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Equations∗

Philippe G. CIARLET and Liliana GRATIE

Abstract

Using techniques from asymptotic analysis, the second author has recently identified equa-
tions that generalize the classical Marguerre-von Kármán equations for a nonlinearly elastic
shallow shell by allowing more realistic boundary conditions, which may change their type along
the lateral face of the shell. We first reduce these more general equations to a single “cubic”
operator equation, whose sole unknown is the vertical displacement of the shell. This equation
generalizes a cubic operator equation introduced by M. S. Berger and P. Fife for analyzing the
von Kármán equations for a nonlinearly elastic plate. We then establish the existence of a solu-
tion to this operator equation by means of a compactness method due to J. L. Lions.
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1 Introduction

Let ω be a domain in the “horizontal” plane R2, with a smooth boundary γ, and let γ1 be a
portion of γ that satisfies 0 < length γ1 < length γ. We consider a nonlinearly elastic shallow
shell with middle surface {(y, θε(y)) ∈ R3; y ∈ ω} and thickness 2ε, where θε : ω → R is a
smooth function that satisfies θε = ∂νθ

ε = 0 on γ1. The portion of the lateral face of the shell
with γ1 as its middle line is subjected to boundary conditions “of von Kármán type” of the form
proposed by Ciarlet [1980], the remaining portion of the lateral face being free.

Under the basic assumption that θε = O(ε) (this constitutes the “shallowness” assumption
as originally proposed and justified by Ciarlet & Paumier [1986]), the second author (cf. Gratie
[2002]) has shown, by means of the formal asymptotic expansion method, that the following
generalized Marguerre-von Kármán equations constitute a two-dimensional model for such a
shell:

−∂αβmαβ(∇2ξ) = [Φ, ξ + θ̃] + f in ω,

∆2Φ = −[ξ, ξ + 2θ̃] in ω,

ξ = ∂νξ = 0 on γ1,
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mαβ(∇2ξ)νανβ = 0 on γ2,

∂αmαβ(∇2ξ)νβ + ∂τ (mαβ(∇2ξ)νατβ) = 0 on γ2,

Φ = Φ0 and ∂νΦ = Φ1 on γ,

where

mαβ(∇2ξ) = −1
3

{
4λµ

λ + 2µ
∆ξδαβ + 4µ∂αβξ

}
,

[Φ, ξ] = ∂11Φ∂22ξ + ∂22Φ∂11ξ − 2∂12Φ∂12ξ.

The function f is, up to a constant factor, the resultant of the vertical forces acting on
the shell. The functions Φ0 and Φ1 are known functions of the appropriate “scaled” density
(hα) : γ1 → R2 of the resultant of the horizontal forces acting on the portion of the lateral face
of the shell with γ1 as its middle line. The unknowns ξ : ω → R and Φ : ω → R are, up to
constant factors, the vertical component of the displacement field of the middle surface of the
shell and the Airy function.

The derivation from three-dimensional elasticity of the classical Marguerre-von Kármán equa-
tions, which correspond to the special case where γ1 = γ have been justified by Ciarlet & Paumier
[1986] by means of a formal asymptotic analysis.

These classical equations have been studied from the mathematical viewpoint by many au-
thors; see, e.g., Rupprecht [1981], Kesavan & Srikanth [1983], Rao [1995a, 1995b], Paumier &
Rao [1989], Kavian & Rao [1993], Ciarlet [1997, Section 5.12], and Vorovich [1999]. Note that
these equations owe their name to Marguerre [1938] and von Kármán & Tsien [1939], who pro-
posed the two partial differential equations in ω (no mention was made of boundary conditions
in their works).

The main novelty is thus that boundary conditions that change their type along the lateral
face can be handled by the generalized Marguerre-von Kármán equations.

In Section 2, we briefly review (see Propositions 1, 2, and 3) the main steps of the derivation of
the above two-dimensional equations from the three-dimensional equations of nonlinear elasticity
that model the actual three-dimensional shell, thus shedding a useful light on the mechanical
interpretation of these equations.

In Section 3, we prove in Theorem 1 the main result of this paper, which asserts that solving
the generalized Marguerre-von Kármán equations amounts to solving a single “cubic” operator
equation. This equation generalizes an operator equation introduced by Berger[1967] and Berger
& Fife [1968] in their study of the von Kármán plates, as well as the simpler one used by Ciarlet,
Gratie & Sabu [2001] in their mathematical analysis of the generalized von Kármán equations
(corresponding to the special case θε = 0) proposed and justified by Ciarlet & Gratie [2001].

Applying as in Ciarlet, Gratie & Sabu [2001], a compactness method of J. L. Lions [1969,
p.54] to this operator equation, we then establish in Section 4 the existence of solutions to the
generalized Marguerre-von Kármán equations.

More specifically, we show in Theorem 2 that, if the domain ω is simply-connected, the
functions hα : γ1 → R satisfy natural compatibility conditions, and their norms ||hα||L2(γ1) are
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small enough, then the generalized Marguerre-von Kármán equations have at least one solution
(ξ, Φ) ∈ H2(ω) × H2(ω) in the sense of distributions.

