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Abstract. Let Ω be a bounded Lipschitz domain in Rn. The Cauchy-
Green, or metric, tensor field associated with a deformation of the set
Ω, i.e., a smooth enough orientation-preserving mapping Θ : Ω → Rn,
is the n× n symmetric matrix field defined by ∇ΘT (x)∇Θ(x) at each
point x ∈ Ω. We show that, under appropriate assumptions, the defor-
mations depend continuously on their Cauchy-Green tensors, the topolo-
gies being those of the spaces H1(Ω) for the deformations and L1(Ω) for
the Cauchy-Green tensors. When n = 3 and Ω is viewed as a reference
configuration of an elastic body, this result has potential applications to
nonlinear three-dimensional elasticity, since the stored energy function
of an hyperelastic material depends on the deformation gradient field
∇Θ through the Cauchy-Green tensor.

1. Introduction

Let Ω be a bounded and connected subset of R3, and let B be an elastic
body with Ω as its reference configuration. Thanks mostly to the land-
mark existence theory of Ball [3], it is now customary in nonlinear three-
dimensional elasticity to view any mapping Θ ∈ H1(Ω;R3) that is almost-
everywhere injective and satisfies det∇Θ > 0 a.e. in Ω as a possible de-

formation of B when B is subjected to ad hoc applied forces and boundary
conditions. The almost-everywhere injectivity ofΘ (understood in the sense
of Ciarlet & Nečas [12]) and the restriction on the sign of det∇Θ mathe-
matically express (in an arguably weak way) the non-interpenetrability and
orientation-preserving conditions that any physically realistic deformation
should satisfy.

Let Sn designate the set of all symmetric matrices of order n. The Cauchy-
Green tensor field ∇ΘT∇Θ ∈ L1(Ω; S3) associated with a deformation Θ ∈
H1(Ω;R3) plays a major rôle in the modeling of three-dimensional nonlinear
elasticity, since the response function of a frame-indifferent elastic material,
or the stored energy function of a frame-indifferent hyperelastic material,
necessarily depends on the deformation gradient ∇Θ through the Cauchy-
Green tensor (for details, see, e.g., Ciarlet [4, Chapters 3 and 4]).

Conceivably, an alternative approach to the existence theory in three-
dimensional elasticity could thus regard the Cauchy-Green tensor as the

primary unknown, instead of the deformation itself as is usually the case.
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This observation, already made by Antman [2], is one of the reasons un-
derlying the present study, the other being differential geometry per se. As
such, it is a continuation of the works initiated in Ciarlet & Laurent [7] and
Ciarlet & Mardare [9]. Note that a similar study, this time motivated by
nonlinear shell theory and accordingly carried out for surfaces in R3 has
been also undertaken in Ciarlet [5] and then extended in Ciarlet & Mardare
[10].

Clearly, the Cauchy-Green tensors depend continuously on the deforma-

tions, since Cauchy-Schwarz inequality immediately shows that the mapping

Θ ∈ H1(Ω;R3)→ ∇ΘT∇Θ ∈ L1(Ω; S3)
is continuous (irrespectively of whether the mappings Θ are almost-every-
where injective and orientation-preserving).

The purpose of this paper is to show that, under appropriate smoothness
and orientation-preserving assumptions, the converse holds, i.e., the defor-

mations depend continuously on their Cauchy-Green tensors, the topologies

being those of the same spaces H1(Ω;R3) and L1(Ω; S3) (by contrast with the
orientation-preserving condition, the issue of non-interpenetrability turns
out to be irrelevant to our subsequent developments). In fact, we shall di-
rectly establish this continuity result in an arbitrary dimension n, at no
extra cost in its proof. For convenience, we shall continue to call Cauchy-
Green tensor field the matrix field ∇ΦT∇Φ ∈ L1(Ω; Sn) associated with
any mapping Θ ∈ H1(Ω;Rn) and we shall likewise say that a mapping
Φ ∈ H1(Ω;Rn) is orientation-preserving if it satisfies det∇Φ > 0 a.e. in
Ω. Note that the Cauchy-Green tensor is simply the extension to a Sobolev
space setting of the familiar metric tensor of a manifold in classical differ-
ential geometry.

This continuity result is itself a simple consequence of a key inequality,
which constitutes the main result of this paper (see Theorem 1): Let Ω be
a bounded and connected open subset of Rn with a Lipschitz-continuous
boundary and let Θ ∈ C1(Ω;Rn) be a mapping satisfying det∇Θ > 0 in Ω.
Then there exists a constant C(Θ) with the following property: For each
orientation-preserving mapping Φ ∈ H1(Ω;Rn), there exist a n×n rotation
R = R(Φ,Θ) (i.e., an orthogonal matrix with a determinant equal to one)
and a vector b = b(Φ,Θ) in Rn such that

‖Φ− (b + RΘ)‖H1(Ω;Rn) ≤ C(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

.

