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Preface

Up to the present, three different mathematical frameworks have been developed for the
study of the Boltzmann equation. They are the theories in the L1, L2, and L∞ spaces. Their
principal ideas and methods are quite different from one another, but have been success-
fully employed for establishing the existence theorems of global solutions and revealing their
various deep structures.

For the further development, however, it will be fairly desirable to merge these different
theories. Some attempt has started already. Recently, it has been shown, [47], that an ap-
propriate combination of the L2 and L∞ theories gives rise to an almost optimal convergence
rates of solutions for the case with the external force.

To pursuit this direction, the authors believe that it is useful to provide clear and brief
introduction to each theory. Thus, the aim of these notes is to present the fundamental ideas
and methods in the frameworks of the L2 and L∞ theories. Due to the limitation of pages,
the introduction to the L1 theory is not included in these notes.

The authors would like to express their sincere thanks to Professor Philippe G. Ciarlet
for his suggestion to write these notes. The authors would also like to express their sincere
gratitude to Professor Roderick S. C. Wong for his support and hospitality. In particular,
the first author would like to thank Professor Roderick S. C. Wong for his invitation to work
in the Liu Bie Ju Centre for Mathematical Sciences.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Mathematical Aspects of the Boltzmann equation

The kinetic theory of the gas is a theory devoted to the study of evolutionary behaviors of
the gas in the one-particle phase space of position and velocity. To fix the idea, consider
a mono-atomic (one species) gas. In the kinetic theory, its state is described by a scalar
function f(t, x, ξ) which stands for the mass density function of gas particles having position
x ∈ R3 and velocity ξ ∈ R3 at time t ∈ R. By definition, f is a non-negative function such
that for any region D of the one-particle phase space R3 × R3, the integral∫ ∫

D

f(t, x, ξ)dxdξ,

gives the expectation value (statistical average) of the total mass of gas contained in D at
time t. In some context, f happens to be taken as the number or probability density.

Recently, the kinetic theory is getting more and more recognized to be significant both
in mathematics and practical applications as a key theory connecting the microscopic and
macroscopic theory of gases and fluids. In this sense, the kinetic theory is in-between or
mesoscopic.

In gas and fluid dynamics, there are many famous equations of motion, which have been
derived by focusing the attention on different aspects of gases and fluids in different physical
scales. Most of them are classical, dating back to the 19th century or earlier.

In the macroscopic scales where the gas and fluid are regarded as a continuum, their
motion is described by the macroscopic quantities such as macroscopic mass density, bulk
velocity, temperature, pressure, stresses, heat flux and so on. The Euler and Navier-Stokes
equations, compressible or incompressible, are the most famous equations among governing
equations proposed so far in fluid dynamics.

The extreme contrary is the microscopic scale where the gas, fluid, and hence any matter,
are looked at as a many-body system of microscopic particles (atom/molecule). Thus, the
motion of the system is governed by the coupled Newton equations, within the framework of

5



6 CHAPTER 1. INTRODUCTION

the classical mechanics. The number of the involved equations is 6N if the total number of
the microscopic particles is N .

Although the Newton equation is the first principle of the classical mechanics, it is not
of practical use because the number of the equations is so enormous (N ∼ the Avogadro
number 6 × 1023) that it is hopeless to specify all the initial data, and we must appeal to
statistics. On the other hand, the macroscopic (fluid dynamical) quantities mentioned above
are related to statistical average of quantities depending on the microscopic state. Thus, the
kinetic theory that gives the mesoscopic descriptions of the gas and fluid is noticed to be
a key theory that links the microscopic and macroscopic scales. The Boltzmann equation,
which is the subject of these notes, is the most classical but fundamental equation in the
mesoscopic kinetic theory.

Except for the Newton equation, all the equations mentioned above are nonlinear partial
differential equations which are of different types in the classification of partial differential
equations, that is, elliptic, hyperbolic, parabolic type or a mixture, and whose structures of
nonlinearity are also different. However, they can be used to describe the motion of one and
the same gas/fluid, which means that they are interrelated to one another in certain ways.
The mathematical theory on their relations is, indeed, one of the most important issues in
gas and fluid dynamics, raising various problems in the asymptotic analysis and theory of
singular perturbations, which reveal interesting mathematical relations between the equations
of different types that clarify the physical regimes of validity of individual equations.

In physics, the asymptotic diagram in Figure 1.1 has been believed to be true for a long
time.

C.NS

C.E

IC.NS

IC.E

Newton Boltzmann

IC: incompressible

NS: Navier-Stokes

E: Euler

C: compressible

Vlasov

N → ∞

κ→
0

κ
∼ 0

M → 0

M → 0

ν → 0ν → 0

microscopic mesoscopic macroscopic

Figure 1.1: N: number of particles, κ: mean free path, ν: viscosity, M : Mach number

However, it is only in these decades that this diagram has been established with a mathemat-
ical rigor. The proof shows how the equations in lower scales can be derived from equations
in higher scales, and also gives a mathematical explanation of the development of the initial
layer. It should be stressed, however, that although the results obtained so far are many,
they are yet far from satisfactory because they are mostly for the Cauchy problems. Little is
known on the diagram in Figure 1.1 for the boundary and initial boundary value problems
and therefore the theory of the boundary layer is not yet fully developed. Certainly, the
analysis of these asymptotic relations is a significant issue in the mathematical theory of gas
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and fluid dynamics. Although this important issue is out of scope of these lecture notes,
some fundamental references on this and related subjects are found in the bibliography given
at the end of these notes categorized as “Boltzmann-Grad limit” and “Multi-scale analysis”.

Another important issue to be worked out is the elucidation of mathematical structures of
individual equations. There are still many fundamental open problems on the existence and
properties of solutions of those equations. Needless to say that the question on the existence
of smooth solutions to the incompressible Navier-Stokes equations is one of seven “Millen-
nium Prize Problems” selected by Clay Mathematics Institute (http://www.claymath.org/
millennium/). The equations mentioned above and many other related equations appear-
ing in gas and fluid dynamics are rich resources raising challenging mathematical problems
promised with fruitful results. They are strong driving forces for the development of the
theory of nonlinear partial differential equations.

1.1.2 Existence Theory for the Boltzmann Equation

The first existence theorem of the solutions to the Boltzmann equation goes back to 1932
when Carleman [22] proved the existence of global (in time) solutions to the Cauchy problem
for the spatially homogeneous case. It should be stressed that this is two years before the
incompressible Navier-Stokes equation was solved by Leray [34] on the existence of global
weak solutions. On the other hand, the research on the spatially inhomogeneous Boltzmann
equation started much later. It is only in 1963 when Grad [27] constructed the first local
solutions near the Maxwellian, and it is in 1974 when the first author of these notes con-
structed global solutions that are also near the Maxwellian, extending Grad’s mathematical
framework, [40].

The progress made afterward was remarkable, however. Up to the present, three different
methods have been developed for establishing the global existence theory. The difference
is due to difference of function spaces used for solving the Boltzmann equation, and conse-
quently, the methods of proof employed are also different. At the present, it does not seem
to be easy to merge these three different methods. It is a big open problem to characterize
the “mathematically optimal” space for the Boltzmann equation. Here is a short summary
of the solutions established so far.

1. Solutions in L∞ framework.
Grad’s scheme was extended to construct global solutions in the L∞ space for various initial
and initial boundary value problems. See, [40], [41], [37], [38], [44], [21]. The method is a
combination of the spectral analysis of the linearized problem and the bootstrap argument
based on the smoothing effect of the collision operator. An advantage of this method is
that it can be applied to a variety of Cauchy problem, initial-boundary value problems and
boundary value problems to provide global classical or strong solutions near Maxwellians. At
the present, this is the only effective method applicable not only to the whole space but also
to the domain with boundary. The disadvantage is that it does not work for large amplitude
solutions which are far from Maxwellians.

2. Solutions in L1 Framework. DiPerna-Lions [25] constructed global L1 solutions without
smallness assumption on initial data. These solutions are called the renormalized solutions
because they are the weak solutions to the Boltzmann equation in the renormalized form.
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The method of construction is based on the celebrated H-theorem (see §1.2.2 below) and the
velocity averaging lemma ( see e.g. [32]). This method was developed by many authors, [18],
[24], [39], [49], and is often called the entropy dissipation method. It should be emphasized
that the uniqueness of the solutions is an open problem which now seems to be a problem as
big as Clay’s Millennium Prize Problem on the Navier-Stokes equations.

3. Solutions in L2 Framework. Recently, the L2 energy method, which is familiar in the the-
ory of nonlinear PDE’s, became available for the Boltzmann equation by introducing a new
decomposition of the equation and solutions, called the macro-micro decomposition. This
was intiated by Liu-Yu [53] and developed by Liu-Yang-Yu [35]. The flexibility is a well-
known feature of the energy method in the theory of PDE’s and has been also demonstrated
for the Boltzmann equation. The method has been exploited not only for constructing global
strong solutions near Maxwellians, but also for analyzing the stability of wave profiles [53],
[54], solving the Vlasov-Poisson (Maxwell)-Boltzmann equation [28], [48] and the external
force problem [46], etc. Guo [29] developed a different setting of the energy method. Also,
Liu-Yu [36] constructed the green function and revealed fine structures of the solutions.

The macro-micro decomposition has been found to have another significance than for the
energy method. As will be seen in Chapter 3, it provides a systematic procedure to derive
various asymptotic relations depicted in Figure 1.1 between the Boltzmann equation and
fluid dynamical equations and also can capture non-classical fluid dynamical equations, just
like the classical Hilbert and Chapman-Enskog expansions but without truncation, which
facilitates the asymptotic analysis of the fluid dynamical equations.

These notes are concerned with the solutions in the frameworks 1 and 3, which will be
presented in Chapter 2 and Chapter 3, respectively.

1.2 Boltzmann Equation

We will deal only with the Boltzmann equation for the monoatomic gas, i.e. the gas of
identical particles, but most of mathematical techniques developed here will be applicable
to the case of the mixture gas which can be described by coupled Boltzmann equations
whose number is equal to the number of species of different gas particles, [3]. The original
Boltzmann equation is formulated in the physical space of dimension 3, but we consider it
in the space of arbitrary dimension n, which will reveal where and how the space dimension
intervenes in the theory.

1.2.1 Boltzmann Equation

The Boltzmann equation for the monoatomic gas in a domain Ω ⊂ Rn is

∂f

∂t
= −ξ · ∇xf − 1

m
F · ∇ξf +

1

κ
Q(f, f), (t, x, ξ) ∈ R × Ω × R

n. (1.2.1)

Here, f = f(t, x, ξ) is the unknown scalar function which stands for the mass density function
of gas particles having position x = (x1, · · · , xn) ∈ Ω and velocity ξ = (ξ1, · · · , ξn) ∈ Rn at
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time t ∈ R. (1.2.1) is a balance law for it. The first two terms on the right hand side
gives the rate of change of f due to the motion of gas particles in the external force field
F = F (t, x, ξ) = (F1, · · · , Fn) in which m is the mass of the gas particle, · stands for the
inner product of R

n and

ξ · ∇x =

n∑
k=1

ξk
∂

∂xk
, F · ∇ξ =

n∑
k=1

Fk
∂

∂ξk
.

On the other hand, the last term on the right hand side gives the rate of change of f due to
binary collisions of gas particles, where Q is the nonlinear collision operator defined by

Q(f, g) =
1

2

∫
Rn×Sn−1

q(v, θ)(f ′g′
∗ + f ′

∗g
′ − fg∗ − f∗g)dξ∗dω, (1.2.2)

f = f(t, x, ξ), f ′ = f(t, x, ξ′), f ′
∗ = f(t, x, ξ′∗), f∗ = f(t, x, ξ∗),

and similarly for g, and

ξ′ = ξ − ((ξ − ξ∗) · ω
)
ω, ξ′∗ = ξ∗ +

(
(ξ − ξ∗) · ω

)
ω,

where ω ∈ Sn−1 and

v = |ξ − ξ∗|, cos θ =
1

v
(ξ − ξ∗) · ω,

while ξ, ξ∗ are the velocities of gas particles before collision and ξ′, ξ′∗ are the velocities after
collision, see Figure 1.2.

ξ

ξ′

ξ∗
ξ′∗

ω

Sphere 1

x1

Sphere 2

x2

Figure 1.2: Elastic Collision

Notice that the conservation laws of momentum and energy hold through the collision:

ξ + ξ∗ = ξ′ + ξ′∗ (momentum)
|ξ|2 + |ξ∗|2 = |ξ′|2 + |ξ′∗|2 (energy)

(1.2.3)
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The function q is the collision kernel which is determined by the interaction potential between
two colliding particles. Two classical examples are the hard sphere gas for which, ([27]),

q(v, θ) = q0v| cos θ|, cos θ = (ξ − ξ∗) · ω/v, (1.2.4)

where q0 is the surface area of a hard sphere, and the potential of inverse power s for which
([3], [27])

q(v, θ) = vγ| cos θ|−γ′
q0(θ), γ = 1 − 2(n − 1)

s
, γ′ = 1 +

n − 1

s
, (1.2.5)

where q0(θ) is a bounded nonnegative function which does not vanish near θ = π/2. The
interaction potential is said hard if s ≥ 2(n − 1) and soft if 0 < s < 2(n − 1).

Finally, the number κ > 0 is the mean free path (mean free time) of gas particles be-
tween collisions or Knudsen number that represents the ratio of the mean free path to some
characteristic length of the domain containing the gas. As will be seen in §3, it plays an
essential role in the analysis of asymptotic relations between the Boltzmann equation and
macroscopic fluid equations shown in Figure 1.1. Also, some references are given in the cat-
egory “Multi-Scale Analysis” of the bibliography on related topics that are not discussed in
these notes.

For the existence theory, on the other hand, κ may be fixed, say, to be 1, without loss of
generality.

1.2.2 Properties of Q

The existence theory we develop in this note relies largely on the properties of the operator
Q. Most of them were deduced by Boltzmann himself. History of the Boltzmann equation
(1.2.1) is nicely summarized in the book [3]. Here, we present three fundamental ones.

Define the inner product

< f, g >=

∫
Rn

f(ξ)g(ξ)dξ. (1.2.6)

A function ϕ(ξ) is said a collision invariant if

< ϕ, Q(f, f) >= 0 (∀f ∈ C∞
0 (Rn

ξ , R+)). (1.2.7)

The first property of Q is

[Q1] Q has n + 2 collision invariants,

ϕ0(ξ) = 1, ϕi(ξ) = ξi (i = 1, 2, · · · , n), ϕn+1(ξ) =
1

2
|ξ|2. (1.2.8)

This leads to the conservation laws of the Boltzmann equation (1.2.1) as follows. Since
f(t, x, ξ) is the mass density in the (x, ξ)-space, that is, the microscopic mass density in the
one-particle phase space, its moments with respect to ξ are quantities in the x-space, that is,
the macroscopic quantities in the usual physical space. The first few moments are

ρ =< ϕ0, f(t, x, ·) >,
ρui =< ϕi, f(t, x, ·) > (i = 1, 2, · · · , n),
ρE =< ϕn+1, f(t, x, ·) > .

(1.2.9)
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Here, ρ is the macroscopic mass density, u = (u1, u2, · · · , un) is the macroscopic (bulk)
velocity, and E is the average energy density per unit mass, of the gas. The temperature θ
and the pressure p are related to E by

E =
1

2
|u|2 +

n

2
θ. p = Rρθ. (1.2.10)

Here, R is the gas constant (the Boltzmann constant divided by the mass of the gas particle).
The last equation in (1.2.10) is called the equation of state for the ideal gas.

Consider the case Ω = Rn and F = 0. Let f be a smooth solution to (1.2.1) which
vanishes sufficiently rapidly with (x, ξ). Multiply (1.2.1) by ϕj and integrate it over Rn

x ×Rn
ξ .

By virtue of (1.2.8) and by integration by parts, we have

d

dt

∫
Rn

< ϕi, f(t, x, ·) > dx = 0, i = 0, 1, · · · , n + 1, (1.2.11)

which are, in view of (1.2.9), the conservation laws of total mass (i = 0), total momenta
(i = 1, 2, · · · , n) and total energy (i = n + 1), of the gas.

It is seen that similar conservation laws can hold for the case Ω 	= R
3 and F 	= 0 if some

appropriate assumptions are imposed on the boundary conditions on the boundary ∂Ω and
on the external force F .

The second property of Q to be mentioned is

[Q2] Q(f, f) = 0 ⇔ < log f, Q(f, f) >= 0 ⇔ f = M(ξ) where

M(ξ) = M[ρ,u,θ](ξ) =
ρ

(2πRθ)3/2
exp

(
−|ξ − u|2

2Rθ

)
. (1.2.12)

M is called the Maxwellian and is known to describe the velocity distribution of a gas in an
equilibrium state with the mass density ρ > 0, bulk velocity u = (u1, u2, · · · , un) ∈ Rn, and
temperature θ > 0. Here, (ρ, u, θ) are taken to be parameters, and if they are constants,
M is called a global (absolute) Maxwellian while if they are functions of (x, t), it is called a
local Maxwellian. Evidently, the global Maxwellian is a stationary solution of (1.2.1) if the
external force F is absent.

It should be stressed that the Maxwellian (1.2.12) was discovered independently of the
Boltzmann equation (1.2.1). In fact, it is in 1857 when J. C. Maxwell [9] first obtained (1.2.12)
while it is in 1872 when L. Boltzmann [1] established (1.2.1). To obtain the Maxwellian,
Maxwell relied on physical reasoning whereas Boltzmann solved the equation Q(f, f) = 0.
Thus, the Maxwellian is built-in in the Boltzmann equation.

The final property of Q to be presented here is

[Q3] < log f, Q(f, f) >≤ 0 (∀f ∈ C∞
0 (Rn

ξ , R+)).

Let f be a density function of a gas. Since it is nonnegative, we may define the H-function,

H(t) =

∫
Rn×Rn

f log fdxdξ, (1.2.13)
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which gives, according to Boltzmann who is the founder of Statistical Physics, the minus of
the entropy of the gas. Consider again the case Ω = Rn and F = 0 and let f be a non-
negative solution to (1.2.1) with rapid decay properties in (x, ξ). Multiply (1.2.1) by log f
and integrate in (x, y). Integration by parts, together with [Q1], yields,

dH

dt
+

∫
Rn

D(t, x)dx = 0, (1.2.14)

where

D(t, x) = − < Q(f, f), log f > (1.2.15)

=

∫
Rn×Rn×Sn−1

q(|ξ − ξ∗|, ω)(f ′f ′
∗ − ff∗) log

f ′f ′
∗

ff∗
dξdξ∗dω.

This integral, called the entropy dissipation integral, is non-negative as seen from the elemen-
tary inequality,

(a − b)(log a − log b) ≥ 0 (a, b > 0).

A consequence of this is the celebrated H-theorem

dH

dt
≤ 0, (1.2.16)

where the equality follows if and only if f is a Maxwellian. This theorem provides many
physical implications. First, it says that the entropy increases with time. Second, as far as
the total entropy dissipation integral

∫
Ddx is bounded in t, the H-function may play a role

of the Lyapounov function, to prove that the solution of the Boltzmann equation converges
to a limit. [Q3] then asserts that this limit should be a Maxwellian. In other words, the
H-theorem asserts that the Maxwellian is the only possible asymptotically stable stationary
solution of the Boltzmann equation. Physically, this can be rephrased as the equilibrium state
of the gas is uniquely described by the Maxwellian, not by any other distribution functions.
Thus, one can say that the Maxwellian is built-in in the Boltzmann equation. As noted above,
Maxwell derived the Maxwellian based on the physical argument, much before Boltzmann.

Of course, the above argument is just heuristic. Only deep mathematical analysis of the
Boltzmann equation can justify this theorem, and the research is still continuing.

Remark 1.2.1 Having discovered the H-theorem, Boltzmann declared that he constructed
the foundation of the second law of the thermodynamics, that is, the law of entropy, based on
the classical mechanics. It is a famous episode in the history of science that lots of objections
were then raised against him by his contemporaries. The controversies were very keen but it
should be stressed that they motivated later developments of various ergodic theories, and
it is Boltzmann who eventually won, though more than 100 years later: He was endorsed
by Lanford [15] who established the convergence of the Newton equation to the Boltzmann
equation depicted in Figure 1.1 as well as by many people who proved the existence of global
solutions.

The main point of the controversies raised against Boltzmann is that the H theorem
contradicts to the Newton mechanics because the mechanical law is time reversible. This well
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known time reversibility of the Newton mechanics is phrased for the many-particle system as
follows. If we reverse the velocities of all particles at time t = t0 and follow their evolution,
we find that all the particles return to their initial positions (the positions at t = 0) with the
minus of initial velocities, after a lapse of time t0.

This would be rephrased for the Boltzmann equation as follows. Suppose that a solution
f(t, x, ξ) of the Boltzmann equation be obtained. Solve the Boltzmann equation again but
with f(t0, x,−ξ) as the initial data. If this solution is denoted by g(t, x, ξ). then, g(t0, x, ξ) =
f(0, x,−ξ) would hold. Of course, this is false because it contradicts to the H theorem applied
to both f and g,

H(f(0)) = H(g(t0)) < H(g(0)) = H(f(t0)) < H(f(0)),

unless f, g are Maxwellian. On the other hand, it has been expected in physics for a long time
that, as suggested in Figure 1.1, the Boltzmann equation could be derived from the Newton
equation by letting N , the number of particles, tend to ∞. This was eventually justified with
a mathematical rigor by Lanford [15], although only for a short time. Therefore, it is not
surprising that Lanford’s theorem gives a mathematical reasoning of the emergency of the
time irreversibility. Lanford’s result is one of the most important results established so far
in association with the asymptotic diagram in Figure 1.1. See e.g. [3] for a detail.

Remark 1.2.2 The non-negativity of the integral D in (1.2.15) indicates that the Boltzmann
equation is a dissipative equation. This dissipativity is essentially used in the L1 theory and
its linearized version plays an important role both in the L∞ and L2 theory.

1.2.3 Grad’s Angular Cutoff Potential and Estimates of Q

Needless to say that all the properties of Q stated in the previous subsection are valid only
when the relevant integrals are convergent. On the other hand, the examples of the collision
kernel q(v, θ) given in §2.1 have two different singular properties. One is the strong singularity
at θ = π/2 in (1.2.5) due to the grazing collision and the other is the unboundedness for
large velocity |ξ| → ∞.

The former does not guarantee the convergence of the integral over Sn−1 in (1.2.2) under
a mild assumption on f, g such that they are bounded. Actually, it is observed in [75]
that Q(f, g) is well-defined only for sufficiently smooth f, g as a nonlinear pseudo-differential
operator. However, this is a too strong restriction to solve the Boltzmann equation in full
generality. In order to avoid this difficulty, Grad [27] introduced an idea to cut off the
singularity at θ = π/2 assuming that q0(θ) vanishes near θ = π/2. This assumption was
highly successful for the existence theory of the Boltzmann equation in the sense that almost
all progresses made after Grad is indebted to his idea. It is now called Grad’s angular cutoff
assumption.

Throughout this note, we assume that q(v, θ) is a non-negative measurable function sat-
isfying ∫

Sn−1

q(v, θ)dω ≥ q0v
γ, q(v, θ) ≤ q1(1 + v)γ| cos θ|, (1.2.17)
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for some constants q0, q1 > 0 and γ ∈ [0, 1]. Clearly, this is satisfied by the hard sphere
gas (1.2.4) with γ = 1 and by the inverse power law (1.2.5) under the Grad’s cutoff with
γ = 1− 2(n− 1)/s for s ≥ 2(n− 2). Thus, (1.2.17) is a slightly generalized version of Grad’s
cutoff hard potential.

Under this assumption, Q becomes well-defined. To see this, let M = M(ξ) be any
Maxwellian and introduce the function

νM(ξ) =

∫
Rn

q(|ξ − ξ∗|, θ)M(ξ∗)dξ∗dω, (1.2.18)

which satisfies under the assumption (1.2.17),

ν0(1 + |ξ|)γ ≤ νM(ξ) ≤ ν1(1 + |ξ|)γ, (1.2.19)

for some positive constants ν0, ν1.

Theorem 1.2.3 For any p ∈ [1,∞] and α ∈ [0, 1], there exists a constant C > 0 such that

∥∥∥ν−α
M Q(f, g)

M1/2

∥∥∥
p
≤ C

(∥∥∥ν1−α
M f

M1/2

∥∥∥
p

∥∥∥ g

M1/2

∥∥∥
p
+
∥∥∥ f

M1/2

∥∥∥
p

∥∥∥ν1−α
M g

M1/2

∥∥∥
p

)
, (1.2.20)

where ‖ · ‖p is the norm of the space Lp(Rn
ξ ).

Proof. Write

Q(f, g) =
1

2
{Q1(f, g) + Q1(g, f) − Q2(f, g) − Q2(g, f)}, (1.2.21)

with

Q1(f, g) =

∫
Rn×Sn−1

q(|ξ − ξ∗|, θ)f(ξ′)g(ξ′∗)dξ∗dω,

Q2(f, g) =

∫
Rn×Sn−1

q(|ξ − ξ∗|, θ)f(ξ)g(ξ∗)dξ∗dω,
(1.2.22)

First, we prove the theorem for Q1. Put f = M1/2u, g = M1/2v. Note from the conservation
laws of collision (1.2.3) and the definition of Maxwellian (1.2.12) that

M(ξ′)M(ξ′∗) = M(ξ)M(ξ∗)

holds. The Hölder inequality gives

|Q1(f, g)| ≤
∫

Rn

q(|ξ − ξ∗|, θ)M(ξ)1/2M(ξ∗)1/2|u(ξ′)||v(ξ′∗)|dξ∗dω

≤
(∫

Rn

q(|ξ − ξ∗|, θ)qM(ξ)q/2M(ξ∗)q/2dξ∗dω
)1/q(∫

Rn

|u(ξ′)|p|v(ξ′∗)|pdξ∗dω
)1/p

≤ CνM(ξ)M(ξ)1/2
(∫

Rn

|u(ξ′)|p|v(ξ′∗)|pdξ∗dω
)1/p

with p ∈ [1,∞), 1/p + 1/q = 1. The last line comes from∫
Rn

q(|ξ − ξ∗|, θ)qM(ξ∗)q/2dξ∗dω ≤ C(1 + |ξ|)γq ≤ CνM(ξ)q,
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which holds by virtue of (1.2.17) and (1.2.19), and C is a positive constant depending on
q1, q2, ν1, ν2, ρ, u, θ. Consequently,∫

Rn

∣∣∣νM(ξ)−αM(ξ)−1/2Q1(f, g)(ξ)
∣∣∣pdξ ≤ C

∫
Rn×RnSn−1

νM(ξ)(1−α)p|u(ξ′)|p|v(ξ′∗)|pdξdξ∗dω.

By virtue of (1.2.3) and (1.2.19),

νM(ξ) ≤ C(1 + |ξ|)γ = C(1 + |ξ′ − {(ξ′ − ξ′∗) · ω}ω|)γ

≤ C(2 + |ξ′| + |ξ′∗|)γ ≤ C(νM(ξ′) + νM(ξ′∗)).

Since the Jacobian of the change of variable (ξ, ξ∗, ω) ↔ (ξ′, ξ′∗,−ω) is unity, we finally have∫
Rn

∣∣∣νM(ξ)−αM(ξ)−1/2Q1(f, g)(ξ)
∣∣∣pdξ

≤ C

∫
Rn×RnSn−1

(
νM(ξ′)(1−α)p + νM(ξ′∗)

(1−α)p
)
|u(ξ′)|p|v(ξ′∗)|pdξ′dξ′∗dω.

This proves (1.2.20) for Q1 for the case p ∈ [1,∞). The case p = ∞ can be proved similarly,
and the proof for Q2 is also similar but much simpler. Now, the proof of the theorem is
complete.

The function νM(ξ) is bounded if γ = 0 and unbounded of order O(|ξ|γ) if γ > 0. As a
consequence, Theorem 1.2.3 asserts that Q is a bounded operator if γ = 0 whereas it is
well-defined but unbounded with the weigh loss of order O(|ξ|γ) if γ > 0.

Remark 1.2.4 Theorem 1.2.3 was first proved in [27] for the case p = ∞, α = 1 and will be
used in Chapter 2. The case p = 2, α = 1/2 is due to [26] and will be used successfully in
Chapter 3.
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Chapter 2

Solutions in L∞ Framework

This chapter is devoted to the L∞ theory of the Boltzmann equation based on the spectral
analysis of the linearized equation around a global Maxwellian. One of advantages of the
spectral analysis is that it gives an optimal rate of decay (in time) of the solutions of the
linearized equation. Our method for constructing solutions for the nonlinear problems in
this chapter is a combination of the good decay estimates for the linearized equation and
the contraction mapping principle. Thus, after deriving the sharp decay rate of the semi-
group generated by the linearized Boltzmann equation, the global solutions to the Cauchy
problem and time-periodic solutions for the case with the time-periodic source term will be
constructed. The same decay rates are used coupled with the contraction mapping principle,
but of course, in different context. This method has been developed also for the case where
the domain Ω has a boundary. Actually, at the present, this is the only effective method
for the boundary value problems. In this note, however, we will restrict ourself just to the
case without boundary, that is, the whole space case Ω = Rn and the torus case Ω = Tn.
Moreover, we deal just with the case without external force F . This makes the spectral
analysis much easier.

2.1 The Linearized Boltzmann Operator

Recall that if the external force F is absent, any global Maxwellian M is a stationary solution
of the Boltzmann equation (1.2.1). We will look for the solution f near M, that is, the solution
having the form

f = M + M1/2u. (2.1.1)

By a suitable Galilean translation and scaling of the velocity variable ξ, M can be taken,
without loss of generality, to be the standard Maxwellian,

M = M[1,0,1](ξ) =
1

(2π)n/2
exp
(
−|ξ|2

2

)
. (2.1.2)

Plug this into (1.2.1). If F = 0, the equation for the new unknown u = u(t, x, ξ) becomes

∂u

∂t
= Bu + Γ[u, u], (t, x, ξ) ∈ R × Ω × R

n, (2.1.3)

17
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where

Bu = −ξ · ∇xu + Lu, (2.1.4)

Lu = 2M−1/2Q(M,M1/2u), (2.1.5)

Γ[u, v] = M−1/2Q(M1/2u,M1/2v). (2.1.6)

Here, L, the linearized collision operator, is a linearized operator of Q around M whereas Γ,
being its remainder, is a bilinear symmetric operator. The operator B is called the linearized
Boltzmann operator.

In the rest of this section, we summarize some properties of L and Γ which hold under
the cutoff assumption (1.2.17). For the proof, see, e.g. [3], [10], [27]. Define the spaces

Lp = Lp(Rn
ξ ) (p ∈ [1,∞]),

L∞
β = L∞(Rn

ξ ; (1 + |ξ|)βdξ) (β ∈ R).

Note that L∞
0 = L∞.

Proposition 2.1.1 Under the assumption (1.2.17), the following holds.
(i) L has the expression

Lu = −ν(ξ)u + Ku, (2.1.7)

where ν(ξ) is a nonnegative measurable function of ξ satisfying

ν0(1 + |ξ|)γ ≤ ν(ξ) ≤ ν1(1 + |ξ|)γ, ξ ∈ R
3, (2.1.8)

for some constants ν0, ν1 > 0 and γ ∈ [0, 1], while K is a linear integral operator in ξ and is
bounded as the operators

K : L2 → L2 ∩ L∞, Lβ → Lβ+1 (∀β ≥ 0). (2.1.9)

(ii) In the space L2, if γ ≤ 0, the operator L is a linear bounded operator while if γ > 0, L
is a linear closed unbounded operator with a dense domain

D(L) = {u ∈ L2 | ν(ξ)u ∈ L2}.
Moreover, it is self-adjoint and non-positive in L2 whose null space, denoted by N , is (n+2)-
dimensional and spanned by collision invariants weighted by M1/2,

N = span{M1/2, ξiM
1/2 (i = 1, 2, · · · , n),

1

2
|ξ|2M1/2}. (2.1.10)

Let {ψi}n+1
i=0 be an orthonormal basis of N in L2 and put

Pu =

n+1∑
i=0

(u, ψi)L2ψi, (2.1.11)

which defines an orthogonal projection

P : L2 → N . (2.1.12)

We have,
PLu = 0 (∀u ∈ D(L)). (2.1.13)

(iii) P : L2 → L∞
β is a bounded operator for any β ≥ 0.
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The decomposition (2.1.7) is due to [27]. The function ν(ξ) is nothing but the function in
(1.2.18) and is called the collision frequency. (2.1.9) provides smoothing properties of K
which will be useful in the sequel. For the hard sphere gas, the function ν(ξ) and integral
kernel of K have the following explicit expressions for n = 3, see, e.g. [3], [27].