2 The Generalized Marguerre-Von Kármán Equations

Greek indices, corresponding to the coordinates in the “horizontal” plane vary in {1, 2}, and
Latin indices in {1, 2, 3}, except if they are used for indexing sequences. The summation con-
vention with respect to repeated indices is systematically used. All the notions needed below
from three-dimensional nonlinear elasticity are detailed in, e.g., Ciarlet [1988].

Let ω be a domain in the “horizontal” plane R2 , i.e., a bounded and connected subset ω
of R2 with a sufficiently smooth boundary γ, the set ω being locally on a single side of γ. Let
γ1 and γ2 be two disjoint relatively open subsets of γ such that length γ1 > 0, length γ2 > 0,
and length (γ − {γ1 ∪ γ2}) = 0. Let y = (yα) denote a generic point in ω, and let ∂α = ∂

∂yα
and

∂αβ = ∂2

∂yα∂yβ
. Let (να) denote the unit outer normal vector along γ, let (τα) denote the unit

tangent vector along γ defined by τ1 = −ν2, τ2 = ν1, and finally, let ∂ν = να∂α and ∂τ = τα∂α the
outer normal and tangential derivative operators along γ. Consider a nonlinearly elastic shell
occupying in its reference configuration the set {Ω̂ε}−, where Ω̂ε = Θε(Ωε), Ωε = ω×] − ε, ε[,
and the mapping Θε : {Ωε}− → R3 is defined by

Θε(y, xε
3) = (y, θε(y)) + xε

3a
ε
3(y),

for all (y, xε
3) ∈ Ωε, where aε

3 is a unit normal vector to the surface Θε(ω) and θε : ω → R is
a function of class C3 that satisfies θε = ∂vθ

ε = 0 along γ1. The surface Θε(ω) is the middle
surface of the shell and 2ε is its thickness. The relation θε = ∂vθ

ε = 0 on γ1 imply that, along
each connected portion of γ1, the middle line of the lateral face of the shell is in the horizontal
plane and the lateral face is vertical.

The shell is called shallow if the function θε that describes the shape of the middle surface
of the shell in its reference configuration is of the order of the thickness of the shell, i.e., of the
order ε. This definition was first proposed by Ciarlet & Paumier [1986], when they justified the
“classical” Marguerre-von Kármán equations. They also showed that, for ε > 0 small enough,
the mapping Θε : Ωε → Θε(Ωε) is a C1-diffeomorphism.

We assume that the nonlinearly elastic material constituting the shell is a St Venant-Kirchhoff
material with Lamé constants λε > 0 and µε > 0. In particular then, the material constituting
the plate is homogeneous and isotropic, and the reference configuration Θε(Ωε) of the shell is a
natural state.

The shell is subjected to body forces of density (f̂ ε
i ) = (0, 0, f̂ ε

3 ) : Ω̂ε → R3 in its interior
Θε(Ωε); to surface forces of density (ĝε

i ) = (0, 0, ĝε
3) : Γ̂ε

+∪ Γ̂ε
− → R3 on its upper and lower faces

Γ̂ε
− := Θε(Γε

−), Γ̂ε
+ := Θε(Γε

+), where Γε
+ := ω × {+ε}, Γε

− := ω × {−ε}; and to applied surface
forces of “von Kármán’s type” on the portion Θε(γ1 × [−ε, ε]) of its lateral face, the remaining
portion Θε(γ2 × [−ε, ε]) being free.

The surface forces of von Kármán type are “horizontal” and only their resultant (ĥε
1, ĥ

ε
2, 0) :

γ̂ε
1 → R3 after integration across the thickness is given along γ̂ε

1 := Θε(γ1).
Let x̂ε = (x̂ε

i ) denote a generic point in the set {Ω̂ε}− and let ∂̂ε
i = ∂/∂x̂ε

i .
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The unknown in the three-dimensional formulation is the displacement field ûε = (ûε
i ) :

{Ω̂ε}− → R3, where the functions ûε
i : {Ω̂ε}− → R are thus its Cartesian components. The

unknown displacement field uε = (uε
i ) : Ωε → R3 then satisfies the following three-dimensional

boundary value problem:

− ∂̂ε
j (σ̂

ε
ij + σ̂ε

kj ∂̂
ε
kû

ε
i ) = f̂ ε

i in Ω̂ε,

ûε
α independent of x̂ε

3 and ûε
3 = 0 on Θε(γ1 × [−ε, ε]),

1
ε

∫ ε

−ε

{
(σ̂ε

αβ + σ̂ε
kβ ∂̂kû

ε
α) ◦Θε

}
vβdxε

3 = ĥε
α ◦Θε on γ1,

(σ̂ε
ij + σ̂ε

kj ∂̂
ε
kû

ε
i )n̂

ε
j ◦Θε = 0 on γ2 × [−ε, ε],

(σ̂ε
ij + σ̂ε

kj ∂̂
ε
kû

ε
i )n̂

ε
j ◦Θε = ĝε

i ◦Θε on Γε
+ ∪ Γε

−,

where

σ̂ε
ij := λεÊε

pp(û
ε)δij + 2µεÊε

ij(û
ε),

Êε
ij(û

ε) :=
1
2
(∂̂ε

i û
ε
j + ∂̂ε

j û
ε
i + ∂̂ε

i û
ε
m · ∂̂ε

j û
ε
m),

(n̂ε
i ) is the unit outer normal vector along the boundary of the set Ω̂ε, and (να) is the unit outer

normal vector along the boundary of the set ω.
The stresses σ̂ε

ij : {Ω̂ε}− → R are the components of the second Piola-Kirchhoff stress
tensor and the strains Êε

ij(û
ε) are the components of the Green-St Venant strain tensor. The

relations between the stresses σ̂ε
ij and the strains Êε

ij(û
ε) form the constitutive equation of the

St Venant-Kirchhoff material constituting the shallow shell.
The boundary conditions along the portion of the lateral face with γ̂ε

