, AREAS, AND LENGTHS IN CURVI-

LINEAR COORDINATES

We now review fundamental formulas showing how volume, area, and length

elements at a point x̂ = Θ(x) in the set Ω̂ = Θ(Ω) can be expressed either in
terms of the matrix ∇Θ(x) or in terms of the matrix (gij(x)) or of its inverse
matrix (gij(x)).

These formulas thus highlight the crucial rôle played by the matrix (gij(x))
for computing “metric” notions at the point x̂ = Θ(x). Indeed, the “metric
tensor” well deserves its name!

A domain in Rn is a bounded, open, and connected subset D of R3 with
a Lipschitz-continuous boundary, the set D being locally on one side of its
boundary. All relevant details needed here about domains are found in Nečas
[1967] or Adams [1975].

Given a domain D ⊂ R3 with boundary Γ, we let dx denote the volume

element in D, dΓ denote the area element along Γ, and n = niê
i denote the

unit (|n| = 1) outer normal vector along Γ (dΓ is well defined and n is defined
dΓ-almost everywhere since Γ is assumed to be Lipschitz-continuous).

Note also that the assumptions made on the mapping Θ in the next theorem
guarantee that, if D is a domain in R3 such that D ⊂ Ω, then {D̂}− ⊂ Ω̂,

{Θ(D)}− = Θ(D), and the boundaries ∂D̂ of D̂ and ∂D of D are related by

∂D̂ = Θ(∂D) (see, e.g., Ciarlet [1988, Theorem 1.2-8 and Example 1.7]).
If A is a square matrix, CofA denotes the cofactor matrix of A. Thus

CofA = (det A)A−T if A is invertible.
A mapping Θ : Ω → E3 is an immersion if it is an immersion at each

x ∈ Ω, i.e., if Θ is differentiable in Ω and the three vectors gi(x) = ∂iΘ(x) are
linearly independent at each x ∈ Ω.

Theorem 1.3-1. Let Ω be an open subset of R3, let Θ : Ω → E3 be an injective

and smooth enough immersion, and let Ω̂ = Θ(Ω).

(a) The volume element dx̂ at x̂ = Θ(x) ∈ Ω̂ is given in terms of the volume

element dx at x ∈ Ω by

dx̂ = | det ∇Θ(x)|dx =
√

g(x)dx, where g(x) := det(gij(x)).

(b) Let D be a domain in R3 such that D ⊂ Ω. The area element dΓ̂(x̂) at

x̂ = Θ(x) ∈ ∂D̂ is given in terms of the area element dΓ(x) at x ∈ ∂D by

dΓ̂(x̂) = |Cof∇Θ(x)n(x)|dΓ(x) =
√

g(x)
√

ni(x)gij(x)nj(x)dΓ(x),
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where n(x) := ni(x)ei denotes the unit outer normal vector at x ∈ ∂D.

(c) The length element d̂̀(x̂) at x̂ = Θ(x) ∈ Ω̂ is given by

d̂̀(x̂) =
{
δxT

∇Θ(x)T
∇Θ(x)δx

}1/2
=

{
δxigij(x)δxj

}1/2
,

where δx = δxiei.

Proof. The relation dx̂ = | det ∇Θ(x)| dx between the volume elements
is well known. The second relation in (a) follows from the relation g(x) =
| det ∇Θ(x)|2, which itself follows from the relation (gij(x)) = ∇Θ(x)T ∇Θ(x).

Indications about the proof of the relation between the area elements dΓ̂(x̂)
and dΓ(x) given in (b) are found in Ciarlet [1988, Theorem 1.7-1] (in this for-
mula, n(x) = ni(x)ei is identified with the column vector in R3 with ni(x) as
its components). Using the relations Cof (AT ) = (CofA)T and Cof(AB) =
(CofA)(CofB), we next have:

|Cof∇Θ(x)n(x)|2 = n(x)T Cof
(
∇Θ(x)T

∇Θ(x)
)
n(x)

= g(x)ni(x)gij(x)nj(x).

Either expression of the length element given in (c) recalls that d̂̀(x̂) is
by definition the principal part with respect to δx = δxiei of the length
|Θ(x + δx) − Θ(x)|, whose expression precisely led to the introduction of the
matrix (gij(x)) in Section 1.2. �

The relations found in Theorem 1.3-1 are used in particular for computing
volumes, areas, and lengths inside Ω̂ by means of integrals inside Ω, i.e., in terms
of the curvilinear coordinates used in the open set Ω̂ (Figure 1.3-1):

Let D be a domain in R3 such that D ⊂ Ω, let D̂ := Θ(D), and let f̂ ∈ L1(D̂)
be given. Then ∫

bD
f̂(x̂)dx̂ =

∫

D

(f̂ ◦Θ)(x)
√

g(x)dx.

In particular, the volume of D̂ is given by

vol D̂ :=

∫

bD
dx̂ =

∫

D

√
g(x)dx.

Next, let Γ := ∂D, let Σ be a dΓ-measurable subset of Γ, let Σ̂ := Θ(Σ) ⊂
∂D̂, and let ĥ ∈ L1(Σ̂) be given. Then

∫

bΣ
ĥ(x̂)dΓ̂(x̂) =

∫

Σ

(ĥ ◦Θ)(x)
√

g(x)
√

ni(x)gij(x)nj(x)dΓ(x).

In particular, the area of Σ̂ is given by

area Σ̂ :=

∫

bΣ
dΓ̂(x̂) =

∫

Σ

√
g(x)

√
ni(x)gij(x)nj(x)dΓ(x).
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Ω̂

dl̂(x̂)

dΓ̂(x̂)

Â
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Figure 1.3-1: Volume, area, and length elements in curvilinear coordinates. The elements
dbx,dbΓ(bx), and db̀(bx) at bx = Θ(x) ∈ bΩ are expressed in terms of dx, dΓ(x), and δx at x ∈ Ω by
means of the covariant and contravariant components of the metric tensor; cf. Theorem 1.3-1.
Given a domain D such that D ⊂ Ω and a dΓ-measurable subset Σ of ∂D, the corresponding
relations are used for computing the volume of bD = Θ(D) ⊂ bΩ, the area of bΣ = Θ(Σ) ⊂ ∂ bD,

and the length of a curve bC = Θ(C) ⊂ bΩ, where C = f(I) and I is a compact interval of R.

Finally, consider a curve C = f(I) in Ω, where I is a compact interval of R

and f = f iei : I → Ω is a smooth enough injective mapping. Then the length

of the curve Ĉ := Θ(C) ⊂ Ω̂ is given by

length Ĉ :=

∫

I

∣∣ d

dt
(Θ ◦ f)(t)

∣∣dt =

∫

I

√

gij(f(t))
df

dt

i

(t)
df

dt

j

(t)dt.

This relation shows in particular that the lengths of curves inside the set

Θ(Ω) are precisely those induced by the Euclidean metric of the space E3.

1.4 COVARIANT DERIVATIVES OF A VECTOR FIELD

AND CHRISTOFFEL SYMBOLS

Suppose that a vector field is defined in an open subset Ω̂ of E3 by means of its
Cartesian components v̂i : Ω̂ → R, i.e., this field is defined by its values v̂i(x̂)êi

at each x̂ ∈ Ω̂, where the vectors êi constitute the orthonormal basis of E3; see
Figure 1.4-1.

Suppose now that the open set Ω̂ is equipped with curvilinear coordinates

from an open subset Ω of R3, by means of an injective mapping Θ : Ω → E3

satisfying Θ(Ω) = Ω̂.
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x̂1

x̂2Ô

x̂3

v1(x̂)

v2(x̂)

v3(x̂)

ê
1

ê
2

ê
3

E
3

Ω̂

vi(x̂) ê
i

x̂

Figure 1.4-1: A vector field in Cartesian coordinates. At each point bx ∈ bΩ, the vector
bvi(bx)bei is defined by its Cartesian components bvi(bx) over an orthonormal basis of E3 formed
by three vectors bei.

How to define appropriate components of the same vector field, but this time
in terms of these curvilinear coordinates? It turns out that the proper way to
do so consists in defining three functions vi : Ω → R by requiring that (Figure
1.4-2)

vi(x)gi(x) := v̂i(x̂)êi for all x̂ = Θ(x), x ∈ Ω,

where the three vectors gi(x) form the contravariant basis at x̂ = Θ(x) (Section

1.2). Using the relations gi(x) ·gj(x) = δi
j and êi · êj = δi

j , we immediately find
how the old and new components are related, viz.,

vj(x) = vi(x)gi(x) · gj(x) = v̂i(x̂)êi · gj(x),

v̂i(x̂) = v̂j(x̂)êj · êi = vj(x)gj(x) · êi.
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x

e
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e
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3

Θ

ê
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ê
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ê
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g2(x)

ui(x)gi(x)

g3(x)

u3(x)

u2(x)

u1(x)x̂

Ω̂
E3

Figure 1.4-2: A vector field in curvilinear coordinates. Let there be given a vector field
in Cartesian coordinates defined at each bx ∈ bΩ by its Cartesian components bvi(bx) over the
vectors bei (Figure 1.4-1). In curvilinear coordinates, the same vector field is defined at each
x ∈ Ω by its covariant components vi(x) over the contravariant basis vectors gi(x) in such a
way that vi(x)g

i(x) = bvi(bx)ei, bx = Θ(x).

The three components vi(x) are called the covariant components of the

vector vi(x)gi(x) at x̂, and the three functions vi : Ω → R defined in this fashion
are called the covariant components of the vector field vig

i : Ω → E3.
Suppose next that we wish to compute a partial derivative ∂̂j v̂i(x̂) at a point

x̂ = Θ(x) ∈ Ω̂ in terms of the partial derivatives ∂`vk(x) and of the values vq(x)
(which are also expected to appear by virtue of the chain rule). Such a task is
required for example if we wish to write a system of partial differential equations
whose unknown is a vector field (such as the equations of nonlinear or linearized
elasticity) in terms of ad hoc curvilinear coordinates.

As we now show, carrying out such a transformation naturally leads to a
fundamental notion, that of covariant derivatives of a vector field.

Theorem 1.4-1. Let Ω be an open subset of R3 and let Θ : Ω → E3 be an

immersion that is also a C2-diffeomorphism of Ω onto Ω̂ := Θ(Ω). Given a

vector field v̂iê
i : Ω̂ → R

3 in Cartesian coordinates with components v̂i ∈ C1(Ω̂),
let vig

i : Ω → R3 be the same field in curvilinear coordinates, i.e., that defined

by

v̂i(x̂)êi = vi(x)gi(x) for all x̂ = Θ(x), x ∈ Ω.

Then vi ∈ C1(Ω) and for all x ∈ Ω,

∂̂j v̂i(x̂) =
(
vk‖`[g

k]i[g
`]j

)
(x), x̂ = Θ(x),

where

vi‖j := ∂jvi − Γp
ijvp and Γp

ij := gp · ∂igj ,

and

[gi(x)]k := gi(x) · êk

denotes the i-th component of gi(x) over the basis {ê1, ê2, ê3}.
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Proof. The following convention holds throughout this proof: The simul-
taneous appearance of x̂ and x in an equality means that they are related by
x̂ = Θ(x) and that the equality in question holds for all x ∈ Ω.

(i) Another expression of [gi(x)]k := gi(x) · êk.

Let Θ(x) = Θk(x)êk and Θ̂(x̂) = Θ̂i(x̂)ei, where Θ̂ : Ω̂ → E3 denotes the

inverse mapping of Θ : Ω → E3. Since Θ̂(Θ(x)) = x for all x ∈ Ω, the chain
rule shows that the matrices ∇Θ(x) := (∂jΘ

k(x)) (the row index is k) and

∇̂Θ̂(x̂) := (∂̂kΘ̂i(x̂)) (the row index is i) satisfy

∇̂Θ̂(x̂)∇Θ(x) = I,

or equivalently,

∂̂kΘ̂i(x̂)∂jΘ
k(x) =

(
∂̂1Θ̂

i(x̂) ∂2Θ̂
i(x̂) ∂3Θ̂

i(x̂)
)




∂jΘ
1(x)

∂jΘ
2(x)

∂jΘ
3(x)


 = δi

j .

The components of the above column vector being precisely those of the
vector gj(x), the components of the above row vector must be those of the

vector gi(x) since gi(x) is uniquely defined for each exponent i by the three
relations gi(x) · gj(x) = δi

j , j = 1, 2, 3. Hence the k-th component of gi(x) over

the basis {ê1, ê2, ê3} can be also expressed in terms of the inverse mapping Θ̂,
as:

[gi(x)]k = ∂̂kΘ̂i(x̂).

(ii) The functions Γq
`k := gq · ∂`gk ∈ C0(Ω).

We next compute the derivatives ∂`g
q(x) (the fields gq = gqrgr are of class

C1 on Ω since Θ is assumed to be of class C2). These derivatives will be needed

in (iii) for expressing the derivatives ∂̂j ûi(x̂) as functions of x (recall that ûi(x̂) =
uk(x)[gk(x)]i). Recalling that the vectors gk(x) form a basis, we may write a

priori

∂`g
q(x) = −Γq

`k(x)gk(x),

thereby unambiguously defining functions Γq
`k : Ω → R. To find their expres-

sions in terms of the mappings Θ and Θ̂, we observe that

Γq
`k(x) = Γq

`m(x)δm
k = Γq

`m(x)gm(x) · gk(x) = −∂`g
q(x) · gk(x).

Hence, noting that ∂`(g
q(x) · gk(x)) = 0 and [gq(x)]p = ∂̂pΘ̂

q(x̂), we obtain

Γq
`k(x) = gq(x) · ∂`gk(x) = ∂̂pΘ̂

q(x̂)∂`kΘp(x) = Γq
k`(x).

Since Θ ∈ C2(Ω;E3) and Θ̂ ∈ C1(Ω̂; R3) by assumption, the last relations
show that Γq

`k ∈ C0(Ω).
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(iii) The partial derivatives ∂̂iv̂i(x̂) of the Cartesian components of the vector

field v̂iê
i ∈ C1(Ω̂; R3) are given at each x̂ = Θ(x) ∈ Ω̂ by

∂̂j v̂i(x̂) = vk‖`(x)[gk(x)]i[g
`(x)]j ,

where

vk‖`(x) := ∂`vk(x) − Γq
`k(x)vq(x),

and [gk(x)]i and Γq
`k(x) are defined as in (i) and (ii).

We compute the partial derivatives ∂̂j v̂i(x̂) as functions of x by means of the
relation v̂i(x̂) = vk(x)[gk(x)]i. To this end, we first note that a differentiable
function w : Ω → R satisfies

∂̂jw(Θ̂(x̂)) = ∂`w(x)∂̂j Θ̂
`(x̂) = ∂`w(x)[g`(x)]j ,

by the chain rule and by (i). In particular then,

∂̂j v̂i(x̂) = ∂̂jvk(Θ̂(x̂))[gk(x)]i + vq(x)∂̂j [g
q(Θ̂(x̂))]i

= ∂`vk(x)[g`(x)]j [g
k(x)]i + vq(x)

(
∂`[g

q(x)]i
)
[g`(x)]j

= (∂`vk(x) − Γq
`k(x)vq(x)) [gk(x)]i[g

`(x)]j ,

since ∂`g
q(x) = −Γq

`k(x)gk(x) by (ii). �

The functions
vi‖j = ∂jvi − Γp

ijvp

defined in Theorem 1.4-1 are called the first-order covariant derivatives of
the vector field vig

i : Ω → R3.
The functions

Γp
ij = gp · ∂igj

are called the Christoffel symbols of the first kind.
The following result summarizes properties of covariant derivatives and Christof-

fel symbols that are constantly used.

Theorem 1.4-2. Let the assumptions on the mapping Θ : Ω → E3 be as in

Theorem 1.4-1, and let there be given a vector field vig
i : Ω → R3 with covariant

components vi ∈ C1(Ω).
(a) The first-order covariant derivatives vi‖j ∈ C0(Ω) of the vector field

vig
i : Ω → R3, which are defined by

vi‖j := ∂jvi − Γp
ijvp, where Γp

ij := gp · ∂igj ,

can be also defined by the relations

∂j(vig
i) = vi‖jg

i ⇐⇒ vi‖j =
{
∂j(vkg

k)
}
· gi.

(b) The Christoffel symbols Γp
ij := gp·∂igj = Γp

ji ∈ C0(Ω) satisfy the relations

∂ig
p = −Γp

ijg
j and ∂jgq = Γi

jqgi.
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Proof. It remains to verify that the covariant derivatives vi‖j , defined in
Theorem 1.4-1 by

vi‖j = ∂jvi − Γp
ijvp,

may be equivalently defined by the relations

∂j(vig
i) = vi‖jg

i.

These relations unambiguously define the functions vi‖j = {∂j(vkg
k)} · gi since

the vectors gi are linearly independent at all points of Ω by assumption. To
this end, we simply note that, by definition, the Christoffel symbols satisfy
∂ig

p = −Γp
ijg

j (cf. part (ii) of the proof of Theorem 1.4-1); hence

∂j(vig
i) = (∂jvi)g

i + vi∂jg
i = (∂jvi)g

i − viΓ
i
jkg

k = vi‖jg
i.

To establish the other relations ∂jgq = Γi
jqgi, we note that

0 = ∂j(g
p · gq) = −Γp

jig
i · gq + gp · ∂jgq = −Γp

qj + gp · ∂jgq .

Hence
∂jgq = (∂jgq · gp)gp = Γp

qjgp.

�

Remark. The Christoffel symbols Γp
ij can be also defined solely in terms of

the components of the metric tensor; see the proof of Theorem 1.5-1. �

If the affine space E3 is identified with R3 and Θ = idΩ, the relation
∂j(vig

i)(x) = (vi‖jg
i)(x) (Theorem 1.4-2 (a)), reduces to ∂̂j(v̂i(x̂)êi) = (∂̂j v̂i(x̂))êi.

In this sense, a covariant derivative of the first order constitutes a generalization

of a partial derivative of the first order in Cartesian coordinates.

1.5 NECESSARY CONDITIONS SATISFIED BY THE

METRIC TENSOR; THE RIEMANN CURVATURE

TENSOR

It is remarkable that the components gij : Ω → R of the metric tensor of an

open set Θ(Ω) ⊂ E3 (Section 1.2), defined by a smooth enough immersion
Θ : Ω → E3, cannot be arbitrary functions.

As shown in the next theorem, they must satisfy relations that take the
form:

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,

where the functions Γijq and Γp
ij have simple expressions in terms of the func-

tions gij and of some of their partial derivatives (as shown in the next proof,
it so happens that the functions Γp

ij as defined in Theorem 1.5-1 coincide with
the Christoffel symbols introduced in the previous section; this explains why
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they are denoted by the same symbol). Note that, according to the rule gov-
erning Latin indices and exponents, these relations are meant to hold for all
i, j, k, q ∈ {1, 2, 3}.

Theorem 1.5-1. Let Ω be an open set in R3, let Θ ∈ C3(Ω;E3) be an immer-

sion, and let

gij := ∂iΘ · ∂jΘ

denote the covariant components of the metric tensor of the set Θ(Ω). Let the

functions Γijq ∈ C1(Ω) and Γp
ij ∈ C1(Ω) be defined by

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij),

Γp
ij := gpqΓijq where (gpq) := (gij)

−1.

Then, necessarily,

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω.

Proof. Let gi = ∂iΘ. It is then immediately verified that the functions Γijq

are also given by

Γijq = ∂igj · gq .

For each x ∈ Ω, let the three vectors gj(x) be defined by the relations gj(x) ·
gi(x) = δj

j . Since we also have gj = gijgi, the last relations imply that Γp
ij =

∂igj · gp. Therefore,
∂igj = Γp

ijgp

since ∂igj = (∂igj · gp)gp. Differentiating the same relations yields

∂kΓijq = ∂ikgj · gq + ∂igj · ∂kgq ,

so that the above relations together give

∂igj · ∂kgq = Γp
ijgp · ∂kgq = Γp

ijΓkqp.

Consequently,
∂ikgj · gq = ∂kΓijq − Γp

ijΓkqp.

Since ∂ikgj = ∂ijgk, we also have

∂ikgj · gq = ∂jΓikq − Γp
ikΓjqp,

and thus the required necessary conditions immediately follow. �

Remark. The vectors gi and gj introduced above form the covariant and
contravariant bases and the functions gij are the contravariant components of
the metric tensor (Section 1.2). �
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As shown in the above proof, the necessary conditions Rqijk = 0 thus sim-
ply constitute a re-writing of the relations ∂ikgj = ∂kigj in the form of the
equivalent relations ∂ikgj · gq = ∂kigj · gq .

The functions

Γijq =
1

2
(∂jgiq + ∂igjq − ∂qgij) = ∂igj · gq = Γjiq

and
Γp

ij = gpqΓijq = ∂igj · gp = Γp
ji

are the Christoffel symbols of the first, and second, kinds. We saw in
Section 1.4 that the same Christoffel symbols Γp

ij also naturally appear in a
different context (that of covariant differentiation).

Finally, the functions

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp

are the covariant components of the Riemann curvature tensor of the
set Θ(Ω). The relations Rqijk = 0 found in Theorem 1.4-1 thus express that
the Riemann curvature tensor of the set Θ(Ω) (equipped with the metric tensor
with covariant components gij) vanishes.

1.6 EXISTENCE OF AN IMMERSION DEFINED ON

AN OPEN SET IN R
3 WITH A PRESCRIBED MET-

RIC TENSOR

Let M
3, S3, and S

3
> denote the sets of all square matrices of order three, of

all symmetric matrices of order three, and of all symmetric positive definite
matrices of order three.

As in Section 1.2, the matrix representing the Fréchet derivative at x ∈ Ω of
a differentiable mapping Θ = (Θ`) : Ω → E3 is denoted

∇Θ(x) := (∂jΘ`(x)) ∈ M
3,

where ` is the row index and j the column index (equivalently, ∇Θ(x) is the
matrix of order three whose j-th column vector is ∂jΘ).

So far, we have considered that we are given an open set Ω ⊂ R3 and a
smooth enough immersion Θ : Ω → E3, thus allowing us to define a matrix field

C = (gij) = ∇ΘT
∇Θ : Ω → S

3
>,

where gij : Ω → R are the covariant components of the metric tensor of the
open set Θ(Ω) ⊂ E3.

We now turn to the reciprocal questions :
Given an open subset Ω of R3 and a smooth enough matrix field C = (gij) :

Ω → S
3
>, when is C the metric tensor field of an open set Θ(Ω) ⊂ E3? Equiva-

lently, when does there exist an immersion Θ : Ω → E3 such that

C = ∇ΘT
∇Θ in Ω,
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or equivalently, such that

gij = ∂iΘ · ∂jΘ in Ω?

If such an immersion exists, to what extent is it unique?
The answers to these questions turn out to be remarkably simple: If Ω is

simply-connected, the necessary conditions

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω

found in Theorem 1.4-1 are also sufficient for the existence of such an immer-

sion. If Ω is connected, this immersion is unique up to isometries in E3.

Whether the immersion found in this fashion is globally injective is a different
issue, which accordingly should be resolved by different means.

This result comprises two essentially distinct parts, a global existence result

(Theorem 1.6-1) and a uniqueness result (Theorem 1.4-1). Note that these two
results are established under different assumptions on the set Ω and on the
smoothness of the field (gij).

In order to put these results in a wider perspective, let us make a brief
incursion into Riemannian Geometry. For detailed treatments, see classic texts
such as Choquet-Bruhat, de Witt-Morette & Dillard-Bleick [1977], Marsden &
Hughes [1983], or Gallot, Hulin & Lafontaine [2004].

Considered as a three-dimensional manifold, an open set Ω ⊂ R3 equipped
with an immersion Θ : Ω → E3 becomes an example of a Riemannian manifold

(Ω; (gij)), i.e., a manifold, the set Ω, equipped with a Riemannian metric, the
symmetric positive-definite matrix field (gij) : Ω → S3

> defined in this case by
gij := ∂iΘ · ∂jΘ in Ω. More generally, a Riemannian metric on a manifold

is a twice covariant, symmetric, positive-definite tensor field acting on vectors
in the tangent spaces to the manifold (these tangent spaces coincide with R

3 in
the present instance).

This particular Riemannian manifold (Ω; (gij)) possesses the remarkable
property that its metric is the same as that of the surrounding space E3. More
specifically, (Ω; (gij)) is isometrically immersed in the Euclidean space E3,
in the sense that there exists an immersion Θ : Ω → E3 that satisfies the rela-
tions gij = ∂iΘ · ∂jΘ. Equivalently, the length of any curve in the Riemannian
manifold (Ω; (gij)) is the same as the length of its image by Θ in the Euclidean
space E3 (see Theorem 1.3-1).

The first question above can thus be rephrased as follows: Given an open

subset Ω of R3 and a positive-definite matrix field (gij) : Ω → S3
>, when is

the Riemannian manifold (Ω; (gij)) flat, in the sense that it can be locally
isometrically immersed in a Euclidean space of the same dimension (three)?

The answer to this question can then be rephrased as follows (compare with
the statement of Theorem 1.6-1 below): Let Ω be a simply-connected open subset

of R3. Then a Riemannian manifold (Ω; (gij)) with a Riemannian metric (gij)
of class C2 in Ω is flat if and only if its Riemannian curvature tensor vanishes

in Ω. Recast as such, this result becomes a special case of the fundamental

theorem on flat Riemannian manifolds, which holds for a general finite-
dimensional Riemannian manifold.
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The answer to the second question, viz., the issue of uniqueness, can be
rephrased as follows (compare with the statement of Theorem 1.7-1 in the next
section): Let Ω be a connected open subset of R

3. Then the isometric immersions

of a flat Riemannian manifold (Ω; (gij)) into a Euclidean space E3 are unique

up to isometries of E3. Recast as such, this result likewise becomes a special
case of the so-called rigidity theorem; cf. Section 1.7.

Recast as such, these two theorems together constitute a special case (that
where the dimensions of the manifold and of the Euclidean space are both equal
to three) of the fundamental theorem of Riemannian Geometry. This
theorem addresses the same existence and uniqueness questions in the more
general setting where Ω is replaced by a p-dimensional manifold and E3 is re-
placed by a (p + q)-dimensional Euclidean space (the “fundamental theorem of
surface theory”, established in Sections 2.8 and 2.9, constitutes another impor-
tant special case). When the p-dimensional manifold is an open subset of Rp,
an outline of a self-contained proof is given in Szopos [2005].

Another fascinating question (which will not be addressed here) is the follow-
ing: Given again an open subset Ω of R3 equipped with a symmetric, positive-
definite matrix field (gij) : Ω → S

3, assume this time that the Riemannian

manifold (Ω; (gij)) is no longer flat, i.e., its Riemannian curvature tensor no
longer vanishes in Ω. Can such a Riemannian manifold still be isometrically

immersed, but this time in a higher-dimensional Euclidean space? Equivalently,
do there exist a Euclidean space Ed with d > 3 and an immersion Θ : Ω → Ed

such that gij = ∂iΘ · ∂jΘ in Ω?