ν(ξ) = (2π)1/2
{

(|ξ| + |ξ|−1)

∫ |ξ|

0

exp(−u2/2)du + exp(−|ξ|2/2)
}
. (2.1.14)

K(ξ, ξ∗) =(2π)1/2|ξ − ξ∗|−1 exp
(
−1

8

(|ξ|2 − |ξ∗|2)2

|ξ − ξ∗|2 − 1

8
|ξ − ξ∗|2

)
(2.1.15)

− 1

2
|ξ − ξ∗| exp

(
−(|ξ|2 + |ξ∗|2)/4

)
.

Finally, the property of Γ needed in the sequel is

Proposition 2.1.2 (i) Let p ∈ [1,∞] and α ∈ [0, 1]. There is a constant c0 > 0 such that
for any u, v ∈ Lp, it holds that

‖ν−αΓ[u, v]‖Lp ≤ c0(‖ν1−αu‖Lp‖v‖Lp + ‖u‖Lp‖ν1−αv‖Lp). (2.1.16)

(ii) PΓ[u, v] = 0 for any u, v ∈ Lp.

Proof. (i) is just Theorem 1.2.3 while (ii) is a simple consequence of [Q1].

2.2 Spectral Analysis of the Linearized Boltzmann Op-

erator

The main goal of this section is to establish the decay rates of the semi-group generated by
the linearized Boltzmann operator B defined by (2.1.4), which will be used in an essential
way in the next sections for solving the nonlinear Boltzmann equation.

2.2.1 Semi-group etB.

First, we shall recall the celebrated Hille-Yosida theorem which is the core of the theory of
semi-groups. See [107], [108], [109] for the detail. To this end, we introduce some notation.
Let X be a Banach space with norm ‖ · ‖, and Ck(J ; X) the set of continuous functions
defined on the interval J ⊂ R with value in X having continuous Fréchet derivatives up to
order k = 0, 1, 2, · · · . Let T be a linear operator having the domain of definition and the
range both in X, and denote its domain of definition by D(T ). The set of complex numbers

ρ(T ) = {λ ∈ C | λI − B has a bounded inverse (λI − T )−1 (2.2.1)

defined on the whole space X}
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is called the resolvent set of T and the inverse (λI − T )−1 is called the resolvent of T at λ ∈
ρ(T ). Here and hereafter, I denotes the identity operator and will be omitted occasionally.

A family {S(t)}t≥0 parametrized by t is called a strongly continuous semi-group, or simply
C0 semi-group, of operators if the following three conditions are fulfilled.

(a) For each t ≥ 0, S(t) is a linear bounded operator on X.
(b) S(0) = I, S(t + s) = S(t)S(s) (t, s ≥ 0).
(c) S(h) → I as h → +0 strongly in X.

It is easily seen that under these conditions, S(t)u ∈ C0([0,∞); X) for any u ∈ X. The
second property of (b) is called the semi-group property.

The generator of a C0 semi-group {S(t)} is the operator T defined by

D(T ) = {u ∈ X | ∃s − lim
h→+0

1

h
(S(h) − I)u (strong limit in X)}, (2.2.2)

Tu = s − lim
h→+0

1

h
(S(h) − I)u, u ∈ D(T ).

If T is a generator and if u0 ∈ D(T ), then, u = S(t)u0 is in D(T ) for all t ≥ 0 as well as in
C1((0,∞); X) and solves the Cauchy problem,

du

dt
= Tu (t > 0), u(+0) = u0. (2.2.3)

Since this can be regarded as the initial value problem for the first order linear ordinary
differential equation in the Banach space X, it is customary to express the solution operator
S(t) by the exponential function etT . The following is the most fundamental theorem in the
theory of semi-groups.

Theorem 2.2.1 Let M ≥ 1 and λ0 ∈ R. The following two properties are equivalent.

(1) T is a linear, densely defined, closed operator in X with ρ(T ) ⊃ (λ0,∞),
and the resolvent satisfies

‖(λ − T )−k‖ ≤ M(λ − λ0)
−k,

for all λ > λ0 and k = 1, 2, · · · .
(2) T is a generator of a C0 semi-group S(t) satisfying

‖S(t)u‖ ≤ Meλ0t‖u‖, (2.2.4)

for any t ≥ 0 and u ∈ X.

The case for M = 1 and λ0 = 0 is due to Hille and Yoshida and the corresponding semi-group
is called the contraction semi-group. The general case is due to Fellar, Miyadera and Phillips.
See e.g. [109].
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Now, we shall consider the linearized Boltzmann operator B in (2.1.4) in the space L2 =
L2(Ωx × Rn

ξ ) where Ω = Rn or Tn. More precisely, under the cutoff assumption (1.2.17), we
define the operator B by

D(B) =
{
u ∈ L2 | ξ · ∇xu, ν(ξ)u ∈ L2

}
, (2.2.5)

Bu = −ξ · ∇xu + Lu = −ξ · ∇xu − ν(ξ)u + Ku, u ∈ D(B),

where ∇x is taken in the distribution sense.

Theorem 2.2.2 Under the assumption (1.2.17), B generates a C0 semi-group etB satisfying
(2.2.4) with M = 1 and λ = −ν0 + ‖K‖, where ν0 is the constant in (2.1.8) and ‖K‖ is the
operator norm of K.

For the proof, first, note from Proposition 2.1.1 that K can be taken to be a bounded
operator on L2. Let A be the operator obtained by dropping K from (2.2.5),

Au = −ξ · ∇xu − ν(ξ)u, (2.2.6)

D(A) =
{
u ∈ L2 | ξ · ∇xu, ν(ξ)u ∈ L2

}
.

Proposition 2.2.3 Let ν0 be the constant in (2.1.8). The operator A fulfills the conditions
of Theorem 2.2.1 with M = 1 and λ0 = −ν0. The semi-group etA has an explicit expression,

etAu0 = e−ν(ξ)tu0(x − tξ, ξ), t ≥ 0, (2.2.7)

and the estimate (2.2.4) reads

‖etAu0‖L2 ≤ e−ν0t‖u0‖L2. (2.2.8)

Proof. Write the right hand side of (2.2.7) as

S(t)u0 = e−ν(ξ)tu0(x − tξ, ξ), t ≥ 0. (2.2.9)

We now show that this S(t) is a C0 semi-group and its generator is just given by (2.2.6).
Evidently, the estimate (2.2.4) holds for S(t) with M = 1, λ0 = −ν0, implying that the
condition (a) is fulfilled. It is easy to check (b). To check (c), introduce

û(k, ξ) = F(u)(k, ξ) = (2π)−n/2

∫
Ω

e−ik·xu(x, ξ)dx, (2.2.10)

which is the Fourier transform for the case Ω = Rn and the Fourier coefficient for the case
Ω = Tn, of a function u(x, ξ) with respect to x, where k = (k1, k2, · · · , kn) ∈ Ω̂ is the dual
variable to x, · is the inner product of Rn, and Ω̂ = Rn or Zn. Obviously, we get

F(S(t)u0) = s(t, k, ξ)F(u0)(k, ξ), s(t, k, ξ) = e−(ik·ξ+ν(ξ))t. (2.2.11)

This is seen to be a function in C0([0,∞); L2(Ω̂ × Rn) if F(u0) ∈ L2(Ω̂ × Rn). In fact, note
that for any z ∈ C with Rez < 0,

|etz − et′z| → 0 (t′ → t), |etz − et′z| ≤ 2 (t, t′ ≥ 0),
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holds. Then, it suffices to put z = −(ik ·ξ +ν(ξ)) and use Lebesgue’s dominated convergence
theorem. Parseval’s relation then shows that S(t)u0 is in C0([0,∞); L2) if u0 ∈ L2. Thus,
S(t) is a C0 semi-group on L2 satisfying the estimate (2.2.4).

It remains to prove that its generator is just (2.2.6). Observe for any z ∈ C with Re(z) < 0,

1

h
(ezh − 1) − z → 0 (h → 0), |1

h
(ezh − 1) − z| ≤ 2|z| (∀h > 0).

Again, put z = −(ik · ξ + ν(ξ)) and use Lebesgue’s dominated convergence theorem, to see
that

F(
1

h
(S(h) − I)u0) =

1

h
(s(h, k, ξ) − 1)F(u0)(k, ξ) (2.2.12)

converges to v̂ = −(ik · ξ + ν(ξ))F(u0) as h → +0 in the norm of L2(Ω̂ × Rn) if and only if
v̂ ∈ L2(Ω̂ × Rn), or since ν(ξ) is a real function, if and only if

k · ξF(u0), ν(ξ)F(u0) ∈ L2(Ω̂ × R
n),

which is equivalent, again by Parseval’s relation, to the condition u0 ∈ D(A). Thus, we are
done.

Proof of Theorem 2.2.2. Since K is a bounded operator on L2, (2.1.4) can be rewritten as

B = A + K, D(B) = D(A). (2.2.13)

Thus, B is a bounded perturbation of a C0 semi-group generator A, and hence [108] implies
Theorem 2.2.2 with M = 1 and λ0 = −ν0 + ‖K‖.

We shall study the asymptotic behavior of etB. According to the theory of semi-groups,
if B is a C0 semi-group generator, the resolvent and semi-group are related to each other by
the Laplace transform,

(λ − B)−1 =

∫ ∞

0

e−λtetBdt (Reλ > λ0), (2.2.14)

and by the inverse Laplace transform

etB =
1

2iπ

∫ σ+i∞

σ−i∞
eλt(λ − B)−1dλ (σ > λ0). (2.2.15)

It is also known that the resolvent set is an open subset of C and that the resolvent is an
analytic function of λ on the resolvent set in the operator norm, so that the formula (2.2.15)
can provide information on the asymptotic behaviors of etB if information on the singularities
of (λ − B)−1 is available.

The set of singular points of the analytic function (λ − B)−1 is called the spectrum of
B and denoted by σ(B), which is the complementary set of the resolvent set ρ(B) in the
complex plane C. A customary classification of the spectrum (e.g. [106]), is,

(a) Point spectrum: The set of eigenvalues of B. The point λ is an eigenvalue if and only
if λ − B is not one-to-one. Moreover, an isolated eigenvalue is a pole of the resolvent.



2.2. SPECTRAL ANALYSIS OF THE LINEARIZED BOLTZMANN OPERATOR 23

(b) Continuous spectrum: The set of points λ for which λ − B is one-to-one and the
image (λ − B)D(B) is dense in X but (λ − B)D(B) 	= X

(c) Residual spectrum: The set of points λ for which λ−B is one-to-one but the image
(λ − B)D(B) is not dense in X.

In order to study the asymptotic behavior of etB , we use the Fourier transformation
(2.2.10). For u ∈ D(B), we obtain

F(Bu) = (−iξ · k + L)û. (2.2.16)

For w = w(ξ), put

B̂(k)w = (−iξ · k + L)w. (2.2.17)

Here, we regard k ∈ Ω̂ as a parameter and consider B̂(k) as an operator in the space L2(Rn
ξ )

with the domain of definition

D(B̂(k)) = {w ∈ L2(Rn
ξ ) | k · ξw, ν(ξ)w ∈ L2(Rn

ξ )}. (2.2.18)

This generates a C0 semi-group for each k ∈ Ω̂, with M = 1 and λ0 = −ν0 + ‖K‖, as seen
by a similar but much simpler argument to that for Theorem 2.2.2. Set

Φ(t, k) = etB̂(k). (2.2.19)

Clearly, it follows from (2.2.16) that

etB = F−1
{

Φ(t, k)
}
F . (2.2.20)

Now, we shall establish the asymptotic behavior of Φ by use of (2.2.15) applied to B̂(k),

Φ(t, k) =
1

2iπ

∫ σ+i∞

σ−i∞
eλt(λ − B̂(k))−1dλ (σ > λ0). (2.2.21)

If we can shift the integration path into the left half plane, we will be able to deduce a decay
property of Φ(t, k). This will be possible by the Cauchy’s integration theorem because the
resolvent is an analytic function of λ on the resolvent set and has poles at isolated eigenvalues.
Thus, we need to study the resolvent and spectrum of B̂(k) near the imaginary axis of the
complex plane C.

2.2.2 Resolvent and Spectrum of B̂(k)

We start by the study of the operator

Â(k)w = (−ik · ξ − ν(ξ))w, D(Â(k)) = D(B̂(k)), (2.2.22)

which comes from (2.2.17) by dropping K.
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Lemma 2.2.4 Theorem 2.2.1 (2) holds for Â(k) with M = 1 and λ0 = −ν0. Furthermore,
we have

ρ(Â(k)) ⊃ {λ ∈ C | Re λ > −ν0}, (2.2.23)

and the explicit expressions

(λ − Â(k))−1w = (λ + ik · ξ + ν(ξ)))−1w, (2.2.24)

etÂ(k)w = e−(ik·ξ+ν(ξ))tw. (2.2.25)

Proof. Note that (2.2.24) and (2.2.25) hold , at least, formally. The right hand side of
(2.2.24) becomes a bounded operator on L2(Rn

ξ ) when Reλ > −ν0, whence (2.2.23) follows,
which ensures the rest of the lemma.

To go further, we need some properties of the integral kernel of K.

Proposition 2.2.5 Under the cutoff assumption (1.2.17), K is an integral operator

Ku(ξ) =

∫
Rn

K(ξ, ξ′)u(ξ′)dξ′,

with an integral kernel satisfying
(1) K is real, measurable, and symmetric with respect to ξ, ξ′.

(2)

∫
Rn

|K(ξ, ξ′)|dξ′ ≤ k0(1 + |ξ|)−1,

(3)

∫
Rn

|K(ξ, ξ′)|2dξ′ ≤ k1,

with some constants k0, k1 > 0.

For the proof, see [27].
In the below, we write λ = σ + iτ with σ, τ ∈ R. The following is a key proposition in

the sequel.

Proposition 2.2.6 There is a constant C > 0 such that the following holds.

(1) For any k ∈ Rn and δ > 0, we have

sup
σ≥−ν0+δ,τ∈R

‖K(σ + iτ − Â(k))−1‖ ≤ Cδ−1−2/(3n+4)(1 + |k|)−2/(3n+4).

(2) For any δ, κ0 > 0, there is a constant τ0 > 0 such that if |τ | > τ0, we have,

sup
σ≥−ν0+δ,|k|≤κ0

‖K(σ + iτ − Â(k))−1‖ ≤ Cδ−1−2/(n+2)(1 + |τ |)−2/(n+2).

Here, ‖ · ‖ is the operator norm of L2(Rn
ξ ).

Remark 2.2.7 (1) of the above states that if u = u(x, ξ) ∈ L2
x,ξ is a solution of the transport

equation
(λ − A)u = f(x, ξ) ∈ L2

x,ξ,

then, Ku = K(λ − A)−1f gains a regularity in x in the sense that Ku ∈ L2(Rn
ξ , H


x) with

� = 2/(3n + 4), where H

x is the usual Sobolev space. This property was used first in [40],

[41] and its various versions are now called the “Velocity Averaging Lemma”, see, e.g. [32].
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Proof. Put G(λ, k) = K(λ − Â(k))−1 and let χ(D) be the characteristic function of the
domain D ⊂ Rn. We get by virtue of Proposition 2.2.5 (3),

‖G(λ, k)χ(|ξ| < R)‖ ≤ k
1/2
1

(∫
|ξ|<R

|λ + ik · ξ + ν(ξ)|−2dξ
)1/2

.

Denote the last integral by J . Set

Σ1 = {ξ ∈ R
n | |ξ| < R, |τ + k · ξ| ≤ ε|k|}, Σ2 = {ξ ∈ R

n | |ξ| < R} − Σ1,

for any ε > 0. It is easy to see that there is a constant C > 0 such that for any k, R, ε, τ ,

mes Σ1 ≤ CεRn−1, mes Σ2 ≤ CRn,

mes being the Lebesgue measure in Rn. Let σ ≥ −ν0 + δ. Then, we get,

J =

∫
Σ1

+

∫
Σ2

≤ C(δ−2εRn−1 + (ε|k|)−2Rn).

Choose ε = R1/3(δ/|k|)2/3 to deduce

‖G(λ, k)χ(|ξ| < R)‖ ≤ Cδ−2/3R(3n−2)/6|k|−1/3.

On the other hand, by virtue of Proposition 2.2.5 (2),

‖G(λ, k)χ(|ξ| > R)‖ ≤ Cδ−1R−1.

Choosing R = (|k|/δ)2/(3n+4) leads to (1) of the proposition.

To prove (2), let |τ | > 2κ0R for which

|τ + k · ξ| ≥ |τ | − |k||ξ| ≥ |τ | − κ0R ≥ |τ |/2,

whenever |k| ≤ κ0 and |ξ| ≤ R, whence

J ≤ C(δ2 + |τ |2)−1Rn.

Choosing R = (|τ |/δ)2/(n+2) leads to (2) with the choice τ0 = (2κ0)
1+2/nδ−2/n. Thus, we are

done.

We can write

B̂(k) = Â(k) + K, D(B̂(k)) = D(Â(k)). (2.2.26)

It is now clear that B̂(k) is a semi-group generator. Let us discuss its spectrum. For any
a ∈ R, set

C+(a) = {λ ∈ C | σ > a}, C−(a) = C − C+(a). (2.2.27)
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Proposition 2.2.8 For any δ > 0, there exists a positive number τ1 > 0 such that the fol-
lowing holds for all k ∈ Rn.

(1) ρ(B̂(k)) ⊃ C+(0) ∪ {λ ∈ C | σ > −ν0 + δ, |τ | ≥ τ1}.
(2) σ(B̂(k)) ∩ C+(−ν0 + δ) consists of a finite number of eigenvalues of B̂(k).

(3) When k 	= 0, B̂(k) has no eigenvalues on the imaginary axis. When
k = 0, the point λ = 0 is the only eigenvalue on the imaginary axis and
its eigenspace is just N (null space of L in Proposition 2.1.1).

Proof. We write the second resolvent equation for Â(k) and B̂(k),

(λ − B̂(k))−1 = (λ − Â(k))−1 + (λ − B̂)−1K(λ − Â(k))−1, (2.2.28)

which holds for λ ∈ ρ(Â(k)) ∩ ρ(B̂(k)), and implies that, with G(λ, k) = K(λ − Â(k))−1,

(λ − B̂(k))−1 = (λ − Â(k))−1(I − G(λ, k))−1 (2.2.29)

is valid if λ ∈ ρ(Â(k)) and if I − G(λ, k) has the bounded inverse. Now, Proposition 2.2.6
proves that for each δ > 0, there exist positive numbers σ1, τ1 > 0 ( τ1 > τ0) such that
‖G(λ, k))‖ ≤ 1/2 holds for all k, σ ≥ σ1, and |τ | ≥ τ1, so that the Neumann series gives the
inverse (I − G(λ, k))−1. This shows

ρ(B̂(k)) ⊃ C+(σ1) ∪ {λ ∈ C | σ > −ν0 + δ, |τ | ≥ τ1}.
On the other hand, since K is a compact operator on L2(Rn

ξ ), B̂(k) is a compact perturba-

tion of Â(k), and so, thanks to [108, Theorem IV. 1.9] and Lemma 2.2.4, σ(B̂(k))∩C+(−ν0)
consists of discrete eigenvalues with possible accumulation points only on the boundary of
C+(−ν0). And, we proved already that

σ(B̂(k)) ∩ C+(−ν0 + δ) ⊂ {λ ∈ C | − ν0 + δ ≤ σ ≤ σ1, |τ | ≤ τ1}.
Since this is a compact set of C+(−ν0) and since it does not touch the boundary of C+(−ν0),
the number of eigenvalues in it is necessarily finite. This proves (2) of the proposition.

Finally, we shall show that there are no eigenvalues with non-positive real part for all
k ∈ Rn, except for λ = 0 eigenvalue for k = 0. Let λ = σ + iτ and w be an eigenvalue and
its eigenfunction, respectively:

(λ − B̂(k))ϕ = 0, ϕ ∈ D(B̂(k)), ϕ 	= 0. (2.2.30)

Recall that L is non-positive self-adjoint and compute

0 = Re ((λ − B̂(k))ϕ, ϕ)L2 = σ‖ϕ‖2 − (Lϕ, ϕ) ≥ σ‖ϕ‖2,

which is a contradiction if σ > 0. Suppose, in this turn, σ = 0. The above computation
shows that (Lϕ, ϕ)L2 = 0. By virtue of Proposition 2.1.1, this means ϕ ∈ N . Then, the
eigenvalue equation (2.2.30) is reduced to

(τ + k · ξ)ϕ = 0,

which is impossible for ϕ 	= 0 unless τ = 0 and k = 0. This completes the proof of both (1)
and (3).

Now, we shall study the eigenvalues stated in Proposition 2.2.8 (2).
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2.2.3 Eigenvalues of B̂(k) near Origin.

We shall consider the eigenvalue problem (2.2.30) for small k and λ. We start with

Proposition 2.2.9 For any σ1 ∈ (0, ν0), there is a positive number κ1 such that B̂(k) has
no eigenvalues in C+(−σ1) if |k| ≥ κ1. Moreover, κ1 → 0 as σ1 → 0.

Proof. By virtue of Proposition 2.2.6 (1), it holds that ‖G(λ, k)‖ ≤ 1/2 if λ ∈ C+(−σ1)
and if |k| is large, proving λ ∈ ρ(B̂(k)). The second assertion of the proposition comes from
Proposition 2.2.8(3).

Thus, we shall solve (2.2.30) for small k ∈ Rn near λ = 0. We put

k = κk̃, κ = |k|, k̃ = k/|k|,
and for r > 0, S1(r) = {k ∈ Rn | |k| ≤ r}, S2(r) = Rn − S1(r).

The following theorem is due to [62].

Theorem 2.2.10 There exist positive numbers κ0, σ0, and functions

λj(κ) ∈ C∞([−κ0, κ0]), j = 0, 1, · · · , n + 1,

such that for any k ∈ S1(κ0), the following holds.

(i) σ(B̂(k)) ∩ C+(−σ0) = {λj(κ)}n+1
j=0 .

(ii) λj(κ) has the asymptotic expansion,

λj(κ) = iλ
(1)
j κ − λ

(2)
j κ2 + 0(κ2) (κ → 0),

with the coefficients
λ

(1)
j ∈ R, λ

(2)
j > 0.

(iii) Denote the eigenprojection and eigennilpotent (see, e.g. [108] for the
definition) corresponding to the eigenvalue λj(k) by Pj(k) and Qj(k)
respectively. It holds that

Pj(k) = P
(0)
j (k̃) + κP

(1)
j (k), Qj(k) = 0,

for j = 0, · · · , n+1, where P
(0)
j (k̃) are orthogonal projections on L2

ξ with

P =
n+1∑
j=0

P
(0)
j (k̃),

P being the orthogonal projection in Proposition 2.1.1. Further, the op-
erator norm ‖P(1)

j (k)‖ is uniformly bounded for k ∈ S1(κ0).

Proof. It is know [27] that L is invariant with respect to the rotation R of ξ ∈ Rn. Therefore,
RB̂(k) = B̂(R−1k)R holds, which, applied to (2.2.30), shows that the eigenvalue λ depends
only on κ = |k|. Now we consider our eigenvalue problem in the form

B̂(k)ϕ = κη(κ)ϕ. (2.2.31)
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Decomposing ϕ = Pϕ + (I −P)ϕ = ϕ0 + ϕ1 and applying P and P1 = I −P to (2.2.31), we
get

−iPξ · k̃ϕ0 − iPξ · k̃ϕ1 = ηϕ0,

−iP1k · ξϕ0 − iP1k · ξϕ1 + Lϕ1 = κηϕ1,

where we have used properties of L in Proposition 2.1.1. Since L−1 exists on N⊥, and since
κ can be assumed small in our situation, the second equation can be solved as

ϕ1 = i(L − κηP1 − iP1κk̃ · ξP1)−1P1κk̃ · ξϕ0.

Insert this to the first equation to get

ηϕ0 = iA(k̃)ϕ0 − iκPk̃ · ξP1(L− iκηP1 − iP1κk̃ · ξP1)−1P1k̃ · ξPϕ0, (2.2.32)

where
A(k̃) = Pk̃ · ξP. (2.2.33)

If we plug the forms
η = iη1 + κη2, ϕ0 = ϕ0

0 + κϕ0
1 (2.2.34)

and put κ = 0, we get the eigenvalue problem for A(k̃):

A(k̃)ϕ0
0 = η1ϕ

0
0. (2.2.35)

This eigenvalue problem can be solved explicitly. To state this, introduce an orthonormal
basis of the null space N defined by⎧⎨

⎩
ψ0(ξ) = M1/2(ξ),
ψi(ξ) = ξiM

1/2(ξ) (i = 1, 2, · · · , n),
ψn+1(ξ) = 1√

2n
(|ξ|2 − n)M1/2(ξ).

(2.2.36)

Note that it suffices to solve the above eigenvalue problem on N .

Lemma 2.2.11 Put

c =

√
n + 2

n
. (2.2.37)

The eigenvalues and normalized eigenfunctions of A(k̃) on N are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

η1,0 = c, ϕ0
0,0(k̃) =

1√
2c

(ψ0 + k̃ · ψ′ + γψn+1),

η1,1 = 0, ϕ0
0,1(k̃) =

1

c
(γψ0 − ψn+1),

η1,j = 0, ϕ0
0,j(k̃) = Cj(k̃) · ψ′ (j = 2, · · · , n),

η1,n+1 = −c, ϕ0
0,n+1(k̃) =

1√
2c

(ψ0 − k̃ · ψ′ + γψn+1),

(2.2.38)

where ψ′ is the vector valued function

ψ′ = (ψ1, · · · , ψn) = ξψ0(ξ), (2.2.39)

while Ci are n-dimensional normalized vectors such that

Ci(k̃) · Cj(k̃) = k̃ · Cj(k̃) = 0 (i, j = 2, · · · , n, i 	= j). (2.2.40)
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Proof. If we write P explicitly in the form

Pw =

n+1∑
i=0

< w, ψi > ψi(ξ), (2.2.41)

we have a matrix representation of A,⎛
⎝ 0 k̃ 0

k̃t 0 γk̃t

0 γk̃ 0

⎞
⎠ (2.2.42)

where γ =
√

2/n, and k̃ is taken to be a row vector and t denotes its transpose. It is easy to
compute its eigenvalues and normalized eigenvectors. The detail is omitted.

Proof of Proposition 2.2.10 continued. We have obtained η1 = η1,j and ϕ0
0 = ϕ0

0,j, j =
0, 1, · · · , n + 1. Expand (2.2.32) in the power series of κ. Then, the term of order κ gives

η2ϕ
0
0 + iη1ϕ

0
1 = iA(k̃)ϕ0

1 − iPk̃ · ξP1L−1P1k̃ · ξPϕ0
0. (2.2.43)

Take the inner product in L2(R3
v) of this and ϕ0

0,j in (2.2.38) to arrive at

η2 = η2,j = − < L−1P1v · ξ̃ϕ0
0,j,P

1v · ξ̃ϕ0
0,j > (j = 0, · · · , n + 1). (2.2.44)

Since L is negative definite on N⊥, we have

η2,j > 0, j = 0, 1, · · · , n + 1. (2.2.45)

Now, the theorem follows with

λ
(1)
j = η1,j , λ

(2)
j = η2,j, P

(0)
j =< ·, ϕ0,j > ϕ0,j.

Remark 2.2.12 It is possible to show that

η2,0 = η2,n+1 ≡ µ, η2,j ≡ ν (j = 1, · · · , n).

Physically, c in (2.2.37) is the sound speed in the equilibrium gas governed by the Maxwellian
M, while µ and ν are the thermal diffusivity and the viscosity coefficient corresponding to
M.

2.2.4 Asymptotic behaviors of etB̂(k).

We shall now use the inverse Laplace transformation (2.2.21). To this end, we need,

Lemma 2.2.13 For any w ∈ L2
ξ and σ > −ν0, it holds that∫ ∞

−∞
‖(σ + iτ − Â(k))−1w‖2dτ ≤ π(σ + ν0)

−1‖w‖2.
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�Proof. Recall that the resolvent (λ − Â(k))−1 is the Laplace transform

(λ − Â(k))−1 =

∫ ∞

0

e−λtetÂ(k)dt, λ ∈ C+(−ν0),

which can be rewritten as

(σ + iτ − Â(k))−1 = (2π)−1/2

∫ ∞

−∞
e−iτt

{
(2π)1/2χ(t)e−σtetÂ(k)

}
dt,

where χ(t) = 1 (t ≥ 0), = 0 (t < 0). This is a Fourier transform, so that by Parseval’s
equality, we get∫ ∞

−∞
‖(σ + iτ − Â(k))−1w‖2dτ =

∫ ∞

−∞
‖(2π)1/2χ(t)e−σtetÂ(k)w‖2dt

= 2π

∫ ∞

0

e−2σt‖etÂ(k)w‖2dt ≤ 2π

∫ ∞

0

e−2(σ+ν0)tdt‖w‖2,

which proves the lemma.
We now recall (2.2.21):

Φ(t, k) = etB̂(k) =
1

2iπ

∫ λ0+i∞

λ0−i∞
eλt(λ − B̂(k))−1dλ. (2.2.46)

Combining (2.2.28) and (2.2.29), we have,

(λ − B̂(k))−1 = (λ − Â(k))−1 + Z(λ), (2.2.47)

Z(λ) = (λ − Â(k))−1(I − G(λ))−1G(λ),

with

G(λ) = K(λ − Â(k))−1.

Proposition 2.2.8(1) says that this is valid if σ > 0. Substitute this into (2.2.46) to deduce

Φ(t, k) = etÂ(k) + lim
a→∞

1

2π
Uσ,a(t, k), (2.2.48)

Uσ,a =

∫ a

−a

e(σ+iτ)tZ(σ + iτ)dτ,

The main ingredient is to shift the integration path from the line Re λ = σ > 0 to Re λ =
−σ0 < 0 where σ0 > 0 is the constant in Theorem 2.2.10. Let τ1 > 0 be the constant of
Proposition 2.2.8(2) and choose a > τ1. Proposition 2.2.6 says that Z(λ) is meromorphic
in C+(−σ0) with only a finite number of singularities at the eigenvalues λj(k) in Theorem
2.2.10, so that the contour integral of eλZ(λ) on the rectangular path connecting the vertex

σ − ia, σ + ia, σ0 + ia, σ0 − ia
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can be computed, thanks to Residue Theorem, to deduce

Uσ,a = 2πi
n+1∑
j=0

Res
{

eλtZ(λ); λ = λj(k)
}

+ H + U−σ0,a, (2.2.49)

where Res means the residue and

H =
(∫ σ+ia

−σ0+ia

−
∫ σ−ia

−σ0−ia

)
eλtZ(λ)dλ.

First, since λj(k) ∈ ρ(Â(k)) and by [108, p.181], we find,

Res
{
eλtZ(λ); λ = λj(k)

}
= Res

{
eλt(λ − B̂(k))−1; λ = λj(k)

}
= eλj(k)tPj(k),

for k ∈ S1(κ0) and otherwise this residue is 0.
Second, from Proposition 2.2.6, it can be seen that

‖H‖ → 0 (a → ∞).