That a rotation R and a vector b should appear in the left-hand side
of such an inequality is the least one could expect, in light of the classical
rigidity theorem. This well-known result (for a proof, see, e.g., Ciarlet &

Larsonneur [6, Theorem 3]) asserts that, if two mappings Θ̃ ∈ C1(Ω;Rn) and

Θ ∈ C1(Ω;Rn) satisfying det∇Θ̃ > 0 and det∇Θ > 0 in an open connected
subset Ω of Rn have the same Cauchy-Green tensor field, then there exist

a vector b in Rn and a n × n rotation R such that Θ̃(x) = b + RΘ(x) for

all x ∈ Ω (the converse clearly holds). In other words, Θ̃ = J ◦Θ, where
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the mapping J is an isometry of Rn; for this reason, the mappings Θ̃ and
Θ are said to be isometrically equivalent.

More generally, we shall say that two orientation-preserving mappings

Θ̃ ∈ H1(Ω;Rn) and Θ ∈ H1(Ω;Rn) are isometrically equivalent if there
exist a vector b in Rn and a n× n rotation such that

Θ̃(x) = b + RΘ(x) for almost all x ∈ Ω.

One application of the key inequality of Theorem 1 is the following sequen-
tial continuity property (in the same spirit, the same inequality can be also re-
cast as one involving distances; see Theorem 2): LetΘk ∈ H1(Ω;Rn), k ≥ 1,
and Θ ∈ C1(Ω;Rn) be orientation-preserving mappings. Then there exist

a constant C(Θ) and orientation-preserving mappings Θ̃
k
∈ H1(Ω;Rn),

k ≥ 1, that are isometrically equivalent to Θk such that

‖Θ̃
k
−Θ‖H1(Ω;Rn) ≤ C(Θ)‖(∇Θk)T∇Θk −∇ΘT∇Θ‖

1/2
L1(Ω;Sn)

.

Hence the sequence (Θ̃
k
)∞k=1 converges to Θ in H1(Ω;Rn) as k →∞ if the

sequence ((∇Θk)T∇Θk)∞k=1 converges to ∇ΘT∇Θ in L1(Ω; Sn) as k →∞.

Should the Cauchy-Green strain tensor be viewed as the primary unknown
(as suggested above), such a sequential continuity could thus prove to be
useful when considering infimizing sequences of the total energy, in particular
for handling the part of the energy that takes into account the applied forces
and the boundary conditions, which are both naturally expressed in terms
of the deformation itself.

The key inequality is first established in the special case where Θ is the
identity mapping of the set Ω (see Lemmas 1 and 2), by making use in
particular of a fundamental “geometric rigidity lemma” recently proved by
Friesecke, James & Müller [13]. It is then extended to an arbitrary mapping
Θ ∈ C1(Ω,Rn) satisfying det∇Θ > 0 in Ω (see Lemmas 3 to 7), thanks in
particular to a methodology already used by Ciarlet & Laurent [7] for es-
tablishing the continuity of (equivalence classes of isometrically equivalent)
mappings in the space C3(Ω;Rn) as functions of their Cauchy-Green ten-
sor in the space C2(Ω; Sn), both spaces being equipped with their standard
Fréchet topologies. Note that, in the same spirit but by means of a different
approach, the local Lipschitz-continuity of (equivalence classes of isometri-
cally equivalent) mappings in the Banach space C3(Ω;Rn) as functions of
their Cauchy-Green tensor in the Banach space C2(Ω; Sn) has been recently
established by Ciarlet & Mardare [9].

Such results are to be compared with the earlier, pioneering estimates of
John [15, 16] and Kohn [17], which implied continuity at rigid body defor-

mations, i.e., at a mapping Θ that is isometrically equivalent to the identity
mapping of Ω. The recent and noteworthy result of Reshetnyak [19] for
quasi-isometric mappings is in a sense complementary to the one obtained
here (it also deals with Sobolev type norms) and is thus particularly relevant
to the present study.
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The results of this paper were announced in Ciarlet & Mardare [11].