The answer is yes, according to the following beautiful Nash theorem, so
named after Nash [1954]: Any p-dimensional Riemannian manifold equipped

with a continuous metric can be isometrically immersed in a Euclidean space

of dimension 2p with an immersion of class C1; it can also be isometrically

immersed in a Euclidean space of dimension (2p + 1) with a globally injective

immersion of class C1.

Let us now humbly return to the question of existence raised at the beginning
of this section, i.e., when the manifold is an open set in R3.

Theorem 1.6-1. Let Ω be a connected and simply-connected open set in R3

and let C = (gij) ∈ C2(Ω; S3
>) be a matrix field that satisfies

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,

where

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij),

Γp
ij := gpqΓijq with (gpq) := (gij)

−1.

Then there exists an immersion Θ ∈ C3(Ω;E3) such that

C = ∇ΘT
∇Θ in Ω.
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Proof. The proof relies on a simple, yet crucial, observation. When a smooth
enough immersion Θ = (Θ`) : Ω → E3 is a priori given (as it was so far), its
components Θ` satisfy the relations ∂ijΘ` = Γp

ij∂pΘ`, which are nothing but
another way of writing the relations ∂igj = Γp

ijgp (see the proof of Theorem
1.5-1). This observation thus suggests to begin by solving (see part (ii)) the
system of partial differential equations

∂iF`j = Γp
ijF`p in Ω,

whose solutions F`j : Ω → R then constitute natural candidates for the partial
derivatives ∂jΘ` of the unknown immersion Θ = (Θ`) : Ω → E3 (see part (iii)).

To begin with, we establish in (i) relations that will in turn allow us to
re-write the sufficient conditions

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω

in a slightly different form, more appropriate for the existence result of part (ii).
Note that the positive definiteness of the symmetric matrices (gij) is not needed
for this purpose.

(i) Let Ω be an open subset of R3 and let there be given a field (gij) ∈
C2(Ω; S3) of symmetric invertible matrices. The functions Γijq , Γ

p
ij , and gpq

being defined by

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij), Γp

ij := gpqΓijq , (gpq) := (gij)
−1,

define the functions

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp,

Rp
·ijk := ∂jΓ

p
ik − ∂kΓp

ij + Γ`
ikΓp

j` − Γ`
ijΓ

p
k`.

Then

Rp
·ijk = gpqRqijk and Rqijk = gpqR

p
·ijk .

Using the relations

Γjq` + Γ`jq = ∂jgq` and Γikq = gq`Γ
`
ik,

which themselves follow from the definitions of the functions Γijq and Γp
ij , and

noting that
(gpq∂jgq` + gq`∂jg

pq) = ∂j(g
pqgq`) = 0,

we obtain

gpq(∂jΓikq − Γr
ikΓjqr) = ∂jΓ

p
ik − Γikq∂jg

pq − Γ`
ikgpq(∂jgq` − Γ`jq)

= ∂jΓ
p
ik + Γ`

ikΓp
j` − Γ`

ik(gpq∂jgq` + gq`∂jg
pq)

= ∂jΓ
p
ik + Γ`

ikΓp
j`.
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Likewise,
gpq(∂kΓijq − Γr

ijΓkqr) = ∂kΓp
ij − Γ`

ijΓ
p
k`,

and thus the relations Rp
·ijk = gpqRqijk are established. The relations Rqijk =

gpqR
p
·ijk are clearly equivalent to these ones.

We next establish the existence of solutions to the system

∂iF`j = Γp
ijF`p in Ω.

(ii) Let Ω be a connected and simply-connected open subset of R3 and let

there be given functions Γp
ij = Γp

ji ∈ C1(Ω) satisfying the relations

∂jΓ
p
ik − ∂kΓp

ij + Γ`
ikΓp

j` − Γ`
ijΓ

p
k` = 0 in Ω,

which are equivalent to the relations

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,

by part (i).
Let a point x0 ∈ Ω and a matrix (F 0

`j) ∈ M3 be given. Then there exists one,

and only one, field (F`j) ∈ C2(Ω; M3) that satisfies

∂iF`j(x) = Γp
ij(x)F`p(x), x ∈ Ω,

F`j(x
0) = F 0

`j .

Let x1 be an arbitrary point in the set Ω, distinct from x0. Since Ω is
connected, there exists a path γ = (γi) ∈ C1([0, 1]; R3) joining x0 to x1 in Ω;
this means that

γ(0) = x0, γ(1) = x1, and γ(t) ∈ Ω for all 0 ≤ t ≤ 1.

Assume that a matrix field (F`j) ∈ C1(Ω; M3) satisfies ∂iF`j(x) = Γp
ij(x)F`p(x),

x ∈ Ω. Then, for each integer ` ∈ {1, 2, 3}, the three functions ζj ∈ C1([0, 1])
defined by (for simplicity, the dependence on ` is dropped)

ζj(t) := F`j(γ(t)), 0 ≤ t ≤ 1,

satisfy the following Cauchy problem for a linear system of three ordinary dif-

ferential equations with respect to three unknowns :

dζj

dt
(t) = Γp

ij(γ(t))
dγi

dt
(t)ζp(t), 0 ≤ t ≤ 1,

ζj(0) = ζ0
j ,

where the initial values ζ0
j are given by

ζ0
j := F 0

`j .
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Note in passing that the three Cauchy problems obtained by letting ` = 1, 2,
or 3 only differ by their initial values ζ0

j .
It is well known that a Cauchy problem of the form (with self-explanatory

notations)

dζ

dt
(t) = A(t)ζ(t), 0 ≤ t ≤ 1,

ζ(0) = ζ0,

has one and only one solution ζ ∈ C1([0, 1]; R3) if A ∈ C0([0, 1]; M3) (see, e.g.,
Schwartz [1992, Theorem 4.3.1, p. 388]). Hence each one of the three Cauchy
problems has one and only one solution.

Incidentally, this result already shows that, if it exists, the unknown field

(F`j) is unique.

In order that the three values ζj(1) found by solving the above Cauchy
problem for a given integer ` ∈ {1, 2, 3} be acceptable candidates for the three
unknown values F`j(x

1), they must be of course independent of the path chosen

for joining x0 to x1.
So, let γ0 ∈ C1([0, 1]; R3) and γ1 ∈ C1([0, 1]; R3) be two paths joining x0

to x1 in Ω. The open set Ω being simply-connected, there exists a homotopy

G = (Gi) : [0, 1] × [0, 1] → R3 joining γ0 to γ1 in Ω, i.e., such that

G(·, 0) = γ0, G(·, 1) = γ1, G(t, λ) ∈ Ω for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1,

G(0, λ) = x0 and G(1, λ) = x1 for all 0 ≤ λ ≤ 1,

and smooth enough in the sense that

G ∈ C1([0, 1] × [0, 1]; R3) and
∂

∂t

(∂G

∂λ

)
=

∂

∂λ

(∂G

∂t

)
∈ C0([0, 1]× [0, 1]; R3).

Let ζ(·, λ) = (ζj(·, λ)) ∈ C1([0, 1]; R3) denote for each 0 ≤ λ ≤ 1 the solution
of the Cauchy problem corresponding to the path G(·, λ) joining x0 to x1. We
thus have

∂ζj

∂t
(t, λ) = Γp

ij(G(t, λ))
∂Gi

∂t
(t, λ)ζp(t, λ) for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1,

ζj(0, λ) = ζ0
j for all 0 ≤ λ ≤ 1.

Our objective is to show that

∂ζj

∂λ
(1, λ) = 0 for all 0 ≤ λ ≤ 1,

as this relation will imply that ζj(1, 0) = ζj(1, 1), as desired. For this purpose,
a direct differentiation shows that, for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1,

∂

∂λ

(∂ζj

∂t

)
= {Γq

ijΓ
p
kq + ∂kΓp

ij}ζp
∂Gk

∂λ

∂Gi

∂t
+ Γp

ijζp
∂

∂λ

(∂Gi

∂t

)
+ σqΓ

q
ij

∂Gi

∂t
,
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where

σj :=
∂ζj

∂λ
− Γp

kjζp
∂Gk

∂λ
,

on the one hand (in the relations above and below, Γq
ij , ∂kΓp

ij , etc., stand for
Γq

ij(G(·, ·)), ∂kΓp
ij(G(·, ·)), etc.).

On the other hand, a direct differentiation of the equation defining the func-
tions σj shows that, for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1,

∂

∂t

(∂ζj

∂λ

)
=

∂σj

∂t
+

{
∂iΓ

p
kj

∂Gi

∂t
ζp + Γq

kj

∂ζq

∂t

}∂Gk

∂λ
+ Γp

ijζp
∂

∂t

(∂Gi

∂λ

)
.

But
∂ζj

∂t
= Γp

ij

∂Gi

∂t
ζp, so that we also have

∂

∂t

(∂ζj

∂λ

)
=

∂σj

∂t
+ {∂iΓ

p
kj + Γq

kjΓ
p
iq}ζp

∂Gi

∂t

∂Gk

∂λ
+ Γp

ijζp
∂

∂t

(∂Gi

∂λ

)
.

Hence, subtracting the above relations and noting that
∂

∂λ

(∂ζj

∂t

)
=

∂

∂t

(∂ζj

∂λ

)

and
∂

∂λ

(∂Gi

∂t

)
=

∂

∂t

(∂Gi

∂λ

)
by assumption, we infer that

∂σj

∂t
+ {∂iΓ

p
kj − ∂kΓp

ij + Γq
kjΓ

p
iq − Γq

ijΓ
p
kq}ζp

∂Gk

∂λ

∂Gi

∂t
− Γq

ij

∂Gi

∂t
σq = 0.

The assumed symmetries Γp
ij = Γp

ji combined with the assumed relations

∂jΓ
p
ik − ∂kΓp

ij + Γ`
ikΓp

j` − Γ`
ijΓ

p
k` = 0 in Ω show that

∂iΓ
p
kj − ∂kΓp

ij + Γq
kjΓ

p
iq − Γq

ijΓ
p
kq = 0,

on the one hand. On the other hand,

σj(0, λ) =
∂ζj

∂λ
(0, λ) − Γp

kj(G(0, λ))ζp(0, λ)
∂Gk

∂λ
(0, λ) = 0,

since ζ0
j (0, λ) = ζ0

j and G(0, λ) = x0 for all 0 ≤ λ ≤ 1. Therefore, for any
fixed value of the parameter λ ∈ [0, 1], each function σj(·, λ) satisfies a Cauchy

problem for an ordinary differential equation, viz.,

dσj

dt
(t, λ) = Γq

ij(G(t, λ))
∂Gi

∂t
(t, λ)σq(t, λ), 0 ≤ t ≤ 1,

σj(0, λ) = 0.

But the solution of such a Cauchy problem is unique; hence σj(t, λ) = 0 for
all 0 ≤ t ≤ 1. In particular then,

σj(1, λ) =
∂ζj

∂π
(1, λ) − Γp

kj(G(1, λ))ζp(1, λ)
∂Gk

∂π
(1, λ)

= 0 for all 0 ≤ λ ≤ 1,
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and thus
∂ζj

∂λ
(1, λ) = 0 for all 0 ≤ λ ≤ 1, since G(1, λ) = x1 for all 0 ≤ λ ≤ 1.

For each integer `, we may thus unambiguously define a vector field (F`j) :
Ω → R3 by letting

F`j(x
1) := ζj(1) for any x1 ∈ Ω,

where γ ∈ C1([0, 1]; R3) is any path joining x0 to x1 in Ω and the vector field
(ζj) ∈ C1([0, 1]) is the solution to the Cauchy problem

dζj

dt
(t) = Γp

ij(γ(t))
dγi

dt
(t)ζp(t), 0 ≤ t ≤ 1,

ζj(0) = ζ0
j ,

corresponding to such a path.
To establish that such a vector field is indeed the `-th row-vector field of the

unknown matrix field we are seeking, we need to show that (F`j)
3
j=1 ∈ C1(Ω; R3)

and that this field does satisfy the partial differential equations ∂iF`j = Γp
ijF`p

in Ω corresponding to the fixed integer ` used in the above Cauchy problem.
Let x be an arbitrary point in Ω and let the integer i ∈ {1, 2, 3} be fixed in

what follows. Then there exist x1 ∈ Ω, a path γ ∈ C1([0, 1]; R3) joining x0 to
x1, τ ∈ ]0, 1[, and an open interval I ⊂ [0, 1] containing τ such that

γ(t) = x + (t − τ)ei for t ∈ I,

where ei is the i-th basis vector in R3. Since each function ζj is continuously

differentiable in [0, 1] and satisfies
dζj

dt
(t) = Γp

ij(γ(t))
dγi

dt
(t)ζp(t) for all 0 ≤ t ≤

1, we have

ζj(t) = ζj(τ) + (t − τ)
dζj

dt
(τ) + o(t − τ)

= ζj(τ) + (t − τ)Γp
ij (γ(τ))ζp(τ) + o(t − τ)

for all t ∈ I . Equivalently,

F`j(x + (t − τ)ei) = F`j(x) + (t − τ)Γp
ij(x)F`p(x) + o(t − x).

This relation shows that each function F`j possesses partial derivatives in
the set Ω, given at each x ∈ Ω by

∂iF`p(x) = Γp
ij(x)F`p(x).

Consequently, the matrix field (F`j) is of class C1 in Ω (its partial derivatives are
continuous in Ω) and it satisfies the partial differential equations ∂iF`j = Γp

ijF`p

in Ω, as desired. Differentiating these equations shows that the matrix field
(F`j) is in fact of class C2 in Ω.

In order to conclude the proof of the theorem, it remains to adequately
choose the initial values F 0

`j at x0 in step (ii).
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(iii) Let Ω be a connected and simply-connected open subset of R3 and let

(gij) ∈ C2(Ω; S3
>) be a matrix field satisfying

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,

the functions Γijq , Γ
p
ij , and gpq being defined by

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij), Γp

ij := gpqΓijq , (gpq) := (gij)
−1.

Given an arbitrary point x0 ∈ Ω, let (F 0
`j) ∈ S3

> denote the square root of

the matrix (g0
ij) := (gij(x

0)) ∈ S3
>.

Let (F`j) ∈ C2(Ω; M3) denote the solution to the corresponding system

∂iF`j(x) = Γp
ij(x)F`p(x), x ∈ Ω,

F`j(x
0) = F 0

`j ,

which exists and is unique by parts (i) and (ii). Then there exists an immersion

Θ = (Θ`) ∈ C3(Ω;E3) such that

∂jΘ` = F`j and gij = ∂iΘ · ∂jΘ in Ω.

To begin with, we show that the three vector fields defined by

gj := (F`j)
3
`=1 ∈ C2(Ω; R3)

satisfy

gi · gj = gij in Ω.

To this end, we note that, by construction, these fields satisfy

∂igj = Γp
ijgp in Ω,

gj(x
0) = g0

j ,

where g0
j is the j-th column vector of the matrix (F 0

`j) ∈ S3
>. Hence the matrix

field (gi · gj) ∈ C2(Ω; M3) satisfies

∂k(gi · gj) = Γm
kj(gm · gi) + Γm

ki(gm · gj) in Ω,

(gi · gj)(x
0) = g0

ij .

The definitions of the functions Γijq and Γp
ij imply that

∂kgij = Γikj + Γjki and Γijq = gpqΓ
p
ij .

Hence the matrix field (gij) ∈ C2(Ω; S3
>) satisfies

∂kgij = Γm
kjgmi + Γm

kigmj in Ω,

gij(x
0) = g0

ij .
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Viewed as a system of partial differential equations, together with initial
values at x0, with respect to the matrix field (gij) : Ω → M3, the above system
can have at most one solution in the space C2(Ω; M3).

To see this, let x1 ∈ Ω be distinct from x0 and let γ ∈ C1([0, 1]; R3) be any
path joining x0 to x1 in Ω, as in part (ii). Then the nine functions gij(γ(t)),
0 ≤ t ≤ 1, satisfy a Cauchy problem for a linear system of nine ordinary
differential equations and this system has at most one solution.

An inspection of the two above systems therefore shows that their solutions
are identical, i.e., that gi · gj = gij .

It remains to show that there exists an immersion Θ ∈ C3(Ω;E3) such that

∂iΘ = gi in Ω,

where gi := (F`j)
3
`=1.

Since the functions Γp
ij satisfy Γp

ij = Γp
ji, any solution (F`j) ∈ C2(Ω; M3) of

the system

∂iF`j(x) = Γp
ij(x)F`p(x), x ∈ Ω,

F`j(x
0) = F 0

`j

satisfies
∂iF`j = ∂jF`i in Ω.

The open set Ω being simply-connected, Poincaré’s theorem (for a proof, see,
e.g., Schwartz [1992, Vol. 2, Theorem 59 and Corollary 1, p. 234–235]) shows
that, for each integer `, there exists a function Θ` ∈ C3(Ω) such that

∂iΘ` = F`i in Ω,

or, equivalently, such that the mapping Θ := (Θ`) ∈ C3(Ω;E3) satisfies

∂iΘ = gi in Ω.

That Θ is an immersion follows from the assumed invertibility of the matrices
(gij). The proof is thus complete. �

Remarks. (1) The assumptions

∂jΓ
p
ik − ∂kΓp

ij + Γ`
ikΓp

j` − Γ`
ijΓ

p
k` = 0 in Ω,

made in part (ii) on the functions Γp
ij = Γp

ji are thus sufficient conditions for
the equations ∂iF`j = Γp

ijF`p in Ω to have solutions. Conversely, a simple
computation shows that they are also necessary conditions, simply expressing
that, if these equations have a solution, then necessarily ∂ikF`j = ∂kiF`j in Ω.

It is no surprise that these necessary conditions are of the same nature as
those of Theorem 1.5-1, viz., ∂ikgj = ∂ijgk in Ω.

(2) The assumed positive definiteness of the matrices (gij) is used only in
part (iii), for defining ad hoc initial vectors g0

i . �
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The definitions of the functions Γp
ij and Γijq imply that the functions

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp

satisfy, for all i, j, k, p,

Rqijk = Rjkqi = −Rqikj ,

Rqijk = 0 if j = k or q = i.

These relations in turn imply that the eighty-one sufficient conditions

Rqijk = 0 in Ω for all i, j, k, q ∈ {1, 2, 3},

are satisfied if and only if the six relations

R1212 = R1213 = R1223 = R1313 = R1323 = R2323 = 0 in Ω

are satisfied (as is immediately verified, there are other sets of six relations that
will suffice as well, again owing to the relations satisfied by the functions Rqijk

for all i, j, k, q).
To conclude, we briefly review various extensions of the fundamental exis-

tence result of Theorem 1.6-1. First, a quick look at its proof reveals that it
holds verbatim in any dimension d ≥ 2, i.e., with R3 replaced by Rd and E3 by
a d-dimensional Euclidean space Ed. This extension only demands that Latin
indices and exponents now range in the set {1, 2, . . . , d} and that the sets of ma-
trices M3, S3, and S3

> be replaced by their d-dimensional counterparts Md, Sd,
and Sd

>.
The regularity assumptions on the components gij of the symmetric positive

definite matrix field C = (gij) made in Theorem 1.6-1, viz., that gij ∈ C2(Ω),
can be significantly weakened. More specifically, C. Mardare [2003a] has shown
that the existence theorem still holds if gij ∈ C1(Ω), with a resulting mapping Θ

in the space C2(Ω;Ed); likewise, S. Mardare [2004] has shown that the existence
theorem still holds if gij ∈ W 2,∞

loc (Ω), with a resulting mapping Θ in the space

W 2,∞
loc (Ω;Ed). As expected, the sufficient conditions Rqijk = 0 in Ω of Theorem

1.6-1 are then assumed to hold only in the sense of distributions, viz., as
∫

Ω

{−Γikq∂jϕ + Γijq∂kϕ + Γp
ijΓkqpϕ − Γp

ikΓjqpϕ}dx = 0

for all ϕ ∈ D(Ω).
The existence result has also been extended “up to the boundary of the set

Ω” by Ciarlet & C. Mardare [2004a]. More specifically, assume that the set Ω
satisfies the “geodesic property” (in effect, a mild smoothness assumption on
the boundary ∂Ω, satisfied in particular if ∂Ω is Lipschitz-continuous) and that
the functions gij and their partial derivatives of order ≤ 2 can be extended by
continuity to the closure Ω, the symmetric matrix field extended in this fashion
remaining positive-definite over the set Ω. Then the immersion Θ and its partial
derivatives of order ≤ 3 can be also extended by continuity to Ω.
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Ciarlet & C. Mardare [2004a] have also shown that, if in addition the geodesic
distance is equivalent to the Euclidean distance on Ω (a property stronger than
the “geodesic property”, but again satisfied if the boundary ∂Ω is Lipschitz-
continuous), then a matrix field (gij) ∈ C2(Ω; Sn

>) with a Riemann curvature

tensor vanishing in Ω can be extended to a matrix field (g̃ij) ∈ C2(Ω̃; Sn
>) defined

on a connected open set Ω̃ containing Ω and whose Riemann curvature tensor
still vanishes in Ω̃. This result relies on the existence of continuous extensions
to Ω of the immersion Θ and its partial derivatives of order ≤ 3 and on a deep
extension theorem of Whitney [1934].

1.7 UNIQUENESS UP TO ISOMETRIES OF IMMER-

SIONS WITH THE SAME METRIC TENSOR

In Section 1.6, we have established the existence of an immersion Θ : Ω ⊂ R3 →
E3 giving rise to a set Θ(Ω) with a prescribed metric tensor, provided the given
metric tensor field satisfies ad hoc sufficient conditions. We now turn to the
question of uniqueness of such immersions.

This uniqueness result is the object of the next theorem, aptly called a
rigidity theorem in view of its geometrical interpretation: It asserts that, if
two immersions Θ ∈ C1(Ω;E3) and Θ̃ ∈ C1(Ω;E3) share the same metric tensor

field, then the set Θ̃(Ω) is obtained by subjecting the set Θ(Ω) either to a
rotation (together represented by an orthogonal matrix Q with detQ = 1), or to
a symmetry with respect to a plane followed by a rotation (together represented
by an orthogonal matrix Q with detQ = −1), then by subjecting the rotated
set to a translation (represented by a vector c).

Such a geometric transformation is called a rigid deformation of the set
Θ(Ω), to remind that it indeed corresponds to the idea of a “rigid” one in E3.
It is also an isometry, i.e., a transformation that preserves the distances.

Let O3 denote the set of all orthogonal matrices of order three.

Theorem 1.7-1. Let Ω be a connected open subset of R3 and let Θ ∈ C1(Ω;E3)

and Θ̃ ∈ C1(Ω;E3) be two immersions such that their associated metric tensors

satisfy

∇ΘT
∇Θ = ∇Θ̃

T
∇Θ̃ in Ω.

Then there exist a vector c ∈ E3 and an orthogonal matrix Q ∈ O
3 such

that

Θ(x) = c+ QΘ̃(x) for all x ∈ Ω.

Proof. For convenience, the three-dimensional vector space R3 is identified

throughout this proof with the Euclidean space E3. In particular then, R3 inherits
the inner product and norm of E3. The spectral norm of a matrix A ∈ M3 is
denoted

|A| := sup{|Ab|; b ∈ R
3, |b| = 1}.
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To begin with, we consider the special case where Θ̃ : Ω → E3 = R3 is
the identity mapping. The issue of uniqueness reduces in this case to finding
Θ ∈ C1(Ω;E3) such that

∇Θ(x)T
∇Θ(x) = I for all x ∈ Ω.

Parts (i) to (iii) are devoted to solving these equations.

(i) We first establish that a mapping Θ ∈ C1(Ω;E3) that satisfies

∇Θ(x)T
∇Θ(x) = I for all x ∈ Ω

is locally an isometry: Given any point x0 ∈ Ω, there exists an open neighborhood

V of x0 contained in Ω such that

|Θ(y) −Θ(x)| = |y − x| for all x, y ∈ V.

Let B be an open ball centered at x0 and contained in Ω. Since the set B is
convex, the mean-value theorem (for a proof, see, e.g., Schwartz [1992]) can be
applied. It shows that

|Θ(y) −Θ(x)| ≤ sup
z∈]x,y[

|∇Θ(z)||y − x| for all x, y ∈ B.

Since the spectral norm of an orthogonal matrix is one, we thus have

|Θ(y) −Θ(x)| ≤ |y − x| for all x, y ∈ B.

Since the matrix ∇Θ(x0) is invertible, the local inversion theorem (for a
proof, see, e.g., Schwartz [1992]) shows that there exist an open neighborhood

V of x0 contained in Ω and an open neighborhood V̂ of Θ(x0) in E3 such that

the restriction of Θ to V is a C1-diffeomorphism from V onto V̂ . Besides, there
is no loss of generality in assuming that V is contained in B and that V̂ is
convex (to see this, apply the local inversion theorem first to the restriction of
Θ to B, thus producing a “first” neighborhood V ′ of x0 contained in B, then to
the restriction of the inverse mapping obtained in this fashion to an open ball
V centered at Θ(x0) and contained in Θ(V ′)).

Let Θ−1 : V̂ → V denote the inverse mapping of Θ : V → V̂ . The chain
rule applied to the relation Θ−1(Θ(x)) = x for all x ∈ V then shows that

∇̂Θ−1(x̂) = ∇Θ(x)−1 for all x̂ = Θ(x), x ∈ V.

The matrix ∇̂Θ−1(x̂) being thus orthogonal for all x̂ ∈ V̂ , the mean-value

theorem applied in the convex set V̂ shows that

|Θ−1(ŷ) −Θ−1(x̂)| ≤ |ŷ − x̂| for all x̂, ŷ ∈ V̂ ,

or equivalently, that

|y − x| ≤ |Θ(y) −Θ(x)| for all x, y ∈ V.
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The restriction of the mapping Θ to the open neighborhood V of x0 is thus
an isometry.

(ii) We next establish that, if a mapping Θ ∈ C1(Ω;E3) is locally an isome-

try, in the sense that, given any x0 ∈ Ω, there exists an open neighborhood V
of x0 contained in Ω such that |Θ(y)−Θ(x)| = |y − x| for all x, y ∈ V , then its

derivative is locally constant, in the sense that

∇Θ(x) = ∇Θ(x0) for all x ∈ V.

The set V being that found in (i), let the differentiable function F : V ×V →
R be defined for all x = (xp) ∈ V and all y = (yp) ∈ V by

F (x, y) := (Θ`(y) − Θ`(x))(Θ`(y) − Θ`(x)) − (y` − x`)(y` − x`).

Then F (x, y) = 0 for all x, y ∈ V by (i). Hence

Gi(x, y) :=
1

2

∂F

∂yi
(x, y) =

∂Θ`

∂yi
(y)(Θ`(y) − Θ`(x)) − δi`(y` − x`) = 0

for all x, y ∈ V . For a fixed y ∈ V , each function Gi(·, y) : V → R is differen-
tiable and its derivative vanishes. Consequently,

∂Gi

∂xi
(x, y) = −∂Θ`

∂yi
(y)

∂Θ`

∂xj
(x) + δij = 0 for all x, y ∈ V,

or equivalently, in matrix form,

∇Θ(y)T
∇Θ(x) = I for all x, y ∈ V.

Letting y = x0 in this relation shows that

∇Θ(x) = ∇Θ(x0) for all x ∈ V.