Finally, we can assert that

‖(I − G(−σ0 + iτ))−1‖ ≤ C1, τ ∈ R,

holds for a positive constant C1 independent of τ . This is seen from Proposition 2.2.6 for
large τ , while for small τ , it comes since we can assume Reλj(k) 	= −σ0 by taking a smaller
κ0 if necessary and since G is a compact operator. Hence, for any u, v ∈ L2

ξ ,

| < U−σ0,au, v > | ≤ e−σ0t

∫ a

−a

| < Z(−σ0 + iτ)u, v > |dτ

≤ C1‖K‖e−σ0t

∫ a

−a

‖(λ − Â(k))−1u‖‖(λ − Â∗(k))−1v‖dτ, λ = −σ0 + iτ,

where ∗ means the adjoint. Since Lemma 2.2.13 applies to Â∗(k) as well, we have,

| < U−σ0,au, v > | ≤ C0(−σ0 + ν0)
−1e−σ0t‖u‖‖v‖.

This implies not only that U−σ0,a converges as a → ∞ in a weak operator topology, but also
that the limit operator satisfies the estimate

‖U−σ0,∞(t)‖ ≤ C2e
−σ0t, t ≥ 0.

Summarizing, we have proved the

Theorem 2.2.14 The semi-group Φ(t, k) = etB̂(k) has the following decomposition.

Φ(t, k) =
n+2∑
j=0

Φj(t, k), (2.2.50)

where

Φj(t, k) = eλj(k)tPj(k)χ(|k| < κ0), j = 0, 1, · · · , n + 1, (2.2.51)

‖Φn+2(t, k)‖ ≤ Ce−σ0t, t ≥ 0. (2.2.52)

Note that we put Φn+2 = etÂ(k) + U−σ0,∞(t, k).
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2.2.5 Decay Rates of etB in R
n

In Theorem 2.2.2, B in (2.1.4) was shown to be a C0 semi-group generator in the space
L2 = L2(Rn

x × Rn
ξ ). The formula (2.2.50) enables us to establish explicit decay rates of this

semi-group in various function spaces, which are used in an essential way for solving nonlinear
problems in later sections. All the decay estimates are derived by bootstrap argument starting
from the decay estimates in the L2 Sobolev space that are established in this subsection. The
cases Ω = Rn and Ω = Tn will be discussed separately. Most of computation is the same for
both cases, though the resulting decay properties are quite different.

Let H
 = H
(Rn), � ∈ R, be the usual L2 Sobolev space. Define a space of functions
u = u(x, ξ) by

H
 = L2(Rn
ξ ; H


x), (2.2.53)

with the norm

‖u‖H�
=
(∫

Rn

‖u(·, ξ)‖2
H�dξ

)1/2

=
(∫

Rn×Rn

(1 + |k|2)
|û(k, ξ)|2dkdξ
)1/2

.

It is seen that B is a C0 semi-group generator also in H
 for any � ∈ R if it is defined by
(2.1.4) with L2 replaced by H
. The proof is similar and omitted. Now, we derive various
decay estimates of etB . First, substituting (2.2.50) into (2.2.20), we have the decomposition,

etB = E1(t) + E2(t), (2.2.54)

E1(t) =
n+1∑
j=0

F−1
{

Φj(t, k)
}
F , E2(t) = F−1

{
Φn+2(t, k)

}
F .

Both components are continuous functions of t with values in the space of bounded operators
on H
. We shall show that E1(t) has the algebraic decay while E2(t) has the exponential
decay, as t → ∞.

To this end, introduce,

α = (α1, α2, · · · , αn) ∈ N
n, |α| = α1 + α2 + · · ·+ αn,

∂α
x = ∂α1

x1
∂α2

x2
· · ·∂αn

xn
.

As usual, α′ ≤ α for α, α′ ∈ N
n means that α′

i ≤ αi for all i = 1, 2, · · · , n. For q ∈ [1, 2] and
m ≥ 0, set

σq,m =
n

2

(1

q
− 1

2

)
+

m

2
, (2.2.55)

and

Zq = L2(Rn
ξ ; Lq(Rn

x)), ‖u‖Zq =
(∫

Rn

(∫
Rn

|u(x, ξ)|qdx
)2/q

dξ
)1/2

. (2.2.56)

All the decay estimates to be derived in this subsection relies on the
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Theorem 2.2.15 (i) For any q ∈ [1, 2] and � ∈ R, E1(t) can be regarded as a bounded
operator from Zq to H
 for each t, and for any α, α′ ∈ Nn with α′ ≤ α and for any u
satisfying ∂α′

x u ∈ Zq,

‖∂α
x E1(t)u‖L2 ≤ b1(1 + t)−σq,m‖∂α′

x u‖Zq , (2.2.57)

‖∂α
x E1(t)(I −P)u‖L2 ≤ b2(1 + t)−σq,m+1‖∂α′

x u‖Zq (2.2.58)

hold for t ≥ 0 with m = |α−α′| where P is the orthogonal projection (2.1.11) while b1, b2 are
positive constants depending on q and m only.
(ii) For any α ∈ Nn, E2(t) satisfies

‖∂α
x E2(t)u‖L2 ≤ b3e

−σ0t‖∂α
x u‖L2, (2.2.59)

where σ0 and b3 are positive constants independent of α, u, and t.

Remark 2.2.16 The part (i) shows that higher derivatives in x of E1(t) decay faster than
lower derivatives as t → ∞. The derivatives in ξ, on the other hand, have no such property.
It will be shown in §3.4.2, that this feature is inherited by the nonlinear problem. The fact
that the constants σ0 and b3 are independent of α is crucial for the proof. Notice that the
heat kernel enjoys the same theorem.

Proof of Theorem 2.2.15. Write kα = kα1
1 kα2

1 · · · kαn
n and note that

kαΦj(t, k)û(k, ·) = Φj(t, k)(kαû(k, ·)), j = 0, 1, · · · , n + 2

hold point wise for k ∈ Rn in the space L2
ξ . Put

Ij(t, k) = ‖Φj(t, k)û(k, ·)‖L2(Rn
ξ ).

It follows from (2.2.52) and by the aid of Parseval’s relation that

‖kαIn+2(t, k)‖L2(Rn
k ) ≤ C1e

−σ0t‖kαû‖L2(Rn
k×R

n
ξ ) = C1e

−σ0t‖∂α
x u‖L2(Rn

x×R
n
ξ ),

which proves the part (ii).
On the other hand, for j = 0, · · · , n + 1, we have from Theorem 2.2.10 (iii),

‖P̂j(k)û(k, ·)‖L2(Rn
ξ ) ≤ c0‖û(k, ·)‖L2(Rn

ξ ) (|k| ≤ κ0),

and choosing κ0 sufficiently small if necessary,

Reλj(k) = −λ
(2)
j |k|2(1 + O(|k|)) ≥ −a0|k|2 (|k| ≤ κ0), (2.2.60)

with some constants a0, c0 > 0 independent of k, so that

‖kαIj(t, k)‖2
L2(Rn

k ) ≤ c0

∫
|k|≤κ0

|kα−α′ |2e2Reλj(k)‖kα′
û(k, ·)‖2

L2(Rn
ξ )dk (2.2.61)

≤ c0

(∫
|k|≤κ0

|k|2p′me−2p′a0|k|2tdk
)1/p′(∫

Rn

‖kα′
û(k, ·)‖2q′

L2(Rn
ξ )dk

)1/q′

,
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where m = |α − α′| and p′ ∈ [1,∞) with
1

p′
+

1

q′
= 1. Note that

∫
|k|≤κ0

|k|2p′me−2p′a0|k|2tdk ≤ c2(1 + t)−n/2−p′m,

and that, by the well known property of the Fourier transformation,(∫
Rn

‖kα′
û(k, ·)‖2q′

L2(Rn
ξ )dk

)1/q′

≤ ‖∂α′
x u‖2

Zq
,

1

q
+

1

2q′
= 1.

Thus, (2.2.57) follows.
Similarly, if Pu = 0, we have Pû(k, ξ) = 0 for all k, and hence from Theorem 2.2.10 (iii),

‖P̂j(k)û(k, ·)‖L2(Rn
ξ ) ≤ c0|k|‖û(k, ·)‖L2(Rn

ξ ) (|k| ≤ κ0).

Consequently, the same computation as above with m replaced by m+1 gives (2.2.58). This
completes the proof of the theorem.

In (2.2.58), the extra decay rate 1/2 is obtained under the assumption u ∈ N⊥. This will
be used in an essential way in later sections for nonlinear problems, in conjunction with
the property (2.1.2) of the nonlinear operator Γ. The same extra decay rate can be obtained
under a different assumption, which will be also essential in §2.3 for constructing time-periodic
solutions for the case n = 3, 4.

Proposition 2.2.17 Suppose that u satisfy

(1 + |x|)u ∈ Z1,

∫
R3

Pu dx = 0, a.e. ξ ∈ R
n. (2.2.62)

Then, for any α ∈ Nn,

‖∂α
x E1(t)u‖L2 ≤ b4(1 + t)−σ1,|α|+1‖(1 + |x|)u‖Z1 (2.2.63)

holds for t ≥ 0 with a positive constant b4 independent of u and t.

Proof. The first assumption in (2.2.62) implies that û is Lipschitz continuous in k,

‖û(k, ·) − û(k′, ·)‖L2
ξ
≤ C0|k − k′|‖(1 + |x|)u‖Z1,

and the second assumption implies that Pû(0, ·) = 0, so that

‖P̂j(k̃)û(k, ·)‖L2
ξ

= ‖P̂j(k̃)(û(k, ·) − û(0, ·))‖L2(Rn
ξ ) ≤ c0|k|‖(1 + |x|)u‖Z1.

Hence, (2.2.63) is obtained by a similar computation as in the proof of Theorem 2.2.15 (i).
Thus, the proposition was proved.

The decay estimates in the Hilbert space H
 established above, however, are not applicable
directly to the nonlinear problems which are usually manipulated in a Banach algebra that
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is a property that H
 does not possesses. One of the Banach algebras which are suitable for
the Boltzmann equation is

Ḣ
,β =

{
u ∈ L∞

loc(R
n
ξ ; H


x) | ‖u‖
,β < ∞, lim sup
|ξ|→∞

(1 + |ξ|)β‖u(·, ξ)‖H� = 0

}
, (2.2.64)

‖u‖
,β = sup
ξ∈Rn

(1 + |ξ|)β‖u(·, ξ)‖H�.

Actually, this is a Banach algebra if � > n/2 and β ≥ 0. The condition

lim sup
|ξ|→∞

(1 + |ξ|)β‖u(·, ξ)‖H� = 0 (2.2.65)

in the above is introduced to ensure the continuity property of the semi-group etB.
We shall now reestablish the previous decay estimates in this space. This is possible by

bootstrap argument based on the smoothing property (2.1.9) of K. First, let us show that
the operator B is a C0 semi-group generator also in the space Ḣ
,β, if D(B) is defined by
(2.2.5) with L2 replaced by Ḣ
,β.

Proposition 2.2.18 For any �, β ∈ R, B generates a C0 semi-group etB in Ḣ
,β.

Proof. Proposition 2.1.1 says that K can be taken to be a bounded operator on Ḣ
,β.
Therefore, as before, it suffices to show that Proposition 2.2.3 holds for A in this new domain
of definition. We proceed just in the same way. Recall S(t) in (2.2.9). It satisfies (2.2.8) also
in Ḣ
,β. To prove its continuity in t, note, first, from (2.2.65) that Ḣ
′,β′ is dense in Ḣ
,β as
long as �′ > � and β ′ > β. Therefore, the continuity of S(t) on Ḣ
,β follows if

‖(S(t′) − S(t))u‖
,β → 0 (t, t′ ≥ 0, t′ → t) (2.2.66)

holds for each u ∈ Ḣ
′,β′. For this, let w(t, k, ξ) be the Fourier transform (2.2.11), that is,

w(t, k, ξ) = s(t, x, k)û(k, ξ), s(t, x, k) = e−(ik·ξ+ν(ξ))t. (2.2.67)

We get,

‖(S(t′) − S(t))u‖2

,β

≤ sup
ξ∈Rn

(1 + |ξ|)2β

∫
Rn

(1 + |k|)2
|s(t′, k, ξ) − s(t′, k, ξ)|2|û(k, ξ)|2dk

≤ b(t, t′)2‖u‖2

′,β′,

where

b(t, t′) = sup
k∈Rn,ξ∈Rn

|s(t′, k, ξ) − s(t′, k, ξ)|
(1 + |k|)
′−
(1 + |ξ|)β′−β

.

By a simple computation, we get for any δ ∈ (0, 1),

|eik·ξt′ − eik·ξt| ≤ C(|k||ξ||t′ − t|)δ,

|e−ν(ξ)t′ − e−ν(ξ)t| ≤ C((1 + |ξ|)γ|t′ − t|)δ,
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for some constant C > 0, where (2.1.8) was used. Choosing a sufficiently small δ concludes
(2.2.66). The rest of proof is the same as in Proposition 2.2.3.

To derive decay estimates of etB on Ḣ
,β, apply Duhamel’s formula to (2.2.13) to deduce

etB = etA + (etAK) ∗ etB, (2.2.68)

where ∗ means the convolution in t,

g ∗ h =

∫ t

0

g(t − s)h(s)ds.

Iterate this to deduce

etB =
N∑

k=0

Gj(t) + (GN(t)K) ∗ etB, (2.2.69)

for N ∈ N where

G0(t) = etA, Gj(t) = (etAK) ∗ Gj−1(t) = Gj−1(t) ∗ (KetA) (j = 1, 2, · · · ).
Lemma 2.2.19 Let � ∈ R and β ≥ 0.
(i) For any j ∈ N, Gj(t) is a bounded operator on Ḣ
,β, and for any ε > 0, there is a constant
C > 0 such that

‖Gj(t)u‖
,β ≤ Ce−(ν0−ε)t‖u‖
,β.

(ii) There is an integer N ∈ N such that GN(t)K is a bounded operator from H
 to Ḣ
,β,
and for any ε > 0, there is a constant C > 0 such that

‖GN(t)Ku‖
,β ≤ Ce−(ν0−ε)t‖u‖H�
.

(iii) Gj(t) commutes with ∂α
x .

Proof. Note that for any ε, κ > 0,

e−κt ∗ e−κt = te−κt ≤ Ce−(κ−ε)t

holds for a constant C = Cε such that Cε → ∞ (ε → 0). Then, (i) is an easy consequence of
the estimate (2.2.8) in Ḣ
,β since K is a bounded operator on Ḣ
,β in virtue of Proposition
2.1.1. Further, the same proposition says that K can be also taken to be a bounded operator
from Ḣ
,β−1 to Ḣ
,β as well as from H
 to Ḣ
,0. This proves (ii) with N ≥ [β] + 1. (iii) is
obvious from (2.2.7).

Substituting the decomposition (2.2.54) into the last term of (2.2.69) yields a decompo-
sition of etB in the space Ḣ
,β:

etB = D1(t) + D2(t), (2.2.70)

D1(t) = (GN(t)K)∗E1(t), D2(t) =
N∑

k=0

Gj(t) + (GN(t)K) ∗ E2(t),
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with N ≥ [β] + 1.
By virtue of Lemma 2.2.19, the L2 decay estimates in Theorem 2.2.15 can be transferred

into the space Ḣ
,β. Recall the definitions (2.2.55) and (2.2.56) for σq,m and Zq, respectively.

Theorem 2.2.20 Let � ∈ R and β ≥ 0.
(i) For any q ∈ [1, 2], D1(t) is a bounded operator from Zq to Ḣ
,β for each t, and for any
α, α′ ∈ Nn with α′ ≤ α and for any u satisfying ∂α′

x u ∈ Zq,

‖∂α
x D1(t)u‖Ḣ�,β

≤ b1(1 + t)−σq,m‖∂α′
x u‖Zq , (2.2.71)

‖∂α
x D1(t)(I − P)u‖Ḣ�,β

≤ b2(1 + t)−σq,m+1‖∂α′
x u‖Zq (2.2.72)

hold for t ≥ 0 with m = |α − α′| where b1, b2 are positive constants depending on m, �, β, q,
but not on α, α′ themselves nor on u, t.
(ii) D2(t) is a bounded operator from Ḣ
,β ∩ H
 into Ḣ
,β, and for any α ∈ Nn, it satisfies

‖∂α
x D2(t)u‖Ḣ�,β

≤ b3e
−σ0t(‖∂α

x u‖H�
+ ‖∂α

x u‖Ḣ�,β
) (2.2.73)

where σ0 and b3 are positive constants independent of α, u, and t.

Proof. Notice that for any numbers κ1 > 0 and κ2 ≥ 0,

e−κ1t ∗ (1 + t)−κ2 ≤ C(1 + t)−κ2 , e−κ1t ∗ e−κ2t ≤ Ce−κ2t (κ1 > κ2)

hold for t ≥ 0 with some positive constant C > 0. Whereas the second inequality comes by
a direct computation, The first inequality can be concluded by the computation,∫ t

0

e−κ1(t−s)(1 + s)−κ2ds =

∫ t/2

0

+

∫ t

t/2

≤ e−κ1t/2

∫ t/2

0

(1 + s)−κ2ds + (1 + t/2)−κ2

∫ t

t/2

e−κ1(t−s)ds

≤ C(1 + t)−κ2 .

Take κ1 = ν0−ε and κ2 = σq,m or = σ0, and combine Theorem 2.2.15 with Lemma 2.2.19.
whence follows parts (i), (ii). For (ii), σ0 is to be taken smaller than in Theorem 2.2.15 (ii),
if necessary.

The following theorem summarizes the decay estimates of etB that are used for solving
the nonlinear problems in the later sections. All the part except for (2.2.77) is a direct
consequence of the above theorem with α′ = 0, and (2.2.77) is obtained by noticing that
D1(t) enjoys a similar estimate to that of Proposition 2.2.17, with a due modification. The
estimates for α′ 	= 0 are essentially used in §3.1.2 where the decay of space derivatives of
solutions to the Cauchy problem is discussed.

Theorem 2.2.21 Let q ∈ [1, 2], � ∈ R and β ≥ 0. Then, there is a positive constant b0 such
that for any u ∈ H
,β ∩ Zq, it holds that

‖etBu‖
,β ≤ b0(1 + t)−σq,0

{
‖u‖
,β + ‖u‖Zq

}
, (2.2.74)

‖etB(I −P)u‖
,β ≤ b0(1 + t)−σq,1

{
‖u‖
,β + ‖u‖Zq

}
, (2.2.75)
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while if in addition,

(1 + |x|)u ∈ Z1,

∫
R3

Pu dx = 0, a.e. ξ ∈ R
n, (2.2.76)

it holds that

‖etBu‖
,β ≤ b0(1 + t)−σ1,1

{
‖u‖
,β + ‖(1 + |x|)u‖Z1

}
. (2.2.77)

Note that for q = 2, (2.2.71) does not assure the decay because σ2,0 = 0. However, the
following decay property is still available.

Theorem 2.2.22 Let � ≥ 0 and β > n/2.

‖etBu‖
,β → 0 (t → ∞) (2.2.78)

holds for any u ∈ H
.

Proof. Note that Z2 = L2. Hence, for q = 2, (2.2.71) asserts that etB is a uniformly bounded
semi-group in the space L2 ∩ Ḣ
,β for any β ∈ R, and hence so is in Ḣ
,β if � ≥ 0 and β > n/2
since then L2 ⊃ Ḣ
,β. On the other hand, it is easy to show that for any q ∈ [1, 2) (q 	= 2), the
space Ḣ
,β ∩ Zq has a subset which is dense in Ḣ
,β, whence, together with (2.2.71), follows
the theorem.

2.2.6 Decay Rates of etB in Tn

The computation in the previous subsection leads to the exponential decays for the case
Ω = Tn, under some extra restriction on u. To see this, note that the spaces H
 and Ḣ
,β

are still defined respectively by (2.2.53) and (2.2.64), except the Sobolev space H
 which is
to be defined on Tn, H
 = H
(Tn). Thus, the norm in (2.2.53) is to be replaced by

‖u‖H�
=
(∫

Rn

‖u(·, ξ)‖2
H�dξ

)1/2

=
(∑

k∈Zn

∫
Rn

(1 + |k|2)
|û(k, ξ)|2dξ
)1/2

, (2.2.79)

where û(k, ξ) is the Fourier coefficient defined by (2.2.10). This changes Theorem 2.2.15.
Indeed, now, the computation (2.2.61) for j = 0, · · · , n + 1 should be modified as

‖kαIj(k)‖2

2(Zn) =

∑
k∈Zn,|k|≤κ0

|kαIj(k)|2 (2.2.80)

≤ c1δ|α|,0‖Pû(0, ·)‖2
L2(Rn

ξ ) + c2

∑
k∈Zn,0<|k|≤κ0

e2Reλj(k)t‖kαû(k, ·)‖2
L2(Rn

ξ ).

Here, c0, c1, c2 are positive constants independent of u, t, and δ|α|,0 is Kronecker’s symbol.

And we used Theorem 2.2.10 saying λj(0) = 0 and
∑n+1

j=0 Pj(0) = P. Recall (2.2.60). Then,
the rest of the computation in the proof of Theorem 2.2.15 leads to
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Theorem 2.2.23 (i) E1(t) is a uniformly bounded operator on H
 for any � ∈ R, and for
all α ∈ Nn, it holds that

‖∂αE1(t)u‖L2 ≤ b1‖∂αu‖L2 (∀t ≥ 0). (2.2.81)

Furthermore, either if u satisfies an extra condition∫
T3

Pu dx = Pû(0, ·) = 0, a.e. ξ ∈ R
n, (2.2.82)

or if α 	= 0, then, E1(t) enjoys the exponential decay

‖∂α
x E1(t)u‖L2 ≤ b2e

−a1t‖∂α′
x u‖L2 (∀t ≥ 0, α′ ≤ α). (2.2.83)

Here, a1, b1, b2 are positive constants independent of u, t, α.
(ii) For any α ∈ Nn, E2(t) satisfies

‖∂α
x E2(t)u‖L2 ≤ b3e

−σ0t‖∂α
x u‖L2 (∀t ≥ 0), (2.2.84)

where σ0 and b3 are positive constants independent of α, u, and t.

The remaining argument in the previous subsection then yields the counterpart of Theorem
2.2.20.

Theorem 2.2.24 For any � ∈ R and β > n/2, there are positive constants b0 and σ1 such
that for all u ∈ Ḣ
,β, it holds that

‖etBu‖
,β ≤ b0‖u‖
,β (∀t ≥ 0), (2.2.85)

and if, in addition, either u satisfies (2.2.82) or has a form u = ∂xj
v for some j, it holds that

‖etBu‖
,β ≤ b0e
−σ1t
(
‖u‖
,β or ‖v‖
,β

)
(∀t ≥ 0). (2.2.86)

Here, σ1 = min(a1, σ0) where a1, σ0 are those in Theorem 2.2.23.

Remark 2.2.25 In contrast to the case Ω = Rn, the non-trivial decay follows only under
the condition (2.2.82). No analogue to Theorem 2.2.22 is possible.

2.3 Global Solutions of the Cauchy Problem

The decay estimates established in the previous section have many applications to the non-
linear Boltzmann equation. This sections shows that they can be used to construct global
solutions to the Cauchy problem and also time-periodic solutions for the case with time-
periodic external source. This is done by combining with the contraction mapping principle,
but in quite different contexts. Also, they will be used to establish a new decay property of
space derivatives of the global solutions to the Cauchy problem.

In this subsection, we construct global solutions to the Cauchy problem for the the Boltz-
mann equation (2.1.3) and then discuss some decay property of their space derivatives.
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2.3.1 Global Existence

We discuss the Cauchy problem

⎧⎨
⎩

∂u

∂t
= Bu + Γ[u, u], t > 0, x ∈ Ω, ξ ∈ Rn,

u|t=0 = u0(x, ξ), x ∈ Ω, ξ ∈ Rn.

(2.3.1)

for the case Ω = Rn and Ω = Tn. Throughout this section, we assume

n ≥ 3, � >
n

2
, β >

n

2
+ 1. (2.3.2)

Recall σq,k of (2.2.55):

σq,k =
n

2
(
1

q
− 1

2
) +

k

2
.

The existence theorem to be proved here is,

Theorem 2.3.1 Assume the cutoff hard potential (1.2.17). Then, there are two positive
constants a0, a1 such that the following holds.
(1) The case Rn. For any initial data u0 ∈ Ḣ
,β satisfying

‖u0‖
,β ≤ a0,

then, (2.3.1) admits a global unique solution u in the function class

BC0([0,∞); Ḣ
,β) ∩ BC1([0,∞); Ḣ
−1,β−1). (2.3.3)

It has the estimate

‖u(t)‖
,β ≤ a1‖u0‖
,β, t ∈ [0,∞). (2.3.4)

and the decay property

‖u(t)‖
,β → 0 (t → ∞). (2.3.5)

Further, non-trivial decay rates are possible provided the initial data u0 satisfy additional
conditions.

(a) Suppose that for q ∈ [1, 2], u0 satisfies

u0 ∈ Ḣ
,β ∩ Zp, ‖u0‖
,β + ‖u0‖Zp ≤ a0. (2.3.6)

Then, u has an algebraic decay

‖u(t)‖
,β ≤ a1(1 + t)−σq,0

(
‖u0‖
,β + ‖u0‖Zq

)
, t ∈ [0,∞). (2.3.7)

(b) If further Pu0 = 0, the decay rate σq,0 in (2.3.7) can be replaced with σq,1.
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(c) Suppose that

u0 ∈ Ḣ
,β, (1 + |x|)u0 ∈ Z1,

∫
Rn

Pu0dx = 0, (2.3.8)

‖u0‖
,β + ‖(1 + |x|)u0‖Z1 ≤ a0.

Then, the decay estimate (2.3.7) is replaced by

‖u(t)‖
,β ≤ a1(1 + t)−σ1,1

(
‖u0‖
,β + ‖(1 + |x|)u0‖Z1

)
, t ∈ [0,∞). (2.3.9)

(2) The case Tn. For any initial data u0 ∈ Ḣ
,β satisfying

‖u0‖
,β ≤ a0,

(2.3.1) admits a global unique solution u in the function class

BC0([0,∞); Ḣ
,β) ∩ BC1([0,∞); Ḣ
−1,β−1), (2.3.10)

and satisfies the estimate

‖u(t)‖
,β ≤ a1‖u0‖
,β, t ∈ [0,∞). (2.3.11)

If, in addition, u0 satisfies ∫
Tn

Pu0dx = 0, (2.3.12)

the solution u has an exponential decay

‖u(t)‖
,β ≤ a1e
−σ0t‖u0‖
,β, t ∈ [0,∞). (2.3.13)

where the constant σ0 > 0 is the same as in (2.2.86).

Remark 2.3.2 In part (2), the counter part of (2.3.5) is not available.

Remark 2.3.3 For the space dimension n = 1 or 2, i.e. x ∈ R or R2, (1.2.1) has a physical
sense only if the velocity variable ξ is kept three-dimensional, i.e. ξ = (ξ1, ξ2, ξ3) ∈ R3. In
this case, ξ ·∇x is to be taken ξ1∂x (n = 1) or ξ1∂x1 +ξ2∂x2 (n = 2). Then, the above theorem
also holds. However, the proof of Theorem 2.3.1 will be given only for the case n ≥ 3, since
the case n = 1, 2 can be proved with a slight modification.

The rest of this subsection is devoted to the proof of Theorem 2.3.1. First, we rewrite (2.3.1)
in the form of the integral equation

u(t) = etBu0 +

∫ t

0

e(t−s)BΓ[u(s), u(s)]ds, (2.3.14)
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which is deduced by means of Duhamel’s formula. We shall show that this has a global
solution in the function class BC0([0,∞); Ḣ
,β). Once it is proved, it follows from the defi-
nition of domain D(B) in (2.2.5) that the right hand side of (2.3.14) is differentiable in t in
the space BC1([0,∞); Ḣ
−1,β−1), which implies that, in turn, the solution u of the integral
equation (2.3.14) is a classical solution of the Cauchy problem (2.3.1).

Now, we set

Φ[u](t) = etBu0 +

∫ t

0

e(t−s)BΓ[u(s), u(s)]ds. (2.3.15)

This defines a nonlinear map and (2.3.14) is written as u = Φ[u], that is, the solution u to
(2.3.14) is a fixed point of the map Φ. We now show that the decay estimates obtained in
the previous section ensures that Φ is a contraction map if u0 is small.

In the sequel, we assume (2.3.2). For σ ≥ 0, set

ρσ(t) =

{
(1 + t)−σ, Ω = Rn,
e−σt, Ω = Tn,

(2.3.16)

and introduce the function space

X
,β,σ =
{

u ∈BC0([0,∞); Ḣ
,β) | |||u|||
,β,σ < +∞
}
, (2.3.17)

|||u|||
,β,σ = sup
t≥0

(
ρσ(t)−1‖u(t)‖
,β

)
,

Recall the function ν(ξ) in (2.1.8), and as before, denote the multiplication operator by
this function by ν. Given a function h = h(t, x, ξ), define the integral

Ψ[h] =

∫ t

0

e(t−s)B(νh(s))ds. (2.3.18)

Lemma 2.3.4 Let σ ≥ 0 and assume (2.3.2). Put

σ∗ =

{
min(σ1,1, σ), Ω = Rn,
min(σ0, σ), Ω = T

n,
(2.3.19)

where σ1,1 = n/4 + 1/2 from Theorem 2.2.20 and σ0 from Theorem 2.2.24.
(1) If

h ∈ X
,β,2σ, ρ2σ(t)(νh)(t) ∈ BC0([0,∞); Z1), P(νh) = 0, (2.3.20)

then, Ψ[h] ∈ X
,β,σ∗ and
|||Ψ[h]|||
,β,σ∗ ≤ C0[[h]]
,β,2σ, (2.3.21)

holds for a positive constant C0 where

[[h]]
,β,2σ = |||h|||
,β,2σ + sup
t≥0

ρ2σ(t)‖νh(t)‖Z1 .

(2) For the case Ω = Rn, if σ = σ∗ = 0 but [[χ(t > R)h]]
,β,0 → 0 (R → ∞), it holds that

|||χ(t > R)Ψ[h]|||
,β,0 → 0 (R → ∞), (2.3.22)

where χ(t > R) is the characteristic function of the interval [R,∞).
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Remark 2.3.5 (1) A point here is, among others, that although the function ν(ξ) is an
unbounded function as is stated in (2.1.8), there is no loss of weight (1 + |ξ|)β in the space
Ḣ
,β, thanks to the smoothing effect of K stated in (2.1.9).

Proof of Lemma 2.3.4. First, by virtue of Theorems 2.2.20 and 2.2.24, we get

‖Ψ[h](t)‖
,β−1 ≤ C

∫ t

0

ρσ∗(t − s)ρ2σ(s)ds[[h]]
,β,2σ, (2.3.23)

for some positive constant C and σ∗ is σ1,1 = n/4 + 1/2 for Ω = R
n or σ0 from Theorem

2.2.24 for Ω = Tn. Note that we have used

|||νh|||
,β−1,2σ ≤ C|||h|||
,β,2σ,

which comes from (2.1.8), showing the loss of the weight β mentioned in the above remark.
Compute

∫ t

0

ρσ∗(t − s)ρ2σ(s)ds =

∫ t/2

0

+

∫ t

t/2

(2.3.24)

≤ ρσ∗(t/2)

∫ t/2

0

ρ2σ(s)ds + ρ2σ(t/2)

∫ t

t/2

ρσ∗(t − s)ds

≤ Cρσ(t),

whence follows

|||Ψ[h]|||
,β−1,σ∗ ≤ C0[[h]]
,β,2σ.

The loss of weight is to be recovered by the smoothing property (2.1.9). To this end,
substitute Duhamel’s formula (2.2.68) into (2.3.18) to deduce

Ψ[h] =

∫ t

0

e(t−s)A(νh(s))ds +

∫ t

0

e(t−s)AKΨ[h](s)ds ≡ I1 + I2.