1 as its middle line, viz.,

ûε
α independent of x̂ε

3 and ûε
3 = 0 on Θε(γ1 × [−ε, ε])

mean that only horizontal displacements of equal direction and magnitude are allowed along
each vertical segment of the subset Θε(γ1 × [−ε, ε]) of the lateral face of the shell.

The boundary conditions on Θε(γ1 × [−ε, ε]) for the displacement field and those on γ1 for
the stress tensor field are of the form proposed by Ciarlet [1980] for justifying the well-known
von Kármán equations, which correspond to the special case where γ1 = γ and θε = 0. In the
form considered here, they have been later put to use by Ciarlet & Paumier [1986] for justifying
the “classical” Marguerre- von Kármán equations, which correspond to the special case where
γ1 = γ. Another special case where γ2 = γ, which corresponds to a nonlinearly elastic shallow
shell clamped along its entire lateral face, has also been treated in ibid.

Following a by now well-established procedure (see, e.g., Ciarlet [1997, Chaps.4 and 5]),
Gratie [2002] has then applied the method of formal asymptotic expansions to this problem,
according to the following steps:

First, the above boundary value problem is put in a variational, or weak, form. Second,
the resulting variational problem is “scaled ” over a domain that is independent of ε. More
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specifically, we let Ω = ω×] − 1, 1[, Γ+ = ω × {1}, Γ− = ω × {−1}, and with each point x ∈ Ω,
we associate the point xε ∈ Ωε through the bijection

πε : x = (y, x3) ∈ Ω → xε = (xε
i ) = (y, εx3) ∈ Ωε

.

With the displacement field ûε : {Ω̂ε}− → R3, we next associate the scaled displacement
field u(ε) = (ui(ε)) : Ω → R3 defined by means of the scalings:

ûε
α(x̂ε) = ε2uα(ε)(x), ûε

3(x̂
ε) = εu3(ε)(x), for all x̂ε = Θε(πεx) ∈ {Ω̂ε}−.

Finally, we assume that the following assumptions on the data, i.e., the Lamé constants and
the applied force densities, are satisfied:

λε = λ and µε = µ,

f̂ ε
3 (x̂ε) = ε3f3(x), for all x̂ε = Θε(πεx) ∈ Ω̂ε,

ĝε
3(x̂

ε) = ε4g3(x), for all x̂ε = Θε(πεx) ∈ Γ̂ε
+ ∪ Γ̂ε

−,

ĥε
α(ŷε) = ε2hα(y), for all ŷε = Θε(πεy) ∈ γ̂ε

1,

θε(y) = εθ(y), for all y ∈ ω,

where the functions f3 ∈ L2(Ω), g3 ∈ L2(Γ+ ∪ Γ−), hα ∈ L2(γ1), and θ ∈ C3(ω) are all inde-
pendent of ε and θ = ∂νθ = 0 along γ1. Note that the last relation above precisely defines the
shallowness of the shell.

Taking all the above relations into account thus yields a variational problem P (ε; Ω) posed
over he fixed domain Ω and satisfied by the scaled displacement field u(ε).

Third, it is assumed that u(ε) admits a formal asymptotic expansion, of the form

u(ε) = u0 + εu1 + ε2u2 + ε3u3 + ε4u4 + . . . .

The method of formal asymptotic expansions then consists in equating to zero the factors
of the successive powers of ε, arranged by increasing order, found in problem P (ε; Ω) , until the
leading term u0 of the expansion can be fully identified as the solution of an ad hoc variational
problem (to this end, the successive terms u0, u1, . . . are assumed to possess whatever smoothness
is needed). Carried out in the present situation, this method leads to the following outcome (cf.
Gratie [2002, Theorem 3]):

Proposition 1. (a) Define the space:

V (ω) := {η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω); η3 = ∂νη3 = 0 on γ1}.

Then there exists ζ = (ζi) ∈ V (ω) such that the components of the leading term u0 = (u0
i )

are of the form
u0

α = ζα − x3∂αζ3 and u0
3 = ζ3.
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(b) Define the functions:

mαβ := −1
3

{
4γµ

λ + 2µ
∆ζ3δαβ + 4µ∂αβζ3

}
∈ L2(ω),

E
0
αβ :=

1
2
{
∂αζβ + ∂βζα + ∂αζ3∂βζ3 + ∂αθ∂βζ3 + ∂βθ∂αζ3

}
∈ L2(ω),

Nαβ :=
4λµ

λ + 2µ
E

0
σσ(ζ)δαβ + 4µE

0
αβ(ζ) ∈ L2(ω),

p3 :=
∫ 1

−1
f3dx3 + g3(., +1) + g3(.,−1) ∈ L2(ω).