(iii) By (ii), the mapping ∇Θ : Ω → M3 is differentiable and its derivative
vanishes in Ω. Therefore the mapping Θ : Ω → E3 is twice differentiable and

its second Fréchet derivative vanishes in Ω. The open set Ω being connected,
a classical result from differential calculus (see, e.g., Schwartz [1992, Theorem
3.7.10]) shows that the mapping Θ is affine in Ω, i.e., that there exists a vector
c ∈ E3 and a matrix Q ∈ M3 such that

Θ(x) = c+ Qox for all x ∈ Ω.

Since Q = ∇Θ(x0) and ∇Θ(x0)T ∇Θ(x0) = I by assumption, the matrix
Q is orthogonal.

(iv) We now consider the general equations gij = g̃ij in Ω, noting that they
also read

∇Θ(x)T
∇Θ(x) = ∇Θ̃(x)T

∇Θ̃(x) for all x ∈ Ω.
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Given any point x0 ∈ Ω, let the neighborhoods V of x0 and V̂ of Θ(x0)

and the mapping Θ−1 : V̂ → V be defined as in part (i) (by assumption, the
mapping Θ is an immersion; hence the matrix ∇Θ(x0) is invertible).

Consider the composite mapping

Φ̂ := Θ̃ ◦Θ−1 : V̂ → E3.

Clearly, Φ̂ ∈ C1(V̂ ;E3) and

∇̂Φ̂(x̂) = ∇Θ̃(x)∇̂Θ−1(x̂)

= ∇Θ̃(x)∇Θ(x)−1 for all x̂ = Θ(x), x ∈ V.

Hence the assumed relations

∇Θ(x)T
∇Θ(x) = ∇Θ̃(x)T

∇Θ̃(x) for all x ∈ Ω

imply that
∇̂Φ̂(x̂)T

∇̂Φ̂(x̂) = I for all x ∈ V.

By parts (i) to (iii), there thus exist a vector c ∈ R3 and a matrix Q ∈ O3

such that

Φ̂(x̂) = Θ̃(x) = c+ QΘ(x) for all x̂ = Θ(x), x ∈ V,

hence such that

Ξ(x) := ∇Θ̃(x)∇Θ(x)−1 = Q for all x ∈ V.

The continuous mapping Ξ : V → M3 defined in this fashion is thus locally

constant in Ω. As in part (iii), we conclude from the assumed connectedness of
Ω that the mapping Ξ is constant in Ω. Thus the proof is complete. �

The special case where Θ is the identity mapping of R3 identified with E3 is
the classical Liouville theorem. This theorem thus asserts that if a mapping
Θ ∈ C1(Ω;E3) is such that ∇Θ(x) ∈ O3 for all x ∈ Ω where Ω is an open
connected subset of R3, then there exist c ∈ E3 and Q ∈ O3 such that

Θ(x) = c+ Qox for all x ∈ Ω.

Two mappings Θ̃ ∈ C1(Ω;E3) and Θ ∈ C1(Ω;E3) are said to be isometri-

cally equivalent if there exist c ∈ E3 and Q ∈ O3 such that Θ̃ = c+ QΘ in
Ω, i.e., such that Θ̃ = J ◦Θ, where J := c+Q id is thus an isometry. Theorem
1.7-1 thus asserts that two mappings Θ̃ ∈ C1(Ω;E3) and Θ ∈ C1(Ω;E3) share

the same metric tensor field over an open connected subset Ω of R
3 if and only

if they are isometrically equivalent.

Remarks. (1) In terms of covariant components gij of metric tensors, parts (i)
to (iii) of the above proof provide the solution to the equations gij = δij in Ω,
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while part (iv) provides the solution to the equations gij = ∂iΘ̃ · ∂jΘ̃ in Ω,

where Θ̃ ∈ C1(Ω;E3) is a given immersion.
(2) The classical Mazur-Ulam theorem asserts the following: Let Ω be a

connected subset in Rd, and let Θ : Ω → Rd be a mapping that satisfies

|Θ(y) −Θ(x)| = |y − x| for all x, y ∈ Ω.

Then there exist a vector c ∈ R
d and an orthogonal matrix Q of order d such

that

Θ(x) = c+ Qox for all x ∈ Ω.

Parts (ii) and (iii) of the above proof thus provide a proof of this theorem
under the additional assumption that the mapping Θ is of class C1 (the extension
from R3 to Rd is trivial). �

While the immersions Θ found in Theorem 1.6-1 are thus only defined up to
isometries in E3, they become uniquely determined if they are required to satisfy
ad hoc additional conditions, according to the following corollary to Theorems
1.6-1 and 1.7-1.

Theorem 1.7-2. Let the assumptions on the set Ω and on the matrix field C

be as in Theorem 1.6-1, let a point x0 ∈ Ω be given, and let F0 ∈ M3 be any

matrix that satisfies

FT
0 F0 = C(x0).

Then there exists one and only one immersion Θ ∈ C3(Ω;E3) that satisfies

∇Θ(x)T ∇Θ(x) = C(x) for all x ∈ Ω,
Θ(x0) = 0 and ∇Θ(x0) = F0.

Proof. Given any immersion Φ ∈ C3(Ω;E3) that satisfies ∇Φ(x)T ∇Φ(x) =
C(x) for all x ∈ Ω (such immersions exist by Theorem 1.6-1), let the mapping
Θ : Ω → R3 be defined by

Θ(x) := F0∇Φ(x0)
−1(Φ(x) −Φ(x0)) for all x ∈ Ω.

Then it is immediately verified that this mapping Θ satisfies the announced
properties.

Besides, it is uniquely determined. To see this, let Θ ∈ C3(Ω;E3) and
Φ ∈ C3(Ω;E3) be two immersions that satisfy

∇Θ(x)T
∇Θ(x) = ∇Φ(x)T

∇Φ(x) for all x ∈ Ω.

Hence there exist (by Theorem 1.7-1) c ∈ R
3 and Q ∈ O

3 such that Φ(x) =
c+QΘ(x) for all x ∈ Ω, so that ∇Φ(x) = Q∇Θ(x) for all x ∈ Ω. The relation
∇Θ(x0) = ∇Φ(x0) then implies that Q = I and the relation Θ(x0) = Φ(x0)
in turn implies that c = 0. �
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Remark. One possible choice for the matrix F0 is the square root of the
symmetric positive-definite matrix C(x0). �

Theorem 1.7-1 constitutes the “classical” rigidity theorem, in that both im-
mersions Θ and Θ̃ are assumed to be in the space C1(Ω;E3). The next theorem
is an extension, due to Ciarlet & C. Mardare [2003], that covers the case where
one of the mappings belongs to the Sobolev space H1(Ω;E3).

The way the result in part (i) of the next proof is derived is due to Friesecke,
James & Müller [2002]; the result of part (i) itself goes back to Reshetnyak
[1967].

Let O3
+ denote the set of all rotations, i.e., of all orthogonal matrices Q ∈ O3

with detQ = 1.

Theorem 1.7-3. Let Ω be a connected open subset of R3, let Θ ∈ C1(Ω;E3) be

a mapping that satisfies

det ∇Θ > 0 in Ω,

and let Θ̃ ∈ H1(Ω;E3) be a mapping that satisfies

det ∇Θ̃ > 0 a.e. in Ω and ∇ΘT
∇Θ = ∇Θ̃

T
∇Θ̃ a.e. in Ω.

Then there exist a vector c ∈ E3 and a rotation Q ∈ O3
+ such that

Θ̃(x) = c+ QΘ(x) for almost all x ∈ Ω.

Proof. The Euclidean space E3 is identified with the space R3 throughout
the proof.

(i) To begin with, we consider the special case where Θ = idΩ. In other

words, we are given a mapping Θ̃ ∈ H1(Ω) that satisfies ∇Θ̃(x) ∈ O3
+ for

almost all x ∈ Ω. Hence

Cof∇Θ̃(x) = (det ∇Θ̃(x))∇Θ̃(x)−T = ∇Θ̃(x)−T for almost all x ∈ Ω,

on the one hand. Since, on the other hand,

divCof∇Θ̃ = 0 in (D′(B))3

in any open ball B such that B ⊂ Ω (to see this, combine the density of C2(B)
in H1(B) with the classical Piola identity in the space C2(B); for a proof of this
identity, see, e.g., Ciarlet [1988, Theorem 1.7.1]), we conclude that

∆Θ̃ = divCof∇Θ̃ = 0 in (D′(B))3.

Hence Θ̃ = (Θ̃j) ∈ (C∞(Ω))3. For such mappings, the identity

∆(∂iΘ̃j∂iΘ̃j) = 2∂iΘ̃j∂i(∆Θ̃j) + 2∂ikΘ̃j∂ikΘ̃j ,
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together with the relations ∆Θ̃j = 0 and ∂iΘ̃j∂iΘ̃j = 3 in Ω, shows that ∂ikΘ̃j =
0 in Ω. The assumed connectedness of Ω then implies that there exist a vector
c ∈ E3 and a matrix Q ∈ O

3
+ (by assumption, ∇Θ̃(x) ∈ O

3
+ for almost all

x ∈ Ω) such that

Θ̃(x) = c+ Qox for almost all x ∈ Ω.

(ii) We consider next the general case. Let x0 ∈ Ω be given. Since Θ

is an immersion, the local inversion theorem can be applied; there thus exist
bounded open neighborhoods U of x0 and Û of Θ(x0) satisfying U ⊂ Ω and

{Û}− ⊂ Θ(Ω), such that the restriction ΘU of Θ to U can be extended to a

C
1-diffeomorphism from U onto {Û}−.

Let Θ−1
U : Û → U denote the inverse mapping of ΘU , which therefore

satisfies ∇̂Θ−1
U (x̂) = ∇Θ(x)−1 for all x̂ = Θ(x) ∈ Û (the notation ∇̂ indicates

that differentiation is carried out with respect to the variable x̂ ∈ Û). Define
the composite mapping

Φ̂ := Θ̃ ·Θ−1
U : Û → R

3.

Since Θ̃ ∈ H1(U) and Θ−1
U can be extended to a C1-diffeomorphism from {Û}−

onto U , it follows that Φ̂ ∈ H1(Û ; R3) and that

∇̂Φ̂(x̂) = ∇Θ̃(x)∇̂Θ−1
U (x̂) = ∇Θ̃(x)∇Θ(x)−1

for almost all x̂ = Θ(x) ∈ Û (see, e.g., Adams [1975, Chapter 3]). Hence

the assumptions det ∇Θ > 0 in Ω, det ∇Θ̃ > 0 a.e. in Ω, and ∇ΘT
∇Θ =

∇Θ̃
T
∇Θ̃ a.e. in Ω, together imply that ∇̂Φ̂(x̂) ∈ O

3
+ for almost all x̂ ∈ Û . By

(i), there thus exist c ∈ E3 and Q ∈ O3
+ such that

Φ̂(x̂) = Θ̃(x) = c+ Qox̂ for almost all x̂ = Θ(x) ∈ Û ,

or equivalently, such that

Ξ(x) := ∇Θ̃(x)∇Θ(x)−1 = Q for almost all x ∈ U.

Since the point x0 ∈ Ω is arbitrary, this relation shows that Ξ ∈ L1
loc(Ω).

By a classical result from distribution theory (cf. Schwartz [1966, Section 2.6]),
we conclude from the assumed connectedness of Ω that Ξ(x) = Q for almost all
x ∈ Ω, and consequently that

Θ̃(x) = c+ QΘ(x) for almost all x ∈ Ω.

�
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Remarks. (1) The existence of Θ̃ ∈ H1(Ω;E3) satisfying the assumptions of

Theorem 1.7-3 thus implies that Θ ∈ H1(Ω;E3) and Θ̃ ∈ C1(Ω;E3).

(2) If Θ̃ ∈ C1(Ω;E3), the assumptions det ∇Θ > 0 in Ω and det ∇Θ̃ > 0 in
Ω are no longer necessary; but then it can only be concluded that Q ∈ O

3: This
is the classical rigidity theorem (Theorem 1.7-1), of which Liouville’s theorem

is the special case corresponding to Θ = idΩ.
(3) The result established in part (i) of the above proof asserts that, given

a connected open subset Ω of R3, if a mapping Θ ∈ H1(Ω;E3) is such that
∇Θ(x) ∈ O3

+ for almost all x ∈ Ω, then there exist c ∈ E3 and Q ∈ O3
+ such

that Θ(x) = c + Qox for almost all x ∈ Ω. This result thus constitutes a
generalization of Liouville’s theorem.

(4) By contrast, if the mapping Θ̃ is assumed to be instead in the space

H1(Ω;E3) (as in Theorem 1.7-3), an assumption about the sign of det ∇Θ̃

becomes necessary. To see this, let for instance Ω be an open ball centered at the
origin in R3, let Θ(x) = x, and let Θ̃(x) = x if x1 ≥ 0 and Θ̃(x) = (−x1, x2, x3)

if x1 < 0. Then Θ̃ ∈ H1(Ω;E3) and ∇Θ̃ ∈ O
3 a.e. in Ω; yet there does

not exist any orthogonal matrix such that Θ̃(x) = Q ox for all x ∈ Ω, since

Θ̃(Ω) ⊂ {x ∈ R3; x1 ≥ 0} (this counter-example was kindly communicated to
the author by Sorin Mardare).

(5) Surprisingly, the assumption det ∇Θ > 0 in Ω cannot be replaced by
the weaker assumption det ∇Θ > 0 a.e. in Ω. To see this, let for instance Ω
be an open ball centered at the origin in R

3, let Θ(x) = (x1x
2
2, x2, x3) and let

Θ̃(x) = Θ(x) if x2 ≥ 0 and Θ̃(x) = (−x1x
2
2,−x2, x3) if x2 < 0 (this counter-

example was kindly communicated to the author by Hervé Le Dret).
(6) If a mapping Θ ∈ C1(Ω;E3) satisfies det ∇Θ > 0 in Ω, then Θ is an

immersion. Conversely, if Ω is a connected open set and Θ ∈ C1(Ω;E3) is an
immersion, then either det ∇Θ > 0 in Ω or det ∇Θ < 0 in Ω. The assumption
that det ∇Θ > 0 in Ω made in Theorem 1.7-3 is simply intended to fix ideas (a
similar result clearly holds under the other assumption).

(7) A little further ado shows that the conclusion of Theorem 1.7-3 is still

valid if Θ̃ ∈ H1(Ω;E3) is replaced by the weaker assumption Θ̃ ∈ H1
loc(Ω;E3).

�

Like the existence results of Section 1.6, the uniqueness theorems of this
section hold verbatim in any dimension d ≥ 2, with R3 replaced by Rd and Ed

by a d-dimensional Euclidean space.

1.8 CONTINUITY OF AN IMMERSION AS A FUNC-

TION OF ITS METRIC TENSOR

Let Ω be a connected and simply-connected open subset of R3. Together, The-
orems 1.6-1 and 1.7-1 establish the existence of a mapping F that associates
with any matrix field C = (gij) ∈ C2(Ω; S3

>) satisfying

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,
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where the functions Γijq and Γp
ij are defined in terms of the functions gij as in

Theorem 1.6-1, a well-defined element F(C) in the quotient set C3(Ω;E3)/R,

where (Θ, Θ̃) ∈ R means that there exist a vector a ∈ E3 and a matrix Q ∈ O3

such that Θ(x) = a+ QΘ̃(x) for all x ∈ Ω.

A natural question thus arises as to whether there exist natural topologies on
the space C2(Ω; S3) and on the quotient set C3(Ω;E3)/R such that the mapping
F defined in this fashion is continuous.

Equivalently, is an immersion a continuous function of its metric tensor?

The object of this section, which is based on Ciarlet & Laurent [2003], is to
provide an affirmative answer to this question (see Theorem 1.8-5).

Note that such a question is not only clearly relevant to differential geome-
try per se, but it also naturally arises in nonlinear three-dimensional elasticity,
where a smooth enough immersion Θ : Ω → E3 may be thought of as a defor-

mation of the set Ω viewed as a reference configuration of a nonlinearly elastic

body (although such an immersion should then be in addition injective and
orientation-preserving in order to qualify for this definition; for details, see, e.g.,
Ciarlet [1988, Section 1.4] or Antman [1995, Section 12.1]). In this context, the
associated matrix

C(x) = (gij(x)) = ∇Θ(x)T
∇Θ(x),

is called the (right) Cauchy-Green tensor at x and the matrix

∇Θ(x) = (∂jΘi(x)) ∈ M
3,

representing the Fréchet derivative of the mapping Θ at x, is called the defor-

mation gradient at x.

The Cauchy-Green tensor field C = ∇ΘT
∇Θ : Ω → S3

> associated with a
deformation Θ : Ω → E3 plays a major role in the theory of nonlinear three-
dimensional elasticity, since the response function, or the stored energy function,
of a frame-indifferent elastic, or hyperelastic, material necessarily depends on
the deformation gradient through the Cauchy-Green tensor (see, e.g., Ciarlet
[1988, Chapters 3 and 4]. As already suggested by Antman [1976], the Cauchy-
Green tensor field of the unknown deformed configuration could thus also be
regarded as the “primary” unknown rather than the deformation itself as is
customary.

To begin with, we list some specific notations that will be used in this section
for addressing the question raised above. Given a matrix A ∈ M3, we let ρ(A)
denote its spectral radius and we let

|A| := sup
b∈R

3

b6=0

|Ab|
|b| = {ρ(AT A)}1/2

denote its spectral norm.
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Let Ω be an open subset of R3. The notation K b Ω means that K is
a compact subset of Ω. If g ∈ C`(Ω; R), ` ≥ 0, and K b Ω, we define the
semi-norms

|g|`,K = sup
x∈K
|α|=`

|∂αg(x)| and ‖g‖`,K = sup
x∈K
|α|≤`

|∂αg(x)|,

where ∂α stands for the standard multi-index notation for partial derivatives.
If Θ ∈ C`(Ω;E3) or A ∈ C`(Ω; M3), ` ≥ 0, and K b Ω, we likewise set

|Θ|`,K = sup
x∈K
|α|=`

|∂αΘ(x)| and ‖Θ‖`,K = sup
x∈K
|α|≤`

|∂αΘ(x)|,

|A|`,K = sup
x∈K
|α|=`

|∂αA(x)| and ‖A‖`,K = sup
x∈K
|α|≤`

|∂αA(x)|,

where |·| denotes either the Euclidean vector norm or the matrix spectral norm.
The next sequential continuity results (Theorems 1.8-1, 1.8-2, and 1.8-3)

constitute key steps toward establishing the continuity of the mapping F (see
Theorem 1.8-5). Note that the functions Rn

qijk occurring in their statements are
meant to be constructed from the functions gn

ij in the same way that the func-
tions Rqijk are constructed from the functions gij . To begin with, we establish
the sequential continuity of the mapping F at C = I.

Theorem 1.8-1. Let Ω be a connected and simply-connected open subset of

R3. Let Cn = (gn
ij) ∈ C2(Ω; S3

>), n ≥ 0, be matrix fields satisfying Rn
qijk = 0 in

Ω, n ≥ 0, such that

lim
n→∞

‖Cn − I‖2,K = 0 for all K b Ω.

Then there exist mappings Θn ∈ C3(Ω;E3) satisfying (∇Θn)T ∇Θn = Cn in

Ω, n ≥ 0, such that

lim
n→∞

‖Θn − id‖3,K = 0 for all K b Ω

where id denotes the identity mapping of R3, identified here with E3.

Proof. The proof is broken into four parts, numbered (i) to (iv). The first
part is a preliminary result about matrices (for convenience, it is stated here for
matrices of order three, but it holds as well for matrices of arbitrary order).

(i) Let matrices An ∈ M3, n ≥ 0, satisfy

lim
n→∞

(An)T An = I.

Then there exist matrices Qn ∈ O3, n ≥ 0, that satisfy

lim
n→∞

QnAn = I.
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Since the set O3 is compact, there exist matrices Qn ∈ O3, n ≥ 0, such that

|QnAn − I| = inf
R∈O3

|RAn − I|.

We assert that the matrices Qn defined in this fashion satisfy limn→∞ QnAn =
I. For otherwise, there would exist a subsequence (Qp)p≥0 of the sequence
(Qn)n≥0 and δ > 0 such that

|QpAp − I| = inf
R∈O3

|RAp − I| ≥ δ for all p ≥ 0.

Since

lim
p→∞

|Ap| = lim
p→∞

√
ρ((Ap)T Ap) =

√
ρ(I) = 1,

the sequence (Ap)p≥0 is bounded. Therefore there exists a further subsequence
(Aq)q≥0 that converges to a matrix S, which is orthogonal since

ST S = lim
q→∞

(Aq)T Aq = I.

But then

lim
q→∞

ST Aq = ST S = I,

which contradicts infR∈O3 |RAq − I| ≥ δ for all q ≥ 0. This proves (i).

In the remainder of this proof, the matrix fields Cn, n ≥ 0, are meant to be
those appearing in the statement of Theorem 1.8-1.

(ii) Let mappings Θn ∈ C3(Ω;E3), n ≥ 0, satisfy (∇Θn)T ∇Θn = Cn in Ω
(such mappings exist by Theorem 1.6-1). Then

lim
n→∞

|Θn − id|`,K = lim
n→∞

|Θn|`,K = 0 for all K b Ω and for ` = 2, 3.

As usual, given any immersion Θ ∈ C3(Ω;E3), let gi = ∂iΘ, let gij = gi ·gj ,
and let the vectors gq be defined by the relations gi · gq = δq

i . It is then
immediately verified that

∂ijΘ = ∂igj = (∂igj · gq)g
q =

1

2
(∂jgiq + ∂igjq − ∂qgij)g

q .

Applying this relation to the mappings Θn thus gives

∂ijΘ
n =

1

2
(∂jg

n
iq + ∂ig

n
jq − ∂qg

n
ij)(g

q)n, n ≥ 0,

where the vectors (gq)n are defined by means of the relations ∂iΘ
n · (gq)n = δq

i .
Let K denote an arbitrary compact subset of Ω. On the one hand,

lim
n→∞

|∂jg
n
iq + ∂ig

n
jq − ∂qg

n
ij |0,K = 0,
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since limn→∞ |gn
ij |1,K = limn→∞ |gn

ij − δij |1,K = 0 by assumption. On the other
hand, the norms |(gq)n|0,K are bounded independently of n ≥ 0; to see this,
observe that (gq)n is the q-th column vector of the matrix (∇Θn)−1, then that

|(∇Θn)−1|0,K = |{ρ((∇Θn)−T (∇Θn)−1)}1/2|0,K

= |{ρ((gn
ij)

−1)}1/2|0,K ≤ {|(gn
ij)

−1|0,K}1/2,

and, finally, that

lim
n→∞

|(gn
ij) − I|0,K = 0 =⇒ lim

n→∞
|(gn

ij)
−1 − I|0,K = 0.

Consequently,

lim
n→∞

|Θn − id|2,K = lim
n→∞

|Θn|2,K = 0 for all K b Ω.

Differentiating the relations ∂igj · gq = 1
2 (∂jgiq + ∂igjq − ∂qgij) yields

∂ijpΘ = ∂ipgj = (∂ipgj · gq)g
q

=
(1

2
(∂jpgiq + ∂ipgjq − ∂pqgij) − ∂igj · ∂pgq

)
gq.

Observing that limn→∞ |gn
ij |`,K = limn→∞ |gn

ij − δij |`,K = 0 for ` = 1, 2 by
assumption and recalling that the norms |(gq)n|0,K are bounded independently
of n ≥ 0, we likewise conclude that

lim
n→∞

|Θn − id|3,K = lim
n→∞

|Θn|3,K = 0 for all K b Ω.

(iii) There exist mappings Θ̃
n ∈ C3(Ω;E3) that satisfy (∇Θ̃

n
)T ∇Θ̃

n
= Cn

in Ω, n ≥ 0, and

lim
n→∞

|Θ̃n − id|1,K = 0 for all K b Ω.

Let ψn ∈ C3(Ω;E3) be mappings that satisfy (∇ψn)T ∇ψn = Cn in Ω,
n ≥ 0 (such mappings exist by Theorem 1.6-1), and let x0 denote a point in the
set Ω. Since limn→∞ ∇ψn(x0)

T ∇ψn(x0) = I by assumption, part (i) implies
that there exist orthogonal matrices Qn(x0), n ≥ 0, such that

lim
n→∞

Qn(x0)∇ψ
n(x0) = I.

Then the mappings Θ̃
n ∈ C3(Ω;E3), n ≥ 0, defined by

Θ̃
n
(x) := Qn(x0)ψ

n(x), x ∈ Ω,

satisfy

(∇Θ̃
n
)T

∇Θ̃
n

= Cn in Ω,
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so that their gradients ∇Θ̃
n ∈ C2(Ω; M3) satisfy

lim
n→∞

|∂i∇Θ̃
n|0,K = lim

n→∞
|Θ̃n|2,K = 0 for all K b Ω,

by part (ii). In addition,

lim
n→∞

∇Θ̃
n
(x0) = lim

n→∞
Qn

∇ψn(x0) = I.

Hence a classical theorem about the differentiability of the limit of a sequence
of mappings that are continuously differentiable on a connected open set and
that take their values in a Banach space (see, e.g., Schwartz [1992, Theorem

3.5.12]) shows that the mappings ∇Θ̃
n

uniformly converge on every compact

subset of Ω toward a limit R ∈ C1(Ω; M3) that satisfies

∂iR(x) = lim
n→∞

∂i∇Θ̃
n
(x) = 0 for all x ∈ Ω.

This shows that R is a constant mapping since Ω is connected. Consequently,

R = I since in particular R(x0) = limn→∞ ∇Θ̃
n
(x0) = I. We have therefore

established that

lim
n→∞

|Θ̃n − id|1,K = lim
n→∞

|∇Θ̃
n − I|0,K = 0 for all K b Ω.

(iv) There exist mappings Θn ∈ C3(Ω;E3) satisfying (∇Θn)T ∇Θn = Cn

in Ω, n ≥ 0, and

lim
n→∞

|Θn − id|`,K = 0 for all K b Ω and for ` = 0, 1.

The mappings

Θn :=
(
Θ̃

n − {Θ̃n
(x0) − x0}

)
∈ C3(Ω;E3), n ≥ 0,

clearly satisfy

(∇Θn)T
∇Θn = Cn in Ω, n ≥ 0,

lim
n→∞

|Θn − id|1,K = lim
n→∞

|∇Θn − I|0,K = 0 for all K b Ω,

Θn(x0) = x0, n ≥ 0.

Again applying the theorem about the differentiability of the limit of a se-
quence of mappings used in part (iii), we conclude from the last two relations
that the mappings Θn uniformly converge on every compact subset of Ω toward
a limit Θ ∈ C1(Ω;E3) that satisfies

∇Θ(x) = lim
n→∞

∇Θn(x) = I for all x ∈ Ω.
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This shows that (Θ − id) is a constant mapping since Ω is connected. Conse-
quently, Θ = id since in particular Θ(x0) = limn→∞ Θn(x0) = x0. We have
thus established that

lim
n→∞

|Θn − id|0,K = 0 for all K b Ω.