Using the explicit formula (2.2.7) of etA, we get

(1 + |ξ|)β‖I1‖H�(ξ, t) ≤
∫ t

0

e−(t−s)ν(ξ)ν(ξ)ρσ(s)ds|||h|||
,β,σ.

Compute

∫ t

0

e−(t−s)ν(ξ)ν(ξ)ρσ(s)ds =

∫ t/2

0

+

∫ t

t/2

≤ e−ν0t/4

∫ t

0

e−(t−s)ν(ξ)/2ν(ξ)ds + ρσ(t/2)

∫ t

0

e−(t−s)ν(ξ)ν(ξ)ds

≤ C0ρσ∗(t),
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where we assume, without loss of generality, σ0 ≤ ν0/4 for Ω = Tn. Then,

|||I1|||
,β,σ∗ ≤ C0|||h|||
,β,σ.

Finally, by a similar computation and (2.1.9), we have

|||I2|||
,β,σ∗ ≤ C|||KΨ[h]|||
,β,σ∗) ≤ C|||Ψ[h]|||
,β−1,σ∗.

Combining all of these estimates completes the proof of part (1).
For the proof of (2), take t > R/2 and write (2.3.23) as

‖Ψ[h](t)‖
,β−1 ≤ C1

∫ R/2

0

ρσ∗(t − s)ds[[h]]
,β,0 (2.3.25)

+ C2

∫ t

R/2

ρσ∗(t − s)ds[[χ(t > R/2)h(t)]]
,β,0 .

Take t > R and note∫ R/2

0

ρσ∗(t − s)ds =

∫ t

t−R/2

ρσ∗(s)ds ≤
∫ ∞

R/2

ρσ∗(s)ds → 0 (R → ∞)

and ∫ t

R/2

ρσ∗(t − s)ds ≤
∫ ∞

0

ρσ∗(s)ds < +∞,

which yields
|||χ(t > R)Ψ[h]|||
,β−1,0 → 0 (R → ∞).

The loss of weight can be recovered similarly. The detail is omitted.

Finally, we need

Lemma 2.3.6 Under the assumption (2.3.2),
(1) for any u, v ∈ X
,β,σ,

[[ν−1Γ[u, v]]
,β,2σ ≤ C1|||u|||
,β,σ|||v|||
,β,σ

holds with some constant C1 > 0 independent of u, v, and
(2) PΓ[u, v] = 0.

Proof. (2) was already stated in Proposition 2.1.2. (1) is proved by 3 steps.
Step 1: Recall Qj, j = 1, 2 in (1.2.21) and define

Γj[u, v] = M−1/2Qj(M
1/2u,M1/2v).

Obviously, it suffices to prove (i) for these operators separately. H
 is a Banach algebra, so
that

‖Γj[u, v](t, ·, ξ)‖H� ≤ |Γj[u
0, v0](t, ξ)|
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where u0(t, ξ) = ‖u(t, ·, ξ)‖H�.
Step 2: Proposition 2.1.2 (1) applies to Γj so that

‖ν−1Γj[u
0.v0](t, ·)‖L∞

β
≤ C‖u0(t, ·)‖L∞

β
‖v0(t, ·)‖L∞

β
.

By definition,
‖u0(t, ·)‖L∞

β
= ‖u(t)‖
,β.

Step 3: By Schwartz’s inequality, we have

‖Γj[u, v](t, ·, ξ)‖L1(Rn) ≤ |Γj[u
1, v1](t, ξ)|,

where u1(t, ξ) = ‖u(t, ·, ξ)‖L2(Rn), and since L2 ⊃ L∞
β0

for β0 > n/2 and owing again to
Proposition 2.1.2,

‖νν−1Γj [u
1, v1](t, ·)‖L2 ≤ C‖ν−1Γj [u

1, v1](t, ·)‖L∞
β0+γ

≤ C‖u1‖L∞
β0+γ

‖v1‖L∞
β0+γ

.

And, ‖u1‖L∞
β0+γ

≤ C‖u‖
,β if � ≥ 0 and β ≥ β0 + γ. Therefore, we can conclude

‖Γj[u, v]‖Z1 ≤ C‖u‖
,β‖v‖
,β. (2.3.26)

Combining these estimates and recalling the definition of the norm [[·]]
,β,σ in (2.3.21)
complete the proof of the lemma.

Now we are in the position to prove Theorem 2.3.1. We start with
Proof of Part (1)(a). Note that we can write

Φ[u] = etBu0 + Ψ(ν−1Γ[u, u]).

We now use Lemma 2.3.4 with σ = σq,0 in (2.3.19) so that σ∗ = σq,0 holds. Combine this
lemma with Theorem 2.2.20 and Lemma 2.3.6, to deduce

|||Φ[u]|||
,β,σq,0 ≤ C0U0 + C1|||u|||2
,β,σq,0
, U0 ≡ ‖u0‖
,β + ‖u0‖Zq

and

|||Φ[u] − Φ[v]|||
,β,σq,0 ≤ C1(|||u|||
,β,σq,0 + |||v|||
,β,σq,0)|||u− v|||2
,β,σq,0
,

for some constants C0, C1 > 0 independent of u, v. In the last inequality, we used the fact
that Γ is bilinear symmetric, or,

Γ[u, u] − Γ[v, v] = Γ[u + v, u − v].

Now, choose U0 so small that

D ≡ 1 − 4C0C1U0 > 0

can hold, and put

a1 =
1

2C1

(1 −
√

D),
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which is a smaller positive root of the quadratic equation

C1a
2 − a + C0U0 = 0.

With this a1, set
W = {u ∈ X
,β,σq,0 | |||u|||
,β,σq,0 ≤ a1}.

Clearly, W is a complete metric space with the metric induced by the norm ||| · |||
,β,σq,0. From
above estimates, it follows that for any u, v ∈ W ,

|||Φ[u]|||
,β,σq,0 ≤ C0U0 + C1|||u|||2
,β,σq,0
≤ C0U0 + C1a

2
1 = a1,

and

|||Φ[u] − Φ[v]|||
,β,σq,0 ≤ C1(|||u|||
,β,σq,0 + |||v|||
,β,σq,0)|||u− v|||2
,β,σq,0

≤ 2C1a1|||u − v|||
,β,σq,0.

The first inequality shows that Φ maps W into itself whereas, since 2C1a1 = 1 − √
D < 1,

the second inequality proves that Φ is a contraction mapping. Thus, we are done.

Proof of parts (1)(b),(c) and (2). The same proof gives the remaining parts of Theorem
2.3.1 except for (2.3.5) by using different decay rates in Theorems 2.2.20 and Theorem 2.2.24
conforming to the relevant assumptions.

Proof of (2.3.5). We shall show that the same proof is still valid if the space X
,β,σ is
replaced by the space

Ẋ
,β,0 =
{

u ∈ X
,β,0 | |||χ(t > R)u|||
,β,0 → 0(R → ∞)
}
. (2.3.27)

For this, in view of (2.2.78), it suffices to show that Ψ(ν−1Γ[·, ·]) maps Ẋ
,σ,0 into itself, which
comes, in turn, from Lemma 2.3.4 (2).

2.3.2 Space Regularity and Decay Rate

An analogue of Theorem 2.2.20 is possible for the solutions obtained in Theorem 2.3.1 for
the case Ω = Rn. Recall

σq,k =
n

4
(
1

q
− 1

2
) +

k

2

from (2.2.55).

Theorem 2.3.7 Let Ω = Rn and assume (2.3.2). Suppose that the initial data u0 satisfy the
condition (2.3.6) for some q ∈ [1, 2), and further that for some N ∈ N,

u0 ∈ Ḣ
+N,β. (2.3.28)

Then, the solution u in Theorem 2.3.1 satisfies

u ∈ BC([0,∞); Ḣ
+N,β), (2.3.29)
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and for each k = 1, 2, · · · , N ,

‖∂α
x u(t)‖
,β ≤ C0(1 + t)−σq,k , |α| = k (∀t ≥ 0), (2.3.30)

holds where C0 is a positive constant independent of t.

Remark 2.3.8 (1) In contrast to the space derivatives ∂α
x u, the velocity derivatives ∂α

ξ u
have not faster decay than O(t−σq,0). Thus, the regularity of solutions diffuses fast in the
x−space but not in the ξ−space. As noted already in Remark 2.2.16, the linearized Boltz-
mann operator has a smoothing property similar to the space Laplacian �x, but has not a
counterpart for ξ.

This is a feature of the Boltzmann equation to be compared with other kinetic equations
having a smoothing property in ξ such as the Fokker-Planck-Boltzmann equation

∂f

∂t
+ ξ · ∇xf + µ∇ξ · (ξf) − ν�ξf = Q(f),

the classical Landau equation which is the same as the Boltzmann equation except

Q(f) = ∇ξ ·
{∫

R3

φ(ξ − ξ′)[f(v′)∇ξf(v) − f(v)∇ξf(ξ′)]dξ′
}

with φij(ξ) = 1
|ξ|(δij − ξiξj

|ξ|2 ), and so on. It is also open whether the same holds for the Vlasov-

Poisson (Maxwell)-Boltzmann equation.
(2) A point of Theorem 2.3.7 is that in (2.3.28), any smallness condition is not imposed on
higher derivatives of u0. This is in contrast to the recent result by Guo [29] on the almost
exponential decay of u for the case Tn with the cutoff soft potential: Let N ≥ 4. For any k,
it holds that if ak = ‖u0‖HN+k

x,ξ
is sufficiently small, then

(AED) ‖u(t)‖HN
x,ξ

≤ Cak(1 + t
k
)−k.

Here, it is required that ak → 0 as k → ∞.

Desvillettes-Villani [24] also established (AED) but in a quite different context: (AED)
holds if u is a smooth global solution satisfying

u(t) ∈ BC0([0,∞); H

x,ξ)

for sufficiently large � > k. The smallness condition on u0 is not assumed, but the existence
of such smooth global solutions is a big open problem at the present moment.

Remark 2.3.9 Theorem 2.3.7 does not cover the case q = 2. However, we can recover the
decay rate σ2,N if we choose a0 smaller with N . The point here is again that the derivatives
of the initial data need not be small. For the proof, see Remark 2.3.10 below.
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The proof of Theorem 2.3.7 will be done by induction with respect to N . The case k = 0
is just Theorem 2.3.1. Suppose that Theorem 2.3.7 is true up to k = N − 1 and that (2.3.28)
is fulfilled for k = N . For the map Φ in (2.3.15), put

∂α
x Φ[u] = ∂α

x etBu0 +

∫ t

0

∂α
x e(t−s)BΓ[u(s), u(s)]ds = Φα

1 + Φα
2 .

The first term Φα
1 for |α| = N is evaluated by combining parts (i) and (ii) of Theorem 2.2.20

as
‖Φα

1‖
,β ≤ (b1 + b3)(1 + t)−σq,N (‖∂αu0‖
,β + ‖u0‖Zq) ≤ c(1 + t)−σq,N . (2.3.31)

Here and hereafter, c denotes various positive constants that may depend on N and the
norms ‖∂αu0‖
,β + ‖u0‖Zq for |α| ≤ N .

Decompose Φα
2 using (2.2.70) as follows.

Φα
2 = Φα

21 + Φα
22 + Φα

23,

Φα
21 =

∫ t/2

0

∂α
x D1(t − s)Γ[u(s), u(s)]ds,

Φα
22 =

∫ t

t/2

∂α
x D1(t − s)Γ[u(s), u(s)]ds,

Φα
23 =

∫ t

0

∂α
x D2(t − s)Γ[u(s), u(s)]ds.

Use Theorem 2.2.20 (i) with |α| = N and α′ = 0 to deduce

‖Φα
21‖
,β ≤ b2

∫ t/2

0

(1 + t − s)−σ1,N+1‖Γ[u(s), u(s)]‖Z1ds (2.3.32)

≤ c

∫ t/2

0

(1 + t − s)−σ1,N+1‖u(s)‖2

,βds (by (2.3.26))

≤ c

∫ t/2

0

(1 + t − s)−σ1,N+1(1 + s)−2σq,0ds|||u|||2
,β,σq,0
(Theorem 2.3.1)

≤ c(1 + t/2)−σ1,N+1+max(0,1−2σq,0).

Note that σ1,N+1 − max(0, 1 − 2σq,0) ≥ σq,N .
Use Theorem 2.2.20 (i) again, but this time with α = α′, |α| = N , to deduce

‖Φα
22‖
,β ≤ b2

∑
α′≤α

∫ t

t/2

(1 + t − s)−σ1,1‖Γ[∂α′
x u(s), ∂α−α′

x u(s)]‖Z1ds (Leipnitz)

≤ b2

∑
α′≤α

∫ t

t/2

(1 + t − s)−σ1,1‖∂α′
u(s)‖
,β‖∂α−α′

u(s)‖
,βds (by (2.3.26))

= b2(J1 + J2),
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where the constant b2 is independent of N because m = |α − α′| = 0 (see Theorem 2.2.20),
and

J1 =
∑

α′=0,α′=α

, J2 =
∑

0
=α′<α

. (2.3.33)

By virtue of Theorem 2.3.1, we get

J1 = 2

∫ t

t/2

(1 + t − s)−σ1,1‖∂αu(s)‖
,β‖u(s)‖
,βds

≤ 2

∫ t

t/2

(1 + t − s)−σ1,1(1 + s)−σ−σq,0ds|||∂α
x u||
,β,σ|||u|||
,β,σq,0

≤ c(σ)(1 + t)−σ−σq,0 |||∂α
x u||
,β,σ|||u|||
,β,σq,0,

for any σ ≥ 0. Here and herafter, c(σ) stands for various constants which depend only on σ.
On the other hand, by the induction hypothesis for k ≤ N − 1,

J2 ≤ c
N−1∑
m=1

∫ t

t/2

(1 + t − s)−σ1,1(1 + s)−σq,m−σq,N−mds

≤ c(1 + t/2)−σq,N−σq,0

∫ t

t/2

(1 + t − s)−σ1,1ds

≤ c(1 + t)−σq,N .

In the last line, we used σ1,1 > 1.
Furthermore, by Theorem 2.2.20 (ii) for |α| = N ,

‖Φα
23‖
,β−1 ≤ b3

∑
α′≤α

∫ t

0

e−σ0(t−s)‖Γ[∂α′
x u(s), ∂α−α′

x u(s)]‖
,β−1ds (2.3.34)

≤ b3

∑
α′≤α

∫ t

0

e−σ0(t−s)‖∂α′
u(s)‖
,β‖∂α−α′

u(s)‖
,βds (Leipnitz)

= b3(J3 + J4),

where b3 is also independent of N (see Theorem 2.2.20 (ii)), and

J3 =
∑

α′=0,α′=α

, J4 =
∑

0
=α′<α

. (2.3.35)

By virtue of Theorem 2.3.1,

J3 ≤ 2

∫ t

0

e−σ0(t−s)(1 + s)−σ−σq,0ds|||∂α
x u||
,β,σ|||u|||
,β,σq,0 (2.3.36)

≤ c(σ)(1 + t)−σ−σq,0 |||∂α
x u||
,β,σ|||u|||
,β,σq,0 ≡ J∗

3 ,

while by induction hypothesis,

J4 ≤ c

N−1∑
m=1

∫ t

0

e−σ0(t−s)(1 + s)−σq,N−m−σq,mds ≤ c(1 + t)−σq,N ≡ J∗
4 . (2.3.37)



50 CHAPTER 2. SOLUTIONS IN L∞ FRAMEWORK

Finally, the weight loss in (2.3.34) can be recovered in the same way as in the previous
subsection so that

‖Φα
23‖
,β ≤ b3(J

∗
3 + J∗

4 ) (2.3.38)

holds with another constant b3 independent of N .
Now, combining these estimates yields

‖Φα(t)‖
,β ≤ c(1 + t)−σq,N + c(σ)(1 + t)−σ−σq,0 |||∂α
x u||
,β,σ|||u|||
,β,σq,0, (2.3.39)

for |α| = N . For simplicity of notation, fix �, β and and write

[[u]]σ = |||u|||
,β,σ.

Since u is a fixed point u = Φ[u] and since |||u|||
,β,σq,0 ≤ a1U0 ≤ a0a1, (2.3.39) implies

[[∂α
x u]]σ+σq,0 ≤ c + c(σ)a0a1[[∂

α
x u]]σ (2.3.40)

for σ ≥ 0 such that σ + σq,0 ≤ σq,N . First, we put σ = 0 and choose the constant a0 smaller
if necessary so that c(0)a0a1 < 1 holds. Then, we get

[[∂α
x u]]0 ≤ c

1 − c(0)a0a1

.

On the other hand, since q ∈ [1, 2) is assumed, we know σq,0 > 0 and therefore, we can solve
the recurrence inequality (2.3.40) and after a finite number of steps (actually, [σq,N/σq,0] + 1
steps) we get

[[∂α
x u]]σq,N

≤ c1 + c2[[∂
α
x u]]0.

Combining these two estimates confirms the induction hypothesis for k = N , and the proof
of Theorem 2.3.7 is now complete.

Remark 2.3.10 The proof of the statement in Remark 2.3.9 follows directly from (2.3.40).
If q = 2, then σq,0 = 0. Take σ = σ2,N and assume that a0 is so small that c(σ2,N)a0a1 < 1
holds. Then, (2.3.40) gives

[[∂α
x u]]σ2,N

≤ c

1 − c(σ2,N )a0a1

.

=

2.4 Time-Periodic and Stationary Solutions

2.4.1 Existence and Stability

The aim of this subsection is to study the Boltzmann equation (2.1.3) with an inhomogeneous
term,

∂u

∂t
= Bu + Γ[u, u] + S, (t, x, ξ) ∈ R × Ω × R

n, (2.4.1)
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for Ω = R3 or Tn. Here, S = S(t, x, ξ) is a given function. Our main goal is to show the
dual applicability to (2.4.1) of the decay estimates derived in the previous section: It will
be shown that if S is a time-periodic (resp. time-independent) function, (2.4.1) possesses a
unique time-periodic solution (resp. stationary solution) and that the time-periodic (resp.
stationary solution) is asymptotically stable. Both will be done with a combination of the
decay estimates and the contraction mapping principle, of course in different contexts.

The inhomogeneous term S stands for the distributional density of an external source
of gas particles. Thus, in the case where S is time-periodic, (2.4.1) is the most basic model
problem in the study of the generation and propagation of sound waves in a gas with an oscil-
lating source. The problems of sound waves have been studied deeply in the fluid mechanics
[111], but little is known in the kinetic theory. The result given here is from [43].

Assume (2.3.2) again, that is,

n ≥ 3, � >
n

2
+ 1, β >

n

2
+ 1. (2.4.2)

Recall the spaces Ḣ
,β and Zq as in §2.2.5, and define, for functions u = u(t, x, ξ),

Y k

,β = BCk(R; Ḣ
,β), k = 0, 1, 2, · · · , (2.4.3)

and the norm for k = 0,

|||u|||
,β = sup
t∈R

‖u(t, ·, ·)‖
,β. (2.4.4)

Further, set

Zq = BC0(R; Zq), ‖u‖Zq = sup
t∈R

‖u(t, ·, ·)‖Zq. (2.4.5)

The norm (2.4.4) must not be confused with the norm (2.3.17). Our first result is the existence
theorem of periodic solutions.

Theorem 2.4.1 Assume (2.4.2). Then, there are two positive constants a0 and a1 with
which the following holds. In the below, S = S(t, x, ξ) is a periodic function in t and its
period is denoted by T0.

(1) The case Ω = Rn.

(a) The case n = 3, 4. Suppose

S ∈ Y 0

,β, (1 + |x|)S ∈ Z1, |||S||
,β + ||(1 + |x|)S||Z1 ≤ a0, (2.4.6)∫

Rn

(PS)(t, x, ξ)dx = 0, a.e. (t, ξ) ∈ R × R
n. (2.4.7)

Then, (2.4.1) admits a solution uper = uper (t, x, ξ) which is periodic in t with the same
period T0 and satisfies

uper ∈ Y 0

,β ∩ Y 1


−1,β−1, (2.4.8)

|||uper |||
,β ≤ a1

(
|||S|||
,β + ||(1 + |x|)S||Z1

)
. (2.4.9)

Moreover, this is a unique T0-periodic solution in the function class defined by (2.4.8).
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(b) The case n ≥ 5. Suppose

S ∈ Y 0

,β ∩ Z1, |||S||
,β + ‖S‖Z1 ≤ a0. (2.4.10)

Then, (2.4.1) admits a solution uper = uper (t, x, ξ) which is periodic in t with the same
period T0 and satisfies

uper ∈ Y 0

,β ∩ Y 1


−1,β−1, (2.4.11)

|||uper |||
,β ≤ a1(|||S|||
,β + ‖S‖Z1). (2.4.12)

Moreover, this is a unique T0-periodic solution in the function class defined by (2.4.11).

(2) The case Ω = Tn. Suppose

S ∈ Y 0

,β, ‖S‖Y 0

�,β
≤ a0, (2.4.13)∫

Tn

(PS)(t, x, ξ)dx = 0, a.e. (t, ξ) ∈ R × T
n. (2.4.14)

Then, (2.4.1) admits a solution uper = uper (t, x, ξ) which is periodic in t with the same period
T0 and satisfies

uper ∈ Y 0

,β ∩ Y 1


−1,β−1, (2.4.15)

|||uper |||
,β ≤ a1|||S|||
,β. (2.4.16)

Moreover, this is a unique T0-periodic solution in the function class defined by (2.4.15).

Remark 2.4.2 As will be seen in the proof below, the extra condition (2.4.7) is necessary
for the case n = 3, 4 because of a shortage of the decay rate σ1,0 in Theorem 2.2.20. This
condition is not necessary for n ≥ 5 because σ1,0 > 1. In contrast, the condition (2.4.14)
cannot be dropped for any space dimension n.

In order to study the stability of the periodic solutions uper , we shall consider the Cauchy
problem to (2.4.1) without fixing the initial time t0, that is, we shall consider⎧⎨

⎩
∂u

∂t
= Bu + Γ[u, u] + S(t), t > t0,

u(t0) = u0,

(2.4.17)

for each t0 ∈ R. We shall solve this Cauchy problem in the function space

V
,β,t0 = BC0([t0,∞); Ḣ
,β) ∩ BC1([t0,∞); Ḣ
−1,β−1). (2.4.18)

Note that the periodic solutions uper in Theorem 2.4.1 is in V
,β,t0 for any t0 ∈ R, if restricted
to the time interval [t0,∞).

Theorem 2.4.3 Under the same condition of Theorem 2.4.1, let uper = uper(t) be the time-
periodic solution obtained there. Then, for each t0 ∈ R, there are positive constant δ0, δ1 such
that the following holds.
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(1) The case Ω = Rn. For any initial data u0 satisfying

u0 ∈ Ḣ
,β, ‖u0 − uper(t0)‖
,β ≤ δ0, (2.4.19)

a global solution u exists to the Cauchy problem (2.4.17) which is unique in the function
class

u = u(t) ∈ V
,β,t0, (2.4.20)

and satisfies

‖u(t) − uper (t)‖
,β ≤ δ1‖u0 − uper (t0)‖
,β (t ≥ t0), (2.4.21)

‖u(t) − uper (t)‖
 → 0 (t → ∞). (2.4.22)

If the assumption (2.4.19) is strengthened to

u0 ∈ Ḣ
,β ∩ Zq, U0 ≡ ‖u0 − uper (t0)‖
,β + ‖u0 − uper (t0)‖Zq ≤ δ0, (2.4.23)

for some q ∈ [1, 2), u enjoys an algebraic decay,

‖u(t) − uper (t)‖
,β ≤ δ1(1 + t − t0)
−σq,0U0, (t ≥ t0), (2.4.24)

where σq,0 is the same as before;

σq,0 =
n

2
(
1

q
− 1

2
).

(2) The case Ω = Tn. For any initial data u0 satisfying

u0 ∈ Ḣ
,β, ‖u0 − uper(t0)‖
,β ≤ δ0, (2.4.25)

a global solution u exists to the Cauchy problem (2.3.1) which is unique in the function
class

u ∈ V
,β,t0, (2.4.26)

and satisfies the estimate

|||u − uper |||
,β ≤ δ1‖u0 − uper(t0)‖
,β. (2.4.27)

If, further, u0 satisfies an additional condition∫
Tn

(Pu0)(x, ξ)dx = 0 a.e. ξ ∈ R
n, (2.4.28)

u enjoys the exponential decay

‖u(t) − uper (t)‖
,β ≤ δ1e
−σ0t‖u0 − uper(t0)‖
,β. (2.4.29)
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Remark 2.4.4 (2.4.22), (2.4.24), and (2.4.29) imply the asymptotic stability of the periodic
solution uper but not the orbital stability because (2.4.17) is not an autonomous system. In
the case Tn, if the condition (2.4.28) is dropped, (2.4.29) does not hold, and uper is stable
but not asymptotically stable, a contrast to the case R

n.

Remark 2.4.5 Any time-independent function can be regarded as a time-periodic function
with arbitray period. Thus, even if S is t-independent, the above two theorems apply,
implying the existence and stability of stationary solutions.

Remark 2.4.6 The above two theorems are valid also for the case Ω = Tn with the space
dimension n = 1, 2, but it is not true for Ω = R

n. See Remark 2.3.3.

As already stated, the decay estimates obtained in §2 can be successfully used in the proof
of these two theorems, but in different usage.

2.4.2 Proof of Theorem 2.4.1

A method for establishing the existence of time-periodic solutions to the evolution equation
is to solve the boundary value problem under the the periodic boundary condition in t. This
strategy has been adopted by many authors for many nonlinear problem. However, it does
not seem to work for our problem. Instead, we use again a combination of the contraction
mapping principle and time decay estimates obtained in §2.3. Our method is applicable to a
wide class of semi-linear evolution equations.

Our setting start from the Cauchy problem (2.4.17);{
du

dt
= Bu + Γ(u, u) + S(t) (t > t0),

u(t0) = u0,
(2.4.30)

for t0 ∈ R. Recall the integral formula (2.3.14). The corresponding integral equation for
(2.4.30) is,

u(t) = e(t−t0)Bu0 +

∫ t

t0

e(t−τ)B
{

Γ[u(τ), u(τ)] + S(τ)
}

dτ, t ≥ t0. (2.4.31)

Now, suppose that there exists a periodic solution uper = uper(t), t ∈ R, with the period T0.
Then, it solves (2.4.30), and hence (2.4.31), with the particular initial data u0 = uper(t0) for
each t0 ∈ R. Choose t0 = −kT0 for k ∈ N. Clearly, u0 = uper(−kT0) = uper(0) and (2.4.31)
is written as

uper(t) = e(t+kT0)Buper(0) +

∫ t

−kT0

e(t−τ)B
{

Γ[uper(τ), uper(τ)] + S(τ)
}
dτ. (2.4.32)

Let k → ∞. Then, the first term on the right hand side tends to 0 owing to Theorem 2.2.20.
Therefore, we get

uper(t) =

∫ t

−∞
e(t−τ)B

{
Γ[uper(τ), uper(τ)] + S(τ)

}
dτ, (2.4.33)
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provided that the last integral converges. Admit this for the time being and define the
nonlinear map,

N [u](t) =

∫ t

−∞
e(t−τ)B

{
Γ[u(τ), u(τ)] + S(τ)

}
dτ. (2.4.34)

Then, (2.4.33) indicates that uper is a fixed point of N .
Conversely, suppose that N have a fixed point. It may not be time-periodic. But, let us

suppose that the fixed point of N is unique. Then, we can claim that if S is periodic in t, so
is this fixed point with the same period as S. For the proof, denote this unique fixed point
by ū = ū(t) and the period of S by T0. Put v(t) = ū(t + T0). We have,

v(t) = N [ū](t + T0) =

∫ t+T0

−∞
e(t+T0−τ)B

{
Γ[ū(τ), ū(τ)] + S(τ)

}
dτ

=

∫ t

−∞
e(t−τ)B

{
Γ[ū(τ + T0), ū(τ + T0)] + S(τ + T0)

}
dτ

=

∫ t

−∞
e(t−τ)B

{
Γ[v(τ), v(τ)] + S(τ)

}
dτ (by periodicity of S)

= N [v](t).

Thus, v is another fixed point but then, the uniqueness assumption says v(t) = ū(t) for all
t ∈ R, proving the periodicity of ū with the period T0. It is evident that if this unique fixed
point is differentiable with respect to t, it is a desired periodic solution to (2.4.17).

In order to substantiate this formal argument, first, we shall show that an integral similar
to (2.3.18),

Ψ[h] =

∫ t

−∞
e(t−s)B(νh(s))ds, (2.4.35)

converges. Define also the function

φ(σ) =

⎧⎨
⎩ min(2σ,

n

4
+

1

2
), Ω = Rn,

min(2σ, σ0), Ω = Tn,

(2.4.36)

where σ0 is that in (2.2.52).

Lemma 2.4.7 Suppose (2.4.2). There is a positive constant C0 and the following holds.

(1) The case Ω = Rn. Suppose that h ∈ Y 0

,β ∩ Z1 and that one of the following three con-

ditions is fulfilled.

(a) n ≥ 5,

(b) P(νh) = 0, or

(c) (1 + |x|)νh ∈ Z1,

∫
Rn

P0(νh) = 0.
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Then, the integral (2.4.35) converges in the norm of Y 0

,β and the estimate

|||Ψ[h]|||
,β ≤ C0(|||h|||
,β + ‖νh‖Z1) (2.4.37)

holds for the cases (a) and (b), and

|||Ψ[h]|||
,β ≤ C0(|||h|||
,β + ‖(1 + |x|)νh‖Z1). (2.4.38)

for the case (c).

(2) The case Ω = Tn. Suppose that h ∈ Y 0

,β and∫

Tn

P(νh) = 0.

Then, the integral (2.4.35) converges in the norm of Y 0

,β and the estimate

|||Ψ[h]|||
,β ≤ C0|||h|||
,β. (2.4.39)

holds for some constant C0 > 0.

Remark 2.4.8 The conditions (1)(b), (c) are introduced especially for the case n = 3, 4.

Proof of Lemma 2.4.7. First, set

ρ(t) =

{
(1 + t)−σ, Ω = Rn,
e−σ0t, Ω = Tn,

where

σ =
n

4
for the case (a), =

n

4
+

1

2
for the cases (b), (c),

and σ0 is as in Theorem 2.2.20. This choice is made so that ρ(t) ∈ L1(0,∞) holds for all
cases in the lemma. Below, we will give the proof of the lemma only for the case (1)(a), since
the proof of the other cases is the same.

First, define

Ψc[h] =

∫ t

c

e(t−s)B(νh(s))ds, (2.4.40)

for any c ≤ t. Let c < c′ ≤ t. By virtue of Theorem 2.2.20,

‖Ψc[h] − Ψc′[h]‖
,β−1(t) ≤ C

∫ c′

c

ρ(t − s)ds(|||νh|||
,β−1 + ||νh||Z1)

≤ C

∫ ∞

t−c′
ρ(s)ds(|||νh|||
,β−1 + ||νh||Z1),

which indicates that {Ψc[h]} is Cauchy in Ḣ
,β−1 when c → −∞. Thus, the limit Ψ[h] exists,
and by a similar computation, the estimate

|||Ψ[h]|||
,β−1 ≤ C0(|||h|||
,β + ‖νh‖Z1)
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follows. The weight loss β − 1 can be recovered again by appealing to Duhamel’s formula
and proceeding as in Lemma 2.3.18, to deduce (2.4.37). The detail is omitted.

Proof of Theorem 2.4.1. It is easy to see that Lemma 2.4.7 applies to νh = Γ[u, v], which,
together with the estimate (2.3.6), gives,

|||Ψ[ν−1Γ[u, v]]|||
,β ≤ C(|||ν−1Γ[u, v]|||
,β + ‖Γ[u, v]‖||Z1) ≤ C1||u|||
,β||v|||
,β,

with some constants C, C1 > 0. Similarly, under the assumption on S imposed in Theorem
2.4.1, Lemma 2.4.7 applies to νh = S, with the estimate,

|||Ψ[ν−1S]|||
,β ≤ C0S0,

where C0 > 0 is a constant and

S0 =

{ |||S|||
,β−γ, for the cases (1)(a)(b) and (2),
|||S|||
,β−γ + ||(1 + |x|)S||Z1, for the cases (1)(c),

(2.4.41)

where γ is as in (2.1.8).
Combining these two estimates yields

|||N [u]|||
,β ≤ C0S0 + C1|||u|||2
,β,

and by a similar computation and the bilinear symmetry of Γ,

|||N [u] − N [v]|||
,β ≤ C1|||u + v|||
,β|||u − v|||
,β.