2. Notations and other preliminaries

All spaces, matrices, etc., are real. The symbols Mn, Sn, Sn>, and On
+

respectively designate the sets of all square matrices of order n, of all sym-
metric matrices of order n, of all positive-definite symmetric matrices of
order n, and of all orthogonal matrices Q of order n with detQ = 1. A
matrix Q ∈ On

+ will be called a rotation.
The Euclidean norm of a vector b ∈ Rn is denoted |b| and |A| := sup

|b|=1
|Ab|

denotes the spectral norm of a matrix A ∈ Mn. The Euclidean and spectral
norms are invariant under rotations, in the sense that |b| = |Qb| and |A| =
|QA| = |AQ| for all rotations Q ∈ On

+.
The restriction of a mapping f to a set U is denoted f|U . The identity

mapping of a set X is denoted idX .
Let Ω be an open subset of Rn. Given any matrix-valued mapping F ∈

L2(Ω;Mn), we let

‖F ‖L2(Ω;Mn) :=

{∫

Ω
|F (x)|2dx

}1/2
,

and, given any vector-valued mapping Θ ∈ H1(Ω;Rn), we let

‖Θ‖H1(Ω;Rn) :=

{∫

Ω

(
|Θ(x)|2 + |∇Θ(x)|2

)
dx

}1/2
,

where ∇Θ(x) ∈ Mn denotes the gradient matrix of the mapping Θ at x.
These norms are thus also invariant under rotations in Rn, in the sense
that ‖F ‖L2(Ω;Mn) = ‖QF ‖L2(Ω;Mn) = ‖FQ‖L2(Ω;Mn) and ‖Θ‖H1(Ω;Rn) =
‖QΘ‖H1(Ω;Rn) for all rotations Q ∈ On

+.

In this paper, the space C1(Ω;Rn) is defined as that consisting of all
vector-valued functions Θ ∈ C1(Ω;Rn) that, together with their partial
derivatives of the first order, possess continuous extentions to the closure
Ω of Ω, and the definition of a bounded open set with a Lipschitz-continuous

boundary is the usual one, as found for instance in Nečas [18], Adams [1], or
Grisvard [14].

3. A key inequality

The following theorem is the main result of this paper.

Theorem 1. Let Ω be a bounded connected open subset of Rn with a Lipschitz-

continuous boundary. Given any mappingΘ ∈ C1(Ω;Rn) satisfying det∇Θ >
0 in Ω, there exists a constant C(Θ) with the following property: Given any

mapping Φ ∈ H1(Ω;Rn) satisfying det∇Φ > 0 a.e. in Ω, there exist a

vector b = b(Φ,Θ) ∈ Rn and a rotation R = R(Φ,Θ) ∈ On
+ such that

‖Φ−(b+RΘ)‖H1(Ω;Rn) ≤ C(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

. ¤
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The proof of Theorem 1, which for clarity is broken into those of seven
lemmas, essentially aims at demonstrating the existence of a constant c(Θ)
and a rotation R = R(Φ,Θ) ∈ On

+ such that

‖∇Φ−R∇Θ‖L2(Ω;Mn) ≤ c(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

,

the proof of such an “intermediary inequality” occupying Lemmas 1 to 6.
In what follows, many constants, vectors, matrices, etc., will explicitly

display dependences on sets such as Ω, on mappings such as Φ, Θ, etc., but
in order to avoid lengthy formulas, only the dependences that are crucial to
the argument will be displayed, however. Thus for instance, the dependence
on the set Ω does not appear in the constant C(Θ) of Theorem 1, but the
same dependence is explicit in the constant Λ(Ω) of Lemma 2 because it
plays a key rôle in the proof of Lemma 3, etc.

To begin with, we establish a simple, yet crucial, result about matrices.

Lemma 1. Let a matrix F ∈ Mn be such that detF > 0. Then

dist(F ,On
+) := inf

Q∈On
+

|F −Q| ≤ |F TF − I|1/2.

Proof. It is known that

dist(F ,On
+) = |(F

TF )1/2 − I|.

Let 0 < v1 ≤ v2 ≤ ... ≤ vn denote the singular values of the matrix F . Then

|(F TF )1/2 − I| = max{|v1 − 1|, |vn − 1|}

≤ max{|v21 − 1|1/2, |v2n − 1|1/2} = |F TF − I|1/2.

¤

Thanks to Lemma 1 and to a fundamental “geometric rigidity lemma”,
due to G. Friesecke, R.D. James and S. Müller, it is an easy matter to show
that the “intermediary inequality” already holds in the special case where
Θ = idΩ.

Lemma 2. Let Ω be a bounded connected open subset of Rn with a Lipschitz-

continuous boundary. Then there exists a constant Λ(Ω) with the following

property: Given any mapping Φ ∈ H1(Ω;Rn) satisfying det∇Φ > 0 a.e. in

Ω, there exists a rotation R = R(Φ) ∈ On
+ such that

‖∇Φ−R‖L2(Ω;Mn) ≤ Λ(Ω)‖∇ΦT∇Φ− I‖
1/2
L1(Ω;Sn)

.