This completes the proof of Theorem 1.8-1. �

We next establish the sequential continuity of the mapping F at those matrix
fields C ∈ C2(Ω; S3

>) that can be written as C = ∇ΘT
∇Θ with an injective

mapping Θ ∈ C3(Ω;E3).

Theorem 1.8-2. Let Ω be a connected and simply-connected open subset of R3.

Let C = (gij) ∈ C2(Ω; S3
>) and Cn = (gn

ij) ∈ C2(Ω; S3
>), n ≥ 0, be matrix fields

satisfying respectively Rqijk = 0 in Ω and Rn
qijk = 0 in Ω, n ≥ 0, such that

lim
n→∞

‖Cn −C‖2,K = 0 for all K b Ω.

Assume that there exists an injective mapping Θ ∈ C3(Ω;E3) such that

∇ΘT
∇Θ = C in Ω. Then there exist mappings Θn ∈ C3(Ω;E3) satisfying

(∇Θn)T ∇Θn = Cn in Ω, n ≥ 0, such that

lim
n→∞

‖Θn −Θ‖3,K = 0 for all K b Ω.

Proof. The assumptions made on the mapping Θ : Ω ⊂ R3 → E3 imply that
the set Ω̂ := Θ(Ω) ⊂ E3 is open, connected, and simply-connected, and that

the inverse mapping Θ̂ : Ω̂ ⊂ E3 → R3 belongs to the space C3(Ω̂; R3). Define

the matrix fields (ĝn
ij) ∈ C2(Ω̂; S3

>), n ≥ 0, by letting

(ĝn
ij(x̂)) := ∇Θ(x)−T (gn

ij(x))∇Θ(x)−1 for all x̂ = Θ(x) ∈ Ω̂.

Given any compact subset K̂ of Ω̂, let K := Θ̂(K̂). Since limn→∞ ‖gn
ij −

gij‖2,K = 0 because K is a compact subset of Ω, the definition of the functions

ĝn
ij : Ω̂ → R and the chain rule together imply that

lim
n→∞

‖ĝn
ij − δij‖2, bK = 0.

Given x̂ = (x̂i) ∈ Ω̂, let ∂̂i = ∂/∂x̂i. Let R̂n
qijk denote the functions con-

structed from the functions ĝn
ij in the same way that the functions Rqijk are

constructed from the functions gij . Since it is easily verified that these func-

tions satisfy R̂n
qijk = 0 in Ω̂, Theorem 1.8-1 applied over the set Ω̂ shows that

there exist mappings Θ̂
n ∈ C3(Ω̂;E3) satisfying

∂̂iΘ̂
n · ∂̂jΘ̂

n
= ĝn

ij in Ω̂, n ≥ 0,

such that
lim

n→∞
‖Θ̂n − îd‖3, bK = 0 for all K̂ b Ω̂,
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where îd denotes the identity mapping of E3, identified here with R3. Define
the mappings Θn ∈ C3(Ω; S3

>), n ≥ 0, by letting

Θn(x) = Θ̂
n
(x̂) for all x = Θ̂(x̂) ∈ Ω.

Given any compact subset K of Ω, let K̂ := Θ(K). Since limn→∞ ‖Θ̂n −
îd‖3, bK = 0, the definition of the mappings Θn and the chain rule together
imply that

lim
n→∞

‖Θn −Θ‖3,K = 0,

on the one hand. Since, on the other hand, (∇Θn)T ∇Θn = Cn in Ω, the proof
is complete. �

We are now in a position to establish the sequential continuity of the mapping
F at any matrix field C ∈ C2(Ω; S3

>) that can be written as C = ∇ΘT
∇Θ with

Θ ∈ C3(Ω; E3).

Theorem 1.8-3. Let Ω be a connected and simply-connected open subset of R3.

Let C = (gij) ∈ C2(Ω; S3
>) and Cn = (gn

ij) ∈ C2(Ω, S3
>), n ≥ 0, be matrix fields

respectively satisfying Rqijk = 0 in Ω and Rn
qijk = 0 in Ω, n ≥ 0, such that

lim
n→∞

‖Cn −C‖2,K = 0 for all K b Ω.

Let Θ ∈ C3(Ω;E3) be any mapping that satisfies ∇ΘT
∇Θ = C in Ω (such

mappings exist by Theorem 1.6-1). Then there exist mappings Θn ∈ C3(Ω;E3)
satisfying (∇Θn)T ∇Θn = Cn in Ω, n ≥ 0, such that

lim
n→∞

‖Θn −Θ‖3,K = 0 for all K b Ω.

Proof. The proof is broken into four parts. In what follows, C and Cn

designate matrix fields possessing the properties listed in the statement of the
theorem.

(i) Let Θ ∈ C3(Ω;E3) be any mapping that satisfies ∇ΘT
∇Θ = C in Ω.

Then there exist a countable number of open balls Br ⊂ Ω, r ≥ 1, such that

Ω =
⋃∞

r=1 Br and such that, for each r ≥ 1, the set
⋃r

s=1 Bs is connected and

the restriction of Θ to Br is injective.

Given any x ∈ Ω, there exists an open ball Vx ⊂ Ω such that the restriction
of Θ to Vx is injective. Since Ω =

⋃
x∈Ω Vx can also be written as a countable

union of compact subsets of Ω, there already exist countably many such open
balls, denoted Vr , r ≥ 1, such that Ω =

⋃∞
r=1 Vr.

Let r1 := 1, B1 := Vr1
, and r2 := 2. If the set Br1

∪ Vr2
is connected,

let B2 := Vr2
and r3 := 3. Otherwise, there exists a path γ1 in Ω joining

the centers of Vr1
and Vr2

since Ω is connected. Then there exists a finite set
I1 = {r1(1), r1(2), · · · , r1(N1)} of integers, with N1 ≥ 1 and 2 < r1(1) < r1(2) <
· · · < r1(N1), such that

γ1 ⊂ Vr1
∪ Vr2

∪
( ⋃

r∈I1

Vr

)
.
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Furthermore there exists a permutation σ1 of {1, 2, . . . , N1} such that the sets

Vr1
∪ (

⋃r
s=1 Vσ1(s)), 1 ≤ r ≤ N1, and Vr1

∪ (
⋃N1

s=1 Vσ1(s)) ∪ Vr2
are connected.

Let

Br := Vσ1(r−1), 2 ≤ r ≤ N1 + 1, BN1+2 := Vr2
,

r3 := min
{
i ∈ {σ1(1), . . . , σ1(N1)}; i ≥ 3

}
.

If the set (
⋃N1+2

r=1 Br)∪Vr3
is connected, let BN1+3 := Vr3

. Otherwise, apply
the same argument as above to a path γ2 in Ω joining the centers of Vr2

and
Vr3

, and so forth.
The iterative procedure thus produces a countable number of open balls

Br, r ≥ 1, that possess the announced properties. In particular, Ω =
⋃∞

r=1 Br

since, by construction, the integer ri appearing at the i-th stage satisfies ri ≥ i.

(ii) By Theorem 1.8-2, there exist mappings Θn
1 ∈ C3(B1;E

3) and Θ̃
n

2 ∈
C3(B2;E

3), n ≥ 0, that satisfy

(∇Θn
1 )T ∇Θn

1 = Cn in B1 and lim
n→∞

‖Θn
1 −Θ‖3,K = 0 for all K b B1,

(∇Θ̃
n

2 )T ∇Θ̃
n

2 = Cn in B2 and lim
n→∞

‖Θ̃n

2 −Θ‖3,K = 0 for all K b B2,

and by Theorem 1.7-1, there exist vectors cn ∈ E3 and matrices Qn ∈ O3, n ≥ 0,
such that

Θ̃
n

2 (x) = cn + QnΘn
1 (x) for all x ∈ B1 ∩ B2.

Then we assert that

lim
n→∞

cn = 0 and lim
n→∞

Qn = I.

Let (Qp)p≥0 be a subsequence of the sequence (Qn)n≥0 that converges to
a (necessarily orthogonal) matrix Q and let x1 denote a point in the set B1 ∩
B2. Since cp = Θ̃

p

2(x1) − QpΘ1(x1) and limn→∞ Θ̃
p

2(x1) = limn→∞ Θ
p
1(x1) =

Θ(x1), the subsequence (cp)p≥0 also converges. Let c := limp→∞ c
p. Thus

Θ(x) = lim
p→∞

Θ̃
p

2(x)

= lim
p→∞

(cp + QpΘ
p
1(x)) = c+ QΘ(x) for all x ∈ B1 ∩ B2,

on the one hand. On the other hand, the differentiability of the mapping Θ

implies that

Θ(x) = Θ(x1) + ∇Θ(x1)(x − x1) + o(|x − x1|) for all x ∈ B1 ∩ B2.

Note that ∇Θ(x1) is an invertible matrix, since ∇Θ(x1)
T
∇Θ(x1) = (gij(x1)).

Let b := Θ(x1) and A := ∇Θ(x1). Together, the last two relations imply
that

b+ A(x − x1) = c+ Qb+ QA(x − x1) + o(|x − x1|),
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and hence (letting x = x1 shows that b = c+ Qb) that

A(x − x1) = QA(x − x1) + o(|x − x1|) for all x ∈ B1 ∩ B2.

The invertibility of A thus implies that Q = I and therefore that c = b−Qb = 0.
The uniqueness of these limits shows that the whole sequences (Qn)n≥0 and
(cn)n≥0 converge.

(iii) Let the mappings Θn
2 ∈ C3(B1 ∪ B2;E

3), n ≥ 0, be defined by

Θn
2 (x) := Θn

1 (x) for all x ∈ B1,

Θn
2 (x) := (Qn)T (Θ̃

n

2 (x) − cn) for all x ∈ B2.

Then

(∇Θn
2 )T

∇Θn
2 = Cn in B1 ∪ B2

(as is clear), and

lim
n→∞

‖Θn
2 −Θ‖3,K = 0 for all K b B1 ∪ B2.

The plane containing the intersection of the boundaries of the open balls B1

and B2 is the common boundary of two closed half-spaces in R3, H1 containing
the center of B1, and H2 containing that of B2 (by construction, the set B1∪B2

is connected; see part (i)). Any compact subset K of B1∪B2 may thus be written
as K = K1 ∪ K2, where K1 := (K ∩ H1) ⊂ B1 and K2 := (K ∩ H2) ⊂ B2 (that
the open sets found in part (i) may be chosen as balls thus play an essential rôle
here). Hence

lim
n→∞

‖Θn
2 −Θ‖3,K1

= 0 and lim
n→∞

‖Θn
2 −Θ‖3,K2

= 0,

the second relation following from the definition of the mapping Θn
2 on B2 ⊃ K2

and on the relations limn→∞ ‖Θ̃n

2 −Θ‖3,K2
= 0 (part (ii)) and limn→∞ Qn = I

and limn→∞ c
n = 0 (part (iii)).

(iv) It remains to iterate the procedure described in parts (ii) and (iii). For
some r ≥ 2, assume that mappings Θn

r ∈ C3(
⋃r

s=1 Bs;E
3), n ≥ 0, have been

found that satisfy

(∇Θn
r )T

∇Θn
r = Cn in

r⋃

s=1

Bs,

lim
n→∞

‖Θn
r −Θ‖2,K = 0 for all K b

r⋃

s=1

Bs.

Since the restriction of Θ to Br+1 is injective (part (i)), Theorem 1.8-2 shows

that there exist mappings Θ̃
n

r+1 ∈ C3(Br+1;E
3), n ≥ 0, that satisfy

(∇Θ̃
n

r+1)
T
∇Θ̃

n

r+1 = Cn in Br+1,

lim
n→∞

‖Θ̃n

r+1 −Θ‖3,K = 0 for all K b Br+1,
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and since the set
⋃r+1

s=1 Bs is connected (part (i)), Theorem 1.7-1 shows that
there exist vectors cn ∈ E3 and matrices Qn ∈ O3, n ≥ 0, such that

Θ̃
n

r+1(x) = cn + QnΘn
r (x) for all x ∈

( r⋃

s=1

Bs

)
∩ Br+1.

Then an argument similar to that used in part (ii) shows that limn→∞ Qn = I

and limn→∞ c
n = 0, and an argument similar to that used in part (iii) (note

that the ball Br+1 may intersect more than one of the balls Bs, 1 ≤ s ≤ r)
shows that the mappings Θn

r+1 ∈ C3(
⋃r

s=1 Bs;E
3), n ≥ 0, defined by

Θn
r+1(x) := Θn

r (x) for all x ∈
r⋃

s=1

Bs,

Θn
r+1(x) := (Qn)T (Θ̃

n

r (x) − cn) for all x ∈ Br+1,

satisfy

lim
n→∞

‖Θn
r+1 −Θ‖3,K = 0 for all K b

r⋃

s=1

Bs.

Then the mappings Θn : Ω → E3, n ≥ 0, defined by

Θn(x) := Θn
r (x) for all x ∈

r⋃

s=1

Bs, r ≥ 1,

possess all the required properties: They are unambiguously defined since for all
s > r, Θn

s (x) = Θn
r (x) for all x ∈ ⋃r

s=1 Bs by construction; they are of class C3

since the mappings Θn
r :

⋃r
s=1 Bs → E3 are themselves of class C3; they satisfy

(∇Θn)T ∇Θn = Cn in Ω since the mappings Θn
r satisfy the same relations

in
⋃r

s=1 Bs; and finally, they satisfy limn→∞ ‖Θn − Θ‖3,K = 0 for all K b Ω
since any compact subset of Ω is contained in

⋃r
s=1 Bs for r large enough. This

completes the proof. �

It is easily seen that the assumptions Rqijk = 0 in Ω are in fact superfluous
in Theorem 1.8-3 (as shown in the next proof, these relations are consequences
of the assumptions Rn

qijk = 0 in Ω, n ≥ 0, and limn→∞ ‖Cn − C‖2,K = 0 for
all K b Ω). This observation gives rise to the following corollary to Theorem
1.8-3, in the form of another sequential continuity result, of interest by itself. The
novelties are that the assumptions are now made on the immersions Θn, n ≥ 0,
and that this result also provides the existence of a “limit” immersion Θ.

Theorem 1.8-4. Let Ω be a connected and simply-connected open subset of

R
3. Let there be given immersions Θn ∈ C3(Ω;E3), n ≥ 0, and a matrix field

C ∈ C2(Ω; S3
>) such that

lim
n→∞

‖(∇Θn)T
∇Θn −C‖2,K = 0 for all K b Ω.
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Then there exist mappings Θ̃
n ∈ C3(Ω;E3), n ≥ 0, of the form

Θ̃
n

= cn + QnΘn, cn ∈ E3, Qn ∈ O
3,

which thus satisfy (∇Θ̃
n
)T ∇Θ̃

n
= (∇Θn)T ∇Θn in Ω for all n ≥ 0, and there

exists a mapping Θ ∈ C3(Ω;E3) such that

∇ΘT
∇Θ = C in Ω and lim

n→∞
‖Θ̃n −Θ‖3,K = 0 for all K b Ω.

Proof. Let the functions Rn
qijk , n ≥ 0, and Rqijk be constructed from the

components gn
ij and gij of the matrix fields Cn := (∇Θn)T ∇Θn and C in the

usual way (see, e.g., Theorem 1.6-1). Then Rn
qijk = 0 in Ω for all n ≥ 0, since

these relations are simply the necessary conditions of Theorem 1.5-1.
We now show that Rqijk = 0 in Ω. To this end, let K be any compact subset

of Ω. The relations

Cn = C(I + C−1(Cn −C)), n ≥ 0,

together with the inequalities ‖AB‖2,K ≤ 4‖A‖2,K‖B‖2,K valid for any matrix
fields A,B ∈ C2(Ω; M3), show that there exists n0 = n0(K) such that the matrix
fields (I+C−1(Cn−C))(x) are invertible at all x ∈ K for all n ≥ n0. The same
relations also show that there exists a constant M such that ‖(Cn)−1‖2,K ≤ M
for all n ≥ n0. Hence the relations

(Cn)−1 −C−1 = C−1(C−Cn)(Cn)−1, n ≥ n0,

together with the assumptions limn→∞ ‖Cn−C‖2,K = 0, in turn imply that the
components gij,n, n ≥ n0, and gij of the matrix fields (Cn)−1 and C−1 satisfy

lim
n→∞

‖gij,n − gij‖2,K = 0.

With self-explanatory notations, it thus follows that

lim
n→∞

‖Γn
ijq − Γijq‖1,K = 0 and lim

n→∞
‖Γp,n

ij − Γp
ij‖1,K = 0,

hence that limn→∞ ‖Rn
qijk − Rqijk‖0,K = 0. This shows that Rqijk = 0 in K,

hence that Rqijk = 0 in Ω since K is an arbitrary compact subset of Ω.
By the fundamental existence theorem (Theorem 1.6-1), there thus exists a

mapping Θ ∈ C3(Ω;E3) such that ∇ΘT
∇Θ = C in Ω. Theorem 1.8-3 can now

be applied, showing that there exist mappings Θ̃
n ∈ C3(Ω;E3) such that

(∇Θ̃
n
)T

∇Θ̃
n

= Cn in Ω, n ≥ 0, and lim
n→∞

‖Θ̃n −Θ‖3,K for all K b Ω.

Finally, the rigidity theorem (Theorem 1.7-1) shows that, for each n ≥ 0,

there exist cn ∈ E3 and Qn ∈ O3 such that Θ̃
n

= cn + QnΘn in Ω because

the mappings Θ̃
n

and Θn share the same metric tensor field and the set Ω is
connected. �
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It remains to show how the sequential continuity established in Theorem
1.8-3 implies the continuity of a deformation as a function of its metric tensor

for ad hoc topologies.
Let Ω be an open subset of R3. For any integers ` ≥ 0 and d ≥ 1, the space

C`(Ω; Rd) becomes a locally convex topological space when its topology is defined
by the family of semi-norms ‖·‖`,K , K b Ω, defined earlier. Then a sequence
(Θn)n≥0 converges to Θ with respect to this topology if and only if

lim
n→∞

‖Θn −Θ‖`,K = 0 for all K b Ω.

Furthermore, this topology is metrizable: Let (Ki)i≥0 be any sequence of subsets
of Ω that satisfy

Ki b Ω and Ki ⊂ int Ki+1 for all i ≥ 0, and Ω =

∞⋃

i=0

Ki.

Then

lim
n→∞

‖Θn −Θ‖`,K = 0 for all K b Ω ⇐⇒ lim
n→∞

d`(Θ
n,Θ) = 0,

where

d`(ψ,Θ) :=

∞∑

i=0

1

2i

‖ψ −Θ‖`,Ki

1 + ‖ψ −Θ‖`,Ki

.

For details, see, e.g., Yosida [1966, Chapter 1].
Let Ċ3(Ω;E3) := C3(Ω;E3)/R denote the quotient set of C3(Ω;E3) by the

equivalence relation R, where (Θ, Θ̃) ∈ R means that there exist a vector

c ∈ E3 and a matrix Q ∈ O3 such that Θ(x) = c+ QΘ̃(x) for all x ∈ Ω. Then
it is easily verified that the set Ċ3(Ω;E3) becomes a metric space when it is
equipped with the distance ḋ3 defined by

ḋ3(Θ̇, ψ̇) = inf
κ∈Θ̇

χ∈ψ̇

d3(κ,χ) = inf
c∈E3

Q∈O
3

d3(Θ, c+ Qψ),

where Θ̇ denotes the equivalence class of Θ modulo R.
We now show that the announced continuity of an immersion as a function

of its metric tensor is a corollary to Theorem 1.8-1. If d is a metric defined on
a set X , the associated metric space is denoted {X ; d}.
Theorem 1.8-5. Let Ω be a connected and simply-connected open subset of R3.

Let

C2
0(Ω; S3

>) := {(gij) ∈ C2(Ω; S3
>); Rqijk = 0 in Ω},

and, given any matrix field C = (gij) ∈ C2
0(Ω; S3

>), let F(C) ∈ Ċ3(Ω;E3) denote

the equivalence class modulo R of any Θ ∈ C3(Ω;E3) that satisfies ∇ΘT
∇Θ =

C in Ω. Then the mapping

F : {C2
0(Ω; S3

>); d2} −→ {Ċ3(Ω;E3); ḋ3}

defined in this fashion is continuous.
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Proof. Since {C2
0(Ω; S3

>); d2} and {Ċ3(Ω;E3); ḋ3} are both metric spaces, it
suffices to show that convergent sequences are mapped through F into conver-
gent sequences.

Let then C ∈ C2
0(Ω; S3

>) and Cn ∈ C2
0(Ω; S3

>), n ≥ 0, be such that

lim
n→∞

d2(C
n,C) = 0,

i.e., such that limn→∞ ‖Cn − C‖2,K = 0 for all K b Ω. Given any Θ ∈
F(C), Theorem 1.8-3 shows that there exist Θn ∈ F(Cn), n ≥ 0, such that
limn→∞ ‖Θn −Θ‖3,K = 0 for all K b Ω, i.e., such that

lim
n→∞

d3(Θ
n,Θ) = 0.

Consequently,
lim

n→∞
ḋ3(F(Cn),F(C)) = 0.

�

As shown by Ciarlet & C. Mardare [2004b], the above continuity result can
be extended “up to the boundary of the set Ω”, as follows. If Ω is bounded and
has a Lipschitz-continuous boundary, the mapping F of Theorem 1.8-5 can be
extended to a mapping that is locally Lipschitz-continuous with respect to the
topologies of the Banach spaces C2(Ω; S3) for the continuous extensions of the
symmetric matrix fields C, and C3(Ω;E3) for the continuous extensions of the
immersions Θ (the existence of such continuous extensions is briefly commented
upon at the end of Section 1.6).

Another extension, motivated by three-dimensional nonlinear elasticity, is
the following: Let Ω be a bounded and connected subset of R3, and let B
be an elastic body with Ω as its reference configuration. Thanks mostly to
the landmark existence theory of Ball [1977], it is now customary in nonlinear
three-dimensional elasticity to view any mapping Θ ∈ H1(Ω;E3) that is almost-
everywhere injective and satisfies det ∇Θ > 0 a.e. in Ω as a possible deformation

of B when B is subjected to ad hoc applied forces and boundary conditions. The
almost-everywhere injectivity of Θ (understood in the sense of Ciarlet & Nečas
[1987]) and the restriction on the sign of det ∇Θ mathematically express (in
an arguably weak way) the non-interpenetrability and orientation-preserving

conditions that any physically realistic deformation should satisfy.
As mentioned earlier, the Cauchy-Green tensor field ∇ΘT

∇Θ ∈ L1(Ω; S3)
associated with a deformation Θ ∈ H1(Ω;E3) pervades the mathematical mod-
eling of three-dimensional nonlinear elasticity. Conceivably, an alternative ap-
proach to the existence theory in three-dimensional elasticity could thus regard
the Cauchy-Green tensor as the primary unknown, instead of the deformation
itself as is usually the case.

Clearly, the Cauchy-Green tensors depend continuously on the deformations,
since the Cauchy-Schwarz inequality immediately shows that the mapping

Θ ∈ H1(Ω;E3) → ∇ΘT
∇Θ ∈ L1(Ω; S3)
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is continuous (irrespectively of whether the mappings Θ are almost-everywhere
injective and orientation-preserving).

Then Ciarlet & C. Mardare [2005a] have shown that, under appropriate

smoothness and orientation-preserving assumptions, the converse holds, i.e., the

deformations depend continuously on their Cauchy-Green tensors, the topologies

being those of the same spaces H1(Ω;E3) and L1(Ω; S3) (by contrast with the
orientation-preserving condition, the issue of non-interpenetrability turns out to
be irrelevant to this issue). In fact, this continuity result holds in an arbitrary
dimension d, at no extra cost in its proof; so it will be stated below in this more
general setting. The notation Ed then denotes a d-dimensional Euclidean space
and S

d denotes the space of all symmetric matrices of order d.
This continuity result is itself a simple consequence of a nonlinear Korn

inequality, which constitutes the main result of ibid.: Let Ω be a bounded
and connected open subset of Rd with a Lipschitz-continuous boundary and let
Θ ∈ C1(Ω;Ed) be a mapping satisfying det ∇Θ > 0 in Ω. Then there exists
a constant C(Θ) with the following property: For each orientation-preserving
mapping Φ ∈ H1(Ω;Ed), there exist a d × d rotation R = R(Φ,Θ) (i.e., an
orthogonal matrix of order d with a determinant equal to one) and a vector
b = b(Φ,Θ) in Ed such that

‖Φ− (b+ RΘ)‖H1(Ω;Ed) ≤ C(Θ)‖∇ΦT
∇Φ − ∇ΘT

∇Θ‖1/2

L1(Ω;Sd)
.

That a vector b and a rotation R should appear in the left-hand side of such
an inequality is of course reminiscent of the classical rigidity theorem (Theorem

1.7-1), which asserts that, if two mappings Θ̃ ∈ C1(Ω;Ed) and Θ ∈ C1(Ω;Ed)

satisfying det ∇Θ̃ > 0 and det ∇Θ > 0 in an open connected subset Ω of
Rd have the same Cauchy-Green tensor field, then the two mappings are iso-

metrically equivalent, i.e., there exist a vector b in Ed and a d × d orthogonal
matrix R (a rotation in this case) such that Θ̃(x) = b+ RΘ(x) for all x ∈ Ω.

More generally, we shall say that two orientation-preserving mappings
Θ̃ ∈ H1(Ω;Ed) and Θ ∈ H1(Ω;Ed) are isometrically equivalent if there ex-
ist a vector b in Ed and a d × d orthogonal matrix R (again a rotation in this
case) such that

Θ̃(x) = b+ RΘ(x) for almost all x ∈ Ω.

One application of the above key inequality is the following sequential conti-

nuity property : Let Θk ∈ H1(Ω;Ed), k ≥ 1, and Θ ∈ C1(Ω;Ed) be orientation-
preserving mappings. Then there exist a constant C(Θ) and orientation-pres-

erving mappings Θ̃
k ∈ H1(Ω;Ed), k ≥ 1, that are isometrically equivalent to

Θk such that

‖Θ̃k −Θ‖H1(Ω;Ed) ≤ C(Θ)‖(∇Θk)T
∇Θk − ∇ΘT

∇Θ‖1/2

L1(Ω;Sd)
.

Hence the sequence (Θ̃
k
)∞k=1 converges to Θ in H1(Ω;Ed) as k → ∞ if the

sequence ((∇Θk)T ∇Θk)∞k=1 converges to ∇ΘT
∇Θ in L1(Ω; Sd) as k → ∞ .
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Should the Cauchy-Green strain tensor be viewed as the primary unknown
(as suggested above), such a sequential continuity could thus prove to be use-
ful when considering infimizing sequences of the total energy, in particular for
handling the part of the energy that takes into account the applied forces and
the boundary conditions, which are both naturally expressed in terms of the
deformation itself.

They key inequality is first established in the special case where Θ is the
identity mapping of the set Ω, by making use in particular of a fundamental
“geometric rigidity lemma” recently proved by Friesecke, James & Müller [2002].
It is then extended to an arbitrary mapping Θ ∈ C1(Ω; Rn) satisfying det ∇Θ >
0 in Ω, thanks in particular to a methodology that bears some similarity with
that used in Theorems 1.8-2 and 1.8-3.