Choose S0 so small that

D ≡ 1 − 4C0C1S0 > 0,

and set

a1 =
1

2C1

(1 −
√

D),

which is the smaller positive root of the quadratic equation

C1a
2 − a + C0S0 = 0.

Set

W = {u ∈ Y 0

,β | |||u|||
,β ≤ a1},

which is a complete metric space with the distance induced by the norm ||| · |||
,β. Now, for
any u, v ∈ W , the above estimates yield,

|||N [u]|||
,β ≤ C0S0 + C1a
2
1 = a1,

|||N [u] − N [v]|||
,β ≤ µ|||u− v|||
,β, µ = 2C1a1 = 1 −
√

D < 1,

showing that N is a contraction on W . Thus we are done.
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2.4.3 Proof of Theorem 2.4.3

This is almost the same as in §3.1. We shall put

v = u(t) − uper (t), (2.4.42)

and rewrite (2.4.17) as

{
dv

dt
= Bv + Lper (t)v + Γ[v, v] (t > t0),

v(t0) = v0 ≡ u0 − uper (t0).
(2.4.43)

Here, the inhomogeneous term does not appear, at the cost of the extra linear term

Lper (t)v = 2Γ[uper (t), v].

Without loss of generality, it suffices to prove Theorem 2.4.3 for t0 = 0. Then, the integral
equation to solve is,

v(t) = etBv0 +

∫ t

0

e(t−τ)B
{
Lper (τ)v(τ) + Γ[u(τ), u(τ)]

}
dτ. (2.4.44)

Recall the space and norm in (2.3.17).

X
,β,σ =
{

u ∈BC0([0,∞); Ḣ
,β) | |||u|||
,β,σ < +∞
}
, (2.4.45)

|||u|||
,β,σ = sup
t≥0

(
ρσ(t)−1‖u(t)‖
,β

)
.

As in §3.1, we will show that N is a contraction map. Write

N [u] = etBv0 + Ψ[ν−1Lper (t)u] + Ψ[ν−1Γ[u, u]].

The estimates of the first and last terms in N are derived in §3.1. The second term is
estimated as follows.

|||Ψ[ν−1Lper (t)u]|||
,β,σ ≤ C

∫ t

0

ρσ∗(t − s)ρσ(s)ds|||uper |||
,β,0|||u|||
,β,σ

≤ C2S0ρφ(σ)(t)|||u|||
,β,σ,

where σ∗ = n/4 + 1/2, φ(σ) = min(σ∗, σ), and S0 is as in (2.4.41).
Take σ = n/4. Then, φ(σ) = σ. Now, we get,

|||N [u]|||
,β,σ ≤ C0||v0||
,β + C2S0|||u|||
,β,σ + C1|||u|||2
,β,σ,

and by a similar computation and the bilinear symmetry of Γ,

|||N [u] − N [v]|||
,β,σ ≤ C2S0|||u − v|||
,β + C1|||u + v|||
,β|||u − v|||
,β.
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Choose S0, ||v0||
,β so small that

1 − C2S0 > 0, D ≡ (1 − C2S0)
2 − 4C0C1||v0||
,β > 0,

can hold. Then, set

a1 =
1

2C1
(1 − C2S0 −

√
D),

which is the smaller positive root of the quadratic equation

C1a
2 − (1 − C2S0)a + C0||v0||
,β = 0.

Set
W = {u ∈ Y 0


,β | |||u|||
,β,σ ≤ a1},
which is a complete metric space with the distance induced by the norm ||| · |||
,β. Now, for
any u, v ∈ W , the above estimates yield,

|||N [u]|||
,β,σ ≤ C0||v0||
,β + C2S0a1 + C1a
2
1 = a1,

|||N [u] − N [v]|||
,β,σ ≤ µ|||u− v|||
,β,σ, µ = 2C1a1 = 1 − C2S0 −
√

D < 1,

showing that N is a contraction on W . Thus we are done.
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Chapter 3

Solutions in L2 Framework

This chapter concerns the solutions to the Boltzmann equation in the Sobolev space Hl0,l1,l2
t,x,ξ .

One of the main reasons to study the solutions in this space is to apply the well-established
theories on the conservation laws to the existence and stability analysis of the fluid dynamical
wave patterns and solution profiles for the Boltzmann equation. In fact, this approach is now
shown to be robust and recent progress has been made on various problems.

In what follows, we will start with the local existence of solutions in the above Sobolev
space for the Boltzmann equation without forcing. Then the basic ideas of the Hilbert and
Chapman-Enskog expansions are reviewed. In the same spirit of these two classical expan-
sions, a new decomposition of the solution into the macroscopic and microscopic components
by Maxwellian is introduced and the Boltzmann equation is reformulated into a system of
conservation laws in the framework of the Navier-Stokes equations with a source term de-
termined by the microscopic component, coupled with a time evolutional equation for the
microscopic component. By rewriting the Boltzmann equation into this form, the time evo-
lution of both the macroscopic and microscopic components are clearly presented. Moreover,
there is no truncation in this reformulation which is unlike the Hilbert and Chapman-Enskog
expansions. Hence, the analytic techniques from the study of the fluid dynamical systems
can be fully used together with the dissipation on the microscopic component through the
celebrated H-theorem. The stability of wave patterns for the Boltzmann equation by using
energy method was initiated by the study of the shock profile in [53] through a rigorous
analysis of the Chapman-Enskog expansion where the macro-micro decomposition is defined
around the local Maxwellian given by the Chapman-Enskog expansion. The reformulation
of the Boltzmann equation using the macro-micro decomposition with respect to the local
Maxwellian defined by the solution itself was introduced in [35] which will be explained in
§3.2.3. With the local existence given in [46], now the discussion on the existence and stability
in various situations can be found in the references [54, 51, 46, 84], etc.

In the sections following the decomposition, we will present the recent results on the
stability of the global Maxwellian and various wave patterns. Even though the above results
are closely associated with the classical fluid dynamical systems, that is, the Euler equations
and Navier-Stokes equations, there are some solution behaviors described by the Boltzmann
equation which are not governed by the classical fluid dynamical systems. Therefore, in
the last section, we will discuss some preliminary ideas on the non-classical fluid dynamical

61
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systems derived from the Boltzmann equation in some physical settings. The study of this
kind of phenomena called “ghost effects” is so far limited to the numerical computations,
asymptotic analysis and some linearized models. It will be interesting if some nonlinear
theories on this subject can be established by energy method.

Throughout this chapter, we will concentrate on the Cauchy problem even though some of
the analysis can be applied to the initial boundary value problem. The essential phenomena
associated to the boundary is the boundary layer. Note that the existence of boundary layer
has been proved in the L∞ framework in some physical settings. To study the time evolution
problem with boundary effect, it is natural to investigate the stability of the superposition of
the boundary layer and the basic wave patterns or non-trivial solution profiles. However, the
stability analysis given here on the wave patterns and solution profiles is in the L2 framework.
It is not clear, at least up to now, how to combine these two methods to study the problems
associated with boundary layers.

3.1 Local Existence

Even though the solution to the Boltzmann equation does not fit in only the L2 space because
of the binary collision operator, it is well suited in L2 space together with its derivatives.
That is, one can consider the solution in some Sobolev space HN

t,x,ξ for some positive integer
N . For illustration, we only consider the Boltzmann equation without forcing here. However,
the local existence can be proved in more general situation, such as, the Boltzmann equation
with an external force F (t, x, ξ) and a source term S(t, x, ξ):

ft + ξ · ∇xf + F · ∇ξf = Q(f, f) + S(t, x, ξ), (3.1.1)

as long as F (t, x, ξ) and S(t, x, ξ) are in some suitable spaces and the bi-characteristics are
smooth and one to one from R3 × R3 to itself.

Consider the Boltzmann equation

ft + ξ · ∇xf = Q(f, f), (3.1.2)

with initial data

f(0, x, ξ) = f0(x, ξ). (3.1.3)

In what follows, we will show that if the initial data f0(x, ξ) is a small perturbation
of a global Maxwellian M(ξ) = M[ρ̄,ū,θ̄](ξ), then there exists a local classical solution to
(3.1.2)-(3.1.3) in the space:

H
N

x,ξ ([0, T )) =

⎧⎨
⎩g(t, x, ξ)

∣∣∣∣∣∣
∂α

x ∂β
t g(t,x,ξ)√
M−(ξ)

∈ BCt

(
[0, T ), L2

x,ξ (R3 × R3)
)

‖g‖X ≤ M, |α| + |β| ≤ N

⎫⎬
⎭ , (3.1.4)

where N is an integer not less than 4 and M− = M[1,0,θ−] is a fixed global Maxwellian. Here
g(t, x, ξ) = f(t, x, ξ) − M(ξ), M and T are some positive constants, and the norm ‖g‖X is
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defined by

‖g‖X = sup
0≤t≤T

{ ∑
|α|+|β|≤N

∫
R3

∫
R3

|∂α
x ∂β

t g(t,x,ξ)|2
M−(ξ)

dξdx

}

+
∑

|α|+|β|≤N

∫ T

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t g(t,x,ξ)|2
M−(ξ)

dξdxdτ. (3.1.5)

Without loss of generality, in the following discussion, we assume N = 4. The main idea
of the proof is to rewrite the Boltzmann equation into an integral equation and then apply
the contraction mapping theorem with the norm defined above. For this, we first define the
backward bi-characteristic starting from a given point (t0, x0, ξ0) ∈ R+ × R3 × R3, denoted
by (X(t), Ξ(t)) ≡ (X, Ξ)(t; t0, x0, ξ0):⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dX(t)
dt

= Ξ(t),

dΞ(t)
dt

= 0,

(X(t), Ξ(t))|t=t0 = (x0, ξ0),

(3.1.6)

which simply gives (X(t), Ξ(t)) = (x0+ξ0(t−t0), ξ0). For simplicity, we denote (X, Ξ)(0; t0, x0, ξ0)
by (X0, Ξ0). Notice that

⎧⎨
⎩

∂Xi(t;t0,x0,ξ0)
∂x0j

= ∂Ξi(t;t0,x0,ξ0)
∂ξ0j

= δij , i, j = 1, 2, 3,

∂Xi(t;t0,x0,ξ0)
∂ξ0j

= (t − t0)δij ,
∂Ξi(t;t0,x0,ξ0)

∂x0j
= 0, i, j = 1, 2, 3,

(3.1.7)

which implies that

det
∂(X, Ξ)

∂(x0, ξ0)
= 1. (3.1.8)

Now we turn to the equation for the perturbation g(t, x, ξ) which solves

{
gt + ξ · ∇xg = LMg + Q(g, g),

g(t, x, ξ)|t=0 = g0(x, ξ),
(3.1.9)

where LM̄ is the linearized collision operator.

For the hard potentials with angular cut-off and the hard sphere model, the linearized
collision operator takes the form:

(LMh) (ξ) = −νM(ξ)h(ξ) +

√
M(ξ)KM

((
h√
M

)
(ξ)

)
, (3.1.10)

where KM(·) = −K1M(·)+K2M(·) is a symmetric compact L2-operator. In particular, for the
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hard sphere model, the collision frequency νM(ξ) and KiM(·) have the following expressions⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

νM(ξ) = ρ(x) ν(ξ), ν(ξ) = ν(|ξ|) = 2√
2π

{(
1
|ξ| + |ξ|

)∫ |ξ|

0

exp
(
−y2

2

)
dy + exp

(
− |ξ|2

2

)}
,

k1M(ξ, ξ∗) = πρ(x)√
(2π)3

|ξ − ξ∗| exp
(
− |ξ|2

4
− |ξ∗|2

4

)
,

k2M(ξ, ξ∗) = 2ρ(x)√
2π

|ξ − ξ∗|−1 exp
(
− |ξ−ξ∗|2

8
− (|ξ|2−|ξ∗|2)2

8|ξ−ξ∗|2
)

,

(3.1.11)
where kiM(ξ, ξ∗)(i = 1, 2) is the kernel of the operator KiM(i = 1, 2) respectively.

Since

Ξ(t) = Ξ(s), νM(Ξ(t)) ≥ ν0(1 + |Ξ(t)|), (3.1.12)

by using the explicit expressions of kiM(ξ, ξ∗)(i = 1, 2), straightforward calculation gives the
following lemma.

Lemma 3.1.1 If 0 < θ
2

< θ−, then for i = 1, 2

⎧⎪⎪⎨
⎪⎪⎩

sup
ξ∈R3

{∫
R3

|Ki(ξ, ξ∗)|dξ∗

}
≤ O(1),

sup
ξ∗∈R3

{∫
R3

|Ki(ξ, ξ∗)|dξ

}
≤ O(1).

(3.1.13)

Here

Ki(ξ, ξ∗) =

√
M(ξ)

M−(ξ∗)
kiM(ξ, ξ∗)

√
M(ξ∗)
M−(ξ)

, i = 1, 2. (3.1.14)

Consequently

∣∣∣∣∣∣∣∣
∫

R3

g(ξ)

(√
MKM

(
h√
M

))
(ξ)

M−(ξ)
dξ

∣∣∣∣∣∣∣∣
≤ O(1)

(∫
R3

h2

M−
dξ

)1
2
(∫

R3

g2

M−
dξ

)1
2

, (3.1.15)

i.e.,

∫
R3

∣∣∣∣
(√

MKM

(
h√
M

))
(ξ)

∣∣∣∣
2

M−(ξ)
dξ ≤ O(1)

∫
R3

h2

M−
dξ. (3.1.16)

With the above estimates, the local existence of solutions to the Cauchy problem (3.1.2),

(3.1.3) in H
4

x,ξ([0, T )) can be proved by using the following iteration sequence {gn(t, x, ξ)}∞n=0
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solving⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g0(t, x, ξ) = g0(x, ξ),

gn+1
t + ξ · ∇xg

n+1 = LMgn+1 + Q(gn, gn)

= −νM(ξ)gn+1 +
√

MKM

(
gn+1√

M

)
+ Q(gn, gn),

gn+1(t, x, ξ)|t=0 = g0(x, ξ).

(3.1.17)

Integrating (3.1.17)2 along (X, Ξ)(t; t0, x0, ξ0) gives

gn+1(t0, x0, ξ0)

= exp

(
−
∫ t0

0

νM(Ξ(s))ds

)
g0(X0, Ξ0)

+

∫ t0

0

exp

(
−
∫ t0

η

νM(Ξ(s))ds

)(√
MKM

(
gn+1√

M

))
(η, X(η), Ξ(η))dη

+

∫ t0

0

exp

(
−
∫ t0

η

νM(Ξ(s))ds

)
Q(gn, gn)(η, X(η), Ξ(η))dη. (3.1.18)

Now we need an estimate on the nonlinear collision operator Q(f, f) given in Theorem
1.2.3.

Lemma 3.1.2 For hard sphere model and hard potentials with angular cut-off defined by
(1.2.17), there exists a positive constant C > 0 such that∫

R3

νM(ξ)−1Q(f,g)2

M̃
dξ ≤ C

{∫
R3

νM(ξ)f2

M̃
dξ ·
∫

R3

g2

M̃
dξ +

∫
R3

f2

M̃
dξ ·
∫

R3

νM(ξ)g2

M̃
dξ

}
, (3.1.19)

where M and M̃ are any Maxwellians such that the above integrals are well defined. Note
that νM(ξ) = O(|ξ|γ) (|ξ| → ∞) for any Maxwellian M.

It can be shown by induction that if ‖g0‖X ≤ M
3C

, then ‖gn‖X ≤ M for all n provided
that M and T are sufficiently small. In fact, if ‖gn‖X ≤ M , we have from (3.1.18) that∫

R3

∫
R3

|gn+1(t0,x0,ξ0)|2
M−(ξ0)

dξ0dx0 ≤ 2

∫
R3

∫
R3

|g0(X(0),Ξ(0))|2
M−(ξ0)

dξ0dx0

+2

∫
R3

∫
R3

∣∣∣∣
∫ t0

0

exp

(
−
∫ t0

η

νM(Ξ(s))ds

)(√
MKM

(
gn+1√

M

))
(η, X(η), Ξ(η))dη

∣∣∣∣
2

dξ0dx0

M−(ξ0)

+2

∫
R3

∫
R3

∣∣∣∣
∫ t0

0

exp

(
−
∫ t0

η

νM(Ξ(s))ds

)
Q(gn, gn)(η, X(η), Ξ(η))dη

∣∣∣∣
2

dξ0dx0

M−(ξ0)
. (3.1.20)

The estimates given in the above lemmas and the Cauchy-Schwarz inequality then give∫
R3

∫
R3

|gn+1(t,x,ξ)|2
M−(ξ)

dξdx ≤ 4C

∫
R3

∫
R3

|g0(x,ξ)|2
M−(ξ)

dξdx + O(1) (M4 + T 2)

+4C

∫ T

0

∫
R3

∫
R3

|gn+1(t,x,ξ)|2
M−(ξ)

dξdxdt. (3.1.21)
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By choosing T > 0 sufficiently small such that exp(4CT ) < 2, the Gronwall inequality then
implies∫

R3

∫
R3

|gn+1(t, x, ξ)|2
M−(ξ)

dξdx ≤ 8C

∫
R3

∫
R3

|g0(x, ξ)|2
M−(ξ)

dξdx + O(1)
(
M4 + T 2

)
. (3.1.22)

Similar argument gives∫ T

0

∫
R3

∫
R3

νM(ξ)|gn+1(t,x,ξ)|2
M−(ξ)

dξdxdt ≤ C2

∫
R3

∫
R3

|g0(x,ξ)|2
M−(ξ)

dξdx

+O(1) (M4 + T 2) . (3.1.23)

Combining (3.1.22) with (3.1.23) yields

∫
R3

∫
R3

|gn+1(t,x,ξ)|2
M−(ξ)

dξdx +

∫ T

0

∫
R3

∫
R3

νM(ξ)|gn+1(t,x,ξ)|2
M−(ξ)

dξdxdt

≤ 4C2

∫
R3

∫
R3

|g0(x,ξ)|2
M−(ξ)

dξdx + O(1) (M4 + T 2) . (3.1.24)

For the estimates on ∂α
x ∂β

t gn+1(t, x, ξ) with |α| + |β| = j, 1 ≤ j ≤ 4, we write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂α

x ∂β
t gn+1

)
t
+ ξ · ∇x

(
∂α

x ∂β
t gn+1

)
= −νM(ξ)∂α

x ∂β
t gn+1 +

√
MKM

(
∂α

x ∂β
t gn+1√
M

)
+

∑
|α′|+|β′|≤j

Cα′,β′
α,β Q

(
∂α′

x ∂β′
t gn, ∂α−α′

x ∂β−β′
t gn

)
.

∂α
x ∂β

t gn+1
∣∣∣
t=0

= ∂α
x g

(β)
0 (x, ξ),

(3.1.25)

where the initial data g
(β)
0 (x, ξ) (β 	= 0) are determined through g0 and the compatibil-

ity conditions coming from the iteration equation (3.1.17). Similarly to the estimation on
gn+1(t, x, ξ), we have

∫
R3

∫
R3

|∂α
x ∂β

t gn+1(t,x,ξ)|2
M−(ξ)

dξdx +

∫ T

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t gn+1(t,x,ξ)|2
M−(ξ)

dξdxdt

≤ 4C2

∫
R3

∫
R3

|∂α
x ∂β

t g0(x,ξ)|2
M−(ξ)

dξdx + O(1) (M4 + T 2) . (3.1.26)

Thus, (3.1.24) together with (3.1.26) implies

‖gn+1‖2
X ≤ 4C2‖g0‖2

X + O(1) (M4 + T 2)

≤ 4M2

9
+ O(1) (M4 + T 2) ≤ M2, (3.1.27)

provided that we choose M > 0 and T > 0 sufficiently small. Moreover, for each |α|+|β| ≤ 4,
by using (3.1.27), the integral formula for ∂α

x ∂β
t gn+1(t, x, ξ) along the bi characteristic can be
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solved in the Neumann series for small T1. Hence,
∂α

x ∂β
t gn+1(t,x,ξ)√

M−(ξ)
∈ BCt

(
[0, T ), L2

x,ξ (R3 × R3)
)

provided that
∂α

x ∂β
t gn(t,x,ξ)√
M−(ξ)

is in the same space. This, together with (3.1.27), implies that

gn+1(t, x, ξ) ∈ H
4

x,ξ([0, T )).

To show that {gn(t, x, ξ)} is a Cauchy sequence in H
4

x,ξ([0, T )), set

hn(t, x, ξ) = gn+1(t, x, ξ) − gn(t, x, ξ), n ≥ 0. (3.1.28)

Then hn(t, x, ξ)(n ≥ 1) solves⎧⎨
⎩ hn

t + ξ · ∇xh
n = −νM(ξ)hn +

√
MKM

(
hn√
M

)
+ 2Q(gn, hn−1) + Q(hn−1, hn−1),

hn(t, x, ξ)|t=0 = 0.

(3.1.29)

By (3.1.29), it can be deduced from (3.1.27) that

‖hn‖X ≤ 1

2
‖hn−1‖X , n ≥ 1 (3.1.30)

provided that M > 0 and T > 0 are sufficiently small. Thus {gn(t, x, ξ)} is a Cauchy sequence

in H
4

x,ξ([0, T )) which converges to a unique solution locally in time. We can summarize it
into the following theorem.

Theorem 3.1.3 (Local existence) For any sufficiently small constant M > 0 and integer
N ≥ 4, there exists a positive constant T ∗(M) > 0 such that if

E(f0) =
∑

|α|+|β|≤N

∥∥∥∥∥∂α
x ∂β

t (f0(x, ξ) − M(ξ))√
M−(ξ)

∥∥∥∥∥
L2

x,ξ(R3×R3)

≤ M

3C
, (3.1.31)

for some global Maxwllian satisfying the condition in Lemma 3.1.1., then the Cauchy problem
(3.1.2), (3.1.3) admits a unique classical solution

f(t, x, ξ) ∈ H
N

x,ξ ([0, T ∗(M))) , (3.1.32)

such that f(t, x, ξ) ≥ 0 and

sup
0≤t≤T ∗(M)

∑
|α|+|β|≤N

∫
R3

∫
R3

|∂α
x ∂β

t (f(t, x, ξ) − M(ξ))|2
M−(ξ)

dξdx ≤ M. (3.1.33)

3.2 Expansions and Decomposition

In this section, we will use the decomposition of the solution into the macroscopic and micro-
scopic components to reformulate the Boltzmann equation as a system of conservation laws
for the macroscopic components coupled with an equation for the microscopic component.
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As mentioned earlier, this kind of thinking is similar to the Hilbert and Champman-Enskog
expansions where the leading term is a local Maxwellian with its macroscopic components
governed by the conservation laws, either the Euler equations or Navier-Stokes equations.
The main difference between the reformulation introduced here and the classical expansions
is that there is no approximation or truncation in the reformulation so that it is equiva-
lent to the Boltzmann equation. Moreover, the system of conservation laws for the local
Maxwellian has the framework of Navier-Stokes equations with a source term determined by
the microscopic component.

For the completeness and the convenience of the readers, the Hilbert and Chapman-
Enskog expansions are reviewed in the following two subsections before the decomposition
and reformulation are given.

3.2.1 Hilbert Expansion

Consider the Boltzmann equation,

ft + ξ · ∇xf =
1

κ
Q(f, f), (3.2.1)

where κ is the Knudsen number which is proportional to the mean free path. Here, we assume
κ is a small constant and use it as the parameter for the expansion. In 1912, Hilbert [64]
introduced the following famous expansion of the solution to the Boltzmann equation:

f =
∞∑

n=0

κnfn. (3.2.2)

By putting this expansion into the Boltzmann equation (3.2.1) and comparing the terms by
the order of κ, one has the following equations for fn:

Q0 = 0,

(fn−1)t + ξ · ∇xfn−1 = Qn, n ≥ 1, (3.2.3)

where

Q0 = Q(f0, f0),

Qn = 2Q(f0, fn) +
n−1∑
i=1

Q(fk, fn−k), n ≥ 1. (3.2.4)

Hence, thanks to the property [Q2] in §1.2.2, the first equation in (3.2.4) implies that f0 is a
local Maxwellian, i.e.,

f0 = M0 ≡ M[ρ0,u0,θ0] =
ρ0

(2πRθ0)
3
2

exp{−|ξ − u0|2
2Rθ0

}, (3.2.5)

where ρ0, u0 and θ0 are functions of (t, x). And f0 satisfies

f0t + ξ · ∇xf0 = Q1. (3.2.6)
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Here, Q1 is a microscopic component which is orthogonal to the five collision invariants
ψα(ξ), α = 0, 1, · · · , 4, given by [Q1] in §1.2.2:⎧⎪⎪⎨

⎪⎪⎩
ψ0(ξ) ≡ 1,

ψi(ξ) ≡ ξi, i = 1, 2, 3, or ψ(ξ) = ξ,

ψ4(ξ) ≡ 1
2
|ξ|2.

(3.2.7)

The solvability condition for (3.2.6) gives the system of conservation laws∫
R3

ψα(f0t + ξ · ∇xf0)dξ = 0, (3.2.8)

which are exactly the compressible Euler equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ0
t + ∇x · (ρ0u0) = 0,

(ρ0u0)t + ∇x · (ρ0u0 ⊗ u0) + ∇xp
0 = 0,

[ρ0( |u
0|2
2

+ E0)]t + ∇x · {[ρ0( |u
0|2
2

+ E0) + p0]u} = 0,

(3.2.9)

where the pressure function is given by p0 = Rρ0θ0 and the internal energy is E0 = 3
2
Rθ0.

For n ≥ 1, if we denote

Sn =

n−1∑
i=1

Q(fk, fn−k), (3.2.10)

and
LM0h = 2Q(h, f0), (3.2.11)

which is the linearized collision operator with respect to the local Maxwellian M0, then under
the solvability condition for (3.2.3)2∫

R3

ψα((fn−1)t + ξ · ∇xfn−1)dξ = 0, (3.2.12)

fn can be represented in terms of fi for i = 0, 1, · · · , n − 1 by

fn =
4∑

α=0

cαψαM0 + L−1
M0

{(fn−1)t + ξ · ∇xfn−1 − Sn}. (3.2.13)

Thus, the conservation laws∫
R3

ψα(fnt + ξ · ∇xfn)dξ = 0, α = 0, 1, · · · , 4, (3.2.14)

are the system of linearized Euler equations around the fluid variables (ρ0, u0, θ0) for the
macroscopic components in fn.

Since to determine the value of fn in the Hilbert expansion involves the differentiation of
fn−1, by induction, the convergence of this expansion can only be expected when the solution
is infinitely differentiable and bounded with respect to the Knudsen number κ. Therefore,
usually, the Hilbert expansion does not converge, especially in the present of initial layer,
shock layer and boundary layer where the value of the differentiation grows when κ decreases.
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3.2.2 Chapman-Enskog Expansion

The Chapman-Enskog expansion was introduced by Chapman and Enskog in 1916 and 1917
independently. The main idea in this expansion is to expand both the equation and the
solution, but to keep the conservative quantities unexpanded. The advantage of this expan-
sion is that the first order correction yields the Navier-Stokes equations for the macroscopic
components so that the viscosity and heat conductivity are correctly represented. However,
the drawback of the Chapman-Enskog expansion is that the higher order approximations
give differential equations of higher order, such as the Burnett and super-Burnett equations
for which there is no satisfactory mathematical theory. In other words, there is basically no
established mathematical theory on this expansion beyond the Navier-Stokes level.

Formally, we can write
∂f

∂t
=

∞∑
n=0

κn ∂(n)fn

∂t
. (3.2.15)

Since the conserved quantities are unexpanded, the consistency requires that for n ≥ 1,∫
R3

ψαfndξ = 0, α = 0, 1, 2, 3, 4, (3.2.16)

which implies that all the function fn for n ≥ 1 are microscopic. By substituting (3.2.2) and
(3.2.15) into the Boltzmann equation, we have

Q0 = Q(f0, f0) = 0, (3.2.17)

and for n ≥ 1,
n−1∑
i=0

∂(i)fn−i−1

∂t
+ ξ · ∇xfn−1 = 2Q(f0, fn) + Sn, (3.2.18)

where the notation has the same meaning as in the last subsection. However, one should
notice that here each fn is a functional of the conserved quantities which are not expanded.
Again, the equation (3.2.17) implies that f0 must be a local Maxwellian, i.e.,

f0 = M ≡ M[ρ,u,θ] =
ρ

(2πRθ)
3
2

exp{−|ξ − u|2
2Rθ

}. (3.2.19)

Therefore, the equation (3.2.18) for n = 1 can be written as

∂(0)f0

∂t
+ ξ · ∇xf0 = LMf1. (3.2.20)

The solvability condition for (3.2.20) immediately gives the following Euler equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(0)ρ

∂t
= − ∂

∂xi
(ρui),

∂(0)ui

∂t
= −uj

∂ui

∂xj
− 1

ρ

∂p

∂xi
, i = 1, 2, 3,

∂(0)θ

∂t
= −ui

∂θ

∂xi

− 2

3
θ
∂ui

∂xi

,

(3.2.21)
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where p = Rρθ, here and in what follows, the summation is over any repeated indices. By
plugging the expression of the local Maxwellian of f0 into the equation (3.2.20), we have

1

ρ
MB0ρ +

1

θ

(
c2

2Rθ
− 3

2

)
MB0θ +

1

Rθ
cjB

0uj = LMf1, (3.2.22)

where c = ξ − u is the random velocity and B0 is the following linear operator

B0 =
∂(0)

∂t
+ ξ · ∇x.

Now we can substitute the time derivative ∂(0)

∂t
of (3.2.21) into the equation (3.2.22) to have(

c2

2Rθ
− 5

2

)
M

ci

θ

∂θ

∂xi
+

1

Rθ

(
cicj − 1

3
c2δij

)
M

∂ui

∂xj
= LMf1. (3.2.23)

By using the Burnett functions defined by⎧⎪⎪⎨
⎪⎪⎩

Aj(ξ) =
|ξ|2 − 5

2
ξj, j = 1, 2, 3,

Bij(ξ) = ξiξj − 1

3
δij |ξ|2, i, j = 1, 2, 3,

(3.2.24)

we have

f1 = L−1
M

(√
RAi

(
c√
Rθ

)
M

∂θ

∂xi
+ Bij

(
c√
Rθ

)
M

∂ui

∂xj

)
. (3.2.25)

Notice that we have used the fact that the operator LM is invertible in the microscopic space
which is the space orthogonal to the null space of LM.

Before going further, let’s review the properties of the Burnett functions.

Proposition 3.2.1 Denote

A′ = L−1
M A, B′ = LMB. (3.2.26)

Then there exist positive functions a(r) and b(r) defined on [0,∞) such that

A′(ξ) = −a(|ξ|)A(ξ), B′(ξ) = −b(|ξ|)B(ξ). (3.2.27)

And the following properties hold, where (·, ·) denotes the inner product of L2(R3).

• (−Ai, A
′
i) is positive and independent of i.

• (Ai, A
′
j) = 0 for any i 	= j.

• (Ai, B
′
jk) = 0 for any i, j, k.

• (Bij , B
′
kl) = (Bkl, B

′
ij) = (Bji, B

′
kl) holds and is independent of i, j for any fixed k, l.

• −(Bij , B
′
ij) is positive and independent of i, j when i 	= j.

• −(Bii, B
′
jj) is positive and independent of i, j when i 	= j.

• −(Bii, B
′
ii) is positive and independent of i.

• (Bij , B
′
kl) = 0 unless either (i, j) = (k, l) or (l, k), or i = j and k = l.