Proof. By the “geometric rigidity lemma” of Friesecke, James & Müller [13,
Theorem 3.1], there exists a constant Λ(Ω) depending only on the set Ω with
the following property: For each Φ ∈ H1(Ω;Rn), there exists a rotation
R = R(Φ) ∈ On

+ such that

‖∇Φ−R‖L2(Ω;Mn) ≤ Λ(Ω)‖dist(∇Φ,On
+)‖L2(Ω).
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If in addition the mapping Φ ∈ H1(Ω;Rn) satisfies det∇Φ > 0 a.e. in
Ω, then Lemma 1 implies that

dist(∇Φ(x),On
+) ≤ |∇Φ(x)

T∇Φ(x)− I|1/2

for almost all x ∈ Ω. Hence

‖dist(∇Φ,On
+)‖L2(Ω) ≤ ‖∇Φ

T∇Φ− I‖
1/2
L1(Ω;Sn)

.

¤

To proceed from the identity mapping to a “general” mapping Θ, we now
follow a pattern inspired by that proposed in Ciarlet & Laurent [7, Lemma
2.2], although the technical details are for the most part different. To begin
with, we consider the case where the mapping Θ is injective in Ω.

Lemma 3. Let Ω be a bounded connected open subset of Rn with a Lipschitz-

continuous boundary. Given any injective mapping Θ ∈ C1(Ω;Rn) satisfying

det∇Θ > 0 in Ω, there exists a constant Ĉ(Θ) with the following property:

Given any mapping Φ ∈ H1(Ω;Rn) satisfying det∇Φ > 0 a.e. in Ω, there
exists a rotation R = R(Φ,Θ) ∈ On

+ such that

‖∇Φ−R∇Θ‖L2(Ω;Mn) ≤ Ĉ(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

.

Proof. Since the boundary of Ω is Lipschitz-continuous, any mapping Θ in
the space C1(Ω;Rn) as defined in Sect. 2 can be extended to a mappingΘ[ in
the space C1(Rn;Rn) (for a proof, see, e.g., Ciarlet & Mardare [9, Theorem
4.2], where this property is derived from the extension theorem of Whitney
[20] combined with ad hoc Taylor formulas along paths). Moreover, since
det∇Θ > 0 in Ω and Ω is bounded, there exists a connected open subset
Ω] containing Ω such that the restriction Θ] ∈ C1(Ω];Rn) to Ω] of such an

extension Θ[ satisfies det∇Θ] > 0 in Ω].
Consequently, the set Ω̂ := Θ(Ω) is also a bounded connected open subset

of Rn whose boundary Θ(∂Ω) = Θ](∂Ω) is Lipschitz-continuous. Besides,

the inverse mapping Θ̂ : {Ω̂}− → Ω of Θ belongs to the space C1({Ω̂}−;Rn)

(the notation {Ω̂}− designates the closure of the set Ω̂), since each point of

the boundary of Ω̂ possesses a neighborhood N̂ over which Θ]
|
N̂
is invertible

and Θ̂|
N̂∩{Ω̂}−

= (Θ]
|
N̂
)−1|

N̂∩{Ω̂}−
.

Given any mapping Φ ∈ H1(Ω;Rn), the composite mapping Φ̂ := Φ ◦ Θ̂

belongs to the space H1(Ω̂;Rn) since the bijection Θ : Ω → {Ω̂}− is bi-
Lipschitzian. Moreover,

∇̂Φ̂(x̂) = ∇Φ(x)∇̂Θ̂(x̂) = ∇Φ(x)∇Θ(x)−1

for almost all x̂ = Θ(x) ∈ Ω̂, the notation ∇̂ indicating that differentiation

is performed with respect to the variable x̂. Hence det ∇̂Φ̂ > 0 a.e. in Ω̂ if
in addition det∇Φ > 0 a.e. in Ω.

By Lemma 2, there exists a constant c0(Θ) := Λ(Ω̂) with the following
property: Given any mapping Φ ∈ H1(Ω;Rn) satisfying det∇Φ > 0 a.e.
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in Ω, there exists a rotation R = R(Φ,Θ) ∈ On
+ such that the mapping

Φ̂ = Φ ◦ Θ̂ satisfies

‖∇̂Φ̂−R‖
L2(Ω̂;Mn)

≤ c0(Θ)‖∇̂Φ̂
T
∇̂Φ̂− I‖

1/2

L1(Ω̂;Sn)
.