Then, the field ζ = (ζi) ∈ V (ω) satisfies the following variational equations:

−
∫

ω
mαβ∂αβη3dω +

∫

ω
Nαβ∂α(ζ3 + θ)∂βη3dω +

∫

ω
Nαβ∂βηαdω =

=
∫

ω
p3η3dω +

∫

γ1

hαηαdγ,

for all η = (ηi) ∈ V (ω).
Remarks. (1) It is most likely, although this claim remains to be substantiated by a proof,

that the equations obtained in Proposition 1 by means of a formal asymptotic procedure can be
rigorously justified from the equations of three-dimensional nonlinear elasticity by means of a
convergence theorem as ε → 0 based on gamma-convergence theory, in the spirit of the landmark
contributions of Le Dret & Raoult [1995] and Friesecke, Miller & James [2002a, 2002b].

(2) Similar equations can be also established in curvilinear coordinates; see Andreoiu-Banica
[1998].

The variational problem found in Proposition 1 is, at least formally, equivalent to a boundary
value problem:

Proposition 2. Assume that the boundary γ is smooth enough. Then any smooth enough
solution ζ = (ζi) of the variational problem found in Proposition 1 also satisfies the following
boundary value problem:

−∂αβmαβ − Nαβ(ζ3 + θ) = p3 in ω,

∂βNαβ = 0 in ω,

ζ3 = ∂νζ3 = 0 on γ1,

Nαβνβ = hα on γ1,

mαβνανβ = 0 on γ2,

∂αmαβ + ∂τ (mαβνατβ) = 0 on γ2,

Nαβνβ = 0 on γ2.

Note that
−∂αβmαβ =

8µ(λ + µ)
3(λ + 2µ)

∆2ζ3,
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so that the first equation may be also written as

8µ(λ + µ)
3(λ + 2µ)

∆2ζ3 − Nαβ∂αβ(ζ3 + θ) = p3 in ω.

Under the crucial assumption that the set ω is simply-connected, it is then shown that
the boundary value problem found in Proposition 2 is equivalent, within the class of smooth
solutions, to another boundary value problem, involving this time only two unknown functions
(cf. Gratie [2002, Theorem 6]).

It is henceforth assumed that the origin of R2 belongs to the boundary γ. Given any point
y ∈ γ, the arc oriented in the usual manner, joining 0 to y along the boundary γ is denoted
γ(y).

Proposition 3. Assume that the set ω is simply connected and that its boundary γ is smooth
enough. Assume that there exists a solution ζ = (ζi) of the boundary value problem found in
Proposition 2, that possesses the regularity

(ζα) ∈ H3(ω) and ζ3 ∈ H4(ω).

Then the functions h̃α ∈ L2(γ) defined by h̃α = hα on γ1 and h̃α = 0 on γ2 necessarily satisfy
the compatibility relations

∫

γ
h̃1dγ =

∫

γ
h̃2dγ =

∫

γ
(x1h̃2 − x2h̃1)dγ = 0.

Moreover, there exists a scaled Airy function Φ ∈ H4(ω), uniquely determined by the
conditions Φ(0) = ∂1Φ(0) = ∂2Φ(0) = 0, such that

N11 = ∂22Φ, N12 = N21 = −∂12Φ, N22 = ∂11Φ in ω.

Finally, the pair (ζ3, Φ) ∈ H4(ω)×H4(ω) satisfies the following scaled generalized Marguerre-
von Kármán equations:

8µ(λ + µ)
3(λ + 2µ)

∆2ζ3 = [Φ, ζ3 + θ] + p3 in ω,

∆2Φ = −µ(3λ + 2µ)
λ + µ

[ζ3, ζ3 + 2θ] in ω,

ζ3 = ∂νζ3 = 0 on γ1,

mαβνανβ = 0 on γ2,

∂αmαβνβ + ∂τ (mαβνατβ) = 0 on γ2,

Φ = Φ0 and ∂νΦ = Φ1 on γ,

where

Φ0(y) : = −y1

∫

γ(y)
h̃2dγ + y2

∫

γ(y)
h̃1dγ +

∫

γ(y)
(x1h̃2 − x2h̃1)dγ, y ∈ γ

Φ1(y) : = −ν1

∫

γ(y)
h̃2dγ + ν2

∫

γ(y)
h̃1dγ, y ∈ γ,
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and
[Φ, ξ] = ∂11Φ∂22ξ + ∂22Φ∂11ξ − 2∂12Φ∂12ξ.

Remark. Not only do the compatibility conditions satisfied by the functions h̃α, or equiva-
lently by the functions hα, have a mathematical justification, viz., insuring in particular that the
functions Φ0 and Φ1 are unambiguously defined, but they also have a mechanical interpretation,
simply expressing that the horizontal forces acting on the shell are in static equilibrium.