• (Bii, B
′
ii) − (Bii, B

′
jj) = 2(Bij, B

′
ij) holds for any i 	= j.
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The proof of this proposition is quite technical and can be found in [56].
With the Burnett functions, the viscosity µ(θ) and heat conductivity coefficient κ(θ) can

be represented by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

µ(θ) = −κRθ

∫
R3

Bij

(
c√
Rθ

)
L−1

M

(
Bij

(
c√
Rθ

)
M

)
dξ > 0, i 	= j,

κ(θ) = −κR2θ

∫
R3

Al

(
c√
Rθ

)
L−1

M

(
Al

(
c√
Rθ

)
M

)
dξ > 0.

(3.2.28)

Note that these coefficients are independent of the density function ρ.
Now if we put f1 into the conservation laws to include the first order approximation, then

the conservation laws take the form∫
R3

ψα((f0)t + ξ · ∇x(f0 + κf1))dξ = 0. (3.2.29)

Since f1 is microscopic, its contribution to the conservation of mass is zero. And its contri-
bution to the equations of conservation of momentum and energy is represented by the stress
tensor and heat flux:

p
(1)
ij = κ

∫
R3

cicjf1dξ, q
(1)
i =

κ

2

∫
R3

cic
2f1dξ. (3.2.30)

With Proposition 3.2.1, it is straightforward to calculate the stress tensor and heat flux in
terms of the fluid variables:⎧⎪⎪⎨

⎪⎪⎩
p

(1)
ij = −µ(θ)

(
∂ui

∂xj
+

∂uj

∂xi

)
+

2

3
µ(θ)

∂uk

∂xk
δij ,

q
(1)
i = −κ(θ)

∂θ

∂xi
.

(3.2.31)

In summary, the first order approximation in the Chapman-Enskog expansion is the com-
pressible Navier-Stokes equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇x · (ρu) = 0,

(ρui)t + ∇x · (ρuiu) + pxi
= [µ(θ)(ui

xj
+ uj

xi
− 2

3
δij∇x · u)]xj

, i = 1, 2, 3,

[
ρ

(
1

2
|u|2 + E

)]
t

+ ∇x ·
([

ρ

(
1

2
|u|2 + E

)
+ p

]
u

)

= µ(θ)ui

(
ui

xj
+ uj

xi
− 2

3
δij∇x · u

)
+ (κ(θ)θxj

)xj
.

(3.2.32)

Again, similar but tedious calculation can be used to find the next terms, f2, f3, · · · , in
the Chapman-Enskog expansion, however, without good mathematical theory. In the next
section, we will give a decomposition and reformulation of the Boltzmann equation without
any expansion so that the structure of the systems for fluid dynamics together with the effects
from the microscopic component become clear. In fact, one can compare it with the Hilbert
and Chapman-Enskog expansions so that some similarities and subtle difference can be found
as explained in the next subsection.
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3.2.3 Macro-Micro Decomposition

In this subsection, based on the decomposition of the solution into its macroscopic (fluid
dynamic) and microscopic (kinetic) component, we reformulate the Boltzmann equation into
a system of conservation laws for the time evolution of the macroscopic variables and an
equation for the time evolution of the microscopic variable. The main idea is not to have
any approximation, but a complete description of the solutions to the Boltzmann equation
so that the analytic techniques from the theory of conservation laws can be applied in the
study of the Boltzmann equation.

To be precise, let f(t, x, ξ) be the solution to the Boltzmann equation. We decompose
it into the macroscopic component in the form of the local Mawellian M = M(x, t, ξ) =
M[ρ,u,θ](ξ), and the microscopic component G = G(x, t, ξ):

f(t, x, ξ) = M(t, x, ξ) + G(t, x, ξ). (3.2.33)

Here, M(t, x, ξ) is the local Maxwellian with its five fluid parameters (ρ, u, θ) defined by the
five conserved quantities, the mass density ρ(t, x), momentum m(t, x) = ρ(t, x)u(t, x) and
energy density E(t, x) + |u(t, x)|2/2:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ(t, x) ≡
∫

R3

f(t, x, ξ)dξ,

mi(t, x) = ρu ≡
∫

R3

ψi(ξ)f(t, x, ξ)dξ, i = 1, 2, 3,

[
ρ
(E + 1

2
|u|2)] (t, x) ≡

∫
R3

ψ4(ξ)f(t, x, ξ)dξ.

(3.2.34)

To have an orthogonal basis for the subspace of the macroscopic components, we first
define an inner product in the space L2

ξ with a weight. For this, let M̃ = M̃[ρ̃,ũ,θ̃] be any
given Maxwellian. Define

〈h, g〉M̃ ≡
∫

R3

h(ξ)g(ξ)

M̃
dξ, (3.2.35)

for functions h and g of ξ such that the integral is well defined. Using this inner product,
the subspace spanned by the collision invariants has the following set of orthogonal basis:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χM̃
0 = χ0(ξ; ρ̃, ũ, θ̃) ≡ 1√

ρ̃
M̃,

χM̃
i = χi(ξ; ρ̃, ũ, θ̃) ≡ ξi−ũi√

Rθ̃ρ̃
M̃, i = 1, 2, 3,

χM̃
4 = χ4(ξ; ρ̃, ũ, θ̃) ≡ 1√

6ρ̃

(
|ξ−ũ|2

Rθ̃
− 3
)

M̃,

〈χM̃
α , χM̃

β 〉M̃ = δαβ , for α, β = 0, 1, 2, 3, 4.

(3.2.36)

With this basis, define the macroscopic projection PM̃
0 and microscopic projection PM̃

1 by:⎧⎪⎨
⎪⎩

PM̃
0 h ≡

4∑
α=0

〈
h, χM̃

α

〉
M̃

χM̃
α ,

PM̃
1 h ≡ h −PM̃

0 h.

(3.2.37)
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Notice that the operators PM̃
0 and PM̃

1 are projections, that is,

PM̃
0 PM̃

0 = PM̃
0 , PM̃

1 PM̃
1 = PM̃

1 , PM̃
0 PM̃

1 = PM̃
1 PM̃

0 = 0.

Now, the system of conservation laws

∫
R3

ψα(ft + ξ · ∇xf)dξ = 0, α = 0, 1, · · · , 4, (3.2.38)

takes the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + divx m = 0,

mi
t +

(
3∑

j=1

ujmi

)
xj

+ pxi +

∫
R3

ψi(ξ)
(
ξ · ∇xG

)
dξ = 0, i = 1, 2, 3,

[
ρ
(

|u|2
2

+ E
)]

t
+

3∑
j=1

{
uj
[
ρ
(

|u|2
2

+ E
)

+ p
]}

xj
+

∫
R3

ψ4(ξ)
(
ξ · ∇xG

)
dξ = 0,

(3.2.39)

The equation of the state is for the monatomic gas, with the gas constant R chosen to be 2
3

without loss of generality, given by

p =
2

3
ρe.

And the macroscopic entropy S can be defined as:

S = −2

3
ln ρ + ln

(
4

3
πθ

)
+ 1.

The microscopic equation is obtained by applying the microscopic projection PM
1 to the

Boltzmann equation (3.2.1):

Gt + PM
1

(
ξ · ∇xG + ξ · ∇xM

)
=

1

κ
LMG +

1

κ
Q(G,G), (3.2.40)

where LM is the linearized collision operator around the local Maxwellian M.

From (3.2.40), we have

G = κL−1
M

(
PM

1 (ξ · ∇xM)
)

+ L−1
M

(
κ
(
∂tG + PM

1 ξ · (∇xG)
)− Q(G,G)

)
= κL−1

M

(
PM

1 (ξ · ∇xM)
)

+ Θ. (3.2.41)

Substituting (3.2.41) into (3.2.39) yields the following fluid-type system for the macroscopic
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components:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + divx m = 0,

mi
t +

(
3∑

j=1

ujmi

)
xj

+ pxi + κ

∫
R3

ψi(ξ)
(
ξ · ∇xL

−1
M

(
PM

1 (ξ · ∇xM)
))

dξ

+

∫
R3

ψi(ξ)
(
ξ · ∇xΘ

)
dξ = 0, i = 1, 2, 3,

[
ρ
(

|u|2
2

+ E
)]

t
+

3∑
j=1

{
uj
[
ρ
(

|u|2
2

+ E
)

+ p
]}

xj
+ κ

∫
R3

ψ4(ξ)
(
ξ · ∇xL

−1
M

(
PM

1 (ξ · ∇xM)
))

dξ

+

∫
R3

ψ4(ξ)
(
ξ · ∇xΘ

)
dξ = 0.

(3.2.42)

A straightforward calculation by using the Burnett functions as in the previous section, the
fluid-type system (3.2.42) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + divxm = 0,

mi
t +

3∑
j=1

(ujmi)xj + pxi =
3∑

j=1

[
µ(θ)

(
ui

xj + uj
xi − 2

3
δijdivxu

)]
xj

−
∫

R3

ψi(ξ) (ξ · ∇xΘ) dξ, i = 1, 2, 3,

[
ρ(1

2
|u|2 + E)

]
t
+

3∑
j=1

(
uj
(
ρ
(

1
2
|u|2 + E)+ p

))
xj

=
3∑

i,j=1

{
µ(θ)ui

(
ui

xj + uj
xi − 2

3
δijdivxu

)}
xj

+
3∑

j=1

(κ(θ)θxj )xj −
∫

R3

ψ4(ξ) (ξ · ∇xΘ) dξ.

(3.2.43)

From this fluid-type system, one can easily see the structure of the compressible Euler and the
compressible Navier-Stokes equations. For instance, when the Knudsen number κ and Θ are
set zero, the system (3.2.43) becomes the compressible Euler equations. On the other hand,
when Θ is set to be zero in (3.2.43), it becomes the compressible Navier-Stokes equations.
These fluid equations as derived through the Hilbert and Chapman-Enskog expansions are
approximations to the Boltzmann equation. However, the above system is part of the Boltz-
mann equation. Nevertheless, this reformulation is consistent in spirit with the Chapman-
Enskog expansion in that the higher order terms beyond zeroth order in the expansions
must be microscopic. Therefore, it is interesting to notice that the first order approxima-
tion in Chapman-Enskog expansion f1 is just the leading term in the microscopic component
expression (3.2.41), that is,

f1 = L−1
M (PM

1 (ξ · ∇xM)).
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Throughout the rest of this chapter, the system consisting of the equation (3.2.41) and the
conservation laws (3.2.43) will be used to study the behavior of the solutions to the Boltzmann
equation. It is shown that the forthcoming energy method based on this decomposition is
robust in the stability and the convergence rate analysis on the non-trivial solution profiles
to the Boltzmann equation.

3.3 Perturbation of Global Maxwellian

With the reformulation of the Boltzmann equation, the energy method which is useful in
the study of nonlinear partial differential equations can then be applied to the study of
the Boltzmann equation directly. As the first step in this direction, we will illustrate this
approach by considering the case of a perturbation of a given global Maxwellian. It will
be shown that the stability argument mainly depends on the analyzing conservation laws
(3.2.43) by treating the extra terms beyond the Navier-Stokes equations as source terms.
Moreover, the estimation on the microscopic component is obtained by using the H-theorem.

We should point out that for the perturbation of a global Maxwellian, the analysis can
also be carried out by using the decomposition around the global Maxwellian. However,
for perturbation of a non-trivial solution profile such as a wave pattern, the decomposition
around the local Maxwellian is more useful and the description of the time evolution of the
macroscopic and microscopic components in the solution is clearer.

Since the solutions considered here is a small perturbation of a given global Maxwellian
M(ξ), in the following discussion, the Knudsen number κ is chosen to be 1 for simplicity.
And for later use, we recall some Sobolev inequalities in the following lemma.

Lemma 3.3.1 For g(x) ∈ H1(R3), we have

‖g(x)‖L6(R3) ≤ C0‖∇xg(x)‖, (3.3.1)

where C0 is a positive constant independent of g(x). Consequently, for g(x) ∈ H2(R3), there
exists a positive constant C1 independent of g(x) such that⎧⎨

⎩
‖g(x)‖L∞(R3) ≤ C1‖∇xg(x)‖1,

‖g(x)‖L4(R3) ≤ C1‖∇xg(x)‖ 3
4‖g(x)‖ 1

4 .
(3.3.2)

Here and in the sequel, ‖ · ‖ and ‖ · ‖s denote the standard L2(R3)−norm and Hs(R3)−norm
respectively.

As pointed out before, to perform the energy method for the Boltzmann equation (3.2.1),
for PM0

1 f , the microscopic projection of its solution f(t, x, ξ) with respect to a given Maxwellian
M0, the dissipative effect through the microscopic H-theorem should be used. In short,
the microscopic H-theorem states that the linearized collision operator LM0 around a fixed
Mawellian state M0 is negative definite on the non-fluid element PM0

1 f , i.e.,

−
∫

R3

PM0
1 fLM0

(
PM0

1 f
)

M0
dξ ≥ σ

∫
R3

νM0(ξ)
∣∣PM0

1 f
∣∣2

M0
dξ,
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for a positive constant σ. Furthermore, one can vary the background Maxwellians for lin-
earization and the weight function. That is, we also have the following dissipative estimate
coming from Lemma 3.1.2.

Lemma 3.3.2 If θ
2

< θ̃ and the assumptions in Lemma 3.1.2 are satisfied, then there exist

two positive constants σ = σ(u, θ; ũ, θ̃) and η0 = η0(u, θ; ũ, θ̃) such that if |u− ũ|+ |θ− θ̃| < η0,
we have for h(ξ) ∈ N⊥,

−
∫

R3

hLMh

M̃
dξ ≥ σ

∫
R3

νM(ξ)h2

M̃
dξ. (3.3.3)

Here M ≡ M[ρ,u,θ](ξ), M̃ = M̃[ρ̃,ũ,θ̃](ξ) and

N⊥ =

{
f(ξ) :

∫
R3

ψj(ξ)f(ξ)dξ = 0, j = 0, 1, 2, 3, 4.

}
.

Remark 3.3.3 The constant η0 is some positive constant depending on the first non-zero
eigenvalue of the linearized operator LM. Note that η0 is not necessary to be small.

A direct consequence of Lemma 3.3.2 and the Cauchy-Schwartz inequality is the following
corollary.

Corollary 3.3.4 Under the assumptions in Lemma 3.3.2, we have for h(ξ) ∈ N⊥,∫
R3

νM(ξ)

M̃

∣∣L−1
M h
∣∣2 dξ ≤ σ−2

∫
R3

νM(ξ)−1h2(ξ)

M̃
dξ. (3.3.4)

To view the H-theorem in the fluid dynamical variables, we first set

−3

2
ρS ≡

∫
R3

M log M dξ. (3.3.5)

It is easy to see that log M and ∂tM
M

are collision invariants and so:

⎧⎪⎨
⎪⎩
∫

R3

G log Mdξ =

∫
R3

G
∂tM

M
dξ = 0,∫

R3

Q(f, f) log Mdξ = 0.
(3.3.6)

Multiply the Boltzmann equation by log M and integrate in ξ:

∂

∂t

∫
R3

(M + G) log M dξ + ∇x ·
∫

R3

ξ(M + G) log Mdξ

−
∫

R3

(M + G)M t

M
dξ −

∫
R3

(M + G)ξ · ∇xM

M
dξ =

∫
R3

Q(f, f) log Mdξ. (3.3.7)
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Use (3.3.6) to simplify this into:

∂

∂t

∫
R3

M log Mdξ + ∇x ·
∫

R3

ξM log Mdξ + ∇x ·
∫

R3

ξG log Mdξ

−
∫

R3

M tdξ −∇x ·
∫

R3

ξMdξ =

∫
R3

Gξ · ∇xM

M
dξ. (3.3.8)

Note that, from the continuity equation,

−
∫

R3

M tdξ −∇x ·
∫

R3

ξMdξ = −ρt −∇x · (ρu) = 0. (3.3.9)

Also from (3.3.5),∫
R3

ξM log Mdξ = u

∫
R3

M log Mdξ +

∫
R3

(ξ − u)M log Mdξ = −3

2
uρS + 0, (3.3.10)

we have

−3

2
(ρS)t − 3

2
∇x · (ρSu) + ∇x ·

(∫
R3

ξG log Mdξ

)
=

∫
R3

Gξ · ∇xM

M
dξ. (3.3.11)

Plugging (3.2.41) into the right-hand side of (3.3.11) gives,

− 3

2
(ρS)t − 3

2
∇x · (ρSu) + ∇x ·

(∫
R3

ξG log Mdξ

)

=

∫
R3

ξ · ∇xM

M
L−1

M (P 1ξ · ∇xM)dξ

+

∫
R3

ξ · ∇xM

M
L−1

M (Gt + P 1ξ · ∇xG − Q(G, G)) dξ, (3.3.12)

that is,

− 3

2
(ρS)t − 3

2
∇x · (ρSu) + ∇x ·

(∫
R3

ξG log Mdξ

)

=

∫
R3

P 1ξ · ∇xM

M
L−1

M (P 1ξ · ∇xM )dξ

+

∫
R3

P 1ξ · ∇xM

M
L−1

M (Gt + P 1ξ · ∇xG − Q(G, G)) dξ. (3.3.13)

Note that from (3.3.5), we have

−3

2
ρS = ρ log ρ − 3

2
ρ log(2πRθ) − 1

2
ρ. (3.3.14)

Before performing the energy estimates for the Boltzmann equation (3.2.1), we first give
the function space for the solutions considered in this section

HN
x,ξ ([0, T ]) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(t, x, ξ)

∣∣∣∣∣∣∣∣∣∣∣

∂β
t ∂α

x g(t,x,ξ)√
M(ξ)

∈ BCt

(
[0, T ], L2

x,ξ (R3 × R3)
)

√
νM(ξ)∂β

t ∂α
x g(t,x,ξ)√

M(ξ)
∈ L2

t,x,ξ ([0, T ] × R3 × R3) , for |α| + |β| > 0

0 ≤ t ≤ T, |α| + |β| ≤ N

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.
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Here g(t, x, ξ) = f(t, x, ξ) − M(ξ).
The estimate on the conserved quantities

m(t, x) ≡
(

ρ, ρ(t, x)u(t, x), ρ(t, x)(
1

2
u2(t, x) + E(t, x))

)

can be obtained by using the analytic techniques for the systems of conservation laws cf.[97,
102], based on the following a priori assumption

N(t)2 ≡ sup
0≤τ≤t

∑
|α|+|β|≤4

∫
R3

∣∣∣∂α
x ∂β

t

(
ρ(τ, x) − ρ, u(τ, x), θ(τ, x) − θ

)∣∣∣2 dx

+ sup
0≤τ≤t

∑
|α|+|β|≤4

∫
R3

∫
R3

|∂α
x ∂β

t (f(τ,x,ξ)−M(ξ))|2
M

dξdx

≤ ε2. (3.3.15)

Here the discussion is in H4
x,ξ([0, T ]) space which can be readily generalized to the Hs

x,ξ([0, T ])
space for s > 4.

The a priori estimate (3.3.15) and the conservation laws imply that

N(0) ≤ O(1)E(f0) (3.3.16)

with

E(f0)
2 ≡

∑
|α|+|β|≤4

∫
R3

∫
R3

∣∣∣∂α
x ∂β

t (f0(x, ξ) − M(ξ))
∣∣∣2

M
dξdx

and

sup
0≤τ≤t, x∈R3

( ∑
|α|+|β|≤2

∣∣∣∂α
x ∂β

t

(
ρ(τ, x) − ρ, u(τ, x), θ(τ, x) − θ

)∣∣∣∣∣
2 )

+ sup
0≤τ≤t, x∈R3

( ∑
|α|+|β|≤2

∫
R3

|∂α
x ∂β

t (f(τ,x,ξ)−M(ξ))|2
M

dξ

)

≤ O(1)ε2. (3.3.17)

The lower order estimate on the macroscopic components can be given by a convex
entropy functional defined as follows. Let m ≡ (m0, m, m4)t = (m0, m1, m2, m3, m4)t =(
ρ, m, ρ

(
1
2
u2 + E))t, we now construct a pair of convex entropy-entropy flux pair (η, q) around

the global Maxwellian M. First, we denote the conservation laws (3.2.42) as:

mt + ∇x · n = 0. (3.3.18)

Set the entropy pair as:{
η = −3

2
ρS + 3

2
ρ̄S̄ + 3

2
∇m(ρS)|m=m̄ · (m − m̄),

q = −3
2
ρSu + 3

2
ρ̄S̄ū + 3

2
∇m(ρS)|m=m̄ · (n− n̄).

(3.3.19)
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That is, ⎧⎪⎨
⎪⎩

η = 3
2

{
ρθ − θρS + ρ

[(
S − 5

3

)
θ + |u|2

2

]
+ 2

3
ρθ

}
,

qj = ujη + uj

(
ρθ − ρθ

)
, j = 1, 2, 3.

(3.3.20)

It is straightforward to check that η̄ = η(m̄) = 0, ∇mη̄ = ∇mη(m̄) = 0, and the Hessian
∂2η

∂mi∂mj
equals to

3θ

2ρθ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5
3
θ2 + 1

4
|u|4 −1

2
u1|u|2 −1

2
u2|u|2 −1

2
u3|u|2 1

2
|u|2 − θ

−1
2
u1|u|2 θ + u2

1 u1u2 u1u3 −u1

−1
2
u2|u|2 u1u2 θ + u2

2 u2u3 −u2

−1
2
u3|u|2 u1u3 u2u3 θ + u2

3 −u3

1
2
|u|2 − θ −u1 −u2 −u3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which is positive definite for any m satisfying ρ, θ > 0. Thus, in any closed bounded region
D ⊂ Σ = {m : ρ > 0, θ > 0}, there exists a positive constant c depending on D such that

c−1 |m − m|2 ≤ η ≤ c |m− m|2 (3.3.21)

The equation for the entropy can be derived as follows. From (3.3.13) and (3.3.18),

ηt + ∇x · q + ∇x ·
(∫

R3

ξG log Mdξ

)

=

∫
R3

P 1ξ · ∇xM

M
L−1

M (P 1ξ · ∇xM )dξ

+

∫
R3

P 1ξ · ∇xM

M
L−1

M (Gt + P 1ξ · ∇xG − Q(G, G)) dξ. (3.3.22)

In the above identity, the term∫
R3

P 1ξ · ∇xM

M
L−1

M (P 1ξ · ∇xM )dξ = 〈P 1ξ · ∇xM , L−1
M (P 1ξ · ∇xM )〉M,

represents the entropy dissipation. Since the non-fluid functions P 1ξ ·∇xM belong to a finite
dimensional space in the ξ variables, we have from the microscopic version of the H-theorem
that the term satisfies, for some positive constants σ1 and σ2,

σ1

∫
R3

|P 1ξ · ∇xM |2
M

≤ −
∫

R3

P 1ξ · ∇xM

M
L−1

M (P 1ξ · ∇xM )dξ ≤ σ2

∫
R3

|P 1ξ · ∇xM |2
M

dξ.

(3.3.23)
Simple calculation shows that

∫
R3

|P 1ξ · ∇xM |2
M

dξ = O(1)
3∑

j=1

[|∂xju|2 + |∇xθ|2], (3.3.24)
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for some positive function O(1). Notice that in the macroscopic version (3.3.22) of H-theorem,
the dominant term on the right hand side is the first integral, which, as we have just seen,
represents the dissipation, and the second integral consists of only higher order derivatives
and the quadratic term of microscopic component G. Therefore, it captures the dissipative
effect of the fluid components in the solution of Boltzmann equation, and this is useful for
the energy estimates.

Precisely, by the conservation laws (3.2.43), (η, q1, q2, q3) satisfies:

ηt + divxq =
3∑

i,j=1

ηmi(m)
[
µ(θ)

(
ui

xj + uj
xi − 2

3
δijdivxu

)]
xj

+
3∑

i,j=1

ηm4(m)
[
µ(θ)ui

(
ui

xj + uj
xi − 2

3
δijdivxu

)]
xj +

3∑
j=1

ηm4(m)
(
κ(θ)θxj

)
xj

−
∫

R3

∇mη(m) ·
(
0, ψ1(ξ), ψ2(ξ), ψ3(ξ), ψ4(ξ)

)(
ξ · ∇xΘ

)
dξ. (3.3.25)

Since

∇mη(m) = −3

2
θ

(
S +

|u|2
2θ

− S,−u1

θ
,−u2

θ
,−u3

θ
,−θ − θ

θθ

)
, (3.3.26)

integrating (3.3.25) with respect to t and x over [0, t] × R
3, and using the Cauchy-Schwarz

inequality and (3.3.21) give

∥∥(ρ − ρ, u, θ − θ)
∥∥2

(t) +

∫ t

0

‖∇x(u, θ)‖2 (τ)dτ

≤ O(1)
∥∥(ρ0(x) − ρ, u0(x), θ0(x) − θ)

∥∥2
+ O(1)

∫ t

0

∫
R3

∫
R3

|ξ|4|Θ|2dξdxdτ. (3.3.27)

When ε is chosen sufficiently small such that

ε < min
{η0

2
, θ
}

, (3.3.28)

then for any θ− satisfying

θ < θ− < θ + ε, (3.3.29)

we have ⎧⎨
⎩

θ ≤ θ + |θ − θ| < θ + ε < 2θ < 2θ−,

|u| + |θ − θ−| ≤
(
|u| + |θ − θ|

)
+ θ− − θ < 2ε < η0.

(3.3.30)

Denote M− = M[ρ,0,θ−], we have from Lemma 3.1.2, Corollary 3.3.4, (3.1.19), (3.3.21),
(3.3.15), (3.3.17) and (3.3.30) that∫

R3

∫
R3

|ξ|4|Θ|2dξdx ≤ O(1)

∫
R3

∫
R3

νM(ξ)|L−1
M (Gt+PM

1 (ξ·∇xG)−Q(G,G))|2
M− dξdx

≤ O(1)

∫
R3

∫
R3

1
M

(G2
t + |∇xG|2 + ε2G2) dξdx. (3.3.31)
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Putting (3.3.27) and (3.3.31) together gives

∥∥(ρ − ρ, u, θ − θ)
∥∥2

(t) +

∫ t

0

‖∇x(u, θ)‖2 (τ)dτ

≤ O(1)
∥∥(ρ0(x) − ρ, u0(x), θ0(x) − θ)

∥∥2

+O(1)

∫ t

0

∫
R3

∫
R3

1
M

(G2
t + |∇xG|2 + ε2G2) dξdxdτ. (3.3.32)

To obtain the higher order estimates on the conserved quantities, we first note that the
system (3.3.27) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt = −(ρ − ρ)divxu −∇x(ρ − ρ) · u − ρdivxu,

ui
t +

3∑
j=1

ujui
xj + 2

3ρ

(
ρθ − ρθ

)
xi = −

∫
R3

ψi(ξ·∇xΘ)
ρ

dξ

+1
ρ

3∑
j=1

{
µ(θ)

(
ui

xj + uj
xi − 2

3
δijdivxu

)}
xj , i = 1, 2, 3,

θt +
3∑

j=1

(
ujθxj + 2

3
θuj

xj

)
= −

∫
R3

ψ4−ξ·u
ρ

(ξ · ∇xΘ)dξ

+1
ρ

{
3∑

j=1

(κ(θ)θxj )xj + 1
2
µ(θ)

3∑
i,j=1

(
ui

xj + uj
xi

)2 − 2
3
µ(θ)(divxu)2

}
.

(3.3.33)

Similar to the analysis for the compressible Navier-Stokes equations, by applying ∂γ =
∂α

x ∂β
t (1 ≤ |α| + |β| ≤ 3) to (3.3.33)2 and (3.3.33)3, multiplying the resulting identities by

ρ∂γui and ρ
θ
∂γθ, taking the summation with respect to i from 1 to 3, and integrating the

resulting equations with respect to t and x over [0, t] × R3, for j = 1, 2, 3, we have

∑
|α|+|β|=j

∫
R3

∣∣∣∂α
x ∂β

t (ρ − ρ, u, θ)
∣∣∣2 dx +

∑
|α|+|β|=j

∫ t

0

∫
R3

∣∣∣∇x∂
α
x ∂β

t (u, θ)
∣∣∣2 dxdτ

≤ O(1)E(f0)
2 + O(1)

∑
|γ|=j

∫ t

0

∫
R3

∫
R3

“|∂α
x ∂β

t Gt|2+|∇x∂α
x ∂β

t G|2”
M

dξdxdτ

+O(1)ε
∑

1≤|α|+|β|≤j+1

∫ t

0

∫
R3

∣∣∣∂α
x ∂β

t (ρ − ρ, u, θ)
∣∣∣2 dxdτ

+O(1)ε
∑

|α|+|β|≤j

∫ t

0

∫
R3

∫
R3

|∂α
x ∂β

t G|2
M

dξdxdτ. (3.3.34)

It is worthy to pointing out that, compared with the estimates for the Navier-Stokes equa-
tions, the only difference comes from the terms containing Θ. This can be estimated suitably
as in the proof of (3.3.31) by using Lemma 3.1.2, Corollary 3.3.4, (3.1.19), (3.3.21), (3.3.15),
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(3.3.17), (3.3.30) and the following basic estimate on the collision operator Q(f, g)

∫ t

0

∫
R3

∫
R3

νM(ξ)−1|∂α
x ∂β

t Q(G,G)|2
M− dξdxdτ

≤ O(1)ε
∑

|α′|+|β′|≤4

∫ t

0

∫
R3

∫
R3

|∂α′
x ∂β′

t G|2
M

dξdxdτ. (3.3.35)

Here |α| + |β| ≤ 4.
To get the L2

t,x estimates on ∂α
x ∂β

t (ρ − ρ) for 1 ≤ |α| + |β| ≤ 4, we use the conservation
laws (3.3.27) as in the study of Navier-Stokes equations to deduce that

∑
|α|+|β|=j+1

∫ t

0

∫
R3

|∂α
x ∂β

t (ρ − ρ)|2dxdτ

≤ O(1)E(f0)
2 + O(1)

∫
R3

( ∑
|α|+|β|=j+1

|∂α
x ∂β

t (ρ − ρ)|2 +
∑

|α|+|β|=j

|∂α
x ∂β

t u|2
)

dx

+O(1)
∑

1≤|α|+|β|≤j+1

∫ t

0

∫
R3

|∂α
x ∂β

t (u, θ)|2dxdτ

+O(1)ε
∑

1≤|α|+|β|≤j

∫ t

0

∫
R3

|∂α
x ∂β

t (ρ − ρ)|2dxdτ

+O(1)
∑

|α|+|β|≤j+1

∫ t

0

∫
R3

∫
R3

|∂α
x ∂β

t G|2
M

dξdxdτ, j = 0, 1, 2, 3. (3.3.36)

A suitable linear combination of (3.3.32), (3.3.34) and (3.3.36) yields an estimate on the
conserved quantities

(
ρ, m, ρ

(
1
2
|u|2 + E)) which is controlled by G besides the initial data.

Lemma 3.3.5 Under the a priori assumption (3.3.15), we have

∑
|α|+|β|≤3

∥∥∥∂α
x ∂β

t (ρ − ρ, u, θ − θ)
∥∥∥2

(t) +
∑

1≤|α|+|β|≤4

∫ t

0

∥∥∥∂α
x ∂β

t (ρ, u, θ)
∥∥∥2

(τ)dτ

≤ O(1)E(f0)
2 + O(1)

∑
|α|+|β|≤4

∫ t

0

∫
R3

∫
R3

|∂α
x ∂β

t G|2
M

dξdxdτ. (3.3.37)

Since we want to close the energy estimates for the solution f(t, x, ξ) of the Boltzmann
equation by performing the energy estimates on the original equation (3.2.1) with respect
to the global Maxwellian M, we need to transform the estimates on G, the microscopic
projection of f(t, x, ξ) with respect to the local Maxwellian M into PM

1 f , the microscopic
projection of f(t, x, ξ) with respect to the global Maxwellian M. For this purpose, by noticing

PM
1 G = G, PM

1 f = G + PM
1 M, (3.3.38)

we need to obtain an estimate on PM
1 M which is presented in the following lemma.