The injectivity of the mapping Θ ∈ C1(Ω;Rn) and the relation det∇Θ >
0 in Ω together imply that

‖∇̂Φ̂−R‖2
L2(Ω̂;Mn)

=

∫

Ω̂
|∇̂Φ̂(x̂)−R|2dx̂

=

∫

Ω
|∇Φ(x)∇Θ(x)−1 −R|2 det∇Θ(x)dx

≥

∫

Ω
|∇Φ(x)−R∇Θ(x)|2|∇Θ(x)|−2 det∇Θ(x)dx

≥ c1(Θ)‖∇Φ−R∇Θ‖2L2(Ω;Mn),

where c1(Θ) := inf
x∈Ω
{|∇Θ(x)|−2 det∇Θ(x)} > 0. Likewise,

‖∇̂Φ̂
T
∇̂Φ̂− I‖

L1(Ω̂;Sn)
=

∫

Ω̂
|∇̂Φ̂(x̂)T ∇̂Φ̂(x̂)− I|dx̂

=

∫

Ω
|∇Θ(x)−T

(
∇Φ(x)T∇Φ(x)−∇Θ(x)T∇Θ(x)

)
∇Θ(x)−1| det∇Θ(x)dx

≤ c2(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖L1(Ω;Sn),

where c2(Θ) := sup
x∈Ω

{|∇Θ(x)−T ||∇Θ(x)−1| det∇Θ(x)} < ∞. The an-

nounced inequality thus holds with Ĉ(Θ) := c0(Θ)c1(Θ)−1/2c2(Θ)1/2. ¤

In view of establishing the “intermediate inequality” in the general case,
we first prove two technical results, which make up Lemmas 4 and 5.

Lemma 4. Let Ω be a bounded connected open subset of Rn with a Lipschitz-

continuous boundary. Given any mapping Θ ∈ C1(Ω;Rn) satisfying det∇Θ

> 0 in Ω, there exist finitely many connected open subsets Vj = Vj(Θ),
1 ≤ j ≤ N , of Ω, each with a Lipschitz-continuous boundary, such that

Ω = ∪Nj=1Vj and such that, for each 1 ≤ k ≤ N , the set ∪kj=1Vj is connected

and the restriction of Θ to V k is injective.

Proof. Given any point x ∈ Ω, there exists by the inverse mapping theorem
an open ball V (x) centered at x such that V (x) ⊂ Ω and the restriction of

Θ to V (x) is injective. Each such open set V (x) is thus connected and has
a Lipschitz-continuous boundary.

It was established in the proof of Lemma 3 that there exists a connected
open set Ω] containing Ω and an extension Θ] ∈ C1(Ω];Rn) of Θ from Ω
to Ω] that satisfies det∇Θ] > 0 in Ω]. Hence, given any point x ∈ ∂Ω,
there exists, again by the inverse mapping theorem, but applied this time
to the extension Θ], an open ball B(x) ⊂ Ω] centered at x such that the
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restriction of Θ] to B(x) is injective. The assumption that the boundary
of Ω is Lipschitz-continuous furthermore implies that there exist a local
Cartesian frame centered at x, with basis vectors bi, 1 ≤ i ≤ n, and local
coordinates y′ = (y1, ..., yn−1) and yn, constants α > 0 and β > 0, and a
Lipschitz-continuous mapping ϕ : {y′ ∈ Rn−1; |y′| < α} → R, such that

W (x) := {
n∑

i=1

yibi; |y
′| < α, |yn| < β} ⊂ B(x),

Ω ∩W (x) = {(y′, yn) ∈ Rn; |y′| < α,−β < yn < ϕ(y′)}.

In addition, it is easily seen that each open set V (x) := W (x)∩Ω is connected
and has a Lipschitz-continuous boundary.

Since the set Ω is compact, there exist finitely many points xj ∈ Ω,
1 ≤ j ≤M , and xj ∈ ∂Ω, M + 1 ≤ j ≤ N , such that

Ω ⊂ Ω ⊂
{
∪Mj=1V (xj)

}
∪
{
∪Nj=M+1W (xj)

}
.

Consequently,

Ω =
{
∪Mj=1(V (xj) ∩ Ω)

}
∪
{
∪Nj=M+1(W (xj) ∩ Ω)

}
= ∪Nj=1V (xj),

where each open subset V (xj) of Ω is connected, has a Lipschitz-continuous

boundary, and is such that the restriction of Θ to V (xj) is injective.
A simple recursion argument then shows that there exists a bijection σ

from the set {1, 2, ..., n} onto itself such that, for each 1 ≤ k ≤ N , the

set ∪kj=1V (xσ(j)) is connected. The assertion then follows by letting Vj :=
V (xσ(j)), 1 ≤ j ≤ N . ¤

Lemma 5. Let U be a bounded open subset of Rn. Then, given any mapping

Θ ∈ C1(U ;Rn) satisfying det∇Θ > 0 in U and given any open subset ω of

U , there exists a constant C̃(ω,Θ) with the following property: Given any

mapping Φ ∈ H1(U ;Rn), there exists a rotation Q = Q(Φ|ω ,Θ|ω) ∈ On
+

such that

‖∇Φ−Q∇Θ‖L2(U ;Mn) ≤ C̃(ω,Θ)‖∇Φ−R∇Θ‖L2(U ;Mn) for all R ∈ On
+.