Such results are to be compared with the earlier, pioneering estimates of
John [1961], John [1972] and Kohn [1982], which implied continuity at rigid body

deformations, i.e., at a mapping Θ that is isometrically equivalent to the identity
mapping of Ω. The recent and noteworthy continuity result of Reshetnyak [2003]
for quasi-isometric mappings is in a sense complementary to the above one (it
also deals with Sobolev type norms).





Chapter 2

DIFFERENTIAL GEOMETRY OF SURFACES

2.1 CURVILINEAR COORDINATES ON A SURFACE

In addition to the rules governing Latin indices that we set in Section 1.1, we
henceforth require that Greek indices and exponents vary in the set {1, 2} and
that the summation convention be systematically used in conjunction with these
rules. For instance, the relation

∂α(ηia
i) = (ηβ|α − bαβη3)a

β + (η3|α + bβ
αηβ)a3

means that, for α = 1, 2,

∂α

( 3∑

i=1

ηia
i
)

=

2∑

β=1

(ηβ|α − bαβη3)a
β +

(
η3|α +

2∑

β=1

bβ
αηβ

)
a3.

Kronecker’s symbols are designated by δβ
α, δαβ, or δαβ according to the con-

text.

Let there be given as in Section 1.1 a three-dimensional Euclidean space E3,
equipped with an orthonormal basis consisting of three vectors êi = êi, and let
a · b, |a|, and a ∧ b denote the Euclidean inner product, the Euclidean norm,
and the vector product of vectors a, b in the space E3.

In addition, let there be given a two-dimensional vector space, in which two
vectors eα = eα form a basis. This space will be identified with R2. Let yα

denote the coordinates of a point y ∈ R2 and let ∂α := ∂/∂yα and ∂αβ :=
∂2/∂yα∂yβ.

Finally, let there be given an open subset ω of R2 and a smooth enough
mapping θ : ω → E3 (specific smoothness assumptions on θ will be made later,
according to each context). The set

ω̂ := θ(ω)

is called a surface in E3.

53
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If the mapping θ : ω → E3 is injective, each point ŷ ∈ ω̂ can be unambigu-
ously written as

ŷ = θ(y), y ∈ ω,

and the two coordinates yα of y are called the curvilinear coordinates of ŷ
(Figure 2.1-1). Well-known examples of surfaces and of curvilinear coordinates
and their corresponding coordinate lines (defined in Section 2.2) are given in
Figures 2.1-2 and 2.1-3.

1

y1 y

ω

y2

R 2

θ

θ(y)

a1(y)
a

1(y)

a
2(y)

ω̂ =θ(ω)

E
3

a2(y)

Figure 2.1-1: Curvilinear coordinates on a surface and covariant and contravariant bases of

the tangent plane. Let bω = θ(ω) be a surface in E3. The two coordinates y1, y2 of y ∈ ω are
the curvilinear coordinates of by = θ(y) ∈ bω. If the two vectors aα(y) = ∂αθ(y) are linearly
independent, they are tangent to the coordinate lines passing through by and they form the
covariant basis of the tangent plane to bω at by = θ(y). The two vectors aα(y) from this tangent
plane defined by aα(y) · aβ(y) = δα

β form its contravariant basis.

Naturally, once a surface ω̂ is defined as ω̂ = θ(ω), there are infinitely many

other ways of defining curvilinear coordinates on ω̂, depending on how the do-
main ω and the mapping θ are chosen. For instance, a portion ω̂ of a sphere
may be represented by means of Cartesian coordinates, spherical coordinates, or
stereographic coordinates (Figure 2.1-3). Incidentally, this example illustrates
the variety of restrictions that have to be imposed on ω̂ according to which kind
of curvilinear coordinates it is equipped with!
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1
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Figure 2.1-2: Several systems of curvilinear coordinates on a sphere. Let Σ be a sphere
of radius R. A portion of Σ contained “in the northern hemisphere” can be represented by
means of Cartesian coordinates, with a mapping θ of the form:

θ : (x, y) ∈ ω → (x, y, {R2 − (x2 + y2)}1/2) ∈ E3.
A portion of Σ that excludes a neighborhood of both “poles” and of a “meridian” (to fix

ideas) can be represented by means of spherical coordinates, with a mapping θ of the form:
θ : (ϕ, ψ) ∈ ω → (R cosψ cosϕ,R cosψ sinϕ,R sinψ) ∈ E3.

A portion of Σ that excludes a neighborhood of the “North pole” can be represented by
means of stereographic coordinates, with a mapping θ of the form:

θ : (u, v) ∈ ω →
“ 2R2u

u2 + v2 +R2
,

2R2v

u2 + v2 + R2
, R

u2 + v2 −R2

u2 + v2 +R2

”
∈ E3.

The corresponding coordinate lines are represented in each case, with self-explanatory
graphical conventions.
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1

ω

ϕ

z

ϕ

z
ω̂

ω

ϕ

χ

ϕ
χ

ω̂

Figure 2.1-3: Two familiar examples of surfaces and curvilinear coordinates. A portion bω
of a circular cylinder of radius R can be represented by a mapping θ of the form

θ : (ϕ, z) ∈ ω → (R cosϕ,R sinϕ, z) ∈ E3.

A portion bω of a torus can be represented by a mapping θ of the form
θ : (ϕ, χ) ∈ ω → ((R + r cosχ) cosϕ, (R+ r cosχ) sinϕ, r sinχ) ∈ E3,

with R > r.
The corresponding coordinate lines are represented in each case, with self-explanatory

graphical conventions.
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2.2 FIRST FUNDAMENTAL FORM

Let ω be an open subset of R2 and let

θ = θiê
i : ω ⊂ R

2 → θ(ω) = ω̂ ⊂ E3

be a mapping that is differentiable at a point y ∈ ω. If δy is such that (y+δy) ∈
ω, then

θ(y + δy) = θ(y) + ∇θ(y)δy + o(δy),

where the 3 × 2 matrix ∇θ(y) is defined by

∇θ(y) :=




∂1θ1 ∂2θ1

∂1θ2 ∂2θ2

∂1θ3 ∂2θ3


 (y).

Let the two vectors aα(y) ∈ R3 be defined by

aα(y) := ∂αθ(y) =




∂αθ1

∂αθ2

∂αθ3


 (y),

i.e., aα(y) is the α-th column vector of the matrix ∇θ(y) and let δy = δyαeα.
Then the expansion of θ about y may be also written as

θ(y + δy) = θ(y) + δyαaα(y) + o(δy).

If in particular δy is of the form δy = δteα, where δt ∈ R and eα is one of
the basis vectors in R

2, this relation reduces to

θ(y + δteα) = θ(y) + δtaα(y) + o(δt).

A mapping θ : ω → E3 is an immersion at y ∈ ω if it is differentiable at
y and the 3 × 2 matrix ∇θ(y) is of rank two, or equivalently if the two vectors
aα(y) = ∂αθ(y) are linearly independent.

Assume from now on in this section that the mapping θ is an immersion

at y. In this case, the last relation shows that each vector aα(y) is tangent

to the α-th coordinate line passing through ŷ = θ(y), defined as the image
by θ of the points of ω that lie on a line parallel to eα passing through y
(there exist t0 and t1 with t0 < 0 < t1 such that the α-th coordinate line is
given by t ∈ ]t0, t1[ → fα(t) := θ(y + teα) in a neighborhood of ŷ; hence
f ′

α(0) = ∂αθ(y) = aα(y)); see Figures 2.1-1, 2.1-2, and 2.1-3.
The vectors aα(y), which thus span the tangent plane to the surface ω̂ at

ŷ = θ(y), form the covariant basis of the tangent plane to ω̂ at ŷ; see
Figure 2.1-1.

Returning to a general increment δy = δyαeα, we also infer from the expan-
sion of θ about y that

|θ(y + δy) − θ(y)|2 = δyT
∇θ(y)T

∇θ(y)δy + o(|δy|2)
= δyαaα(y) · aβ(y)δyβ + o(|δy|2).
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In other words, the principal part with respect to δy of the length between
the points θ(y + δy) and θ(y) is {δyαaα(y) · aβ(y)δyβ}1/2. This observation
suggests to define a matrix (aαβ(y)) of order two by letting

aαβ(y) := aα(y) · aβ(y) =
(
∇θ(y)T

∇θ(y)
)
αβ

.

The elements aαβ(y) of this symmetric matrix are called the covariant

components of the first fundamental form, also called the metric tensor,
of the surface ω̂ at ŷ = θ(y).

Note that the matrix (aαβ(y)) is positive definite since the vectors aα(y) are
assumed to be linearly independent.

The two vectors aα(y) being thus defined, the four relations

aα(y) · aβ(y) = δα
β

unambiguously define two linearly independent vectors aα(y) in the tangent

plane. To see this, let a priori aα(y) = Y ασ(y)aσ(y) in the relations aα(y) ·
aβ(y) = δα

β . This gives Y ασ(y)aσβ(y) = δα
β ; hence Y ασ(y) = aασ(y), where

(aαβ(y)) := (aαβ(y))−1.

Hence aα(y) = aασ(y)aσ(y). These relations in turn imply that

aα(y) · aβ(y) = aασ(y)aβτ (y)aσ(y) · aτ (y)

= aασ(y)aβτ (y)aστ (y) = aασ(y)δβ
σ = aαβ(y),

and thus the vectors aα(y) are linearly independent since the matrix (aαβ(y))
is positive definite. We would likewise establish that aα(y) = aαβ(y)aβ(y).

The two vectors aα(y) form the contravariant basis of the tangent plane

to the surface ω̂ at ŷ = θ(y) (Figure 2.1-1) and the elements aαβ(y) of the
symmetric matrix (aαβ(y)) are called the contravariant components of the
first fundamental form, or metric tensor, of the surface ω̂ at ŷ = θ(y).

Let us record for convenience the fundamental relations that exist between
the vectors of the covariant and contravariant bases of the tangent plane and
the covariant and contravariant components of the first fundamental tensor:

aαβ(y) = aα(y) · aβ(y) and aαβ(y) = aα(y) · aβ(y),
aα(y) = aαβ(y)aβ(y) and aα(y) = aαβ(y)aβ(y).

A word of caution. The presentation in this section closely follows that
of Section 1.2, the mapping θ : ω ⊂ R2 → E3 “replacing” the mapping Θ : Ω ⊂
R3 → E3. There are indeed strong similarities between the two presentations,
such as the way the metric tensor is defined in both cases, but there are also
sharp differences. In particular, the matrix ∇θ(y) is not a square matrix, while
the matrix ∇Θ(x) is square! �
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2.3 AREAS AND LENGTHS ON A SURFACE

We now review fundamental formulas expressing area and length elements at
a point ŷ = θ(y) of the surface ω̂ = θ(ω) in terms of the matrix (aαβ(y)); see
Figure 2.3-1.

These formulas highlight in particular the crucial rôle played by the ma-
trix (aαβ(y)) for computing “metric” notions at ŷ = θ(y). Indeed, the first
fundamental form well deserves “metric tensor” as its alias !

A mapping θ : ω → E3 is an immersion if it is an immersion at each
y ∈ ω, i.e., if θ is differentiable in ω and the two vectors ∂αθ(y) are linearly
independent at each y ∈ ω.

θ(y+δy)

y+δy

A
dy

dl̂(ŷ)
θ(y) = ŷ

Ĉ

E
3

θ

I
f

t

R 2

R

ω̂

y

C

ω

dS(ŷ)

Â

Figure 2.3-1: Area and length elements on a surface. The elements dba(by) and db̀(by) at
by = θ(y) ∈ bω are related to dy and δy by means of the covariant components of the metric
tensor of the surface bω; cf. Theorem 2.3-1. The corresponding relations are used for computing
the area of a surface bA = θ(A) ⊂ bω and the length of a curve bC = θ(C) ⊂ bω, where C = f(I)
and I is a compact interval of R.

Theorem 2.3-1. Let ω be an open subset of R2, let θ : ω → E3 be an injective

and smooth enough immersion, and let ω̂ = θ(ω).

(a) The area element dâ(ŷ) at ŷ = θ(y) ∈ ω̂ is given in terms of the area

element dy at y ∈ ω by

dâ(ŷ) =
√

a(y)dy, where a(y) := det(aαβ(y)).
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(b) The length element d̂̀(ŷ) at ŷ = θ(y) ∈ ω̂ is given by

d̂̀(ŷ) =
{
δyαaαβ(y)δyβ

}1/2
.

Proof. The relation (a) between the area elements is well known. It can

also be deduced directly from the relation between the area elements dΓ̂(x̂) and
dΓ(x) given in Theorem 1.3-1 (b) by means of an ad hoc “three-dimensional
extension” of the mapping θ.

The expression of the length element in (b) recalls that d̂̀(ŷ) is by definition
the principal part with respect to δy = δyαeα of the length |θ(y + δy)− θ(y)|,
whose expression precisely led to the introduction of the matrix (aαβ(y)). �

The relations found in Theorem 2.3-1 are used for computing surface inte-

grals and lengths on the surface ω̂ by means of integrals inside ω, i.e., in terms
of the curvilinear coordinates used for defining the surface ω̂ (see again Figure
2.3-1).

Let A be a domain in R2 such that A ⊂ ω (a domain in R2 is a bounded,
open, and connected subset of R2 with a Lipschitz-continuous boundary; cf.
Section 1.3), let Â := θ(A), and let f̂ ∈ L1(Â) be given. Then

∫

bA
f̂(ŷ)dâ(ŷ) =

∫

A

(f̂ ◦ θ)(y)
√

a(y)dy.

In particular, the area of Â is given by

area Â :=

∫

bA
dâ(ŷ) =

∫

A

√
a(y)dy.

Consider next a curve C = f (I) in ω, where I is a compact interval of R

and f = fαeα : I → ω is a smooth enough injective mapping. Then the length

of the curve Ĉ := θ(C) ⊂ ω̂ is given by

length Ĉ :=

∫

I

∣∣∣ d

dt
(θ ◦ f)(t)

∣∣∣dt =

∫

I

√

aαβ(f(t))
df

dt

α

(t)
df

dt

β

(t)dt.

The last relation shows in particular that the lengths of curves inside the
surface θ(ω) are precisely those induced by the Euclidean metric of the space E3.
For this reason, the surface θ(ω) is said to be isometrically imbedded in E3.

2.4 SECOND FUNDAMENTAL FORM; CURVATURE

ON A SURFACE

While the image Θ(Ω) ⊂ E3 of a three-dimensional open set Ω ⊂ R
3 by a smooth

enough immersion Θ : Ω ⊂ R3 → E3 is well defined by its “metric”, uniquely
up to isometries in E3 (provided ad hoc compatibility conditions are satisfied by
the covariant components gij : Ω → R of its metric tensor ; cf. Theorems 1.6-1
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and 1.7-1), a surface given as the image θ(ω) ⊂ E3 of a two-dimensional open
set ω ⊂ R2 by a smooth enough immersion θ : ω ⊂ R2 → E3 cannot be defined
by its metric alone.

As intuitively suggested by Figure 2.4-1, the missing information is provided
by the “curvature” of a surface. A natural way to give substance to this oth-
erwise vague notion consists in specifying how the curvature of a curve on a

surface can be computed. As shown in this section, solving this question relies
on the knowledge of the second fundamental form of a surface, which naturally
appears for this purpose through its covariant components (Theorem 2.4-1).

ω̂0

ω̂1

ω̂2

Figure 2.4-1: A metric alone does not define a surface in E3. A flat surface bω0 may be
deformed into a portion bω1 of a cylinder or a portion bω2 of a cone without altering the length
of any curve drawn on it (cylinders and cones are instances of “developable surfaces”; cf.
Section 2.5). Yet it should be clear that in general bω0 and bω1, or bω0 and bω2, or bω1 and bω2,
are not identical surfaces modulo an isometry of E3!

Consider as in Section 2.1 a surface ω̂ = θ(ω) in E3, where ω is an open
subset of R2 and θ : ω ⊂ R2 → E3 is a smooth enough immersion. For each
y ∈ ω, the vector

a3(y) :=
a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|
is thus well defined, has Euclidean norm one, and is normal to the surface ω̂ at
the point ŷ = θ(y).
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Remark. The denominator in the definition of a3(y) may be also written as

|a1(y) ∧ a2(y)| =
√

a(y),

where a(y) := det(aαβ(y)). �

Fix y ∈ ω and consider a plane P normal to ω̂ at ŷ = θ(y), i.e., a plane that

contains the vector a3(y). The intersection Ĉ = P ∩ ω̂ is thus a planar curve

on ω̂.

As shown in Theorem 2.4-1, it is remarkable that the curvature of Ĉ at
ŷ can be computed by means of the covariant components aαβ(y) of the first
fundamental form of the surface ω̂ = θ(ω) introduced in Section 2.2, together
with the covariant components bαβ(y) of the “second” fundamental form of ω̂.
The definition of the curvature of a planar curve is recalled in Figure 2.4-2.

If the algebraic curvature of Ĉ at ŷ is 6= 0, it can be written as
1

R
, and R is

then called the algebraic radius of curvature of the curve Ĉ at ŷ. This means
that the center of curvature of the curve Ĉ at ŷ is the point (ŷ + Ra3(y));
see Figure 2.4-3. While R is not intrinsically defined, as its sign changes in any
system of curvilinear coordinates where the normal vector a3(y) is replaced by
its opposite, the center of curvature is intrinsically defined.

If the curvature of Ĉ at ŷ is 0, the radius of curvature of the curve Ĉ at ŷ
is said to be infinite; for this reason, it is customary to still write the curvature

as
1

R
in this case.

Note that the real number
1

R
is always well defined by the formula given in

the next theorem, since the symmetric matrix (aαβ(y)) is positive definite. This
implies in particular that the radius of curvature never vanishes along a curve

on a surface θ(ω) defined by a mapping θ satisfying the assumptions of the next

theorem, hence in particular of class C2 on ω.

It is intuitively clear that if R = 0, the mapping θ “cannot be too smooth”.
Think of a surface made of two portions of planes intersecting along a segment,
which thus constitutes a fold on the surface. Or think of a surface θ(ω) with
0 ∈ ω and θ(y1, y2) = |y1|1+α for some 0 < α < 1, so that θ ∈ C1(ω;E3) but
θ /∈ C2(ω;E3): The radius of curvature of a curve corresponding to a constant
y2 vanishes at y1 = 0.

Theorem 2.4-1. Let ω be an open subset of R2, let θ ∈ C2(ω;E3) be an injective

immersion, and let y ∈ ω be fixed.

Consider a plane P normal to ω̂ = θ(ω) at the point ŷ = θ(y). The in-

tersection P ∩ ω̂ is a curve Ĉ on ω̂, which is the image Ĉ = θ(C) of a curve

C in the set ω. Assume that, in a sufficiently small neighborhood of y, the re-

striction of C to this neighborhood is the image f(I) of an open interval I ⊂ R,

where f = fαeα : I → R is a smooth enough injective mapping that satisfies
df

dt

α

(t) eα 6= 0, where t ∈ I is such that y = f(t) (Figure 2.4-3).
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∆φ(s)

p(s) + Rν(s)

γ

ν(s)

ν(s + ∆s)

p(s)

p(s + ∆s)

τ (s + ∆s)

τ (s)

Figure 2.4-2: Curvature of a planar curve. Let γ be a smooth enough planar curve,
parametrized by its curvilinear abscissa s. Consider two points p(s) and p(s + ∆s) with
curvilinear abscissae s and s + ∆s and let ∆φ(s) be the algebraic angle between the two
normals ν(s) and ν(s+ ∆s) (oriented in the usual way) to γ at those points. When ∆s→ 0,

the ratio
∆φ(s)

∆s
has a limit, called the “curvature” of γ at p(s). If this limit is non-zero, its

inverse R is called the “algebraic radius of curvature” of γ at p(s) (the sign of R depends on
the orientation chosen on γ).

The point p(s) + Rν(s), which is intrinsically defined, is called the “center of curvature”
of γ at p(s): It is the center of the “osculating circle” at p(s), i.e., the limit as ∆s→ 0 of the
circle tangent to γ at p(s) that passes through the point p(s+∆s). The center of curvature is
also the limit as ∆s→ 0 of the intersection of the normals ν(s) and ν(s+∆s). Consequently,
the centers of curvature of γ lie on a curve (dashed on the figure), called “la développée” in
French, that is tangent to the normals to γ.

Then the curvature
1

R
of the planar curve Ĉ at ŷ is given by the ratio

1

R
=

bαβ(f (t))
df

dt

α

(t)
df

dt

β

(t)

aαβ(f(t))
df

dt

α

(t)
df

dt

β

(t)

,

where aαβ(y) are the covariant components of the first fundamental form of ω̂
at y (Section 2.1) and

bαβ(y) := a3(y) · ∂αaβ(y) = −∂αa3(y) · aβ(y) = bβα(y).
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ŷ =θ(y)
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ŷ + Ra3(y)

a3(y)

E
3

θ

I
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Figure 2.4-3: Curvature on a surface. Let P be a plane containing the vector

a3(y) =
a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|
, which is normal to the surface bω = θ(ω). The algebraic curvature

1

R
of the planar curve bC = P ∩ bω = θ(C) at by = θ(y) is given by the ratio

1

R
=
bαβ(f(t))

df

dt

α

(t)
df

dt

β

(t)

aαβ(f(t))
df

dt

α

(t)
df

dt

β

(t)

,

where aαβ(y) and bαβ(y) are the covariant components of the first and second funda-

mental forms of the surface bω at by and
df

dt

α

(t) are the components of the vector tangent to

the curve C = f(I) at y = f(t) = fα(t)eα. If
1

R
6= 0, the center of curvature of the curve bC

at by is the point (by + Ra3(y)), which is intrinsically defined in the Euclidean space E3.

Proof. (i) We first establish a well-known formula giving the curvature
1

R
of

a planar curve. Using the notations of Figure 2.4-2, we note that

sin ∆φ(s) = ν(s) · τ (s + ∆s) = −{ν(s + ∆s) − ν(s)} · τ (s + ∆s),

so that
1

R
:= lim

∆s→0

∆φ(s)

∆s
= lim

∆s→0

sin ∆φ(s)

∆s
= −dν

ds
(s) · τ (s).
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(ii) The curve (θ ◦ f)(I), which is a priori parametrized by t ∈ I , can be
also parametrized by its curvilinear abscissa s in a neighborhood of the point ŷ.
There thus exist an interval Ĩ ⊂ I and a mapping p : J → P , where J ⊂ R is
an interval, such that

(θ ◦ f)(t) = p(s) and (a3 ◦ f)(t) = ν(s) for all t ∈ Ĩ , s ∈ J.

By (i), the curvature
1

R
of Ĉ is given by

1

R
= −dν

ds
(s) · τ (s),

where

dν

ds
(s) =

d(a3 ◦ f)

dt
(t)

dt

ds
= ∂αa3(f(t))

df

dt

α

(t)
dt

ds
,

τ (s) =
dp

ds
(s) =

d(θ ◦ f )

dt
(t)

dt

ds

= ∂βθ(f (t))
df

dt

β

(t)
dt

ds
= aβ(f(t))

df

dt

β

(t)
dt

ds
.

Hence
1

R
= −∂αa3(f (t)) · aβ(f(t))

df

dt

α

(t)
df

dt

β

(t)

(
dt

ds

)2

.

To obtain the announced expression for
1

R
, it suffices to note that

−∂αa3(f (t)) · aβ(f(t)) = bαβ(f(t)),

by definition of the functions bαβ and that (Theorem 2.3-1 (b))

ds =
{
δyαaαβ(y)δyβ

}1/2
=

{
aαβ(f (t))

df

dt

α

(t)
df

dt

β

(t)
}1/2

dt.

�

The knowledge of the curvatures of curves contained in planes normal to ω̂
suffices for computing the curvature of any curve on ω̂. More specifically, the
radius of curvature R̃ at ŷ of any smooth enough curve C̃ (planar or not) on the

surface ω̂ is given by
cosϕ

R̃
=

1

R
, where ϕ is the angle between the “principal

normal” to C̃ at ŷ and a3(y) and
1

R
is given in Theorem 2.4-1; see, e.g., Stoker

[1969, Chapter 4, Section 12].
The elements bαβ(y) of the symmetric matrix (bαβ(y)) defined in Theorem

2.4-1 are called the covariant components of the second fundamental form

of the surface ω̂ = θ(ω) at ŷ = θ(y).
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2.5 PRINCIPAL CURVATURES; GAUSSIAN CURVA-

TURE

The analysis of the previous section suggests that precise information about the
shape of a surface ω̂ = θ(ω) in a neighborhood of one of its points ŷ = θ(y)
can be gathered by letting the plane P turn around the normal vector a3(y)
and by following in this process the variations of the curvatures at ŷ of the
corresponding planar curves P ∩ ω̂, as given in Theorem 2.4-1.

As a first step in this direction, we show that these curvatures span a compact

interval of R. In particular then, they “stay away from infinity”.
Note that this compact interval contains 0 if, and only if, the radius of

curvature of the curve P ∩ ω̂ is infinite for at least one such plane P .

Theorem 2.5-1. (a) Let the assumptions and notations be as in Theorem 2.4-
1. For a fixed y ∈ ω, consider the set P of all planes P normal to the surface

ω̂ = θ(ω) at ŷ = θ(y). Then the set of curvatures of the associated planar

curves P ∩ ω̂, P ∈ P, is a compact interval of R, denoted
[ 1

R1(y)
,

1

R2(y)

]
.

(b) Let the matrix (bβ
α(y)), α being the row index, be defined by

bβ
α(y) := aβσ(y)bασ(y),

where (aαβ(y)) = (aαβ(y))−1 (Section 2.2) and the matrix (bαβ(y)) is defined as

in Theorem 2.4-1. Then

1

R1(y)
+

1

R2(y)
= b1

1(y) + b2
2(y),

1

R1(y)R2(y)
= b1

1(y)b2
2(y) − b2

1(y)b1
2(y) =

det(bαβ(y))

det(aαβ(y))
.

(c) If
1

R1(y)
6= 1

R2(y)
, there is a unique pair of orthogonal planes P1 ∈ P

and P2 ∈ P such that the curvatures of the associated planar curves P1 ∩ ω̂ and

P2 ∩ ω̂ are precisely
1

R1(y)
and

1

R2(y)
.

Proof. (i) Let ∆(P ) denote the intersection of P ∈ P with the tangent plane

T to the surface ω̂ at ŷ, and let Ĉ(P ) denote the intersection of P with ω̂. Hence

∆(P ) is tangent to Ĉ(P ) at ŷ ∈ ω̂.

In a sufficiently small neighborhood of ŷ the restriction of the curve Ĉ(P )

to this neighborhood is given by Ĉ(P ) = (θ ◦ f(P ))(I(P )), where I(P ) ⊂ R

is an open interval and f(P ) = fα(P )eα : I(P ) → R2 is a smooth enough

injective mapping that satisfies
dfα(P )

dt
(t)eα 6= 0, where t ∈ I(P ) is such that

y = f (P )(t). Hence the line ∆(P ) is given by

∆(P ) =

{
ŷ + λ

d(θ ◦ f(P ))

dt
(t); λ ∈ R

}
= {ŷ + λξαaα(y); λ ∈ R} ,
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where ξα :=
dfα(P )

dt
(t) and ξαeα 6= 0 by assumption.