84 CHAPTER 3. SOLUTIONS IN L2 FRAMEWORK

Lemma 3.3.6 Under the assumptions of Lemma 3.3.5, we can deduce

∫
R3

(1 + |ξ|)k
∣∣∣PM

1 M
∣∣∣2

M0
dξ ≤ O(1)

∣∣(ρ − ρ, u, θ − θ
)∣∣4 . (3.3.39)

Here k > 0 is any positive constant and M0 = M[ρ0,u0,θ0] can be any Maxwellian satisfying

θ0 > 1
2
max

{
θ, θ
}
.

Consequently, we have for all |α| + |β| ≤ 4 that

∫ t

0

∫
R3

∫
R3

|∂α
x ∂β

t G|2
M

dξdxdτ ≤
∫ t

0

∫
R3

∫
R3

|∂α
x ∂β

t PM
1 f|2

M
dξdxdτ

+O(1)ε
∑

1≤|α|+|β|≤4

∫ t

0

∥∥∥∂α
x ∂β

t (ρ, u, θ)
∥∥∥2

(τ)dτ. (3.3.40)

Proof. We only prove (3.3.39) since (3.3.40) follows immediately from (3.3.38), (3.3.39),
Lemma 3.3.1 and the a priori assumption (3.3.15).

To prove (3.3.39), first notice that PM
1 M is a smooth function of ρ, u, θ and

∇(ρ,u,θ)P
M
1 M = PM

1

(∇(ρ,u,θ)M
)
.

Since

PM
1

(∇(ρ,u,θ)M
)∣∣∣

(ρ,u,θ)=(ρ,0,θ)
= 0,

we can easily deduce that PM
1 M is quadratic with respect to

(
ρ − ρ, u, θ − θ

)
and (3.3.39)

follows immediately. This completes the proof of Lemma 3.3.6.

The following corollary is a direct consequence of Lemma 3.3.5 and Lemma 3.3.6.

Corollary 3.3.7 Under the assumptions in Lemma 3.3.2, we have

∑
|α|+|β|≤3

∥∥∥∂α
x ∂β

t (ρ − ρ, u, θ − θ)
∥∥∥2

(t) +
∑

1≤|α|+|β|≤4

∫ t

0

∥∥∥∂α
x ∂β

t (ρ, u, θ)
∥∥∥2

(τ)dτ

≤ O(1)E(f0)
2 + O(1)

∑
|α|+|β|≤4

∫ t

0

∫
R3

∫
R3

|∂α
x ∂β

t PM
1 f|2

M
dξdxdτ. (3.3.41)

Now we can finalize the energy estimates on the solutions f(t, x, ξ) of the Boltzmann
equation. To this end, since g(t, x, ξ) = f(t, x, ξ) −M(ξ) solves

gt + ξ · ∇xg = LM

(
PM

1 g
)

+ Q
(
PM

1 g,PM
1 g
)

+2Q
(
PM

1 g,PM
0

(
M− M

))
+ Q

(
PM

1

(
M− M

)
,PM

0

(
M −M

))
,

(3.3.42)



3.3. PERTURBATION OF GLOBAL MAXWELLIAN 85

by applying ∂α
x ∂β

t (|α| + |β| ≤ 4) to (3.3.42) and integrating its product with
∂α

x ∂β
t g

M
over

[0, t] × R3 × R3, we have that

1
2

∫
R3

∫
R3

|∂α
x ∂β

t g|2
M

dξdx

∣∣∣∣
t

0

=

∫ t

0

∫
R3

∫
R3

∂α
x ∂β

t g·∂α
x ∂β

t LM(PM
1 g)

M
dξdxdτ

+

∫ t

0

∫
R3

∫
R3

∂α
x ∂β

t g·∂α
x ∂β

t Q(PM
1 g,PM

1 g)
M

dξdxdτ

+2

∫ t

0

∫
R3

∫
R3

∂α
x ∂β

t g·∂α
x ∂β

t Q(PM
1 g,PM

0 (M−M))
M

dξdxdτ

+

∫ t

0

∫
R3

∫
R3

∂α
x ∂β

t g·∂α
x ∂β

t Q(PM
1 (M−M),PM

0 (M−M))
M

dξdxdτ

:=
4∑

j=1

Ij . (3.3.43)

Here Ii(i = 1, 2, 3, 4) are the corresponding terms in the above equation without any ambi-
guity.

Since M is independent of t and x, we have⎧⎨
⎩

PM
1

(
∂α

x ∂β
t g
)

= ∂α
x ∂β

t gPM
1 g,

∂α
x ∂β

t LM

(
PM

1 g
)

= LM

(
∂α

x ∂β
t gPM

1 g
)

.
(3.3.44)

Thus from Lemma 3.1.2, Lemma 3.3.2 and (3.3.15), I1 and I2 satisfy

I1 =

∫ t

0

∫
R3

∫
R3

∂α
x ∂β

t PM
1 g·LM(∂α

x ∂β
t PM

1 g)
M

dξdxdτ

≤ −σ

∫ t

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t PM
1 g|2

M
dξdxdτ, (3.3.45)

I2 =

∫ t

0

∫
R3

∫
R3

∂α
x ∂β

t PM
1 g·∂α

x ∂β
t Q(PM

1 g,PM
1 g)

M
dξdxdτ

≤ σ
4

∫ t

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t PM
1 g|2

M
dξdxdτ

+O(1)ε
∑

|α‖+|β′|≤4

∫ t

0

∫
R3

∫
R3

νM(ξ)−1
˛̨̨
∂α′

x ∂β′
t PM

1 g
˛̨̨2

M
dξdxdτ. (3.3.46)

Here we have used the inequality∫ t

0

∫
R3

∫
R3

νM(ξ)−1|∂α
x ∂β

t Q(PM
1 g,PM

1 g)|2
M

dξdxdτ

≤ O(1)ε
∑

|α‖+|β′|≤4

∫ t

0

∫
R3

∫
R3

νM(ξ)
˛̨
˛∂α′

x ∂β′
t PM

1 g
˛̨
˛2

M
dξdxdτ. (3.3.47)
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For I3 and I4, we have

I3 ≤ σ
4

∫ t

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t PM
1 g|2

M
dξdxdτ

+O(1)ε
∑

|α′|+|β′|≤4

∫ t

0

∫
R3

∫
R3

νM(ξ)
˛̨
˛∂α′

x ∂β′
t PM

1 g
˛̨
˛2

M
dξdxdτ

+O(1)ε
∑

1≤|α′|+|β′|≤4

∫ t

0

∫
R3

∣∣∣∂α′
x ∂β′

t (ρ, u, θ)
∣∣∣2 dxdτ, (3.3.48)

and

I4 ≤ σ
4

∫ t

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t PM
1 g|2

M
dξdxdτ

+O(1)ε
∑

1≤|α′|+|β′|≤4

∫ t

0

∫
R3

∣∣∣∂α′
x ∂β′

t (ρ, u, θ)
∣∣∣2 dxdτ. (3.3.49)

Now substituting (3.3.45), (3.3.46), (3.3.48) and (3.3.49) into (3.3.43) yields∫
R3

∫
R3

|∂α
x ∂β

t g|2
M

dξdx +

∫ t

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t PM
1 g|2

M
dξdxdτ

≤ O(1)E(f0)
2 + O(1)ε

∑
|α′|+|β′|≤4

∫ t

0

∫
R3

∫
R3

νM(ξ)
˛̨̨
∂α′

x ∂β′
t PM

1 g
˛̨̨2

M
dξdxdτ

+O(1)ε
∑

1≤|α′|+|β′|≤4

∫ t

0

∫
R3

∣∣∣∂α′
x ∂β′

t (ρ, u, θ)
∣∣∣2 dxdτ. (3.3.50)

Thus

∑
|α|+|β|≤4

∫
R3

∫
R3

|∂α
x ∂β

t g|2
M

dξdx +
∑

|α|+|β|≤4

∫ t

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t PM
1 g|2

M
dξdxdτ

≤ O(1)E(f0)
2 + O(1)ε

∑
1≤|α|+|β|≤4

∫ t

0

∫
R3

∣∣∣∂α
x ∂β

t (ρ, u, θ)
∣∣∣2 dxdτ. (3.3.51)

Multiplying (3.3.51) by a suitably large positive constant C4 and adding the result to
(3.3.41) yield

∑
|α|+|β|≤4

∫
R3

∫
R3

|∂α
x ∂β

t (f−M)|2
M

dξdx +
∑

|α|+|β|≤4

∫
R3

∣∣∣∂α
x ∂β

t

(
ρ − ρ, u, θ − θ

)∣∣∣2 dx

+
∑

|α|+|β|≤4

∫ t

0

∫
R3

∫
R3

νM(ξ)|∂α
x ∂β

t PM
1 f|2

M
dξdxdτ

+
∑

1≤|α|+|β|≤4

∫ t

0

∫
R3

∣∣∣∂α
x ∂β

t (ρ, u, θ)
∣∣∣2 dxdτ

≤ O(1)E(f0)
2. (3.3.52)
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This closes the a priori assumption (3.3.15) provided that we choose δ0 > 0 sufficiently small
such that { E(f0) < δ0,

O(1)δ2
0 < ε2.

(3.3.53)

The above analysis yields the following energy estimates for the solution f(t, x, ξ) of the
Boltzmann equation with initial data f0(x, ξ).

Lemma 3.3.8 (Energy estimates) Assume that f(t, x, ξ) ∈ H4
x,ξ([0, T ]) is a solution of

the Cauchy problem (3.2.1) and (2.3) for some constant T > 0. Then there exist two suffi-
ciently small positive constants ε, δ0 such that if E(f0) < δ0, we have

N(T ) < ε. (3.3.54)

By combining Lemma 3.3.8 and the local existence theorem, the global existence theorem
can be stated as follows.

Theorem 3.3.9 Let N ≥ 4 be an integer and M(ξ) be any given global Maxwellian, then
there exist two sufficiently small positive constants δ0 and ε such that if

E(f0) ≡
∑

|α|+|β|≤N

∫
R3

∫
R3

∣∣∣∂α
x ∂β

t (f0(x, ξ) − M(ξ))
∣∣∣2

M
dξdx < δ0, (3.3.55)

the Cauchy problem (3.2.1) and (2.3) admits a unique global classical solution f(t, x, ξ) ∈
HN

x,ξ(R
+) satisfying f(t, x, ξ) ≥ 0 and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
|α|+|β|≤N

sup
t∈R+

∫
R3

∫
R3

|∂α
x ∂β

t (f(t,x,ξ)−M(ξ))|2
M

dξdx ≤ ε,

lim
t→∞

sup
x∈R3

∑
|α|+|β|≤N−3

∫
R3

|∂α
x ∂β

t (f(t,x,ξ)−M(ξ))|2
M(ξ)

dξ = 0.

(3.3.56)

3.4 Stability of Wave Patterns

Through the Hilbert and Chapman-Enskog expansions or the decomposition, it is clear that
the Boltzmann equation has close relation to the systems of fluid dynamics, such as the Euler
and Navier-Stokes equations. For these systems of fluid dynamics, it is well known that the
solution contains three basic wave patterns. Hence, it is natural to study the corresponding
wave phenomena in the solutions to the Boltzmann equation. For this purpose, we will first
review some basic concepts in the fluid dynamics, especially the systems of conservation laws.

The study of hyperbolic conservation laws in the form of

Ut + F (U)x = 0, (3.4.1)
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has a long history and the earliest mathematical work can be traced back to Euler in 1755 on
the study of acoustic waves. And the pioneer nonlinear formulation on the fluid dynamics was
done by Riemann through the consideration of two stationary gases separated by a membrane
when the membrane was suddenly removed. This fundamental work born the name of the
Riemann problem is so essential that it plays an important role on the existence and stability
theories. As a typical example of hyperbolic conservation laws, the system of compressible
Euler equations has three basic wave patterns in the solution to the Riemann problem. They
are two nonlinear waves, called shock and rarefaction waves, and one linearly degenerate wave
called contact discontinuity. These dilation invariant solutions and their linear superposition
in the increasing order of characteristic speeds, called Riemann solutions, govern both the
local and large time asymptotic behavior of general solutions to the Euler system. Since the
inviscid system is an idealization when the dissipative effects are neglected, thus it is of great
importance to study the large time asymptotic behavior of solutions to the corresponding
viscous systems in the form of

Ut + F (U)x = (B(U)Ux)x, (3.4.2)

toward the viscous versions of these basic wave patterns. As a basic system for the viscous
fluid, the compressible Navier-Stokes equations which include the effects of viscosity and heat
conductivity, have the above wave phenomena which are smoothed out by the dissipative
effect. Furthermore, coming from statistics physics for rarefied gas, the Boltzmann equation
which describes the macroscopic and microscopic aspects in the non-equilibrium gas motion,
has similar wave phenomena in the macroscopic level.

In this section, the stability of the above three wave patterns for the Boltzmann equation
will be illustrated. It is worthy to pointing out that even though the stability of each wave
pattern is now well understood, the stability of the wave pattern to the Riemann problem
consisting of these basic wave patterns is still not known. It is somehow due to the differences
in the analytic techniques used for different wave patterns and the different properties of the
basic wave patterns in terms of monotonicity and decay rates. Notice also that these three
wave patterns are the basic components in the wave patterns for general systems (3.4.1) and
(3.4.2).

In the level of the compressible Navier-Stokes equations, there have been intensive studies
in the respect of wave phenomena in the development of the mathematical theory for viscous
systems of conservation laws since 1980’s, started with studies on the nonlinear stability of
viscous shock profiles. Deeper understanding has been achieved on the asymptotic stability
toward nonlinear waves, viscous shock profiles and viscous rarefaction waves; and the linearly
degenerate wave, contact discontinuities. They are shown to be nonlinearly stable with quite
general perturbations for the compressible Navier-Stokes system and more general system of
viscous strictly hyperbolic conservation laws (3.4.2). Moreover, some new phenomena have
been discovered and new techniques, such as weighted characteristic energy methods and
uniform approximate Green’s functions, have been developed based on the intrinsic properties
of the underlying wave patterns. Precisely, when the solution to the corresponding Riemann
problem of the compressible Euler equations consists of only shock waves, the smooth solution
profile to the compressible Navier-Stokes equations is the so called shock profile satisfying a
system of differential equations with two given end states. Since shock wave is a compression
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wave, the monotone decreasing property of the characteristic speed in the shock profile plays
a crucial role in the stability analysis. In different settings, the nonlinear stability of the
shock profiles with smallness assumption on its wave strength has also been established.

When the solution to the corresponding Riemann problem consists of only rarefaction
waves, the corresponding nonlinear stability results are also obtained in different settings.
Notice that the rarefaction wave is an expansion wave and the monotone increasing property
of the characteristics is also crucially used in the stability analysis. In particular, the stability
of strong rarefaction wave can be studied. Moreover, it shows that, for the general gas, a
global stability result holds for the non-isentropic ideal polytropic gas provided that the
adiabatic exponent γ is close to 1. Furthermore, for the isentropic compressible Navier-
Stokes equations, the corresponding global stability result holds provided that the resulting
compressible Euler equations is strictly hyperbolic and both characteristic fields are genuinely
nonlinear. Here, global stability means that the initial perturbation can be large. Since it
does not require the strength of the rarefaction waves to be small, these results give the
nonlinear stability of strong rarefaction waves for the one-dimensional compressible Navier-
Stokes equations.

The problem of stability of contact discontinuities is more subtle because of its degeneracy.
The contact waves for the systems of viscous conservation laws with uniform viscosity was
shown to be metastabe. Moreover, the point wise asymptotic behavior toward viscous contact
wave by approximate fundamental solutions leads to the nonlinear stability of the viscous
contact wave in Lp-norms for all p ≥ 1.

For the compressible Navier-Stokes equations, the nonlinear stability of a viscous contact
wave to the free boundary value problem was proved in the sup-norm and then to the Cauchy
problem with zero excessive mass condition which excludes the possible presence of diffusion
waves in the sound wave families. The rigorous mathematical proof of the stability of contact
wave for general perturbation was obtained recently which gives a satisfactory answer to the
stability of this linearly degenerate wave.

Notice also that for the contact wave, a convergence rate of the order of (1 + t)−
1
4 in sup-

norm is by-product of the stability analysis. However, there is no convergence rates obtained
so far for the two nonlinear wave, i.e., shock and rarefaction wave.

Based on the knowledge on the Navier-Stokes equations, the stability of wave patterns
for the Boltzmann equation can be studied accordingly.

For the Boltzmann equation with a non-trivial solution profile connecting two different
global Maxwellians at x = ±∞, it is reasonable and better to decompose the Boltzmann
equation and its solution with respect to the local Maxwellian. As presented in the last
section, the governing system for the fluid components is of fluid-type so that the techniques
for the compressible Navier-Stokes equations can be applied with some extra terms coming
from the non- fluid component. Moreover, the dissipative effect of the linearized operator
on the non-fluid component helps to close the energy estimate for the Boltzmann equation.
Similar to the compressible Navier-Stokes equations, the dissipative effect in the Boltzmann
equation also spreads out the basic wave patterns so that the energy method can be applied.
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3.4.1 Basic Wave Patterns

In this subsection, we first review some concepts and definitions of basic wave patterns to the
system of fluid dynamics, that is, the systems of Euler equations and Navier-Stokes equations.

To have the picture of basic wave patterns, one can consider the Riemann problem for
the one dimensional compressible Euler equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + px = 0,

(
e +

u2

2

)
t

+ (up)x = 0,

(3.4.3)

with Riemann data

(
v, u, e +

u2

2

)
(0, x) =

(
vr
0, u

r
0, e

r
0 +

(ur
0)

2

2

)
(x) =

⎧⎪⎨
⎪⎩
(
v−, u−, e− +

u2
−
2

)
, x < 0,

(
v+, u+, e+ +

u2
+

2

)
, x > 0.

(3.4.4)

For simplicity of presentation and the consistency with the Botlzmann equation for
monatomic gas, the gas is assumed to be ideal and polytropic so that the pressure p and
the internal energy e have the following constitutive relation:

p(v, θ) =
Rθ

v
= Av−γ exp

(
γ − 1

r
s

)
, e(v, θ) =

Rθ

γ − 1
, (3.4.5)

where R > 0 is the gas constant, γ > 1 the adiabatic exponent and A a positive constant.
In thermodynamics, by giving any two of the five thermodynamic variables, v, p, e, θ, and s,
the remaining three are determined.

Denote the conserved quantities by

m(t, x) =

(
v, u, θ +

γ − 1

2R
u2

)t

. (3.4.6)

By finding the eigenvalues of the Jacobi matrix of the flux function with respect to the
conservative quantities, the characteristic speeds of the Euler equations are

λ1 = −
√

γp

v
, λ2 = 0, λ3 =

√
γp

v
, (3.4.7)

with the corresponding right eigenvectors

r2(m) =

⎛
⎝ R

0
p

⎞
⎠ , ri(m) =

⎛
⎝ −1

λi
(γ−1)p

R
+ (γ−1)u

R
λi

⎞
⎠ , i = 1, 3. (3.4.8)
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The first and third characteristic fields are genuinely nonlinear which give rise to rar-
efaction and shock waves, while the second characteristic field is linear degenerate which
gives rise to contact discontinuities. We will assume in the following that the solution
mr(t, x) of the above Riemann problem consists of only one single type of waves. More
precisely, we assume that m− and m+ can be connected either by a contact discontinuity,
i.e., m+ ∈ CD(m−) = {m ∈ R3 : p = p−, u = u−}; or by one 1−rarefaction wave and one
3−rarefaction wave, i.e., there exists a unique m ∈ R

3 such that m+ ∈ R1(m−) ∪ R3(m),
where

R1(m−) =

{
m ∈ R

3 : s = s−, u −
∫ v√

−pv(z, s−)dz = u− −
∫ v−√

−pv(z, s−)dz, v ≤ v−

}
,

and

R3(m) =

{
m ∈ R

3 : s = s, u +

∫ v√
−pv(z, s−)dz = u +

∫ v√
−pv(z, s−)dz, v ≥ v

}
;

or by one 1−shock wave and one 3−shock wave, i.e., there exists a unique m ∈ R3 such that
m+ ∈ S1(m−) ∪ S3(m), where

S1(m−) =

⎧⎪⎪⎨
⎪⎪⎩m ∈ R

3

∣∣∣∣∣∣∣∣
σ(m−, m)[v] = −[u], σ[u] = [p]

σ(m−, m)
[
e + u2

2

]
= [up]

λ1(m) < σ(m−, m) < λ1(m−)

⎫⎪⎪⎬
⎪⎪⎭ ,

and

S3(m) =

⎧⎪⎪⎨
⎪⎪⎩m ∈ R

3

∣∣∣∣∣∣∣∣
σ(m, m+)[v] = −[u], σ(m, m+)[u] = [p]

σ(m, m+)
[
e + u2

2

]
= [up]

λ3(m) < σ(m, m+) < λ3(m)

⎫⎪⎪⎬
⎪⎪⎭ .

Corresponding to the above three cases, we simply write the Riemann solution mr(t, x) to
(3.4.3) and (3.4.4) as mCD(t, x), mR(t, x) = mR1(t, x) + mR3(t, x) − m, and mS(t, x) =
mS1(t, x) + mS3(t, x) − m respectively. It is worthy to pointing out that to guarantee the
solvability of the Riemann problem (3.4.3) and (3.4.4), |m+ − m−| is not necessary to be
small.

In the Navier-Stokes level, the dissipation from the viscosity and heat conductivity spread
out the discontinuity so that the shock and contact discontinuities become smooth shock
profile and contact wave profile. Without any ambiguity, in the sequel, we sometimes still
call such waves in the Navier-Stokes or Boltzmann level as shock and contact discontinuity
to adhere to its original property in the Euler level.

The one-dimensional compressible Navier-Stokes equations in the Lagrangian coordinates
takes the form ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

vt − ux = 0,

ut + px =
(
µux

v

)
x
,(

e + u2

2

)
t
+ (up)x =

(
κθx

v
+ µuux

v

)
x
,

(3.4.9)
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where µ and κ are the coefficients of viscosity and heat-conductivity.
Now we assume that the initial data satisfy(
v, u, e +

u2

2

)
(0, x) =

(
v0, u0, e0 +

u2
0

2

)
(x) →

(
v±, u±, e± +

u2
±
2

)
as x → ±∞. (3.4.10)

Here v± > 0, e±, u± are constants. Depending on the values of these two states, the solution
profile has the above three basic wave structures as illustrated below.

For the case when m+ ∈ S1(m) ∪ S3(m), (3.4.9) admits viscous shock profiles MS1(x −
δ1(m−, m)t) and MS3(x−σ3(m, m+)t) which are unique up to a shift and satisfy MS1(−∞) =
m−, MS1(+∞) = m, MS3(−∞) = m, MS3(+∞) = m+. Here the j-th characteristic speed
λj(m) is monotone decreasing along the j-th viscous shock profile MSj (x), ie.

∂λj

(
MSj (x)

)
∂x

< 0, j = 1, 3. (3.4.11)

Notice that the above monotone property of the characteristic speeds along viscous shock
profiles is crucially used in the nonlinear stability analysis of viscous shock profiles.

Since the shock profile is orbital stable, for any constant vector (α, β) ∈ R2, the shock
profile with two shock waves of different families takes the form

MS(t, x; α, β) = MS1

(
x − σ1(m−, m)t + α

)
+ MS3

(
x − σ3(m, m+)t + β

)
− m. (3.4.12)

Both for Navier-Stokes equations and the Boltzmann equation, the rarefaction wave profile
is not defined as an exact solution, instead, it is an approximate profile with monotonicity
property. One way to construct the smooth approximate rarefaction profiles is to use the
inviscid Burgers equation for the characteristic functions. That is, when m+ ∈ R1(m−) ∪
R3(m), let wj(t, x)(j = 1, 3) be the global smooth solutions to the following Cauchy problem{

λjt + λjλjx = 0,

λj(0, x) = λj0(x) =
λj−+λj+

2
+

λj+−λj−
2

tanh(εx), j = 1, 3,
(3.4.13)

where λ1 = λ1(m−), λ1+ = λ1(m), λ3− = λ3(m), λ3+ = λ3(m+), and ε > 0 is a suitably
small but fixed constant which is introduced here to control both the possible growth of the
solution caused by the nonlinearity and the interactions of rarefaction waves from different
families.

Since λj0(x) is increasing, (3.4.13) admits a unique global smooth solution wj(t, x). By
using wj(t, x), the smooth j-th approximate rarefaction profile (V Rj (t, x), URj (t, x), SRj(t, x))
can be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SR1(t, x) = SR3(t, x) = s− = s+,

λj

(
V Rj (t, x), s−

)
= wj(t, x), j = 1, 3,

UR1(t, x) −
∫ V R1 (t,x)√−pv(z, s−)dz = u− −

∫ v−√−pv(z, s−)dz,

UR3(t, x) +

∫ V R3 (t,x)√−pv(z, s−)dz = u+ +

∫ v+√−pv(z, s−)dz.

(3.4.14)
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Then the smooth functions (V Rj (t, x), URj (t, x), SRj (t, x)) are globally well-defined and
solve the Euler equations (3.4.3) exactly. Moreover, they satisfy that the j-th character-
istic speed λj(m) is monotone increasing along the j-th approximate rarefaction profile
(V Rj (t, x), URj (t, x), SRj(t, x)), i.e.

∂λj

(
V Rj(t, x), s−

)
∂x

> 0, j = 1, 3, (3.4.15)

and

lim
t→+∞

lim
x∈R

∣∣(V Rj (t, x), URj (t, x)
)− (vRj(t, x), uRj (t, x)

)∣∣ = 0, j = 1, 3. (3.4.16)

Finally, the contact wave corresponding to the contact discontinuity can be defined as a
nonlinear diffusion wave approximately as follows. When m+ ∈ mCD(m−), the contact wave
profile (V CD(t, x), UCD(t, x), ΘCD(t, x)) can be constructed as

V CD(t, x) =
RΘ(t, x)

p+

, UCD(t, x) =
aRΘx(t, x)

p+Θ(t, x)
, ΘCD(t, x) = Θ(t, x) − γ − 1

2R

(
UCD(t, x)

)2
.

(3.4.17)

Here Θ(t, x) = Θ
(

x√
t+1

)
is the unique self-similar solution to the following diffusion equation

{
θt =

(
aθx

θ

)
x
, a = κp+(γ−1)

γR2 > 0,

θ(−∞) = θ−, θ(+∞) = θ+.

It is straightforward to check that (V CD(t, x), UCD(t, x), ΘCD(t, x)) satisfies∥∥(V CD(t, x), UCD(t, x), ΘCD(t, x)
)− (vCD(t, x), uCD(t, x), θCD(t, x)

)∥∥
Lp(R)

= O
(
κ

1
2p

)
(1 + t)

1
2p , (3.4.18)

which implies that the nonlinear diffusion wave (V CD(t, x), UCD(t, x), ΘCD(t, x)) converges
to the contact discontinuity (vCD(t, x), uCD(t, x), θCD(t, x)) to the compressible Euler equation
(3.4.3) in Lp(R) norm for each p ≥ 1 on any finite time interval as the heat conductivity
coefficient κ tends to zero.

With the above preparation, in the following subsections, we will discuss the stability of
the above three basic wave patterns to the Boltzmann equation respectively.

3.4.2 Basic Ideas in Stability Analysis

Before discussing the stability of basic wave patterns in the Boltzmann equation, we now
review some basic ideas on the stability analysis of the wave patterns in fluid dynamics by
considering the viscous Burgers equation:

ut + (
u2

2
)x = εuxx, (3.4.19)
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where u(t, x) ∈ R and ε > 0 is a constant.
Given a background solution φ(t, x) with definite sign on φx(t, x), the following simple

calculation shows that anti-derivative should be taken when the sign of φx(t, x) is negative,
cf. [92].

When φx(t, x) > 0 which corresponds to the case of rarefaction wave, set

u = φ + v.

The equation for v becomes

vt + (
v2

2
)x + (φv)x = εvxx. (3.4.20)

By assuming v vanishes at infinity, direct energy estimate yields

∫
R

v2dx +

∫ t

0

∫
R

(φxv
2 + 2εv2

x)dxdt =

∫
R

v2
0dx,

which is the lower order estimate. Here, v0 is the initial data. And the higher order estimates
follow straightforwardly for this simple example.

However, when φx(t, x) < 0 corresponding to shock wave, the above calculation does not
give any desired energy estimate. To cope with the sign of φx appropriately, one should
consider the anti-derivative of the perturbation. Since the shock wave is orbital stable, up to
a shift, we can assume ∫

R

(u − φ)dx = 0.

Then by defining V =
∫ x

−∞(u − φ)dx, the equation for V becomes

Vt + φVx +
V 2

x

2
= εVxx. (3.4.21)

Then direct calculation yields the lower order estimate∫
R

V 2dx +

∫ t

0

∫
R

(−φxV
2 + 2εV 2

x )dxdt =

∫
R

V 2
0 dx + h.o.t.,

where V0 is the initial data and h.o.t. represents the higher order terms which can be closed
by higher order estimates.

Finally, for contact wave profile, there is no definite sign of φx(t, x), the above analysis does

not apply. For this, let’s assume φ = δ1√
4π(1+t)

e−
x2

4(1+t) is a linear diffusion profile satisfying

φt = φxx,

where δ1 =
∫

R
u(0, x)dx. Then, since

∫
R
(u − φ)dx = 0, we can set V =

∫ x

−∞(u − φ)dx which
satisfies

Vt +
1

2
V 2

x + φVx +
1

2
φ2 = Vxx. (3.4.22)
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Under the a priori estimate ‖V ‖L∞
x

+ ‖Vx‖L∞
x

≤ δ2 with δ = |δ1| + δ2 << ε, we have the
following lower order estimate by direct calculation

d

dt

∫
R

V 2dx + ε

∫
R

V 2
x dx ≤ cδ(1 + t)−1

∫
R

V 2dx + cδ(1 + t)−
1
2 , (3.4.23)

where c > 0 is a generic constant. This immediately implies that the L2 norm of V satisfies
‖V ‖ ≤ cδ(1 + t)

1
4 . To close the L∞

x estimate, one can combine this with the estimate on the
derivatives. That is, by differentiating the equation for V with respect to x and multiplying
it by Vx, we have

d

dt

∫
R

V 2
x dx + ε

∫
R

V 2
xxdx ≤ cδ(1 + t)−1

∫
R

V 2
x dx + cδ(1 + t)−

3
2 . (3.4.24)

This gives ‖Vx‖ ≤ cδ(1 + t)−
1
4 . Hence, the ‖V ‖L∞

x
can be closed. In fact, a priori estimate

on the H l norm on Vx together with ‖V ‖L∞
x

can be closed by similar estimates on higher
derivatives. The convergence rate for contact wave is a by-product of the stability analysis
even though it is an almost open problem for shock wave and rarefaction wave.

3.4.3 Stability of Shock Profile

Now we come to the stability of basic wave patterns for the Botlzmann equation. Since
the wave patterns considered here are one dimensional profiles, we consider the Botlzmann
equation with slab symmetry,

ft + ξ1fx = Q(f, f), (f, t, x, ξ) ∈ R+ × R
+ × R × R

3. (3.4.25)

According to the decomposition and reformulation in Section 1.2.3, the system of conservation
laws governs the macroscopic components becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρu1)x = 0,

(ρu1)t + (ρu2
1 + p)x = 4

3

(
µ(θ)u1x

)
x
−
(∫

R3

ξ2
1Θ1dξ

)
x

,

(ρu2)t + (ρu1u2)x =
(
µ(θ)u2x

)
x
−
(∫

R3

ξ1ξ2Θ1dξ

)
x

,

(ρu3)t + (ρu1u3)x =
(
µ(θ)u3x

)
x
−
(∫

R3

ξ1ξ3Θ1dξ

)
x

,

[
ρ(1

2
|u|2 + E)

]
t
+

(
u1

(
ρ
(

1
2
|u|2 + E)+ p

))
x

=
(
κ(θ)θx

)
x

+ 4
3

(
µ(θ)u1u1x

)
x

+
3∑

i=2

(
µ(θ)uiuix

)
x
− 1

2

(∫
R3

ξ1|ξ|2Θ1dξ

)
x

.