Proof. Given any mapping Φ ∈ H1(U ;Rn), define the matrix M = M(Φ|ω ,
Θ|ω) ∈ Mn by

M :=
1∫

ω det∇Θdx

∫

ω
∇Φ(∇Θ)−1 det∇Θdx,

and let Q = Q(Φ|ω ,Θ|ω) ∈ On
+ by any rotation that satisfies

|M −Q| = dist(M ,On
+).
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Then, for any rotation R ∈ On
+,

|M −R| ≤
1∫

ω det∇Θdx

∫

ω
|∇Φ(∇Θ)−1 −R| det∇Θdx

≤
1∫

ω det∇Θdx

∫

ω
|∇Φ−R∇Θ||(∇Θ)−1| det∇Θdx

≤
‖(∇Θ)−1 det∇Θ‖L2(ω;Mn)

‖ det∇Θ‖L1(ω)
‖∇Φ−R∇Θ‖L2(ω;Mn),

and consequently,

‖∇Φ−Q∇Θ‖L2(U ;Mn) ≤ ‖∇Φ−R∇Θ‖L2(U ;Mn) + |R−Q|‖∇Θ‖L2(U ;Mn)

≤ ‖∇Φ−R∇Θ‖L2(U ;Mn) + (|M −R|+ |M −Q|)‖∇Θ‖L2(U ;Mn)

≤ ‖∇Φ−R∇Θ‖L2(U ;Mn) + 2|M −R|‖∇Θ‖L2(U ;Mn)

≤ C̃(ω,Θ)‖∇Φ−R∇Θ‖L2(U ;Mn),

with

C̃(ω,Θ) := 1 + 2
‖(∇Θ)−1 det∇Θ‖L2(ω;Mn)‖∇Θ‖L2(U ;Mn)

‖ det∇Θ‖L1(ω)
.

¤

Lemma 5 thus shows that, even though the rotation Q is determined
by the knowledge of the mappings Θ and Φ solely on the subset ω of U ,
it is “almost as good as” any rotation R that would minimise the norm
‖∇Φ−R∇Θ‖L2(U ;Mn), in the sense that Q satisfies

C̃(ω,Θ)−1‖∇Φ−Q∇Θ‖L2(U ;Mn) ≤ inf
R∈On

+

‖∇Φ−R∇Θ‖L2(U ;Mn)

≤ ‖∇Φ−Q∇Θ‖L2(U ;Mn).

We are now in a position to establish the “intermediary inequality” in the
general case, i.e., without assuming that the mapping Θ is injective on Ω.

Lemma 6. Let Ω be a bounded open connected open subset of Rn with a

Lipschitz-continuous boundary. Given any mapping Θ ∈ C1(Ω;Rn) satis-

fying det∇Θ > 0 in Ω, there exists a constant c(Θ) with the following

property: Given any mapping Φ ∈ H1(Ω;Rn) satisfying det∇Φ > 0 a.e. in

Ω, there exists a rotation R = R(Φ,Θ) ∈ On
+ such that

‖∇Φ−R∇Θ‖L2(Ω;Mn) ≤ c(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

.

Proof. The connected open subsets Vj = Vj(Θ), 1 ≤ j ≤ N of Ω being those
constructed in Lemma 4, let

Uk := ∪kj=1Vj , Θk := Θ|
Uk

, Φk := Φ|Uk
, 1 ≤ k ≤ N.



10 PHILIPPE G. CIARLET AND CRISTINEL MARDARE

By Lemma 3 applied to the set U1, there exist a constant Ĉ1(Θ) and a
rotation R1 = R1(Φ,Θ) ∈ On

+ such that

‖∇Φ1 −R1∇Θ1‖L2(U1;Mn) ≤ Ĉ1(Θ)‖∇ΦT
1∇Φ1 −∇ΘT

1∇Θ1‖
1/2
L1(U1;Sn)

.

Assume more generally that, for some 1 ≤ k < N , there exist a constant

Ĉk(Θ) and a rotation Rk = Rk(Φ,Θ) ∈ On
+ such that

‖∇Φk −Rk∇Θk‖L2(Uk;Mn) ≤ Ĉk(Θ)‖∇ΦT
k ∇Φk −∇ΘT

k ∇Θk‖
1/2
L1(Uk;Sn)

.

By Lemma 5 applied to the subset

ωk := Uk ∩ Vk+1

of the set Uk, there exists a constant C̃k(Θ) and a rotation Qk = Qk(Φ|ωk
,

Θ|ωk
) ∈ On

+ such that

‖∇Φk −Qk∇Θk‖L2(Uk;Mn) ≤ C̃k(Θ)‖∇Φk −Rk∇Θk‖L2(Uk;Mn).