In order that this “scaled” boundary value problem be expressed in terms of “physical”
quantities, it remains to “de-scale” the unknowns. To this end we are naturally led, in view
of the scalings made on the unknowns of the three-dimensional problem, to define the “limit”
displacement field ζ = (ζε

i ) : ω → R3 of the middle surface of the shallow shell through the
de-scalings:

ζε
α = ε2ζα and ζε

3 = εζ3 in ω.

Together with the assumptions on the data made in Section 2, these de-scalings immediately
lead to the following corollary to Proposition 3:

Proposition 4. Let the assumptions be as in Proposition 3 and let

mε
αβ = − ε3

3

{
4λεµε

λε + 2µε
∆ζε

3δαβ + 4µε∂αβζε
3

}
,

N
ε
αβ =ε

{
4λεµε

λε + 2µε
E

0
σσ(ζε)δαβ + 4µεE

0
αβ(ζε)

}
,

E
0
αβ(ζε) =

1
2
{
∂αζε

β + ∂βζε
α + ∂αζε

3∂βζε
3 + ∂αθε∂βζε

3 + ∂βθε∂αζε
3

}
.

Then there exists an Airy function Φε ∈ H4(ω), uniquely determined by the requirements that
Φε(0) = ∂αΦε(0) = 0, such that

N
ε
11 = ε∂22Φε, N

ε
12 = N

ε
21 = −ε∂12Φε, N

ε
22 = ε∂11Φε in ω,

and the pair (ζε
3 , Φ

ε) ∈ H4(ω) × H4(ω) satisfies the following generalized Marguerre-von
Kármán equations:

8µε(λε + µε)
3(λε + 2µε)

ε3∆2ζε
3 = ε[Φε, ζε

3 + θε] + p3 in ω,

∆2Φε = −µε(3λε + 2µε)
λε + µε

[ζε
3 , ζ

ε
3 + 2θε] in ω,

ζε
3 = ∂νζ

ε
3 = 0 on γ1,

mε
αβνανβ = 0 on γ2,

(∂αmε
αβ)νβ + ∂τ (mε

αβνατβ) = 0 on γ2,

Φε = Φε
0 and ∂νΦε = Φε

1 on γ,
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where

Φε
0(y) : = −y1

∫

γ(y)
h̃ε

2dγ + y2

∫

γ(y)
h̃1dγ +

∫

γ(y)
(x1h̃

ε
2 − x2h̃

ε
1)dγ, y ∈ γ,

Φε
1(y) : = −ν1(y)

∫

γ(y)
h̃ε

2dγ + ν2(y)
∫

γ(y)
h̃ε

1dγ, y ∈ γ.

The functions mε
αβ, N

ε
αβ and E

0
αβ(ζε) are the bending moments, the stress resultants, and

the two-dimensional strains inside the shallow shell. The coefficient 8µε(λε+µε)
3(λε+2µε) ε3 of ∆2ζε

3 in the
first partial differential equation is the flexural rigidity of the shallow shell.

3 An Equivalent “Cubic” Operator Equation

Once the generalized Marguerre-von Kármán equations are derived under the assumption that
their solutions are smooth, they can be studied for their own sake, in particular regarding the
existence of less smooth solutions. The purpose of this paper is precisely to establish that they
possess such solutions. As it is evidently enough to consider the scaled generalized Marguerre-
von Kármán equations, we shall take these as our point of departure, thus benefiting from their
simpler notations.

Our first task consists in showing that finding a solution (ξ3, Φ) in the sense of distributions
to these equations amounts to solving a single “cubic” operator equation, whose single unknown
is (proportional to) the function (ξ3 + θ), the scaled Airy function Φ being then obtained by
solving a linear boundary value problem.

We recall that the given function θ ∈ C3(ω), which is used for defining the “geometry” of
the shallow shell, satisfies θ = ∂νθ = 0 on γ1 by assumption.

Theorem 1. Assume that the set ω is simply-connected and that the functions h̃α ∈ L2(γ)
defined by h̃α = hα on γ1 and h̃α = 0 on γ2 satisfy the compatibility relations

∫

γ
h̃1dγ =

∫

γ
h̃2dγ =

∫

γ
(x1h̃2 − x2h̃1)dγ = 0.

Let E := µ(3λ+2µ)
λ+µ , ξ :=

√
E ζ3, θ̃ =

√
E θ, and f :=

√
Ep3, and define the space

V (ω) := {η ∈ H2(ω); η = ∂νη = 0 on γ1}.

Then there exist a “cubic” mapping C̃ : V (ω) → V (ω) (“cubic” in the sense that C̃(αη) =
α3C̃(η) for all α ∈ R and η ∈ V (ω)), a linear mapping L̃ : V (ω) → V (ω), and an element
F̃ ∈ V (ω) (their definitions are given at the end of the proof below) such that a pair (ζ3, Φ) ∈
V (ω)×H2(ω) satisfies the scaled generalized Marguerre-von Kármán equations (cf. Proposition
3) in the sense of distributions if and only if the function

ξ̃ := (ξ + θ̃) ∈ V (ω)

satisfies the “cubic” operator equation

C̃(ξ̃) + (I − L̃)ξ̃ − F̃ = 0.
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The scaled Airy function Φ ∈ H2(ω) is then given as the unique solution in the sense of
distributions of

∆2Φ = − [ξ̃ − θ̃, ξ̃ + θ̃] in ω,

Φ =Φ0 and ∂νΦ = Φ1 on γ.