Since the line {y+µξαeα; µ ∈ R} is tangent to the curve C(P ) := θ−1(Ĉ(P ))
at y ∈ ω (the mapping θ : ω → R

3 is injective by assumption) for each
such parametrizing function f(P ) : I(P ) → R2 and since the vectors aα(y)
are linearly independent, there exists a bijection between the set of all lines
∆(P ) ⊂ T , P ∈ P , and the set of all lines supporting the nonzero tangent
vectors to the curve C(P ).

Hence Theorem 2.4-1 shows that when P varies in P , the curvature of the
corresponding curves Ĉ = Ĉ(P ) at ŷ takes the same values as does the ratio
bαβ(y)ξαξβ

aαβ(y)ξαξβ
when ξ := (ζα) varies in R2 − {0}.

(ii) Let the symmetric matrices A and B of order two be defined by

A := (aαβ(y)) and B := (bαβ(y)).

Since A is positive definite, it has a (unique) square root C, i.e., a symmetric
positive definite matrix C such that A = C2. Hence the ratio

bαβ(y)ξαξβ

aαβ(y)ξαξβ
=
ξT Bξ

ξT Aξ
=
ηT C−1BC−1η

ηTη
, where η = Cξ,

is nothing but the Rayleigh quotient associated with the symmetric matrix
C−1BC−1. When η varies in R2 − {0}, this Rayleigh quotient thus spans the
compact interval of R whose end-points are the smallest and largest eigenvalue,

respectively denoted
1

R1(y)
and

1

R2(y)
, of the matrix C−1BC−1 (for a proof,

see, e.g., Ciarlet [1982, Theorem 1.3-1]). This proves (a).
Furthermore, the relation

C(C−1BC−1)C−1 = BC−2 = BA−1

shows that the eigenvalues of the symmetric matrix C−1BC−1 coincide with
those of the (in general non-symmetric) matrix BA−1. Note that BA−1 =
(bβ

α(y)) with bβ
α(y) := aβσ(y)bασ(y), α being the row index, since A−1 =

(aαβ(y)).
Hence the relations in (b) simply express that the sum and the product of

the eigenvalues of the matrix BA−1 are respectively equal to its trace and to its

determinant, which may be also written as
det(bαβ(y))

det(aαβ(y))
since BA−1 = (bβ

α(y)).

This proves (b).

(iii) Let η1 = (ηα
1 ) = Cξ1 and η2 = (ηβ

2 ) = Cξ2, with ξ1 = (ξα
1 ) and

ξ2 = (ξβ
2 ), be two orthogonal (ηT

1 η2 = 0) eigenvectors of the symmetric matrix

C−1BC−1, corresponding to the eigenvalues
1

R1(y)
and

1

R2(y)
, respectively.

Hence
0 = ηT

1 η2 = ξT
1 CT Cξ2 = ξT

1 Aξ2 = 0,
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since CT = C. By (i), the corresponding lines ∆(P1) and ∆(P2) of the tangent

plane are parallel to the vectors ξα
1 aα(y) and ξβ

2 aβ(y), which are orthogonal
since {

ξα
1 aα(y)

}
·
{
ξβ
2 aβ(y)

}
= aαβ(y)ξα

1 ξβ
2 = ξT

1 Aξ2.

If
1

R1(y)
6= 1

R2(y)
, the directions of the vectors η1 and η2 are uniquely

determined and the lines ∆(P1) and ∆(P2) are likewise uniquely determined.
This proves (c). �

We are now in a position to state several fundamental definitions :
The elements bβ

α(y) of the (in general non-symmetric) matrix (bβ
α(y)) defined

in Theorem 2.5-1 are called the mixed components of the second funda-

mental form of the surface ω̂ = θ(ω) at ŷ = θ(y).

The real numbers
1

R1(y)
and

1

R2(y)
(one or both possibly equal to 0) found

in Theorem 2.5-1 are called the principal curvatures of ω̂ at ŷ.

If
1

R1(y)
=

1

R2(y)
, the curvatures of the planar curves P ∩ ω̂ are the same in

all directions, i.e., for all P ∈ P . If
1

R1(y)
=

1

R2(y)
= 0, the point ŷ = θ(y) is

called a planar point. If
1

R1(y)
=

1

R2(y)
6= 0, ŷ is called an umbilical point.

It is remarkable that, if all the points of ω̂ are planar, then ω̂ is a portion

of a plane. Likewise, if all the points of ω̂ are umbilical, then ω̂ is a portion of

a sphere. For proofs, see, e.g., Stoker [1969, p. 87 and p. 99].
Let ŷ = θ(y) ∈ ω̂ be a point that is neither planar nor umbilical; in other

words, the principal curvatures at ŷ are not equal. Then the two orthogonal
lines tangent to the planar curves P1 ∩ ω̂ and P2 ∩ ω̂ (Theorem 2.5-1 (c)) are
called the principal directions at ŷ.

A line of curvature is a curve on ω̂ that is tangent to a principal direction
at each one of its points. It can be shown that a point that is neither planar

nor umbilical possesses a neighborhood where two orthogonal families of lines

of curvature can be chosen as coordinate lines. See, e.g., Klingenberg [1973,
Lemma 3.6.6].

If
1

R1(y)
6= 0 and

1

R2(y)
6= 0, the real numbers R1(y) and R2(y) are called

the algebraic principal radii of curvature of ω̂ at ŷ. If, e.g.,
1

R1(y)
= 0,

the corresponding radius of curvature R1(y) is said to be infinite, according
to the convention made in Section 2.4. While the algebraic principal radii of
curvature may simultaneously change their signs in another system of curvilinear
coordinates, the associated centers of curvature are intrinsically defined.

The numbers
( 1

R1(y)
+

1

R2(y)

)
and

1

R1(y)R2(y)
, which are the principal

invariants of the matrix (bβ
α(y)) (Theorem 2.5-1), are respectively called the

mean curvature and the Gaussian, or total, curvature of the surface ω̂
at ŷ.
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Figure 2.5-1: Different kinds of points on a surface. A point is elliptic if the Gaussian
curvature is > 0 or equivalently, if the two principal radii of curvature are of the same sign;
the surface is then locally on one side of its tangent plane. A point is parabolic if exactly one
of the two principal radii of curvature is infinite; the surface is again locally on one side of its
tangent plane. A point is hyperbolic if the Gaussian curvature is < 0 or equivalently, if the
two principal radii of curvature are of different signs; the surface then intersects its tangent
plane along two curves.
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A point on a surface is elliptic, parabolic, or hyperbolic, according as its
Gaussian curvature is > 0, = 0 but it is not a planar point, or < 0; see Figure
2.5-1.

An asymptotic line is a curve on a surface that is everywhere tangent to
a direction along which the radius of curvature is infinite; any point along an
asymptotic line is thus either parabolic or hyperbolic. It can be shown that,
if all the points of a surface are hyperbolic, any point possesses a neighborhood

where two intersecting families of asymptotic lines can be chosen as coordinate

lines. See, e.g., Klingenberg [1973, Lemma 3.6.12].

As intuitively suggested by Figure 2.4-1, a surface in R3 cannot be defined
by its metric alone, i.e., through its first fundamental form alone, since its
curvature must be in addition specified through its second fundamental form.
But quite surprisingly, the Gaussian curvature at a point can also be expressed
solely in terms of the functions aαβ and their derivatives! This is the celebrated
Theorema egregium (“astonishing theorem”) of Gauß [1828]; see Theorem 2.6.2
in the next section.

Another striking result involving the Gaussian curvature is the equally cel-
ebrated Gauß-Bonnet theorem, so named after Gauß [1828] and Bonnet
[1848] (for a “modern” proof, see, e.g., Klingenberg [1973, Theorem 6.3-5] or
do Carmo [1994, Chapter 6, Theorem 1]): Let S be a smooth enough, “closed”,

“orientable”, and compact surface in R3 (a “closed” surface is one “without
boundary”, such as a sphere or a torus; “orientable” surfaces, which exclude for
instance Klein bottles, are defined in, e.g., Klingenberg [1973, Section 5.5]) and

let K : S → R denote its Gaussian curvature. Then

∫

S

K(ŷ)dâ(ŷ) = 2π(2 − 2g(S)),

where the genus g(S) is the number of “holes” of S (for instance, a sphere
has genus zero, while a torus has genus one). The integer χ(S) defined by
χ(S) := (2 − 2g(S)) is the Euler characteristic of ω̂.

According to the definition of Stoker [1969, Chapter 5, Section 2], a devel-

opable surface is one whose Gaussian curvature vanishes everywhere. Devel-
opable surfaces are otherwise often defined as “ruled” surfaces whose Gaussian
curvature vanishes everywhere, as in, e.g., Klingenberg [1973, Section 3.7]). A
portion of a plane provides a first example, the only one of a developable surface
all points of which are planar. Any developable surface all points of which are
parabolic can be likewise fully described: It is either a portion of a cylinder,
or a portion of a cone, or a portion of a surface spanned by the tangents to a
skewed curve. The description of a developable surface comprising both planar
and parabolic points is more subtle (although the above examples are in a sense
the only ones possible, at least locally; see Stoker [1969, Chapter 5, Sections 2
to 6]).

The interest of developable surfaces is that they can be, at least locally,
continuously “rolled out”, or “developed” (hence their name), onto a plane,

without changing the metric of the intermediary surfaces in the process.
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2.6 COVARIANT DERIVATIVES OF A VECTOR FIELD

AND CHRISTOFFEL SYMBOLS ON A SURFACE;

THE GAUSS AND WEINGARTEN FORMULAS

As in Sections 2.2 and 2.4, consider a surface ω̂ = θ(ω) in E3, where θ : ω ⊂
R2 → E3 is a smooth enough injective immersion, and let

a3(y) = a3(y) :=
a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)| , y ∈ ω.

Then the vectors aα(y) (which form the covariant basis of the tangent plane to
ω̂ at ŷ = θ(y); see Figure 2.1-1) together with the vector a3(y) (which is normal
to ω̂ and has Euclidean norm one) form the covariant basis at ŷ.

y

y2

ω

y1

R 2

θ
ŷ

η3(y)

ηi(y)ai(y)

a
3(y)

a
2(y)

η2(y) a
1(y)

η1(y)

ω̂ =θ(ω)

E
3

Figure 2.6-1: Contravariant bases and vector fields along a surface. At each point by =
θ(y) ∈ bω = θ(ω), the three vectors ai(y), where aα(y) form the contravariant basis of the

tangent plane to bω at by (Figure 2.1-1) and a3(y) =
a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|
, form the contravariant

basis at by. An arbitrary vector field defined on bω may then be defined by its covariant
components ηi : ω → R. This means that ηi(y)ai(y) is the vector at the point by.

Let the vectors aα(y) of the tangent plane to ω̂ at ŷ be defined by the rela-
tions aα(y) ·aβ(y) = δα

β . Then the vectors aα(y) (which form the contravariant
basis of the tangent plane at ŷ; see again Figure 2.1-1) together with the vec-
tor a3(y) form the contravariant basis at ŷ; see Figure 2.6-1. Note that the
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vectors of the covariant and contravariant bases at ŷ satisfy

ai(y) · aj(y) = δi
j .

Suppose that a vector field is defined on the surface ω̂. One way to define
such a field in terms of the curvilinear coordinates used for defining the surface
ω̂ consists in writing it as ηia

i : ω → R3, i.e., in specifying its covariant

components ηi : ω → R over the vectors ai of the contravariant bases. This
means that ηi(y)ai(y) is the vector at each point ŷ = θ(y) ∈ ω̂ (Figure 2.6-1).

Our objective in this section is to compute the partial derivatives ∂α(ηia
i)

of such a vector field. These are found in the next theorem, as immediate conse-
quences of two basic formulas, those of Gauß and Weingarten. The Christoffel

symbols on a surface and the covariant derivatives on a surface are also natu-
rally introduced in this process.

Theorem 2.6-1. Let ω be an open subset of R2 and let θ ∈ C2(ω;E3) be an

immersion.

(a) The derivatives of the vectors of the covariant and contravariant bases

are given by

∂αaβ = Cσ
αβaσ + bαβa3 and ∂αa

β = −Cβ
ασa

σ + bβ
αa

3,

∂αa3 = ∂αa
3 = −bαβa

β = −bσ
αaσ ,

where the covariant and mixed components bαβ and bβ
α of the second fundamental

form of ω̂ are defined in Theorems 2.4-1 and 2.5-1 and

Cσ
αβ := aσ · ∂αaβ .

(b) Let there be given a vector field ηia
i : ω → R3 with covariant components

ηi ∈ C1(ω). Then ηia
i ∈ C

1(ω) and the partial derivatives ∂α(ηia
i) ∈ C

0(ω) are

given by

∂α(ηia
i) = (∂αηβ − Cσ

αβησ − bαβη3)a
β + (∂αη3 + bβ

αηβ)a3

= (ηβ|α − bαβη3)a
β + (η3|α + bβ

αηβ)a3,

where

ηβ|α := ∂αηβ − Cσ
αβησ and η3|α := ∂αη3.

Proof. Since any vector c in the tangent plane can be expanded as c =
(c ·aβ)aβ = (c ·aσ)aσ, since ∂αa

3 is in the tangent plane (∂αa
3 ·a3 = 1

2∂α(a3 ·
a3) = 0), and since ∂αa

3 · aβ = −bαβ (Theorem 2.4-1), it follows that

∂αa
3 = (∂αa

3 · aβ)aβ = −bαβa
β .

This formula, together with the definition of the functions bβ
α (Theorem 2.5-

1), implies in turn that

∂αa3 = (∂αa3 · aσ)aσ = −bαβ(aβ · aσ)aσ = −bαβaβσaσ = −bσ
αaσ .
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Any vector c can be expanded as c = (c · ai)ai = (c · aj)a
j . In particular,

∂αaβ = (∂αaβ · aσ)aσ + (∂αaβ · a3)a3 = Cσ
αβaσ + bαβa3,

by definition of Cσ
αβ and bαβ. Finally,

∂αa
β = (∂αa

β · aσ)aσ + (∂αa
β · a3)a

3 = −Cβ
ασa

σ + bβ
αa

3,

since
∂αa

β · a3 = −aβ · ∂αa3 = bσ
αaσ · aβ = bβ

α.

That ηia
i ∈ C

1(ω) if ηi ∈ C1(ω) is clear since ai ∈ C1(ω) if θ ∈ C2(ω;E3).
The formulas established supra immediately lead to the announced expression
of ∂α(ηia

i). �

The relations (found in Theorem 2.6-1)

∂αaβ = Cσ
αβaσ + bαβa3 and ∂αa

β = −Cβ
ασa

σ + bβ
αa

3

and
∂αa3 = ∂αa

3 = −bαβa
β = −bσ

αaσ ,

respectively constitute the formulas of Gauß and Weingarten. The functions
(also found in Theorem 2.6-1)

ηβ|α = ∂αηβ − Cσ
αβησ and η3|α = ∂αη3

are the first-order covariant derivatives of the surface vector field ηia
i :

ω → R3, and the functions

Cσ
αβ := aσ · ∂αaβ = −∂αa

σ · aβ

are the Christoffel symbols of the first kind.

Remarks. (1) The Christoffel symbols Cσ
αβ can be also defined solely in

terms of the covariant components of the first fundamental form; see the proof
of Theorem 2.7-1

(2) The notation Cσ
αβ is preferred here instead of the customary notation

Γσ
αβ, so as to avoid confusion with the “three-dimensional” Christoffel symbols

Γp
ij introduced in Section 1.4. �

The definition of the covariant derivatives ηα|β = ∂βηα − Γσ
αβησ of a vector

field defined on a surface θ(ω) given in Theorem 2.6-1 is highly reminiscent of
the definition of the covariant derivatives vi‖j = ∂jvi − Γp

ijvp of a vector field
defined on an open set Θ(Ω) given in Section 1.4. However, the former are
more subtle to apprehend than the latter. To see this, recall that the covariant
derivatives vi‖j = ∂jvi − Γp

ijvp may be also defined by the relations (Theorem
1.4-2)

vi‖jg
j = ∂j(vig

i).
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By contrast, even if only tangential vector fields ηαa
α on the surface θ(ω)

are considered (i.e., vector fields ηia
i : ω → R3 for which η3 = 0), their covariant

derivatives ηα|β = ∂βηα − Γσ
αβησ satisfy only the relations

ηα|βa
α = P {∂β(ηαa

α)} ,

where P denotes the projection operator on the tangent plane in the direction
of the normal vector (i.e., P(cia

i) := cαa
α), since

∂β(ηαa
α) = ηα|βa

α + bα
βηαa

3

for such tangential fields by Theorem 2.6-1. The reason is that a surface has in
general a nonzero curvature, manifesting itself here by the “extra term” bα

βηαa
3.

This term vanishes in ω if ω̂ is a portion of a plane, since in this case bα
β = bαβ =

0. Note that, again in this case, the formula giving the partial derivatives in
Theorem 2.9-1 (b) reduces to

∂α(ηia
i) = (ηi|α)ai.

2.7 NECESSARY CONDITIONS SATISFIED BY THE

FIRST AND SECOND FUNDAMENTAL FORMS:

THE GAUSS AND CODAZZI-MAINARDI EQUA-

TIONS; GAUSS’ THEOREMA EGREGIUM

It is remarkable that the components aαβ : ω → R and bαβ : ω → R of the first

and second fundamental forms of a surface θ(ω), defined by a smooth enough
immersion θ : ω → E3, cannot be arbitrary functions.

As shown in the next theorem, they must satisfy relations that take the
form:

∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Cµ
ασbβµ − Cµ

αβbσµ = 0 in ω,

where the functions Cαβτ and Cσ
αβ have simple expressions in terms of the

functions aαβ and of some of their partial derivatives (as shown in the next
proof, it so happens that the functions Cσ

αβ as defined in Theorem 2.7-1 coincide
with the Christoffel symbols introduced in the previous section; this explains
why they are denoted by the same symbol).

These relations, which are meant to hold for all α, β, σ, τ ∈ {1, 2}, respec-
tively constitute the Gauß, and Codazzi-Mainardi, equations.

Theorem 2.7-1. Let ω be an open subset of R2, let θ ∈ C3(ω;E3) be an im-

mersion, and let

aαβ := ∂αθ · ∂βθ and bαβ := ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}
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denote the covariant components of the first and second fundamental forms of

the surface θ(ω). Let the functions Cαβτ ∈ C1(ω) and Cσ
αβ ∈ C1(ω) be defined

by

Cαβτ :=
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ),

Cσ
αβ := aστCαβτ where (aστ ) := (aαβ)−1.

Then, necessarily,

∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Cµ
ασbβµ − Cµ

αβbσµ = 0 in ω.

Proof. Let aα = ∂αθ. It is then immediately verified that the functions
Cαβτ are also given by

Cαβτ = ∂αaβ · aτ .

Let a3 =
a1 ∧ a2

|a1 ∧ a2|
and, for each y ∈ ω, let the three vectors aj(y) be defined

by the relations aj(y) ·ai(y) = δj
i . Since we also have aβ = aαβaα and a3 = a3,

the last relations imply that Cσ
αβ = ∂αaβ · aσ , hence that

∂αaβ = Cσ
αβaσ + bαβa3,

since ∂αaβ = (∂αaβ · aσ)aσ + (∂αaβ · a3)a3. Differentiating the same relations
yields

∂σCαβτ = ∂ασaβ · aτ + ∂αaβ · ∂σaτ ,

so that the above relations together give

∂αaβ · ∂σaτ = Cµ
αβaµ · ∂σaτ + bαβa3 · ∂σaτ = Cµ

αβCστµ + bαβbστ .

Consequently,

∂ασaβ · aτ = ∂σCαβτ − Cµ
αβCστµ − bαβbστ .

Since ∂ασaβ = ∂αβaσ , we also have

∂ασaβ · aτ = ∂βCαστ − Cµ
ασCβτµ − bασbβτ .

Hence the Gauß equations immediately follow.
Since ∂αa3 = (∂αa3 · aσ)aσ + (∂αa3 · a3)a

3 and ∂αa3 · aσ = −bασ =
−∂αaσ · a3, we have

∂αa3 = −bασa
σ .

Differentiating the relations bαβ = ∂αaβ · a3, we obtain

∂σbαβ = ∂ασaβ · a3 + ∂αaβ · ∂σa3.
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This relation and the relations ∂αaβ = Cσ
αβaσ + bαβa3 and ∂αa3 = −bασa

σ

together imply that
∂αaβ · ∂σa3 = −Cµ

αβbσµ.

Consequently,
∂ασaβ · a3 = ∂σbαβ + Cµ

αβbσµ.

Since ∂ασaβ = ∂αβaσ, we also have

∂ασaβ · a3 = ∂βbασ + Cµ
ασbβµ.

Hence the Codazzi-Mainardi equations immediately follow. �

Remark. The vectors aα and aβ introduced above respectively form the
covariant and contravariant bases of the tangent plane to the surface θ(ω), the
unit vector a3 = a3 is normal to the surface, and the functions aαβ are the
contravariant components of the first fundamental form (Sections 2.2 and 2.3).

�

As shown in the above proof, the Gauß and Codazzi-Mainardi equations
thus simply constitute a re-writing of the relations ∂ασaβ = ∂αβaσ in the form
of the equivalent relations ∂ασaβ ·aτ = ∂αβaσ ·aτ and ∂ασaβ ·a3 = ∂αβaσ ·a3.

The functions

Cαβτ =
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ) = ∂αaβ · aτ = Cβατ

and
Cσ

αβ = aστCαβτ = ∂αaβ · aσ = Cσ
βα

are the Christoffel symbols of the first, and second, kind. We recall that
the same Christoffel symbols Cσ

αβ also naturally appeared in a different context
(that of covariant differentiation; cf. Section 2.6).

Finally, the functions

Sταβσ := ∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ

are the covariant components of the Riemann curvature tensor of the
surface θ(ω).

Remark. Like the notation Cσ
αβ vs. Γp

ij , the notation Cαβτ is intended to
avoid confusions with the “three-dimensional” Christoffel symbols Γijq intro-
duced in Section 1.4. �

Letting α = 2, β = 1, σ = 2, τ = 1 in the Gauß equations gives in particular

S1212 = det(bαβ).

Consequently, the Gaussian curvature at each point Θ(y) of the surface θ(ω)
can be written as

1

R1(y)R2(y)
=

S1212(y)

det(aαβ(y))
, y ∈ ω,
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since
1

R1(y)R2(y)
=

det(bαβ(y)

det(aαβ(y))
(Theorem 2.5-1). By inspection of the function

S1212, we thus reach the astonishing conclusion that, at each point of the surface,

a notion involving the “curvature” of the surface, viz., the Gaussian curvature,

is entirely determined by the knowledge of the “metric” of the surface at the

same point, viz., the components of the first fundamental forms and their partial
derivatives of order ≤ 2 at the same point! This startling conclusion naturally
deserves a theorem:

Theorem 2.7-2. Let ω be an open subset of R2, let θ ∈ C3(ω;E3) be an im-

mersion, let aαβ = ∂αθ ·∂βθ denote the covariant components of the first funda-

mental form of the surface θ(ω), and let the functions Cαβτ and S1212 be defined

by

Cαβτ :=
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ),

S1212 :=
1

2
(2∂12a12 − ∂11a22 − ∂22a11) + aαβ(C12αC12β − C11αC22β).

Then, at each point θ(y) of the surface θ(ω), the principal curvatures 1
R1(y)

and 1
R2(y) satisfy

1

R1(y)R2(y)
=

S1212(y)

det(aαβ(y))
, y ∈ ω.

Theorem 2.7-2 constitutes the famed Theorema Egregium of Gauß [1828],
so named by Gauß who had been himself astounded by his discovery.

2.8 EXISTENCE OF A SURFACE WITH PRESCRIBED

FIRST AND SECOND FUNDAMENTAL FORMS

Let M2, S2, and S2
> denote the sets of all square matrices of order two, of all

symmetric matrices of order two, and of all symmetric, positive definite matrices
of order two.

So far, we have considered that we are given an open set ω ⊂ R2 and a
smooth enough immersion θ : ω → E3, thus allowing us to define the fields
(aαβ) : ω → S

2
> and (bαβ) : ω → S

2, where aαβ : ω → R and bαβ : ω → R

are the covariant components of the first and second fundamental forms of the
surface θ(ω) ⊂ E3.

Note that the immersion θ need not be injective in order that these matrix
fields be well defined.

We now turn to the reciprocal questions:
Given an open subset ω of R2 and two smooth enough matrix fields (aαβ) :

ω → S2
> and (bαβ) : ω → S2, when are they the first and second fundamental

forms of a surface θ(ω) ⊂ E3, i.e., when does there exist an immersion θ : ω →
E3 such that

aαβ := ∂αθ · ∂βθ and bαβ := ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}

in ω?
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If such an immersion exists, to what extent is it unique?

The answers to these questions turn out to be remarkably simple: If ω is

simply-connected, the necessary conditions of Theorem 2.7-1, i.e., the Gauß

and Codazzi-Mainardi equations, are also sufficient for the existence of such an

immersion. If ω is connected, this immersion is unique up to isometries in E3.

Whether an immersion found in this fashion is injective is a different issue,
which accordingly should be resolved by different means.

Following Ciarlet & Larsonneur [2001], we now give a self-contained, com-
plete, and essentially elementary, proof of this well-known result. This proof
amounts to showing that it can be established as a simple corollary to the fun-

damental theorem of three-dimensional differential geometry (Theorems 1.6-1
and 1.7-1).

This proof has also the merit to shed light on the analogies (which cannot
remain unnoticed!) between the assumptions and conclusions of both existence

results (compare Theorems 1.6-1 and 2.8-1) and both uniqueness results (com-
pare Theorems 1.7-1 and 2.9-1).

A direct proof of the fundamental theorem of surface theory is given in
Klingenberg [1973, Theorem 3.8.8], where the global existence of the mapping θ
is based on an existence theorem for ordinary differential equations, analogous
to that used in part (ii) of the proof of Theorem 1.6-1. A proof of the “local”
version of this theorem, which constitutes Bonnet’s theorem, is found in, e.g.,
do Carmo [1976].

This result is another special case of the fundamental theorem of Rieman-

nian geometry alluded to in Section 1.6. We recall that this theorem asserts that
a simply-connected Riemannian manifold of dimension p can be isometrically
immersed into a Euclidean space of dimension (p + q) if and only if there exist
tensors satisfying together generalized Gauß, and Codazzi-Mainardi, equations

and that the corresponding isometric immersions are unique up to isometries in
the Euclidean space. A substantial literature has been devoted to this theorem
and its various proofs, which usually rely on basic notions of Riemannian geom-
etry, such as connections or normal bundles, and on the theory of differential
forms. See in particular the earlier papers of Janet [1926] and Cartan [1927]
and the more recent references of Szczarba [1970], Tenenblat [1971], Jacobowitz
[1982], and Szopos [2005].