Therefore,

‖∇Φk −Qk∇Θk‖L2(Uk;Mn)

≤ Ĉk(Θ)C̃k(Θ)‖∇ΦT
k ∇Φk −∇ΘT

k ∇Θk‖
1/2
L1(Uk;Sn)

.

Let

Θ̃k+1 := Θ|V k+1
and Φ̃k+1 := Φ|Vk+1

.

By Lemma 3 applied to the set Vk+1, there exists a constant Ĉ ′k(Θ) and a

rotation R̃k+1 = R̃k+1(Φ,Θ) ∈ On
+ such that

‖∇Φ̃k+1 − R̃k+1∇Θ̃k+1‖L2(Vk+1;Mn)

≤ Ĉ ′k(Θ)‖∇Φ̃
T

k+1∇Φ̃k+1 −∇Θ̃
T

k+1∇Θ̃k+1‖
1/2
L1(Vk+1;Sn)

.

By Lemma 5 applied to the set ωk, now viewed as a subset of the set

Vk+1, there exists a constant C̃ ′k(Θ) such that

‖∇Φ̃k+1 −Qk∇Θ̃k+1‖L2(Vk+1;Mn)

≤ C̃ ′k(Θ)‖∇Φ̃k+1 − R̃k+1∇Θ̃k+1‖L2(Vk+1;Mn),

where the rotation Qk is the same as before, since it only depends on the
restrictions Φ|ωk

and Θ|ωk
. Consequently,

‖∇Φ̃k+1 −Qk∇Θ̃k+1‖L2(Vk+1;Mn)

≤ Ĉ ′k(Θ)C̃ ′k(Θ)‖∇Φ̃
T

k+1∇Φ̃k+1 −∇Θ̃
T

k+1∇Θ̃k+1‖
1/2
L1(Vk+1;Sn)

.
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Combining the above inequalities, we thus obtain

‖∇Φk+1 −Qk∇Θk+1‖L2(Uk+1;Mn)

≤ ‖∇Φk −Qk∇Θk‖L2(Uk;Mn) + ‖∇Φ̃k+1 −Qk∇Θ̃k+1‖L2(Vk+1;Mn)

≤ Ĉk(Θ)C̃k(Θ)‖∇ΦT
k ∇Φk −∇ΘT

k ∇Θk‖
1/2
L1(Uk;Sn)

+ Ĉ ′k(Θ)C̃ ′k(Θ)‖∇Φ̃
T

k+1∇Φ̃k+1 −∇Θ̃
T

k+1∇Θ̃k+1‖
1/2
L1(Vk+1;Sn)

.

Hence the constant Ĉk+1(Θ) := (Ĉk(Θ)C̃k(Θ) + Ĉ ′k(Θ)C̃ ′k(Θ)) and the
rotation Rk+1 = Rk+1(Φ,Θ) := Qk(Φ|ωk

,Θ|ωk
) ∈ On

+ satisfy

‖∇Φk+1 −Rk+1∇Θk+1‖L2(Uk+1;Mn)

≤ Ĉk+1(Θ)‖∇ΦT
k+1∇Φk+1 −∇ΘT

k+1∇Θk+1‖
1/2
L1(Uk+1;Sn)

.

A recursion argument thus shows that the announced property holds with

c(Θ) := ĈN (Θ) and R(Φ,Θ) := RN (Φ,Θ).

¤

The next lemma concludes the proof of Theorem 1.

Lemma 7. Let the assumptions on the set Ω and the mapping Θ be as in

Lemma 6. Then there exists a constant C(Θ) with the following property:

Given any mapping Φ ∈ H1(Ω;Rn) satisfying det∇Φ > 0 a.e. in Ω, there
exist a vector b = b(Φ,Θ) ∈ Rn and a rotation R = R(Φ,Θ) ∈ On

+ such

that

‖Φ− (b + RΘ)‖H1(Ω;Rn) ≤ C(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

.

Proof. Let there be given any mapping Φ ∈ H1(Ω;Rn) satisfying det∇Φ >
0 a.e. in Ω. By Lemma 6, there exists a rotation R = R(Φ,Θ) ∈ On

+ such
that

‖∇Φ−R∇Θ‖L2(Ω;Mn) ≤ c(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

.

Let the vector b = b(Φ,Θ) ∈ Rn be defined by

b :=

(∫

Ω
dx

)−1 ∫

Ω
(Φ−RΘ)dx.

By the generalized Poincaré inequality, there exists a constant d such that,
for all Ψ ∈ H1(Ω;Rn),

‖Ψ‖H1(Ω;Rn) ≤ d

(
‖∇Ψ‖L2(Ω;Mn) +

∣∣∣∣
∫

Ω
Ψdx

∣∣∣∣
)
.