Proof. (i) For any η ∈ H2(ω), let

mαβ(∇2η) := −1
3

{
4λµ

λ + 2µ
∆ηδαβ + 4µ∂αβη

}
∈ L2(ω),

and let the functions ξ and θ̃ be defined as in the statement of the theorem. Expressed in terms
of these functions, the scaled generalized Marguerre-von Kármán equations found in Proposition
3 read:

−∂αβmαβ(∇2ξ) = [Φ, ξ + θ̃] + f in ω,

∆2Φ = −[ξ, ξ + 2θ̃] in ω,

ξ = ∂νξ = 0 on γ1,

mαβ(∇2ξ)νανβ = 0 on γ2,

∂αmαβ(∇2ξ)νβ + ∂τ (mαβ(∇2ξ)νατβ) = 0 on γ2,

Φ = Φ0 and ∂vΦ = Φ1 on γ.

Note that f ∈ L2(ω) and that the functions Φ0 and Φ1, which are defined by

Φ0(y); = −y1

∫

γ(y)
h̃2dγ + y2

∫

γ(y)
h̃1dγ +

∫

γ(y)
(x1h̃2 − x2h̃1)dγ, y ∈ γ

Φ1(y); = −ν1

∫

γ(y)
h̃2dγ + ν2

∫

γ(y)
h̃1dγ, y ∈ γ,

respectively belong to the spaces H
3
2 (γ) and H

1
2 (γ) (the compatibility relations satisfied by

the functions hα and the simple-connectedness of ω play a crucial rôle here; cf. Ciarlet [1997,
Theorem 5.6-1] for details).

(ii) Let χ̃ ∈ H2(ω) denote the unique solution in the sense of distributions of

∆2χ̃ = [θ̃, θ̃] in ω,

χ̃ = Φ0 and ∂νχ̃ = Φ1 on γ.

Let F ∈ V (ω) denote the unique solution in the sense of distributions of

−∂αβmαβ(∇2F ) = f in ω,

F = ∂νF = 0 on γ1,

mαβ(∇2F )νανβ = 0 on γ2,

∂αmαβ(∇2F )νβ + ∂τ (mαβ(∇2F )νατβ) = 0 on γ2.
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Let the bilinear mapping B : H2(ω) × H2(ω) → H2
0 (ω) be defined as follows: For each pair

(ξ, η) ∈ H2(ω) × H2(ω), the function B(ξ, η) ∈ H2
0 (ω) is the unique solution in the sense of

distributions of

∆2B(ξ, η) = [ξ, η] in ω,

B(ξ, η) = ∂νB(ξ, η) = 0 on γ.

Finally, let the bilinear mapping B̃ : H2(ω)×H2(ω) → V (ω) be defined as follows: For each
pair (Φ, ξ) ∈ H2(ω)×H2(ω), the function ς := B̃(ξ, η) ∈ V (ω) is defined as the unique solution
in the sense of distributions of

−∂αβmαβ(∇2ς) = [Φ, ξ] in ω,

ς = ∂νς = 0 on γ1,

mαβ(∇2ς)νανβ = 0 on γ2,

∂αmαβ(∇2ς)νβ + ∂τ (mαβ(∇2ς)νατβ) = 0 on γ2.

On the one hand, the definition of the function χ̃ and that of the mapping B imply that the
equations

∆2Φ = −[ξ, ξ + 2θ̃] in ω,

Φ = Φ0 and ∂νΦ = Φ1 on γ,

which are part of the scaled generalized Marguerre-von Kármán equations, are equivalent to the
operator equation (viewed as an equality in the space H2(ω)):

Φ = −B(ξ̃, ξ̃) + χ̃.

On the other hand, the definition of the function F and that of the mapping B̃ imply that
the remaining equations in the scaled generalized Marguerre-von Kármán equations, viz.,

−∂αβmαβ(∇2ξ) = [Φ, ξ̃] + f in ω,

ξ = ∂νξ = 0 on γ1,

mαβ(∇2ξ)νανβ = 0 on γ2,

∂αmαβ(∇2ξ)νβ + ∂τ (mαβ(∇2ξ)νατβ) = 0 on γ2,

are equivalent to the operator equation (viewed as an equality in the space V (ω)):

ξ̃ − (θ̃ + F ) = B̃(Φ, ξ̃).

Eliminating Φ between these two operator equations yields the single operator equation
(viewed as an equality in the space V (ω)):

B̃(B(ξ̃, ξ̃), ξ̃) + ξ̃ − B̃(χ̃, ξ̃) − (θ̃ + F ) = 0.

12



This equation thus takes the announced form, with the cubic mapping C̃ : V (ω) → V (ω), the
linear mapping L̃ : V (ω) → V (ω), and the element F̃ ∈ V (ω) being defined by:

C̃(η) := B̃(B(η, η), η), for all η ∈ V (ω),

L̃η := B̃(χ̃, η), for all η ∈ V (ω),

F̃ := θ̃ + F.