Like the fundamental theorem of three-dimensional differential geometry,
this theorem comprises two essentially distinct parts, a global existence result

(Theorem 2.8-1) and a uniqueness result (Theorem 2.9-1), the latter being also
called rigidity theorem. Note that these two results are established under dif-

ferent assumptions on the set ω and on the smoothness of the fields (aαβ) and
(bαβ).

These existence and uniqueness results together constitute the fundamen-

tal theorem of surface theory.

Theorem 2.8-1. Let ω be a connected and simply-connected open subset of R2

and let (aαβ) ∈ C2(ω; S2
>) and (bαβ) ∈ C2(ω; S2) be two matrix fields that satisfy
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the Gauß and Codazzi-Mainardi equations, viz.,

∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Cµ
ασbβµ − Cµ

αβbσµ = 0 in ω,

where

Cαβτ :=
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ),

Cσ
αβ := aστCαβτ where (aστ ) := (aαβ)−1.

Then there exists an immersion θ ∈ C3(ω;E3) such that

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}

in ω.

Proof. The proof of this theorem as a corollary to Theorem 1.6-1 relies
on the following elementary observation: Given a smooth enough immersion
θ : ω → E3 and ε > 0, let the mapping Θ : ω × ]−ε, ε[ → E3 be defined by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ ω × ]−ε, ε[ ,

where a3 :=
∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
, and let

gij := ∂iΘ · ∂jΘ.

Then an immediate computation shows that

gαβ = aαβ − 2x3bαβ + x2
3cαβ and gi3 = δi3 in ω × ]−ε, ε[ ,

where aαβ and bαβ are the covariant components of the first and second funda-
mental forms of the surface θ(ω) and cαβ := aστbασbβτ .

Assume that the matrices (gij) constructed in this fashion are invertible,
hence positive definite, over the set ω× ]−ε, ε[ (they need not be, of course; but
the resulting difficulty is easily circumvented; see parts (i) and (viii) below).
Then the field (gij) : ω× ]−ε, ε[ → S3

> becomes a natural candidate for applying
the “three-dimensional” existence result of Theorem 1.6-1, provided of course
that the “three-dimensional” sufficient conditions of this theorem, viz.,

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,

can be shown to hold, as consequences of the “two-dimensional” Gauß and

Codazzi-Mainardi equations. That this is indeed the case is the essence of the
present proof (see parts (i) to (vii)).

By Theorem 1.6-1, there then exists an immersion Θ : ω× ]−ε, ε[ → E3 that
satisfies gij = ∂iΘ ·∂jΘ in ω× ]−ε, ε[. It thus remains to check that θ := Θ(·, 0)
indeed satisfies (see part (ix))

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}

in ω.
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The actual implementation of this program essentially involves elementary,
but sometimes lengthy, computations, which accordingly will be omitted for the
most part; only the main intermediate results will be recorded.

For clarity, the proof is broken into nine parts, numbered (i) to (ix).

(i) Given two matrix fields (aαβ) ∈ C2(ω; S2
>) and (bαβ) ∈ C2(ω; S2), let the

matrix field (gij) ∈ C2(ω × R; S3) be defined by

gαβ := aαβ − 2x3bαβ + x2
3cαβ and gi3 := δi3 in ω × R

(the variable y ∈ ω is omitted; x3 designates the variable in R), where

cαβ := bτ
αbβτ and bτ

α := aστ bασ in ω.

Let ω0 be an open subset of R2 such that ω0 is a compact subset of ω. Then

there exists ε0 = ε0(ω0) > 0 such that the symmetric matrices (gij) are positive

definite at all points in Ω0, where

Ω0 := ω0 × ]−ε0, ε0[ .

Besides, the elements of the inverse matrix (gpq) are given in Ω0 by

gαβ =
∑

n≥0

(n + 1)xn
3aασ(Bn)β

σ and gi3 = δi3,

where

(B)β
σ := bβ

σ and (Bn)β
σ := bσ1

σ · · · bβ
σn−1

for n ≥ 2,

i.e., (Bn)β
σ designates for any n ≥ 0 the element at the σ-th row and β-th

column of the matrix Bn. The above series are absolutely convergent in the

space C2(Ω0).
Let a priori gαβ =

∑
n≥0 xn

3hαβ
n where hαβ

n are functions of y ∈ ω0 only, so

that the relations gαβgβτ = δα
τ read

hαβ
0 aβτ + x3(h

αβ
1 aβτ − 2hαβ

0 bβτ )

+
∑

n≥2

xn
3 (hαβ

n aβτ − 2hαβ
n−1bβτ + hαβ

n−2cβτ ) = δα
τ .

It is then easily verified that the functions hαβ
n are given by

hαβ
n = (n + 1)aασ(Bn)β

σ , n ≥ 0,

so that
gαβ =

∑

n≥0

(n + 1)xn
3 aασbσ1

σ · · · bβ
σn−1

.

It is clear that such a series is absolutely convergent in the space C2(ω0 ×
[−ε0, ε0]) if ε0 > 0 is small enough.
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(ii) The functions Cσ
αβ being defined by

Cσ
αβ := aστCαβτ ,

where

(aστ ) := (aαβ)−1 and Cαβτ :=
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ),

define the functions

bτ
α|β := ∂βbτ

α + Cτ
βµbµ

α − Cµ
αβbτ

µ,

bαβ|σ := ∂σbαβ − Cµ
ασbβµ − Cµ

βσbαµ = bβα|σ.

Then

bτ
α|β = aστ bασ|β and bασ|β = aστ bτ

α|β .

Furthermore, the assumed Codazzi-Mainardi equations imply that

bτ
α|β = bτ

β|α and bασ|β = bαβ|σ.

The above relations follow from straightforward computations based on the
definitions of the functions bτ

α|β and bαβ|σ. They are recorded here because they
play a pervading rôle in the subsequent computations.

(iii) The functions gij ∈ C2(Ω0) and gij ∈ C2(Ω0) being defined as in part (i),
define the functions Γijq ∈ C1(Ω0) and Γp

ij ∈ C1(Ω0) by

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij) and Γp

ij := gpqΓijq .

Then the functions Γijq = Γjiq and Γp
ij = Γp

ji have the following expressions :

Γαβσ = Cαβσ − x3(b
τ
α|βaτσ + 2Cτ

αβbτσ) + x2
3(b

τ
α|βbτσ + Cτ

αβcτσ),

Γαβ3 = −Γα3β = bαβ − x3cαβ ,

Γα33 = Γ3β3 = Γ33q = 0,

Γσ
αβ = Cσ

αβ −
∑

n≥0
xn+1

3 bτ
α|β(Bn)σ

τ ,

Γ3
αβ = bαβ − x3cαβ ,

Γβ
α3 = −

∑
n≥0

xn
3 (Bn+1)β

α,

Γ3
3β = Γp

33 = 0,

where the functions cαβ, (Bn)σ
τ , and bτ

α|β are defined as in parts (i) and (ii).
All computations are straightforward. We simply point out that the assumed

Codazzi-Mainardi equations are needed to conclude that the factor of x3 in the
function Γαβσ is indeed that announced above. We also note that the compu-
tation of the factor of x2

3 in Γαβσ relies in particular on the easily established
relations

∂αcβσ = bτ
β |αbστ + bµ

σ |αbµβ + Cµ
αβcσµ + Cµ

ασcβµ.
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(iv) The functions Γijq ∈ C1(Ω0) and Γp
ij ∈ C1(Ω0) being defined as in

part (iii), define the functions Rqijk ∈ C0(Ω0) by

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp.

Then, in order that the relations

Rqijk = 0 in Ω0

hold, it is sufficient that

R1212 = 0, Rα2β3 = 0, Rα3β3 = 0 in Ω0.

The above definition of the functions Rqijk and that of the functions Γijq

and Γp
ij (part (iii)) together imply that, for all i, j, k, q,

Rqijk = Rjkqi = −Rqikj ,

Rqijk = 0 if j = k or q = i.

Consequently, the relation R1212 = 0 implies that Rαβστ = 0, the relations
Rα2β3 = 0 imply that Rqijk = 0 if exactly one index is equal to 3, and finally,
the relations Rα3β3 = 0 imply that Rqijk = 0 if exactly two indices are equal
to 3.

(v) The functions

Rα3β3 := ∂βΓ33α − ∂3Γ3βα + Γp
3βΓ3αp − Γp

33Γβαp

satisfy

Rα3β3 = 0 in Ω0.

These relations immediately follow from the expressions found in part (iii)
for the functions Γijq and Γp

ij . Note that neither the Gauß equations nor the
Codazzi-Mainardi equations are needed here.

(vi) The functions

Rα2β3 := ∂βΓ23α − ∂3Γ2βα + Γp
2βΓ3αp − Γp

23Γβαp

satisfy

Rα2β3 = 0 in Ω0.

The definitions of the functions gαβ (part (i)) and Γijq (part (iii)) show that

∂βΓ23α − ∂3Γ2βα = (∂2bαβ − ∂αb2β) + x3(∂αc2β − ∂2cαβ).

Then the expressions found in part (iii) show that

Γp
2βΓ3αp − Γp

23Γβαp = Γσ
3αΓ2βσ − Γσ

23Γαβσ

= Cσ
αβb2σ − Cσ

2βbασ

+ x3(b
σ
2 |βbασ − bσ

α|βb2σ + Cσ
2βcασ − Cσ

αβc2σ),
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and the relations Rα3β3 = 0 follow by making use of the relations

∂αcβσ = bτ
β|αbστ + bµ

σ|αbµβ + Cµ
αβcσµ + Cµ

ασcβµ

together with the relations

∂2bαβ − ∂αb2β + Cσ
αβb2σ − Cσ

2βbασ = 0,

which are special cases of the assumed Codazzi-Mainardi equations.

(vii) The function

R1212 := ∂1Γ221 − ∂2Γ211 + Γp
21Γ21p − Γp

22Γ11p

satisfies

R1212 = 0 in Ω0.

The computations leading to this relation are fairly lengthy and they require
some care. We simply record the main intermediary steps, which consist in
evaluating separately the various terms occurring in the function R1212 rewritten
as

R1212 = (∂1Γ221 − ∂2Γ211) + (Γσ
12Γ12σ − Γσ

11Γ22σ) + (Γ123Γ123 − Γ113Γ223).

First, the expressions found in part (iii) for the functions Γαβ3 easily yield

Γ123Γ123 − Γ113Γ223 = (b2
12 − b11b22)

+ x3(b11c22 − 2b12c12 + b22c11) + x2
3(c

2
12 − c11c22).

Second, the expressions found in part (iii) for the functions Γαβσ and Γσ
αβ

yield, after some manipulations:

Γσ
12Γ12σ − Γσ

11Γ22σ = (Cσ
12C

τ
12 − Cσ

11C
τ
22)aστ

+ x3{(Cσ
11b

τ
2 |2 − 2Cσ

12b
τ
1 |2 + Cσ

22b
τ
1 |1)aστ

+ 2(Cσ
11C

τ
22 − Cσ

12C
τ
12)bστ}

+ x2
3{bσ

1 |1bτ
2 |2 − bσ

1 |2bτ
1 |2)aστ

+ (Cσ
11b

τ
2 |2 − 2Cσ

12b
τ
1 |2 + Cσ

22b
τ
1 |1)bστ

+ (Cσ
11C

τ
22 − Cσ

12C
τ
12)cστ}.

Third, after somewhat delicate computations, which in particular make use
of the relations established in part (ii) about the functions bτ

α|β and bαβ|σ, it is
found that

∂1Γ221 − ∂2Γ211 = ∂1C221 − ∂2C211

− x3{S1212b
α
α + (Cσ

11b
τ
2 |2 − 2Cσ

12b
τ
1 |2 + Cσ

22b
τ
1 |1)aστ

+ 2(Cσ
11C

τ
22 − Cσ

12C
τ
12)bστ}

+ x2
3{Sστ12b

σ
1 bτ

2 + (bσ
1 |1bτ

2 |2 − bσ
1 |2bτ

1 |2)aστ

+ (Cσ
11b

τ
2 |2 − 2Cσ

12b
τ
1 |2 + Cσ

22b
τ
1 |1)bσ

+ (Cσ
11C

τ
22 − Cσ

12C
τ
12)cστ},
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where the functions

Sταβσ := ∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ

are precisely those appearing in the left-hand sides of the Gauß equations.
It is then easily seen that the above equations together yield

R1212 = {S1212 − (b11b22 − b12b12)}
− x3{S1212 − (b11b22 − b12b12)b

α
α}

+ x2
3{Sστ12b

σ
1 bτ

2 + (c12c12 − c11c22)}.

Since

Sστ12b
σ
1 bτ

2 = S1212(b
1
1b

2
2 − b2

1b
1
2),

c12c12 − c11c22 = (b11b12 − b11b22)(b
1
1b

2
2 − b2

1b
1
2),

it is finally found that the function R1212 has the following remarkable expres-
sion:

R1212 = {S1212 − (b11b22 − b12b12)}{1− x3(b
1
1 + b2

2) + x2
3(b

1
1b

2
2 − b2

1b
1
2)}.

By the assumed Gauß equations,

S1212 = b11b22 − b12b12.

Hence R1212 = 0 as announced.

(viii) Let ω be a connected and simply-connected open subset of R2. Then

there exist open subsets ω`, ` ≥ 0, of R2 such that ω` is a compact subset of ω
for each ` ≥ 0 and

ω =
⋃

`≥0

ω`.

Furthermore, for each ` ≥ 0, there exists ε` = ε`(ω`) > 0 such that the symmet-

ric matrices (gij) are positive definite at all points in Ω`, where

Ω` := ω` × ]−ε`, ε`[ .

Finally, the open set

Ω :=
⋃

`≥0

Ω`

is connected and simply-connected.

Let ω`, ` ≥ 0, be open subsets of ω with compact closures ω` ⊂ ω such that
ω =

⋃
`≥0 ω`. For each `, a set Ω` := ω` × ]−ε`, ε`[ can then be constructed in

the same way that the set Ω0 was constructed in part (i).
It is clear that the set Ω :=

⋃
`≥0 Ω` is connected. To show that Ω is simply-

connected, let γ be a loop in Ω, i.e., a mapping γ ∈ C0([0, 1]; R3) that satisfies

γ(0) = γ(1) and γ(t) ∈ Ω for all 0 ≤ t ≤ 1.



Sect. 2.8] Existence of a surface with prescribed fundamental forms 85

Let the projection operator π : Ω → ω be defined by π(y, x3) = y for all
(y, x3) ∈ Ω, and let the mapping ϕ0 : [0, 1]× [0, 1] → R3 be defined by

ϕ0(t, λ) := (1 − λ)γ(t) + λπ(γ(t)) for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1.

Then ϕ0 is a continuous mapping such that ϕ0([0, 1]×[0, 1]) ⊂ Ω, by definition of
the set Ω. Furthermore, ϕ0(t, 0) = γ(t) and ϕ0(t, 1) = π(γ(t)) for all t ∈ [0, 1].

The mapping

γ̃ := π ◦ γ ∈ C0([0, 1]; R2)

is a loop in ω since γ̃(0) = π(γ(0)) = π(γ(1)) = γ̃(1) and γ̃(t) ∈ ω for
all 0 ≤ t ≤ 1. Since ω is simply connected, there exist a mapping ϕ1 ∈
C0([0, 1] × [0, 1]; R2) and a point y0 ∈ ω such that

ϕ1(t, 1) = γ̃ and ϕ1(t, 2) = y0 for all 0 ≤ t ≤ 1

and

ϕ1(t, λ) ∈ ω for all 0 ≤ t ≤ 1, 1 ≤ λ ≤ 2.

Then the mapping ϕ ∈ C0([0, 1] × [0, 2]; R3) defined by

ϕ(t, λ) = ϕ0(t, λ) for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1,
ϕ(t, λ) = ϕ1(t, λ) for all 0 ≤ t ≤ 1, 1 ≤ λ ≤ 2,

is a homotopy in Ω that reduces the loop γ to the point (y0, 0) ∈ Ω. Hence the
set Ω is simply-connected.

(ix) By parts (iv) to (viii), the functions Γijq ∈ C1(Ω) and Γp
ij ∈ C1(Ω)

constructed as in part (iii) satisfy

∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0

in the connected and simply-connected open set Ω. By Theorem 1.6-1, there thus

exists an immersion Θ ∈ C3(Ω;E3) such that

gij = ∂iΘ · ∂jΘ in Ω,

where the matrix field (gij) ∈ C2(Ω; S3
>) is defined by

gαβ = aαβ − 2x3bαβ + x2
3cαβ and gi3 = δi3 in Ω.

Then the mapping θ ∈ C3(ω;E3) defined by

θ(y) = Θ(y, 0) for all y ∈ ω,

satisfies

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}

in ω.
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Let gi := ∂iΘ. Then ∂33Θ = ∂3g3 = Γp
33gp = 0; cf. part (iii). Hence there

exists a mapping θ1 ∈ C3(ω;E3) such that

Θ(y, x3) = θ(y) + x3θ
1(y) for all (y, x3) ∈ Ω,

and consequently, gα = ∂αθ+x3∂αθ
1 and g3 = θ1. The relations gi3 = gi ·g3 =

δi3 (cf. part (i)) then show that

(∂αθ + x3∂αθ
1) · θ1 = 0 and θ1 · θ1 = 1.

These relations imply that ∂αθ · θ1 = 0. Hence either θ1 = a3 or θ1 = −a3

in ω, where

a3 :=
∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
.

But θ1 = −a3 is ruled out since

{∂1θ ∧ ∂2θ} · θ1 = det(gij)|x3=0 > 0.

Noting that

∂αθ · a3 = 0 implies ∂αθ · ∂βa3 = −∂αβθ · a3,

we obtain, on the one hand,

gαβ = (∂αθ + x3∂αa3) · (∂βθ + x3∂βa3)

= ∂αθ · ∂βθ − 2x3∂αβθ · a3 + x2
3∂αa3 · ∂βa3 in Ω.

Since, on the other hand,

gαβ = aαβ − 2x3bαβ + x2
3cαβ in Ω

by part (i), we conclude that

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ · a3 in ω,

as desired. This completes the proof. �

Remarks. (1) The functions cαβ = bτ
αbβτ = ∂αa3 ·∂βa3 introduced in part (i)

are the covariant components of the third fundamental form of the surface θ(ω).
(2) The series expansion gαβ =

∑
n≥0(n + 1)xn

3 aασ(Bn)β
σ found in part (i)

is known; cf., e.g., Naghdi [1972].
(3) The Gauß equations are used only once in the above proof, for showing

that R1212 = 0 in part (vii). �

The definitions of the functions Cσ
αβ and Cαβτ imply that the sixteen Gauß

equations are satisfied if and only if they are satisfied for α = 1, β = 2,
σ = 1, τ = 2 and that the Codazzi-Mainardi equations are satisfied if and only
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if they are satisfied for α = 1, β = 2, σ = 1 and α = 1, β = 2, σ = 2 (other
choices of indices with the same properties are clearly possible).

In other words, the Gauß equations and the Codazzi-Mainardi equations in
fact reduce to one and two equations, respectively.

The regularity assumptions made in Theorem 2.8-1 on the matrix fields (aαβ)
and (bαβ) can be significantly relaxed in several ways. First, C. Mardare [2003b]
has shown by means of an ad hoc, but not trivial, modification of the proof
given here, that the existence of an immersion θ ∈ C3(ω;E3) still holds under
the weaker (but certainly more natural, in view of the regularity of the result-
ing immersion θ) assumption that (bαβ) ∈ C1(ω; S2), all other assumptions of
Theorem 2.8-1 holding verbatim.

In fact, Hartman & Wintner [1950] have shown the stronger result that the
existence theorem still holds if (aαβ) ∈ C1(ω; S2

>) and (bαβ) ∈ C0(ω; S2), with a
resulting mapping θ in the space C2(ω;E3). Their result has been itself super-
seded by that of S. Mardare [2004], which asserts that if (aαβ) ∈ W 1,∞

loc (ω; S2
>)

and (bαβ) ∈ L∞
loc(ω; S2) are two matrix fields that satisfy the Gauß and Codazzi-

Mainardi equations in the sense of distributions, then there exists a mapping
θ ∈ W 2,∞

loc (ω) such that (aαβ) and (bαβ) are the fundamental forms of the sur-
face θ(ω).

2.9 UNIQUENESS UP TO ISOMETRIES OF SURFACES

WITH THE SAME FUNDAMENTAL FORMS

In Section 2.8, we have established the existence of an immersion θ : ω ⊂ R2 →
E3 giving rise to a surface θ(ω) with prescribed first and second fundamental
forms, provided these forms satisfy ad hoc sufficient conditions. We now turn
to the question of uniqueness of such immersions.

This is the object of the next theorem, which constitutes another rigidity

theorem, called the rigidity theorem for surfaces. Like its “three-dimensional
counterpart” (Theorem 1.7-1), it asserts that, if two immersions θ ∈ C2(ω;E3)

and θ̃ ∈ C2(ω;E3) share the same fundamental forms, then the surface θ̃(ω)
is obtained by subjecting the surface θ(ω) to a rotation (represented by an
orthogonal matrix Q with det Q = 1), then by subjecting the rotated surface
to a translation (represented by a vector c). Such a “rigid” transformation is
thus an isometry in E3.

As shown by Ciarlet & Larsonneur [2001] (whose proof is adapted here),
the issue of uniqueness can be resolved as a corollary to its “three-dimensional
counterpart”, like the issue of existence. We recall that O3 denotes the set of all
orthogonal matrices of order three and that O3

+ = {Q ∈ O3; detQ = 1} denotes
the set of all 3 × 3 rotations.

Theorem 2.9-1. Let ω be a connected open subset of R2 and let θ ∈ C2(ω;E3)

and θ̃ ∈ C2(ω;E3) be two immersions such that their associated first and second

fundamental forms satisfy (with self-explanatory notations)

aαβ = ãαβ and bαβ = b̃αβ in ω.
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Then there exist a vector c ∈ E3 and a rotation Q ∈ O3
+ such that

θ(y) = c+ Qθ̃(y) for all y ∈ ω.

Proof. Arguments similar to those used in parts (i) and (viii) of the proof
of Theorem 2.8-1 show that there exist open subsets ω` of ω and real numbers
ε` > 0, ` ≥ 0, such that the symmetric matrices (gij) defined by

gαβ := aαβ − 2x3bαβ + x2
3cαβ and gi3 = δi3,

where cαβ := aστ bασbβτ , are positive definite in the set

Ω :=
⋃

`≥0

ω` × ]−ε`, ε`[ .

The two immersions Θ ∈ C1(Ω;E3) and Θ̃ ∈ C1(Ω;E3) defined by (with
self-explanatory notations)

Θ(y, x3) := θ(y) + x3a3(y) and Θ̃(y, x3) := θ̃(y) + x3ã3(y)

for all (y, x3) ∈ Ω therefore satisfy

gij = g̃ij in Ω.

By Theorem 1.7-1, there exist a vector c ∈ E3 and an orthogonal matrix
Q ∈ O3 such that

Θ(y, x3) = c+ QΘ̃(y, x3) for all (y, x3) ∈ Ω.

Hence, on the one hand,

det ∇Θ(y, x3) = detQ det ∇Θ̃(y, x3) for all (y, x3) ∈ Ω.

On the other hand, a simple computation shows that

det ∇Θ(y, x3) =
√

det(aαβ(y){1− x3(b
1
1 + b2

2)(y) + x2
3(b

1
1b

2
2 − b2

1b
1
2)(y)}

for all (y, x3) ∈ Ω, where

bβ
α(y) := aβσ(y)bασ(y), y ∈ ω,

so that
det ∇Θ(y, x3) = det ∇Θ̃(y, x3) for all (y, x3) ∈ Ω.

Therefore detQ = 1, which shows that the matrix Q ∈ O3 is in fact a
rotation. The conclusion then follows by letting x3 = 0 in the relation

Θ(y, x3) = c+ QΘ̃(y, x3) for all (y, x3) ∈ Ω.

�
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As a preparation to our next result, we note that the second fundamental
form of the surface θ(ω) can still be defined under the weaker assumptions that

θ ∈ C1(ω;E3) and a3 =
a1 ∧ a2

|a1 ∧ a2|
∈ C1(ω;E3), by means of the definition

bαβ := −aα · ∂βa3,

which evidently coincides with the usual one when θ ∈ C2(ω;E3).

Theorem 2.9-1 constitutes the “classical” rigidity theorem for surfaces, in the
sense that both immersions θ and θ̃ are assumed to be in the space C2(ω;E3).

Following Ciarlet & C. Mardare [2004a], we now show that a similar re-

sult holds under the assumptions that θ̃ ∈ H1(ω;E3) and ã3 :=
ã1 ∧ ã2

|ã1 ∧ ã2|
∈

H1(ω;E3) (with self-explanatory notations). Naturally, our first task will be to
verify that the vector field ã3, which is not necessarily well defined a.e. in ω for
an arbitrary mapping θ̃ ∈ H1(ω;E3), is nevertheless well defined a.e. in ω for

those mappings θ̃ that satisfy the assumptions of the next theorem. This fact
will in turn imply that the functions b̃αβ := −ãα ·∂β ã3 are likewise well defined
a.e. in ω.

Theorem 2.9-2. Let ω be a connected open subset of R2 and let θ ∈ C1(ω;E3)
be an immersion that satisfies a3 ∈ C1(ω;E3). Assume that there exists a vector

field θ̃ ∈ H1(ω;E3) that satisfies

ãαβ = aαβ a.e. in ω, ã3 ∈ H1(ω;E3), and b̃αβ = bαβ a.e. in ω.

Then there exist a vector c ∈ E3 and a matrix Q ∈ O
3
+ such that

θ̃(y) = c+ Qθ(y) for almost all y ∈ ω.

Proof. The proof essentially relies on the extension to a Sobolev space setting
of the “three-dimensional” rigidity theorem established in Theorem 1.7-3.

(i) To begin with, we record several technical preliminaries.

First, we observe that the relations ãαβ = aαβ a.e. in ω and the assumption
that θ ∈ C1(ω;E3) is an immersion together imply that

|ã1 ∧ ã2| =
√

det(ãαβ) =
√

det(aαβ) > 0 a.e. in ω.

Consequently, the vector field ã3, and thus the functions b̃αβ, are well defined

a.e. in ω.

Second, we establish that

bαβ = bβα in ω and b̃αβ = b̃βα a.e. in ω,
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i.e., that aα · ∂βa3 = aβ · ∂αa3 in ω and ãα · ∂βã3 = ãβ · ∂αã3 a.e. in ω. To
this end, we note that either the assumptions θ ∈ C1(ω;E3) and a3 ∈ C1(ω;E3)
together, or the assumptions θ ∈ H1(ω;E3) and a3 ∈ H1(ω;E3) together, imply
that aα · ∂βa3 = ∂αθ · ∂βa3 ∈ L1

loc(ω), hence that ∂αθ · ∂βa3 ∈ D′(ω).
Given any ϕ ∈ D(ω), let U denote an open subset of R2 such that supp ϕ ⊂ U

and U is a compact subset of ω. Denoting by X′〈·, ·〉X the duality pairing
between a topological vector space X and its dual X ′, we have

D′(ω)〈∂αθ · ∂βa3, ϕ〉D(ω) =

∫

ω

ϕ∂αθ · ∂βa3 dy

=

∫

ω

∂αθ · ∂β(ϕa3)dy −
∫

ω

(∂βϕ)∂αθ · a3 dy.