Applying this inequality to the mapping Ψ := Φ − (b + RΘ) yields the
desired conclusion, with C(Θ) := dc(Θ). ¤
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4. The key inequality revisited

Define the set

H1
+(Ω;Rn) := {Φ ∈ H1(Ω;Rn); det∇Φ > 0 a.e. in Ω}

and the quotient set

Ḣ1
+(Ω;Rn) := H1

+(Ω;Rn)/R,

where (Φ,Θ) ∈ R means that there exist a vector b ∈ Rn and a rotation
R ∈ On

+ such that

Φ(x) = b + RΘ(x) for almost all x ∈ Ω.

The equivalence class of Θ ∈ H1
+(Ω;Rn) modulo R will be denoted Θ̇.

Two mappingsΦ ∈ H1
+(Ω;Rn) andΘ ∈ H1

+(Ω;Rn) satisfying (Φ,Θ) ∈ R
are thus isometrically equivalent, according to the definition given in the In-
troduction. Note that, while isometrically equivalent mappings clearly share
the same Cauchy-Green tensor, the converse does not hold for mappings in
the space H1

+(Ω;Rn). This was pointed out to us by Hervé Le Dret and
one of the referees, who provided similar counter-exemples (consider, e.g.,
Ω = {x = (x1, x2) ∈ R2; |x| < 1}, Φ(x) = (x1x

2
2, x2), and Θ(x) = Φ(x) if

x2 ≥ 0 and Θ(x) = −Φ(x) if x2 < 0). The converse does hold, however,
if one of the mappings is in C1(Ω;Rn); see Ciarlet & Mardare [8, Theorem
2.1].

The question thus remains to find minimal assumptions on mappings
from Ω into Rn guaranteeing that they are isometrically equivalent if they
share the same Cauchy-Green tensor. In this respect, the set of orientation-
preserving mappings in C1(Ω;Rn) is “too small”, while the set H1

+(Ω;Rn) is
“too big”.

Thanks to the invariance of the norm ‖ · ‖H1(Ω;Rn) under rotations, it is

easily verified that the mapping d1,Ω : Ḣ1
+(Ω;Rn)×Ḣ1

+(Ω;Rn)→ Rn
+ defined

by
d1,Ω(Φ̇, Θ̇) := inf{

b ∈ Rn

R ∈ On
+

‖Φ− (b + RΘ)‖H1+(Ω;Rn)

is a distance on the quotient set Ḣ1
+(Ω;Rn). The key inequality of Theorem

1 can then be recast as one involving distances in metric spaces (one of them
a Banach space).

Theorem 2. Let Ω be a bounded connected open subset of Rn with a Lipschitz-

continuous boundary. Given any mappingΘ ∈ C1(Ω;Rn) satisfying det∇Θ >
0 in Ω, there exists a constant C(Θ) with the following property: For any

equivalence class Φ̇ ∈ Ḣ1(Ω;Rn),

d1,Ω(Φ̇, Θ̇) ≤ C(Θ)‖∇ΦT∇Φ−∇ΘT∇Θ‖
1/2
L1(Ω;Sn)

.
¤

Naturally, the sequential continuity property mentionned in the Introduc-
tion can also be recoved from the inequality of Theorem 2.



CONTINUITY OF A DEFORMATION 13

5. Concluding remarks

As stated in the introduction, the continuity result established in this
paper has potential applications to differential geometry and to three-di-
mensional nonlinear elasticity. From the viewpoint of differential geometry,
this result is a mathematical expression of a natural idea: If the metrics of
two manifolds in Rn are close, then the two manifolds are also close (up to
isometries, of course). While the previous results in this direction involved
“simpler” topologies, viz., those of spaces of continuously differentiable map-
pings (see [7] and [9]), the present one can be considered as a genuine im-
provement over these, inasmuch as the norm for the Cauchy-Green tensor
fields is in a sense much “weaker”. By contrast with the former ones, how-
ever, the latter requires the seemingly unavoidable assumptions that both
mappings be orientation-preserving and that one of them be sufficiently reg-
ular.

From the viewpoint of three-dimensional nonlinear elasticity, the present
result represents a first step toward considering the Cauchy-Green tensor
field as the primary unknown, even though much further work is clearly
needed until a full-fledged theory can be developed in this spirit. Never-
theless, the inequalities of Theorems 1 and 2 can be considered as genuine,
and new to the best of our knowledge, nonlinear Korn inequalities. Simi-
lar inequlities have been indeed already established, but in the special case
where one of the mapping is the identity; see John [15,16] and Kohn [17].
By contrast with the linear case, however, proving that such an inequality
holds “at the identity” evidently does not imply that it holds elsewhere (to
establish such an implication was precisely the purpose of Lemmas 3 to 7).
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