Since the cubic operator C̃ : V (ω) → V (ω) does not depend on the function θ̃, it coincides with
the operator found when θ̃ = 0, i.e., the situation where the shell is a plate. As a result, a
noticeable outcome of Theorem 1 is that the vertical displacement of the shell when measured
from the horizontal plane, viz., ξε

3+θε = εE− 1
2

(
ξ+θ̃

)
according to Section 2, satisfies an operator

equation that has the same structure as that found for a generalized von Kármán plate.

4 Existence Theory

Our second task consists in establishing the existence of solutions to the generalized Marguerre-
von Kármán equations, by making use of the operator equation found in Theorem1.

Theorem 2. Let the assumptions be as in Theorem 1. If the norms ‖ hα ‖L2(γ1) are small
enough, the generalized Marguerre-von Kármán equations have at least one solution (ξ, Φ) ∈
V (ω) × H2(ω) in the sense of distributions.

Proof. By Theorem 1, it suffices to establish that the cubic operator found in ibid. has at
least one solution ξ̃ ∈ V (ω). Accordingly, we first assemble in parts (i) to (iv) relevant properties
of the mappings B, B̃, L̃, and C̃ introduced in the proof of Theorem 1, before addressing the
existence theory proper in part (v).

(i) The bilinear mapping B : H2(ω)×H2(ω) → H2
0 (ω) is sequentially compact (and hence a

fortiori continuous), in the sense that (weak convergence is denoted ⇀):
(
ξn, ηn

)
⇀

(
ξ, η

)
in H2(ω) × H2(ω) =⇒ B

(
ξn, ηn

)
→ B

(
ξ, η

)
in H2

0 (ω).
For a proof, see e.g. Ciarlet & Rabier [1980, Section 2.2] or Ciarlet [1997, Theorem 5.8-2].

(ii) The definition of the bilinear mapping B̃ : H2(ω) × H2(ω) → V (ω) shows that it is
continuous and it satisfies

((B̃(Φ, ξ), η)) =
∫

ω
[Φ, ξ]ηdω for all (Φ, ξ, η) ∈ H2(ω) × H2(ω) × V (ω),

where for any (ξ, η) ∈ H2(ω) × H2(ω), we let

((ξ, η)) := −
∫

ω
mαβ(52ξ)∂αβηdω =

1
3

∫

ω

{
4λµ

λ + 2µ
∆ξ∆η + 4µ∂αβξ∂αβη

}
dω.

13



Note that the space V (ω) will be henceforth considered as equipped with this inner product,
which makes it a Hilbert space since its associated norm, denoted ‖ . ‖, is equivalent to the
norm ‖ . ‖H2(ω) over V (ω).

(iii) The definition of the mapping B̃ and that of the function χ̃ together imply the continuity
of the linear mapping L̃ : V (ω) → V (ω) and the existence of a constant c0 > 0 such that

‖ L̃ ‖L(V (ω))6 c0

∑

α

‖ hα ‖L2(γ1) .

(iv) The cubic mapping C̃ : V (ω) → V (ω) satisfies:

((C̃(η), η)) ≥ 0 for all η ∈ V (ω).

To see this, we first note that the definitions of the mappings B̃ and C̃ imply that, for all
η ∈ V (ω),

((C̃(η), η)) = ((B̃(B(η, η), η), η)) =
∫

ω
[B(η, η), η]ηdω.

Noting that B(η, η) ∈ H2
0 (ω) (by definition of the mapping B), we also have (see Ciarlet [1997,

Theorem 5.8-2]),
∫

ω
[B(η, η), η]ηdω =

∫

ω
B(η, η)[η, η]dω.

Hence (again by definition of B),

((C̃(η), η)) =‖ ∆B(η, η) ‖2
L2(ω)≥ 0 for all η ∈ V (ω).

(v) Proceeding as in Ciarlet, Gratie & Sabu [2001], we next adapt an elegant compactness
method, due to J. L. Lions [1969, Chapter 1, Section 4.3]. Let wi, i ≥ 1, denote an orthonormal
basis in the Hilbert space V (ω) and let V m denote for each integer m ≥ 1, the subspace of V (ω)
spanned by the functions wi, 1 ≤ i ≤ m.

For each m ≥ 1, we define the mapping Jm : Rm → V m by letting

Jm(X) :=
m∑

j=1

Xjwj ∈ V m for all X = (Xj)m
j=1 ∈ Rm.

Let X · Y and |X| denote the Euclidean inner product of X, Y ∈ Rm and norm of X ∈ Rm.
Finally, we define for each m ≥ 1, a mapping

Φm =
(
Φm

i

)m

i=1
: Rm → Rm

by letting, for all X ∈ Rm,

Φm
i (X) := ((C̃(Jm(X)) + (I − L̃)(Jm(X)) − F̃ , wi)), 1 ≤ i ≤ m.
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Then the properties established in (iii) and (iv) imply that, for all X ∈ Rm and all m ≥ 1,

Φm(X) · X =((C̃(Jm(X)) + (I − L̃)(Jm(X)) − F̃ , Jm(X)))

≥ (1− ‖ L̃ ‖L(V (ω)))|X|2− ‖ F̃ ‖ |X|

≥ (1 − c0

∑

α

‖ hα ‖L2(γ1))|X|2− ‖ F̃ ‖ |X|.