(3.4.26)

where

Θ1 = L−1
M (Gt + P1(ξ1Gx) − Q(G,G)). (3.4.27)
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And the equation for the microscopic component is

Gt + P1(ξ1Mx) + P1(ξ1Gx) = LMG + Q(G,G). (3.4.28)

Since the problem considered here is one-dimensional, it is more convenient to use the
Lagrangian coordinates as in the study of the conservation laws. That is, consider the coor-
dinate transformation:

x ⇒
∫ x

0

ρ(y, t)dy, t ⇒ t.

We will still denote the Lagrangian coordinates by (x, t) for simplicity of notation. Then the
equations (3.4.25), (3.4.26), (3.4.27), (3.4.28) and the initial condition can be rewritten in
the Lagrangian coordinates as{

ft − u1

v
fx + ξ1

v
fx = Q(f, f),

f(0, x, ξ) = f0(x, ξ) → M[v±,u±,θ±](ξ), as x → ±∞.
(3.4.29)

Gt − u1

v
Gx +

1

v
P1(ξ1Mx) +

1

v
P1(ξ1Gx) = LMG + Q(G,G), (3.4.30)

with

G = L−1
M

(
1

v
P1(ξ1Mx)

)
+ Θ2,

and

Θ2 = L−1
M

(
Gt − u1

v
Gx +

1

v
P1(ξ1Gx) − Q(G,G)

)
, (3.4.31)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt − u1x = 0,

u1t + px = 4
3

(
µ(θ)

v
u1x

)
x
−
∫

R3

ξ2
1Θ2xdξ,

uit =
(

µ(θ)
v

uix

)
x
−
∫

R3

ξ1ξiΘ2xdξ, i = 2, 3,(
E + |u|2

2

)
t
+ (pu1)x =

(
κ(θ)

v
θx

)
x

+ 4
3

(
µ(θ)

v
u1u1x

)
x

+
3∑

i=2

(
µ(θ)

v
uiuix

)
x
−
∫

R3

1
2
ξ1|ξ|2Θ2xdξ.

(3.4.32)

When (ρ+, u+, θ+) ∈ S1(ρ−, u−, θ−) ∪ S3(ρ, u, θ), as for the compressible Navier-Stokes
equations, one first needs to construct the shock profile φ(x−st, ξ) to the Boltzmann equation
(3.4.25). It is proved in [50] that (3.4.25) admits a travelling wave solution φ1(x − σ1t, ξ)
and φ3(x−σ3t, ξ) which connect M[ρ−,u−,θ−] and M[ρ,u,θ], M[ρ,u,θ] and M[ρ+,u+,θ+] respectively.

Here σ1 = σ1(ρ−, u−, θ−; ρ, u, θ) and σ3 = σ3(ρ, u, θ; ρ+, u+, θ+).
Set

φ(t, x, ξ) = φ1(x − σ1t, ξ) + φ3(x − σ3t, ξ) − M[ρ,u,θ](ξ). (3.4.33)
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Assume that the perturbation of f0(x, ξ) around φ(0, x, ξ) has zero mass, i.e.,∫
R

∫
R3

ψi(0, x, ξ)
(
f0(x, ξ) − φ(0, x, ξ)

)
dξdx = 0, i = 0, 1, 2, 3, 4. (3.4.34)

Then it is easy to verify∫
R

∫
R3

ψi(t, x, ξ)
(
f(t, x, ξ) − φ(t, x, ξ)

)
dξdx = 0, i = 0, 1, 2, 3, 4,

so that we can introduce the anti-derivative of the macroscopic components

Wi(t, x) =

∫ x

−∞

∫
R3

ψi(t, y, ξ)
(
f(t, y, ξ)− φ(t, y, ξ)

)
dξdy, i = 0, 1, 2, 3, 4. (3.4.35)

Here, ψi(t, x, ξ)(i = 0, 1, 2, 3, 4) given by⎧⎪⎪⎨
⎪⎪⎩

ψ0(t, x, ξ) = −v2(t, x),

ψi(t, x, ξ) = v(t, x)ξi, i = 1, 2, 3,

ψ4(t, x, ξ) = 1
2
v(t, x)|ξ|2,

are the collision invariants in the Lagrangian coordinates.
To estimate the macroscopic components Wi(t, x), one can apply the techniques for the

compressible Navier-Stokes equations. Notice that the compressibility property of the viscous
shock profiles, i.e. the inequality (3.4.11) plays an essential role in the analysis. However,
the profile φ(t, x, ξ) may not have this monotonicity property. Fortunately, φ(t, x, ξ) can be
well-approximated by φNS(t, x, ξ). Here

φNS(t, x, ξ) = M[V S ,US ,ΘS ](t, x, ξ), (3.4.36)

is defined by using the shock profile for the compressible Navier-Stokes equations with the
corresponding fluid components equal to V S(t, x),

(
US(t, x), 0, 0

)
and ΘS(t, x). Recall that

the functions V S(t, x), US(t, x), and ΘS(t, x) are uniquely determined by MS(t, x; α, β) de-
fined by (3.4.12) through the relation

MS(t, x) =

(
V S(t, x), US(t, x), ΘS(t, x) +

γ − 1

2R

∣∣US(t, x)
∣∣2) .

Notice that in the present case, γ = 5
3
, R = 2

3
, A = 1

2πe
, and α = β = 0. And the

monotonicity property of the characteristic fields in the present case implies that U s
x < 0 for

x ∈ R.
With the above notations, the nonlinear stability of the Boltzmann shock profile proved

in [53] can be stated as follows.

Theorem 3.4.1 (Boltzmann shock profile) Assume that

(ρ+, u+, θ+) ∈ S1(ρ−, u−, θ−) ∪ S3(ρ, u, θ)
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and (3.4.34) is satisfied, then there exist small positive constants δ0 and ε0, a global Maxwellian
M∗ such that if |(ρ+, u+, θ+) − (ρ−, u−, θ−)| < δ0 and

4∑
i=0

‖Wi(0, x)‖H2(R) +
∑

0≤i≤2

∥∥∥∥ ∂i

∂xi

(
f0(x, ξ) − φ(0, x, ξ)

)∥∥∥∥
L2

x

“
L2

ξ

“
1√
M∗

”” ≤ ε0, (3.4.37)

then the Cauchy problem (3.4.25) admits a unique global solution f(t, x, ξ) satisfying f ≥ 0
and

lim
t→∞

sup
x∈R

∥∥∥f(t, x, ξ) − φ(t, x, ξ)
∥∥∥

L2
ξ

“
1√
M∗

” = 0. (3.4.38)

As a consequence, the positivity of the Boltzmann shock profile φ(t, x, ξ) can also be verified.

Here and in the sequel, f(ξ) ∈ L2
ξ

(
1√
M∗

)
means that f(ξ)√

M∗
∈ L2

ξ

(
R3
)
.

The proof of this theorem is based on the following a priori estimate

N(t)2 = sup
0≤τ≤t

{
4∑

i=0

‖Wi(τ, x)‖H2(R)

+

∫
R

∫
R3

(
G̃2

M∗ +
∑

|α|=1

(∂αM)2+(∂αG)2

M∗ +
∑

|α|=2

(∂αf)2

M∗

)
(τ)dξdx

}
≤ δ2

1.

where δ1 > 0 is a sufficiently small constant, and ∂α = ∂α

∂xα . Here, G̃ = G − Ḡ with

G(t, x, ξ) =

L−1
M

{
P1

»
ξ1

„
|ξ−u(t,x)|2

2θ(t,x)
Θs

x(t,x)+ξ1·Us
x

«
M(t,x)

–}
Rvθ(t,x)

.
(3.4.39)

With this a priori assumption, the following estimate can be obtained

4∑
i=0

‖Wi(t, x)‖2
H2(R) +

∫
R

∫
R3

⎛
⎝ G̃2

M∗
+
∑
|α|=1

(∂αM)2 + (∂αG)2

M∗
+
∑
|α|=2

(∂αf)2

M∗

⎞
⎠ dξdx

+

∫ t

0

∫
R

(
(−Us

x)

4∑
i=0

|Wi(t, x)|2 +

4∑
i=0

∑
1≤|α|≤2

|∂αWi(t, x)|2)dxdt

+

∫ t

0

∫
R

∫
R3

(
νM(ξ)G̃2

M∗
+
∑

1≤|α|≤2

νM(ξ)|∂αG|2
M∗

)dξdxdt

≤ c(δ2
1 + N(0)2),

which leads to the stability of the shock profile in the theorem.
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3.4.4 Stability of Rarefaction Wave

For the other two cases, unlike the Boltzmann shock profile, we use the time-asymptotic wave
patterns for the compressible Navier-Stokes equations to construct the time-asymptotic wave
patterns for the Boltzmann equation. In fact, for the case when

(ρ+, u+, θ+) ∈ R1(ρ−, u−, θ−) ∪R3(ρ, u, θ),

let V R(t, x), UR(t, x), and SR(t, x) be the functions defined by (3.4.14) and

ΘR(t, x) =
A

R
exp

(
γ − 1

R
SR(t, x)

)
(V R(t, x))−(γ−1),

and set
V (t, x) = V R(t, x), U(t, x) =

(
UR(t, x), 0, 0

)
, Θ(t, x) = ΘR(t, x).

By using the monotonic property of the characteristic fields, it is straightforward to check
that UR

x > 0 for x ∈ R which is used in the energy estimate. For the Boltzmann equation,
we have γ = 5

3
, R = 2

3
and A = 1

2πe
as in the case for shock profile. Then, define

M(t, x, ξ) = M[V R,UR,ΘR](t, x, ξ). (3.4.40)

The following result from [54] is about the stability of this rarefaction wave.

Theorem 3.4.2 (Boltzmann rarefaction wave) Assume that

(ρ+, u+, θ+) ∈ R1(ρ−, u−, θ−) ∪R3(ρ, u, θ),

and δ = |u− − u+| + |θ− − θ+| satisfying

δ < η0,
1

2
sup

(t,x)∈R+×R

ΘR(t, x) < inf
(t,x)∈R+×R

ΘR(t, x). (3.4.41)

If the initial data f0(x, ξ) is close to the local Maxwellian M defined in (3.4.40):∥∥f0(x, ξ) − M(0, x, ξ)
∥∥

H2
x

“
L2

ξ

“
1√
M∗

”” ≤ ε0, (3.4.42)

then for sufficiently small positive constants ε0 and ε, there exists a global Maxwellian M∗
such that the Cauchy problem (3.4.25) admits a unique global solution f(t, x, ξ) which for
some positive constant δ0 = O(1)(ε0 + ε) satisfies∥∥∥f(t, x, ξ) − M(t, x, ξ)

∥∥∥
H2

x

“
L2

ξ

“
1√
M∗

”” ≤ δ0. (3.4.43)

Moreover, the solution tends to the Euler rarefaction wave time asymptotically:

lim
t→∞

∥∥f(t, x, ξ) −M[vR,uR,θR]

∥∥
L∞

x

“
L2

ξ

“
1√
M∗

”” = 0. (3.4.44)
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The proof of this theorem is based on the following a priori estimate

N(t)2 = sup
0≤τ≤t

{∫
R

(v − V R, u − UR, θ − ΘR)2(τ, x)dx

+

∫
R

∫
R3

(
G̃2

M∗ +
∑

|α|=1

(∂αM)2+(∂αG)2

M∗ +
∑

|α|=2

(∂αf)2

M∗

)
(τ, x, ξ)dξdx

}
≤ δ2

1 .

(3.4.45)

Here δ1 > 0 is a suitably chosen small constant. Here, again G̃ = G − Ḡ with

G(t, x, ξ) =

L−1
M

{
P1

»
ξ1

„
|ξ−u(t,x)|2

2θ(t,x)
ΘR

x (t,x)+ξ1·UR
x

«
M(t,x)

–}
Rvθ(t,x)

.
(3.4.46)

The following energy estimate can be obtained by some technical calculations

∫
R
(v − V R, u − UR, θ − ΘR)2dx +

∫
R

∫
R3

(
G̃2

M∗ +
∑

|α|=1

(∂αM)2+(∂αG)2

M∗ +
∑

|α|=2

(∂αf)2

M∗

)
dξdx

+

∫ t

0

∫
R

(
UR

x (v − V R, u − UR, θ − ΘR)2 +
∑

1≤|β|≤2

|∂β(v − V R, u − UR, θ − ΘR)|2)dxdt

+

∫ t

0

∫
R

∫
R3

(
νM(ξ)G̃2

M∗
+
∑

1≤|α|≤2

νM(ξ)|∂αG|2
M∗

)dξdxdt

≤ c(ε
1
8 + N(0)2),

which gives the theorem.

3.4.5 Stability of Contact Wave

Finally, for the case
(ρ+, u+, θ+) ∈ CD(ρ−, u−, θ−),

we first need to define a wave profile consisting the contact wave and two diffusion waves
in the other two characteristic families so that the mass of the macroscopic components in
the initial perturbation can be uniquely distributed. Precisely, let Θ( x√

1+t
) be the unique

self-similar solution of the following nonlinear diffusion equation

Θt = (a(Θ)Θx)x, Θ(−∞, t) = θ−, Θ(+∞, t) = θ+,

where the function a(s) = 9p+k(s)
10s

> 0. Here we have used γ = 5
3
, R = 2

3
and κ = k(θ). Then

the contact wave profile defined in Section 1.4.1 gives

V CD =
2

3p+

Θ, UCD
1 =

2a(Θ)

3p+

Θx, UCD
i = 0, i = 2, 3, ΘCD = Θ − 1

2
|UCD|2.
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To introduce two diffusion waves in the sound wave families, let

A− =

⎛
⎝ 0 −1 0

−p−
v−

0 2
3v−

0 p− 0

⎞
⎠ , A+ =

⎛
⎝ 0 −1 0

−p+

v+
0 2

3v+

0 p+ 0

⎞
⎠ ,

be the Jacobians of the flux function of the corresponding Navier-Stokes equations at the

states (v−, 0, θ−) and (v+, 0, θ+) respectively. It is easy to check that λ−
1 = −

√
5p−
3v− is the first

eigenvalue of A− with r−1 = (−1, λ−
1 , p−)t being the corresponding right eigenvector. And

λ+
3 =

√
5p+

3v+
and r+

3 = (−1, λ+
3 , p+)t are those values in the third family of A+. Since r−1 ,

(v+ − v−, 0, θ+ − θ−)t and r+
3 are linearly independent in R3 by strict hyperbolicity, we have∫ ∞

−∞
(m(x, 0) − m̄(x, 0))dx = θ̄1r

−
1 + θ̄2(v+ − v−, 0, θ+ − θ−)t + θ̄3r

+
3 ,

with unique constants θ̄i, i = 1, 2, 3. Here m(x, t) and m̄(x, t) are the conserved quanti-
ties in the solution to the Boltzmann equation and the Navier-Stoke contact wave profile
(V CD, UCD, ΘCD) without the momentum in the y and z directions. The time asymptotic
wave pattern in the conserved quantities can then be defined as

m̃(x, t) = m̄(x + θ̄2, t) + θ̄1θ1r
−
1 + θ̄3θ3r

+
3 ,

where

θ1(x, t) =
1√

4π(1 + t)
e−

(x−λ−
1

(1+t))2

4(1+t) , θ3(x, t) =
1√

4π(1 + t)
e−

(x−λ+
3

(1+t))2

4(1+t) ,

satisfying θ1t + λ−
1 θ1x = θ1xx, θ3t + λ+

3 θ3x = θ3xx and
∫∞
−∞ θi(x, t)dx = 1 for i = 1, 3 and all

t ≥ 0. Thus, we have
∫∞
−∞(m(x, 0) − m̃(x, 0))dx = 0.

Let V
CD

(t, x), U
CD

(t, x) and Θ
CD

(t, x) be the corresponding fluid components in the
above time-asymptotic wave pattern. The whole time asymptotic contact wave pattern in
the fluid components can then be defined as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
V (t, x) = V

CD
(t, x),

U(t, x) =
(
U

CD
(t, x), U2(t, x), U3(t, x)

)
,

Θ(t, x) = Θ
CD

(t, x),

(3.4.47)

with ⎧⎪⎨
⎪⎩

Ui(t, x) = θi+2√
4π(t+1)

exp
(
− x2

4(t+1)

)
, i = 2, 3,

θi+2 =

∫
R

ui(0, x)dx, i = 2, 3.
(3.4.48)

The time asymptotic wave pattern for the Boltzmann equation is,

M(t, x, ξ) = M
[V

CD
,U

CD
,Θ

CD
]
(t, x, ξ), (3.4.49)
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which satisfies∫
R

∫
R3

ψi(t, x, ξ)
(
f(t, x, ξ) −M(t, x, ξ)

)
dξdx = 0, i = 0, 1, 2, 3, 4. (3.4.50)

We can then define the anti-derivatives of the fluid components

Wi(t, x) =

∫ x

−∞

∫
R3

ψi(t, y, ξ)
(
f(t, y, ξ)− M(t, y, ξ)

)
dξdy, i = 0, 1, 2, 3, 4. (3.4.51)

The following stability result from [51] is on the stability of contact discontinuity.

Theorem 3.4.3 (Boltzmann contact discontinuity) Assume that

(ρ+, u+, θ+) ∈ CD(ρ−, u−, θ−)

and let δ = |θ+ − θ−|. Then there exist two small positive constants δ0, ε0 and a global
Maxwellian M∗ = M[ρ∗,u∗,θ∗], such that if δ ≤ δ0 and the initial data f0(t, x, ξ) satisfies

4∑
i=0

∥∥∥Wi(0, x)
∥∥∥

H2(R)
+
∑

0≤i≤2

∥∥∥∥ ∂α

∂xi

(
f0(x, ξ) − M(0, x, ξ)

)∥∥∥∥
L2

x

“
L2

ξ

“
1√
M∗

”” ≤ ε0, (3.4.52)

then the Cauchy problem (3.4.14) admits a unique global solution f(t, x, ξ) satisfying∥∥∥f(t, x, ξ) −M(t, x, ξ)
∥∥∥

L∞
x

“
L2

ξ

“
1√
M∗

”” ≤ C
(
ε0 + δ

1
2
0

)
(1 + t)−

1
4 . (3.4.53)

For the contact wave, the a priori estimate can be set as:

N(T ) = sup
0≤t≤T

{ 4∑
i=0

(‖Wi‖2
L∞ + ‖Wix‖2

H2
x

)
+

∫
R

∫
R3

(
G̃2

M∗
+
∑
|α|=1

(∂αG)2

M∗
+
∑
|α|=2

(∂αf)2

M∗
)dξdx

} ≤ δ2
1. (3.4.54)

Here, G̃ = G − Ḡ with

G(t, x, ξ) =

L−1
M

{
P1

»
ξ1

„
|ξ−u(t,x)|2

2θ(t,x)
Θ

CD
x (t,x)+ξ1·UCD

x

«
M(t,x)

–}
Rvθ(t,x)

.
(3.4.55)

Under this a priori assumption, one can have the following energy estimates. Denote

A =

4∑
i=0

‖Wi‖2
H2

x
+

∫
R

∫
R3

(
G̃2

M∗
+
∑
|α|=1

(∂αG)2

M∗
+
∑
|α|=2

(∂αf)2

M∗
)dξdx,

B =
4∑

i=0

‖Wix‖2
H2

x
+

∫
R

∫
R3

(
νM(ξ)G̃2

M∗
+
∑

1≤|α|≤2

νM(ξ)(∂αG)2

M∗
)dξdx,

C =
4∑

i=0

‖Wix‖2
H1

x
+

∫
R

∫
R3

(
G̃2

M∗
+
∑
|α|=1

(∂αG)2

M∗
+
∑
|α|=2

(∂αf)2

M∗
)dξdx,

D =

4∑
i=0

‖Wixx‖2
H1

x
+

∫
R

∫
R3

(
νM(ξ)G̃2

M∗
+
∑

1≤|α|≤2

νM(ξ)(∂αG)2

M∗
)dξdx.
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Basically, the energy estimates can be written as:

At + B ≤ c(δ0 + ε2
0)(1 + t)−1A + c(δ0 + ε2

0)(1 + t)−
1
2 ,

Ct + D ≤ c(δ0 + ε2
0)(1 + t)−1C + c(δ0 + ε2

0)(1 + t)−
3
2 .

These two inequalities imply

A +

∫ t

0

Bdt ≤ c(δ0 + ε2
0)(1 + t)

1
2 ,

C ≤ c(δ0 + ε2
0)(1 + t)−

1
2 ,

which give the desired estimate in the theorem.

3.5 Discussion

Besides the results presented above, the energy method has also been applied to the study
on the Boltzmann equation in different settings. For example, a lot of work has been done on
the Boltzmann equation with forcing, such as the case with external force, Vlasov-Poisson-
Boltzmann and Vlasov-Maxwell-Boltzmann systems.

However, so far the energy method is mainly used to describe the solution behavior in the
Boltzmann equation which has counterparts in the classical fluid dynamical systems. For the
solution to the Boltzmann equation, there is an interesting and important phenomenon called
“ghost effect” which is captured by the Boltzmann equation, but not by the classical fluid
dynamical systems. So far, it is not clear even though it is very hopeful that the combination
of the analytic techniques from the Boltzmann equation and the systems of conservation laws
can also be applied to the investigation of this interesting phenomenon.

To present the ghost effect in the Boltzmann equation, we write the Boltzmann equation
in its non-dimensional form

Shft + ξ · ∇xf + F · ∇ξ · f =
1

κ
Q(f, f), (t, x, ξ) ∈ R+ × R

3 × R
3. (3.5.1)

Here F is the vector for the external force. There are two parameters Sh and k in the above
equation which are called Strouhal and Knudsen numbers respectively. Their product Sh · κ
is 2

√
π times the ratio of the mean free time to the reference time. And the non-dimensional

parameters κ and Sh ·κ not only characterize the different effects coming from the molecular
collisions, but also give the weight of the spatial and temporal derivatives with respect to the
collision operator.

In the previous sections, the relation between the Boltzmann equation and the classical
systems of fluid dynamics was presented in the Hilbert and Chapman-Enskog expansions
when Sh = 1 and κ is small. And the study on this kind of relations was raised as the
Hilbert’s sixth problem, i.e., the “Mathematical treatment of the axioms of physics ”, in his
famous lecture “Mathematical Problems” at ICM in 1900.
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On the other hand, one can also establish some mathematical theories for the phenomena
described by the Boltzmann equation where the time evolution of the macroscopic compo-
nents are not captured by the classical fluid dynamical systems. This happens, for example,
when the parameters Sh and κ as well as the macroscopic velocity are small while the density
and temperature are of the order 1, such as in the thermal creep flow. Unlike the Poiseuille
flow induced by the gradient of pressure and described by the Navier-Stokes equations, the
thermal creep flow is induced by the gradient of the wall temperature and can not be modeled
by the Navier-Stokes equations. There have been a lot of studies on this kind of phenomena
which is called the “ghost effect” in the Boltzmann equation. However, most of the previous
results are mainly built on the asymptotic expansions and numerical computations, or the
stationary linearized problems. Therefore, the time evolutionary and nonlinear problems on
this kind of phenomena provide a lot of challenging mathematical topics which have not been
well solved.

For the “ghost-effect”, since the fluid dynamic systems governing the time evolution of
the macroscopic components in the solutions are not classical, the well-posedness theory for
these systems by itself is already an interesting problem. In fact, we have found a new way
to derive these non-classical systems systematically. That is, we can use the decomposition
and new reformulation of the Boltzmann equation in Section 3.2.3 and the known and new
analytic techniques to study the limit process when κ tends to zero. In other words, the
non-classical systems for the time evolution of the leading order in the macroscopic variables
provide a good description of the solution behavior when κ is sufficiently small. Furthermore,
since most of the physical models have boundary and sometimes have external forces, one
should also investigate the effects of the boundary and the external forces on the solution
behavior.

For illustration, we now focus on the problems when the macroscopic velocity (i.e., flow
velocity) is of the order of κγ for γ > 0 such as in the case for the thermal creep flow. The
problems related to the geometry of the boundary will not be discussed here.

To give a clear presentation of the problem, let’s rewrite the Boltzmann equation under
the following scalings:

καft + ξ · ∇xf + κβ∇ξ · (Ff) =
1

κ
Q(f, f). (3.5.2)

Here α and β are positive constants and the scalings just mean that the parameter Sh is
of the order of κα and the strength of the external force is of order of κβ. Furthermore,
we assume that the solution to the Boltzmann equation has the following macroscopic and
microscopic decomposition:

f = M[ρ,κγu,θ] + κδG, (3.5.3)

for some positive constants γ and δ. Here M[ρ,κγu,θ] is the local Maxwellian and G is the
microscopic component. Moreover, the local Maxwellian M[ρ,κγu,θ] is again defined by the
five conserved quantities, that is, the mass density ρ(t, x), momentum density m(t, x) =
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κγρ(t, x)u(t, x) and energy density E(t, x) + κ2γ

2
|u(t, x)|2 given by:⎧⎪⎪⎨

⎪⎪⎩
ρ(t, x) ≡

∫
R3

f(t, x, ξ)dξ, κγρui(t, x) ≡
∫

R3

ψi(ξ)f(t, x, ξ)dξ for i = 1, 2, 3,[
ρ
(
E + κ2γ

2
|u|2
)]

(t, x) ≡
∫

R3

ψ4(ξ)f(t, x, ξ)dξ,

M ≡ M[ρ,κγu,θ](t, x, ξ) ≡ ρ(t, x)√
(2πRθ(t, x))3

exp

(
−|ξ − κγu(t, x)|2

2Rθ(t, x)

)
.

As usual, θ(t, x) is the temperature related to the internal energy E by E = 3
2
Rθ with R being

the gas constant, and κγu(t, x) is the flow velocity. Here u is the scaled flow velocity which
appears in the equations for the macroscopic variables ρ and θ.

When κ → 0, equation (3.5.3) implies that the solution converges to M[ρ,0,θ] formally.
Mathematically, the “ghost effect” means that the equations governing the time evolution of
the functions ρ and θ depend actually on the scaled velocity u even though the macroscopic
velocity tends to zero. Therefore, the resulted system of equations for these macroscopic
variables, ρ, u and θ are not given by either the classical Euler or Navier-Stokes equations.
Instead, different systems of equations arise from different settings. Even though they are
approximations, these systems provide the right description of the time evolution of the
macroscopic variables of the solutions in different physical settings. However, these systems
are not classical so that the known theories for Euler and Navier-Stokes equations can not
be applied.

Let us consider the typical case considered by Sone through Hilbert expansion, when
α = γ = δ = 1 and F ≡ 0. In this case, the system for the time evolution of the leading
terms of ρ, u and θ can be given as follows.

Firstly, we expand all the variables in the power of κ and let (ρ0, u0, θ0) be the leading
order of the variables (ρ, u, θ). (Note that the zeroth order of u here is the first order in
Sone’s description because we put a factor κ in front of u) Then formal expansion gives that
the zeroth and first order of the pressure function, denoted by p0 and p1, should be functions
of t only. And then the system for (ρ0, u0, θ0) is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0
t + ∇x · (ρ0u0) = 0,

(ρ0u0
i )t + ∇x · (ρ0u0

i u
0)

= −1
2
p2∗

xi
+ 1

2
[Γ1(θ

0)((u0
i )xj

+ (u0
j)xi

− 2
3
∇x · u0δij)]xj

+ 1
2p0 [Γ2(θ)(θ

0
xi

θ0
xj
− 1

3
|∇xθ

0|2δij ]xj
, i = 1, 2, 3,

3
2
(ρ0θ0)t + 5

2
∇x · (ρ0θ0u0) = 5

4
(Γ3(θ

0)θ0
xi

)xi
,

(3.5.4)

where

p0 = ρ0θ0, p2∗ = p2 +
2

3p0
(Γ4(θ

0)θ0
xk

)xk
,

and p2 is the second order term in the expansion for the pressure function, the summation
is over all the repeated indices. Here, all Γi(θ

0), i = 1, 2, 3, 4, are positive smooth functions,
and we do not give their explicit expressions here for brevity.
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If p2∗ is replaced by p0, the system (3.5.4) is similar to the compressible Navier-Stokes
equations even though there are some extra nonlinear terms in the momentum equation.
However, the pressure function in (3.5.4) is p2 which is not given only by ρ0 and θ0 in the
system. Instead, the system is given under the constrain that the product ρ0θ0 is a function
of t only. Usually, the function p0 is given by the boundary condition. Therefore, the well-
posedness of the above fluid dynamic system does not follow from the classical theory and
thus remains unsolved.

There is a systematic method to derive the leading order system for the macroscopic
components under the assumption (3.5.3) by using the Hilbert expansion described in Sone’s
book. However, this method does not give a clear presentation of the truncated terms which
need to be estimated in the limit process analysis. By using the macro-micro decomposition
and the reformulation introduced in Section 1.2.3, the derivation of these systems could be
more direct and useful when we study the limit process κ → 0.

For the well-posedness theory of the non-classical fluid dynamic systems, let’s use the
system (3.5.4) to explain our ideas on solving these problems. As mentioned before, the
main difficulty in solving system (3.5.4) is that the pressure function p2∗ is not given by ρ0

and θ0 through the traditional equation of state. Instead, it should be solved by using the
constrain that p0 = ρ0θ0 is a given function of t only. Notice that both ρ0 and θ0 are functions
of x and t so that the constrain that their product should be a function of t only is very strong.
One way to overcome this is to use the classical technique in the study of incompressible fluid
dynamics. That is, we set w0 = ∇x × (ρ0u0), and then derive a closed system only for w0

and θ0. Notice that when one takes “∇x×” on both sides of the momentum equation in the
system (3.5.4), the pressure term ∇xP

2∗ vanishes. In fact, the system for w0 and θ0 can be
obtained by firstly noticing that

ρ0u0 = ∆−1
x ∇x × w0 + ∆−1

x ∇x(∇x · (ρ0u0))

= ∆−1
x ∇x × w0 − ∆−1

x ∇x(
p0

t

θ0 − ρ0 θ0
t

θ0 ).
(3.5.5)

By using (3.5.5) in the momentum equation after applying ∇x×, together with the energy
equation, the system for (w0, θ0) takes the form:

w0
t = M1w

0 + E1, θ0
t = M2θ

0 + E2, (3.5.6)

where M1 and M2 are some elliptic pseudo-differential operators when ∇xθ
0 is small, and E1

and E2 are some nonlinear funtionals of (w0, θ0) and its spatial differentations together with
the operator ∆−1

x . Since the system (3.5.6) is very complicated, we will not give its explicit
expression here for brevity. It is hopeful to solve this system because the main structure
in (3.5.6) is parabolic. After solving (3.5.6), the values of ρ0 and p2∗ can be determined
accordingly. Notice that the non-classical fluid dynamic system is different for different
setting so that some other analytic techniques could be needed for other cases.

After solving the non-classical fluid dynamic systems, one can try to justify the limit
process when κ → 0. This justification can be based on the energy method to obtain the
uniform bounds on the macroscopic components (ρ, u, θ) and microscopic component G. The
enegy method is useful because the system has the dissipative structure similar to the Navier-
Stokes equation so that the techniques from the theory of conservation laws can be applied.
And the microscopic component G can be estimated through the celebrated H-theorem.



3.5. DISCUSSION 107

Finally, physical models are usually accompanied by boundaries and/or external forces.
In fact, the “ghost-effect” usually comes from the effect of the boundary, such as in the
thermal creep flow. And the effect of the external force also yields new phenomena in the
solution behavior such as bifurcation. In summary, there are a lot of interesting mathematical
problems for the non-classical fluid dynamic systems related to the “ghost-effect” of the
Boltzmann equation, especially with boundaries and/or external forces. And it will be our
next research project to establish some mathematical theories for this kind of phenomena, in
particular, for the time evolutional and nonlinear problems.
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