Observing that ∂αθ · a3 = 0 a.e. in ω and that

−
∫

ω

∂αθ · ∂β(ϕa3)dy = −
∫

U

∂αθ · ∂β(ϕa3)dy

= H−1(U ;E3)〈∂β(∂αθ), ϕa3〉H1

0
(U ;E3),

we reach the conclusion that the expression D′(ω)〈∂αθ·∂βa3, ϕ〉D(ω) is symmetric
with respect to α and β since ∂αβθ = ∂βαθ in D′(U). Hence ∂αθ · ∂βa3 =
∂βθ · ∂αa3 in L1

loc(ω), and the announced symmetries are established.
Third, let

c̃αβ := ∂αã3 · ∂βã3 and cαβ := ∂αa3 · ∂βa3.

Then we claim that c̃αβ = cαβ a.e. in ω. To see this, we note that the matrix
fields (ãαβ) := (ãαβ)−1 and (aαβ) := (aαβ)−1 are well defined and equal a.e. in
ω since θ is an immersion and ãαβ = aαβ a.e. in ω. The formula of Weingarten

(Section 2.6) can thus be applied a.e. in ω, showing that c̃αβ = ãστ b̃σαb̃τβ a.e.
in ω.

The assertion then follows from the assumptions b̃αβ = bαβ a.e. in ω.

(ii) Starting from the set ω and the mapping θ (as given in the statement
of Theorem 2.9-2), we next construct a set Ω and a mapping Θ that satisfy the

assumptions of Theorem 1.7-2. More precisely, let

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ ω × R.

Then the mapping Θ := ω × R → E3 defined in this fashion is clearly continu-
ously differentiable on ω × R and

det ∇Θ(y, x3) =
√

det(aαβ(y)){1− x3(b
1
1 + b2

2)(y) + x2
3(b

1
1b

2
2 − b2

1b
1
2)(y)}

for all (y, x3) ∈ ω × R, where

bβ
α(y) := aβσ(y)bασ(y), y ∈ ω.

Let ωn, n ≥ 0, be open subsets of R2 such that ωn is a compact subset of ω
and ω =

⋃
n≥0 ωn. Then the continuity of the functions aαβ, aαβ , bαβ and the
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assumption that θ is an immersion together imply that, for each n ≥ 0, there
exists εn > 0 such that

det ∇Θ(y, x3) > 0 for all (y, x3) ∈ ωn × [−εn, εn].

Besides, there is no loss of generality in assuming that εn ≤ 1 (this property
will be used in part (iii)).

Let then
Ω :=

⋃

n≥0

(ωn × ]−εn, εn[).

Then it is clear that Ω is a connected open subset of R3 and that the mapping

Θ ∈ C1(Ω;E3) satisfies det ∇Θ > 0 in Ω.

Finally, note that the covariant components gij ∈ C0(Ω) of the metric tensor
field associated with the mapping Θ are given by (the symmetries bαβ = bβα

established in (i) are used here)

gαβ = aαβ − 2x3bαβ + x2
3cαβ , gα3 = 0, g33 = 1.

(iii) Starting with the mapping θ̃ (as given in the statement of Theorem

2.9-2), we construct a mapping Θ̃ that satisfies the assumptions of Theorem

1.7-2. To this end, we define a mapping Θ̃ : Ω → E3 by letting

Θ̃(y, x3) := θ̃(y) + x3ã3(y) for all (y, x3) ∈ Ω,

where the set Ω is defined as in (ii). Hence Θ̃ ∈ H1(Ω;E3), since Ω ⊂ ω×]−1, 1[.

Besides, det ∇Θ̃ = det ∇Θ a.e. in Ω since the functions b̃β
α := ãβσ b̃ασ, which are

well defined a.e. in ω, are equal, again a.e. in ω, to the functions bβ
α. Likewise, the

components g̃ij ∈ L1(Ω) of the metric tensor field associated with the mapping

Θ̃ satisfy g̃ij = gij a.e. in Ω since ãαβ = aαβ and b̃αβ = bαβ a.e. in ω by
assumption and c̃αβ = cαβ a.e. in ω by part (i).

(iv) By Theorem 1.7-2, there exist a vector c ∈ E3 and a matrix Q ∈ O3
+

such that

θ̃(y) + x3ã3(y) = c+ Q(θ(y) + x3a3(y)) for almost all (y, x3) ∈ Ω.

Differentiating with respect to x3 in this equality between functions in H1(Ω;E3)

shows that ã3(y) = Qa3(y) for almost all y ∈ ω. Hence θ̃(y) = c+ Qθ(y) for
almost all y ∈ ω as announced. �

Remarks. (1) The existence of θ̃ ∈ H1(ω;E3) satisfying the assumptions

of Theorem 2.9-2 implies that θ̃ ∈ C1(ω;E3) and ã3 ∈ C1(ω;E3), and that
θ ∈ H1(ω;E3) and a3 ∈ H1(ω;E3).

(2) It is easily seen that the conclusion of Theorem 2.9-2 is still valid if the

assumptions θ̃ ∈ H1(ω;E3) and ã3 ∈ H1(ω;E3) are replaced by the weaker

assumptions θ̃ ∈ H1
loc(ω;E3) and ã3 ∈ H1

loc(ω;E3). �
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2.10 CONTINUITY OF A SURFACE AS A FUNCTION

OF ITS FUNDAMENTAL FORMS

Let ω be a connected and simply-connected open subset of R2. Together, The-
orems 2.8-1 and 2.9-1 establish the existence of a mapping F that associates
to any pair of matrix fields (aαβ) ∈ C2(ω; S2

>) and (bαβ) ∈ C2(ω; S2) satis-
fying the Gauß and Codazzi-Mainardi equations in ω a well-defined element
F ((aαβ), (bαβ)) in the quotient set C3(ω;E3)/R, where (θ, θ̃) ∈ R means that

there exists a vector c ∈ E3 and a rotation Q ∈ O3
+ such that θ(y) = c+Qθ̃(y)

for all y ∈ ω.
A natural question thus arises as to whether there exist ad hoc topologies on

the space C2(ω; S2) × C2(ω; S2) and on the quotient set C3(ω;E3)/R such that
the mapping F defined in this fashion is continuous.

Equivalently, is a surface a continuous function of its fundamental forms?

The purpose of this section, which is based on Ciarlet [2003], is to provide
an affirmative answer to the above question, through a proof that relies in an
essential way on the solution to the analogous problem in dimension three given
in Section 1.8.

Such a question is not only relevant to surface theory, but it also finds
its source in two-dimensional nonlinear shell theories, where the stored energy

functions are often functions of the first and second fundamental forms of the

unknown deformed middle surface (for an overview of nonlinear shell theories,
see, e.g., Ciarlet [2000]). For instance, the well-known stored energy function
wK proposed by Koiter [1966, Equations (4.2), (8.1), and (8.3)] for modeling
nonlinearly elastic shells made with a homogeneous and isotropic elastic material
takes the form:

wK =
ε

2
aαβστ (ãστ−aστ )(ãαβ−aαβ) +

ε3

6
aαβστ (̃bστ−bστ )(̃bαβ−bαβ),

where 2ε is the thickness of the shell,

aαβστ :=
4λµ

λ + 2µ
aαβaστ + 2µ(aασaβτ+aατaβσ),

λ > 0 and µ > 0 are the two Lamé constants of the constituting material, aαβ

and bαβ are the covariant components of the first and second fundamental forms
of the given undeformed middle surface, (aαβ) = (aαβ)−1, and finally ãαβ and

b̃αβ are the covariant components of the first and second fundamental forms of
the unknown deformed middle surface.

An inspection of the above stored energy functions thus suggests a tempting
approach to shell theory, where the functions ãαβ and b̃αβ would be regarded

as the primary unknowns in lieu of the customary (Cartesian or curvilinear)
components of the displacement. In such an approach, the unknown components
ãαβ and b̃αβ must naturally satisfy the classical Gauß and Codazzi-Mainardi

equations in order that they actually define a surface.
To begin with, we introduce the following two-dimensional analogs to the

notations used in Section 1.8. Let ω be an open subset of R3. The notation κ b ω
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means that κ is a compact subset of ω. If f ∈ C`(ω; R) or θ ∈ C`(ω;E3), ` ≥ 0,
and κ b ω, we let

‖f‖`,κ := sup
y∈κ
|α|≤`

|∂αf(y)| , ‖θ‖`,κ := sup
y∈κ
|α|≤`

|∂αθ(y)|,

where ∂α stands for the standard multi-index notation for partial derivatives and
|·| denotes the Euclidean norm in the latter definition. If A ∈ C`(ω; M3), ` ≥ 0,
and κ b ω, we likewise let

‖A‖`,κ = supn y∈κ
|α|≤`

|∂αA(y)|,

where |·| denotes the matrix spectral norm.
The next sequential continuity result constitutes the key step towards estab-

lishing the continuity of a surface as a function of its two fundamental forms in
ad hoc metric spaces (see Theorem 2.10-2).

Theorem 2.10-1. Let ω be a connected and simply-connected open subset of R2.

Let (aαβ) ∈ C2(ω; S2
>) and (bαβ) ∈ C2(ω; S2) be matrix fields satisfying the Gauß

and Codazzi-Mainardi equations in ω and let (an
αβ) ∈ C2(ω; S2

>) and (bn
αβ) ∈

C2(ω; S2) be matrix fields satisfying for each n ≥ 0 the Gauß and Codazzi-

Mainardi equations in ω. Assume that these matrix fields satisfy

lim
n→∞

‖an
αβ−aαβ‖2,κ = 0 and lim

n→∞
‖bn

αβ−bαβ‖2,κ = 0 for all κ b ω.

Let θ ∈ C3(ω;E3) be any mapping that satisfies

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}

in ω

(such mappings exist by Theorem 2.8-1). Then there exist mappings θn ∈
C3(ω;E3) satisfying

an
αβ = ∂αθ

n · ∂βθ
n and bn

αβ = ∂αβθ
n ·

{ ∂1θ
n ∧ ∂2θ

n

|∂1θ
n ∧ ∂2θ

n|
}

in ω, n ≥ 0,

such that

lim
n→∞

‖θn−θ‖3,κ = 0 for all κ b ω.

Proof. For clarity, the proof is broken into five parts.

(i) Let the matrix fields (gij) ∈ C2(ω×R; S3) and (gn
ij) ∈ C2(ω×R; S3), n ≥ 0,

be defined by

gαβ := aαβ − 2x3bαβ + x2
3cαβ and gi3 := δi3,

gn
αβ := an

αβ − 2x3b
n
αβ + x2

3c
n
αβ and gn

i3 := δi3, n ≥ 0
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(the variable y ∈ ω is omitted, x3 designates the variable in R), where

cαβ := bτ
αbβτ , bτ

α := aστ bασ , (aστ ) := (aαβ)−1,

cn
αβ := bτ,n

α bn
βτ , bτ,n

α := aστ,nbn
ασ , (aστ,n) := (an

αβ)−1, n ≥ 0.

Let ω0 be an open subset of R2 such that ω0 b ω. Then there exists ε0 =
ε0(ω0) > 0 such that the symmetric matrices

C(y, x3) := (gij(y, x3)) and Cn(y, x3) := (gn
ij(y, x3)), n ≥ 0,

are positive definite at all points (y, x3) ∈ Ω0, where

Ω0 := ω0 × ]−ε0, ε0[ .

The matrices C(y, x3) ∈ S3 and Cn(y, x3) ∈ S3 are of the form (the notations
are self-explanatory):

C(y, x3) = C0(y) + x3C1(y) + x2
3C2(y),

Cn(y, x3) = Cn
0 (y) + x3C

n
1 (y) + x2

3C
n
2 (y), n ≥ 0.

First, it is easily deduced from the matrix identity B = A(I + A−1(B−A))
and the assumptions limn→∞ ‖an

αβ−aαβ‖0,ω0
= 0 and limn→∞ ‖bn

αβ−bαβ‖0,ω0
=

0 that there exists a constant M such that

‖(Cn
0 )−1‖0,ω0

+ ‖Cn
1‖0,ω0

+ ‖Cn
2‖0,ω0

≤ M for all n ≥ 0.

This uniform bound and the relations

C(y, x3) = C0(y){I + (C0(y))−1(−2x3C1(y) + x2
3C2(y))},

Cn(y, x3) = Cn
0 (y){I + (Cn

0 (y))−1(−2x3C
n
1 (y) + x2

3C
n
2 (y))}, n ≥ 0,

together imply that there exists ε0 = ε0(ω0) > 0 such that the matrices C(y, x3)
and Cn(y, x3), n ≥ 0, are invertible for all (y, x3) ∈ ω0 × [−ε0, ε0].

These matrices are positive definite for x3 = 0 by assumption. Hence they
remain so for all x3 ∈ [−ε0, ε0] since they are invertible.

(ii) Let ω`, ` ≥ 0, be open subsets of R2 such that ω` b ω for each ` and

ω =
⋃

`≥0 ω`. By (i), there exist numbers ε` = ε`(ω`) > 0, ` ≥ 0, such that the

symmetric matrices C(x) = (gij(x)) and Cn(x) = (gn
ij(x)), n ≥ 0, defined for all

x = (y, x3) ∈ ω×R as in (i), are positive definite at all points x = (y, x3) ∈ Ω`,

where Ω` := ω` × ]−ε`, ε`[, hence at all points x = (y, x3) of the open set

Ω :=
⋃

`≥0

Ω`,

which is connected and simply connected. Let the functions Rqijk ∈ C0(Ω) be

defined from the matrix fields (gij) ∈ C2(Ω; S3
>) by

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp
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where

Γijq :=
1

2
(∂jgiq+∂igjq−∂qgij) and Γp

ij := gpqΓijq , with (gpq) := (gij)
−1,

and let the functions Rn
qijk ∈ C0(Ω), n ≥ 0 be similarly defined from the matrix

fields (gn
ij) ∈ C2(Ω; S3

>), n ≥ 0. Then

Rqijk = 0 in Ω and Rn
qijk = 0 in Ω for all n ≥ 0.

That Ω is connected and simply-connected is established in part (viii) of the
proof of Theorem 2.8-1. That Rqijk = 0 in Ω, and similarly that Rn

qijk = 0 in Ω
for all n ≥ 0, is established as in parts (iv) to (viii) of the same proof.

(iii) The matrix fields C = (gij) ∈ C2(Ω; S3
>) and Cn = (gn

ij) ∈ C2(Ω; S3
>)

defined in (ii) satisfy (the notations used here are those of Section 1.8)

lim
n→∞

‖Cn−C‖2,K = 0 for all K b Ω.

Given any compact subset K of Ω, there exists a finite set ΛK of integers
such that K ⊂ ⋃

`∈ΛK
Ω`. Since by assumption,

lim
n→∞

‖an
αβ−aαβ‖2,ω`

= 0 and lim
n→∞

‖bn
αβ−bαβ‖2,ω`

= 0, ` ∈ ΛK ,

it follows that

lim
n→∞

‖Cn
p−Cp‖2,ω`

= 0, ` ∈ Λk, p = 0, 1, 2,

where the matrices Cp and Cn
p , n ≥ 0, p = 0, 1, 2, are those defined in the proof

of part (i). The definition of the norm ‖·‖2,Ω`
then implies that

lim
n→∞

‖Cn−C‖2,Ω`
= 0, ` ∈ ΛK .

The conclusion then follows from the finiteness of the set ΛK .

(iv) Conclusion.

Given any mapping θ ∈ C3(ω;E3) that satisfies

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}

in ω,

let the mapping Θ : Ω → E3 be defined by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ Ω,

where a3 :=
∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
, and let

gij := ∂iΘ · ∂jΘ.
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Then an immediate computation shows that

gαβ = aαβ − 2x3bαβ + x2
3cαβ and gi3 = δi3 in Ω,

where aαβ and bαβ are the covariant components of the first and second funda-
mental forms of the surface θ(ω) and cαβ = aστ bασbβτ .

In other words, the matrices (gij) constructed in this fashion coincide over

the set Ω with those defined in part (i). Since parts (ii) and (iii) of the above
proof together show that all the assumptions of Theorem 1.8-3 are satisfied
by the fields C = (gij) ∈ C2(Ω; S3

>) and Cn = (gn
ij) ∈ C2(Ω; S3

>), there exist

mappings Θn ∈ C3(Ω;E3) satisfying (∇Θn)T ∇Θn = Cn in Ω, n ≥ 0, such
that

lim
n→∞

‖Θn−Θ‖3,K = 0 for all K b Ω.

We now show that the mappings

θn(·) := Θn(·, 0) ∈ C3(ω;E3)

indeed satisfy

an
αβ = ∂αθ

n · ∂βθ
n and bn

αβ = ∂αβθ
n ·

{ ∂1θ
n ∧ ∂2θ

n

|∂1θ
n ∧ ∂2θ

n|
}

in ω.

Dropping the exponent n for notational convenience in this part of the proof,
let gi := ∂iΘ. Then ∂33Θ = ∂3g3 = Γp

33gp = 0, since it is easily verified that
the functions Γp

33, constructed from the functions gij as indicated in part (ii),
vanish in Ω. Hence there exists a mapping θ1 ∈ C3(ω;E3) such that

Θ(y, x3) = θ(y) + x3θ
1(y) for all (y, x3) ∈ Ω.

Consequently, gα = ∂αθ+x3∂αθ
1 and g3 = θ1. The relations gi3 = gi ·g3 = δi3

then show that

(∂αθ + x3∂αθ
1) · θ1 = 0 and θ1 · θ1 = 1.

These relations imply that ∂αθ · θ1 = 0. Hence either θ1 = a3 or θ1 = −a3

in ω. But θ1 = −a3 is ruled out since we must have

{∂1θ ∧ ∂2θ} · θ1 = det(gij)|x3=0 > 0.

Noting that

∂αθ · a3 = 0 implies ∂αθ · ∂βa3 = −∂αβθ · a3,

we obtain, on the one hand,

gαβ = (∂αθ + x3∂αa3) · (∂βθ + x3∂βa3)

= ∂αθ · ∂βθ − 2x3∂αβθ · a3 + x2
3∂αa3 · ∂βa3 in Ω.



Sect. 2.10] A surface as a function of its fundamental forms 97

Since, on the other hand,

gαβ = aαβ − 2x3bαβ + x2
3cαβ in Ω,

we conclude that

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ · a3 in ω,

as desired.
It remains to verify that

lim
n→∞

‖θn−θ‖3,κ = 0 for all κ b ω.

But these relations immediately follow from the relations

lim
n→∞

‖Θn−Θ‖3,K = 0 for all K b Ω,

combined with the observations that a compact subset of ω is also one of Ω,
that Θ(·, 0) = θ and Θn(·, 0) = θn, and finally, that

‖θn−θ‖3,κ ≤ ‖Θn−Θ‖3,κ.

�

Remark. At first glance, it seems that Theorem 2.10-1 could be established
by a proof similar to that of its “three-dimensional counterpart”, viz., Theorem
1.8-3. A quick inspection reveals, however, that the proof of Theorem 1.8-2 does
not carry over to the present situation. �

In fact, it is not necessary to assume in Theorem 2.10-1 that the “limit” ma-
trix fields (aαβ) and (bαβ) satisfy the Gauß and Codazzi-Mainardi equations (see
the proof of the next theorem). More specifically, another sequential continuity

result can be derived from Theorem 2.10-1. Its interest is that the assumptions
are now made on the immersions θn that define the surfaces θn(ω) for all n ≥ 0;
besides the existence of a “limit” surface θ(ω) is also established.

Theorem 2.10-2. Let ω be a connected and simply-connected open subset of R2.

For each n ≥ 0, let there be given immersions θn ∈ C3(ω;E3), let an
αβ and bn

αβ

denote the covariant components of the first and second fundamental forms of

the surface θn(ω), and assume that bn
αβ ∈ C2(ω). Let there be also given matrix

fields (aαβ) ∈ C2(ω; S2
>) and (bαβ) ∈ C2(ω; S2) with the property that

lim
n→∞

‖an
αβ−aαβ‖2,κ = 0 and lim

n→∞
‖bn

αβ−bαβ‖2,κ = 0 for all κ b ω.

Then there exist immersions θ̃
n ∈ C3(ω;E3) of the form

θ̃
n

= cn + Qnθn, cn ∈ E3, Qn ∈ O
3
+
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(hence the first and second fundamental forms of the surfaces θ̃
n
(ω) and θn(ω)

are the same for all n ≥ 0) and an immersion θ ∈ C3(ω,E3) such that aαβ and

bαβ are the covariant components of the first and second fundamental forms of

the surface θ(ω). Besides,

lim
n→∞

‖θ̃n − θ‖3,κ = 0 for all κ b ω.

Proof. An argument similar to that used in the proof of Theorem 1.8-4 shows
that passing to the limit as n → ∞ is allowed in the Gauß and Codazzi-Mainardi
equations, which are satisfied in the spaces C0(ω) and C1(ω) respectively by the
functions an

αβ and bn
αβ for each n ≥ 0 (as necessary conditions; cf. Theorem

2.7-1). Hence the limit functions aαβ and bαβ also satisfy the Gauß and Codazzi-
Mainardi equations.

By the fundamental existence theorem (Theorem 2.8-1), there thus exists an
immersion θ ∈ C3(ω;E3) such that

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{

∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|

}
.

Theorem 2.10-1 can now be applied, showing that there exist mappings (now

denoted) θ̃
n ∈ C3(ω;E3) such that

an
αβ = ∂αθ̃

n · ∂β θ̃
n

and bn
αβ = ∂αβ θ̃

n ·
{

∂1θ̃
n ∧ ∂2θ̃

n

|∂1θ̃
n ∧ ∂2θ̃

n|

}
in ω, n ≥ 0,

and

lim
n→∞

‖θ̃n−θ‖3,κ = 0 for all κ b ω.

Finally, the rigidity theorem for surfaces (Theorem 2.9-1) shows that, for
each n ≥ 0, there exist cn ∈ E3 and Qn ∈ O3

+ such that

θ̃
n

= cn + Qnθn in ω,

since the surfaces θ̃
n
(ω) and θn(ω) share the same fundamental forms and the

set ω is connected. �

It remains to show how the sequential continuity established in Theorem
2.10-1 implies the continuity of a surface as a function of its fundamental forms

for ad hoc topologies.
Let ω be an open subset of R2. We recall (see Section 1.8) that, for any

integers ` ≥ 0 and d ≥ 1, the space C`(ω; Rd) becomes a locally convex topological

space when its topology is defined by the family of semi-norms ‖·‖`,κ , κ b ω,
and a sequence (θn)n≥0 converges to θ with respect to this topology if and only
if

lim
n→∞

‖θn−θ‖`,κ = 0 for all κ b ω.



Sect. 2.10] A surface as a function of its fundamental forms 99

Furthermore, this topology is metrizable: Let (κi)i≥0 be any sequence of
subsets of ω that satisfy

κi b ω and κi ⊂ int κi+1 for all i ≥ 0, and ω =

∞⋃

i=0

κi.

Then

lim
n→∞

‖θn−θ‖`,κ = 0 for all κ b ω ⇐⇒ lim
n→∞

d`(θ
n,θ) = 0,

where

d`(ψ,θ) :=

∞∑

i=0

1

2i

‖ψ − θ‖`,κi

1 + ‖ψ − θ‖`,κi

.

Let Ċ3(ω;E3) := C3(ω;E3)/R denote the quotient set of C3(ω;E3) by the

equivalence relation R, where (θ, θ̃) ∈ R means that there exist a vector c ∈ E3

and a matrix Q ∈ O3 such that θ(y) = c + Qθ̃(y) for all y ∈ ω. Then the
set Ċ3(ω;E3) becomes a metric space when it is equipped with the distance ḋ3

defined by

ḋ3(θ̇, ψ̇) := inf
κ∈θ̇
χ∈ψ̇

d3(κ,χ) = inf
c∈E3

Q∈O
3

d3(θ, c+Qψ),

where θ̇ denotes the equivalence class of θ modulo R.
The announced continuity of a surface as a function of its fundamental forms

is then a corollary to Theorem 2.10-1. If d is a metric defined on a set X , the
associated metric space is denoted {X ; d}.

Theorem 2.10-3. Let ω be connected and simply connected open subset of R2.

Let

C2
0(ω; S2

> × S
2) := {((aαβ), (bαβ)) ∈ C2(ω; S2

>) × C2(ω; S2);

∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Cµ
ασbβµ − Cµ

αβbσµ = 0 in ω}.

Given any element ((aαβ), (bαβ)) ∈ C2
0(ω; S2

> × S2), let F (((aαβ), (bαβ))) ∈
Ċ3(ω;E3) denote the equivalence class modulo R of any θ ∈ C3(ω;E3) that

satisfies

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
}

in ω.

Then the mapping

F : {C2
0(ω; S2

> × S
2); d2} → {Ċ3(ω;E3); ḋ3}

defined in this fashion is continuous.
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Proof. Since {C2
0(ω; S2

> × S); d2} and {Ċ3(ω;E3); ḋ3} are both metric spaces,
it suffices to show that convergent sequences are mapped through F into con-
vergent sequences.

Let then ((aαβ), (bαβ)) ∈ C2
0(ω; S2

> × S2) and ((an
αβ), (bn

αβ)) ∈ C2
0(ω; S2

> ×
S2), n ≥ 0, be such that

lim
n→∞

d2(((a
n
αβ), (bn

αβ)), ((aαβ), (bαβ))) = 0,

i.e., such that

lim
n→∞

‖an
αβ−aαβ‖2,κ = 0 and lim

n→∞
‖bn

αβ−bαβ‖2,κ = 0 for all κ b ω.

Let there be given any θ ∈ F (((aαβ), (bαβ))). Then Theorem 2.10-1 shows
that there exist θn ∈ F (((an

αβ), (bn
αβ))), n ≥ 0, such that

lim
n→∞

‖θn−θ‖3,κ = 0 for all κ b ω,

i.e., such that
lim

n→∞
d3(θ

n,θ) = 0.

Consequently,

lim
n→∞

ḋ3(F (((an
αβ), (bn

αβ))), F (((aαβ), (bαβ)))) = 0,

and the proof is complete. �

The above continuity results have been extended “up to the boundary of the
set ω” by Ciarlet & C. Mardare [2005b].
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do Carmo, M.P. [1976]: Differential Geometry of Curves and Surfaces, Prentice-Hall,
Englewood Cliffs.

do Carmo, M.P. [1994]: Differential Forms and Applications, Universitext, Sprin-
ger-Verlag, Berlin (English translation of: Formas Diferenciais e Aplições, Instituto
da Matematica, Pura e Aplicada, Rio de Janeiro, 1971).

Choquet-Bruhat, de Witt-Morette & Dillard-Bleick [1977]: Analysis, Man-
ifolds and Physics, North-Holland, Amsterdam (Revised Edition: 1982).
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