Assume henceforth that
∑

α

‖ hα ‖L2(γ1)< c−1
0 and let

M := (1 − c0

∑

α

‖ hα ‖L2(γ1))
−1 ‖ F̃ ‖,

so that

Φm(X) · X ≥ 0 for all X ∈ Rm that satisfy |X| = M.

Then a corollary of the Brouwer fixed point theorem (see, e.g., Lions [1969, Chapter 1, Lemma
4.3]) applied to each continuous mapping Φm : Rm → Rm shows that, for each m ≥ 1, there
exists Xm ∈ Rm such that

|Xm| ≤ M and Φm(X)m = 0.

Equivalently, there exists for each m ≥ 1 a function ξm := Jm(Xm) ∈ V m such that

‖ ξm ‖≤ M and ((C̃(ξm) + (I − L̃)ξm − F̃ , η)) = 0, for all η ∈ V m(ω).

Therefore there exist a subsequence
(
ξn

)∞

n=1
of the sequence

(
ξm

)∞

m=1
and an element ξ̃ ∈ V (ω)

such that

ξn ⇀ ξ̃ in V (ω).

Given any η ∈ V (ω), there exist functions ηn ∈ V n such that

ηn → η ∈ V (ω),

so that
((C̃(ξn) + (I − L̃)ξn − F̃ , ηn)) = 0, for all n ≥ 1.

By definition of the cubic mapping C̃ and by (ii), we know that

((C̃(ξn), ηn)) =
∫

ω

[
B(ξn, ξn), ξn

]
ηndω,

and by (i), we know that B
(
ξn, ξn

)
→ B(ξ, ξ) in H2

0 (ω). Hence we infer that

((C̃(ξn), ηn)) → ((C̃(ξ̃), η)),
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since H2(ω) is continuously imbedded in C0(ω̄). The linear mapping L̃ : V (ω) → V (ω) being
also continuous with respect to the weak topology of H2(ω) , we also infer that

((L̃ξn, ηn)) → ((L̃ξ̃, η)).

Passing to the limit as n → ∞, we have thus shown that

((C̃(ξ̃) + (I − L̃)ξ̃ − F̃ , η)) = 0, for all η ∈ V (ω).

Hence ξ̃ is a solution to the cubic operator equation and the proof is complete.

A characteristic of the operator equation is the “loss of strict positivity” incurred by its cubic
part, since the relation

((C̃(η), η)) =
∫

ω
B(η, η)[η, η]dω =‖ ∆B(η, η) ‖2

L2(ω)≥ 0 for all η ∈ V (ω),

established in part (iv) of the above proof, shows that there exist (easily constructed) nonzero
functions η ∈ V (ω) that satisfy [η, η] = 0 in ω when lengthγ2 > 0. By contrast, ((C̃(η), η)) > 0
for all η ∈ V (ω) = H2

0 (ω) when γ2 = φ(see Ciarlet [1997, Theorem5.8-2]). This observation thus
precludes the recourse to the topological degree as in Goeleven, Nguyen & Théra [1993] or to
pseudo-monotone operators as in Gratie [2000], for solving the operator equation.

Another feature of this equation is that, in general, the linear mapping L̃ ∈ L(V (ω)) is not
symmetric with respect to the inner product ((.,.)), since the number

((L̃ξ, η)) = ((B̃(χ̃, ξ), η)) =
∫

ω
[χ̃, ξ]ηdω

is not necessarily equal to
∫
ω[χ̃, η]ξdω for arbitrary functions ξ, η ∈ V (ω) (such an equality holds

if at least one of the three functions χ̃, ξ, η is in the space H2
0 (ω), a condition not satisfied here;

see Ciarlet [1997, Theorem5.8-2]). This second observation prevents the usage of an associated
functional as a means to obtain a solution to the operator equation as that of a minimization
problem (as in the case γ2 = φ; see Ciarlet & Rabier [1980] or Ciarlet [1997, Theorem 5.8-3]).
Interestingly, the cubic term poses no problem in this respect, since it is easily verified that, for
arbitrary functions ξ, η ∈ V (ω), the Gâteaux derivative j′(ξ)η of the functional j : V (ω) → R
defined by j(η) := 1

4((C̃(η), η)) is indeed equal to ((C̃(ξ), η)).
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equations de Marguerre-von Kármán, C.R.Acad. Sci. Paris, Sér.I, 317, 1137-1142 (1993).

[10] Ciarlet, P.G.: Mathematical Elasticity, Vol.II: Theory of Plates, North-Holland, Amster-
dam, 1997.

[11] Vorovich, I.I.: Nonlinear Theory of Shallow Shells, Applied Mathematical Sciences, Vol.133,
Springer-Verlag, New York, 1999.

[12] Marguerre, K.: Zur Theorie der gekrummten Platte grosser Formanderung, in Proceedings,
Fifth International Congress for Applied Mechanics, 93-101, (1938).
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energy Gamma limit of nonlinear elasticity, C. R. Acad. Sci. Paris, Ser.I, 335, 201-206
(2002b).
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