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We describe and analyze an approach to the pure traction problem of three-dimensional

linearized elasticity, whose novelty consists in considering the linearized strain tensor as
the “primary” unknown, instead of the displacement itself as is customary. This approach

leads to a well-posed minimization problem, constrained by a weak form of the St Venant

compatibility conditions. Interestingly, it also provides a new proof of Korn’s inequality.
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1. Introduction

The notations used in this introduction are defined in the next section.
Let Ω be an open, bounded, connected subset of R3 with a Lipschitz-continuous

boundary. Consider a homogeneous, isotropic, linearly elastic body with Lamé con-
stants λ > 0 and µ > 0, with Ω as its reference configuration, and subjected to
applied body forces of density f ∈ L6/5(Ω) in its interior.

Then the weak formulation of the associated pure traction problem of linearized
elasticity classically consists in finding a displacement vector field u ∈ H1(Ω) that
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satisfies the variational equations
∫

Ω

{λ tr e(u) tr e(v) + 2µe(u) : e(v)}dx = L(v)

for all v ∈ H1(Ω), where L(v) =
∫
Ω

f · v dx and

e(v) =
1
2
(∇vT + ∇v) ∈ L2

sym(Ω)

denotes the linearized strain tensor field associated with any vector field v ∈ H1(Ω).
Clearly, the above variational equations can have solutions only if the applied

body forces satisfy the compatibility condition
∫
Ω

f · r dx = 0 for all r ∈ H1(Ω)
satisfying e(r) = 0 in Ω, such vector fields r being called infinitesimal rigid dis-
placements of the set Ω.

It is well-known that this compatibility condition is also sufficient for the exis-
tence of solutions to the above variational equations, as a consequence of Korn’s
inequality. Besides, such solutions are unique up to the addition of any vector field
r ∈ H1(Ω) satisfying e(r) = 0 in Ω. In other words, if we let

R(Ω) = {r ∈ H1(Ω); e(r) = 0 in Ω} = {r = a + b ∧ idΩ; a ∈ R3, b ∈ R3}

denote the space of infinitesimal rigid displacements of the set Ω, there exists a
unique equivalence class u̇ in the quotient space Ḣ

1
(Ω) = H1(Ω)/R(Ω) that sat-

isfies the above variational equations, or equivalently such that

J(u̇) = inf
v̇∈Ḣ

1
(Ω)

J(v̇),

where

J(v̇) =
1
2

∫

Ω

{λ tr e(v̇) tr e(v̇) + 2µe(v̇) : e(v̇)}dx − L(v̇).

For the sake of later comparison with our approach (see the discussion in Section
6), we begin by briefly reviewing this classical existence theory in Section 2.

The objective of this paper is to describe and analyze another (and new to the
best of our knowledge) approach to the above pure traction problem that consists
in considering the linearized strain tensor as the “primary” unknown instead of the
displacement itself.

To this end, we first characterize in Section 3 those symmetric 3 × 3 matrix
fields e ∈ L2

sym(Ω) that can be written as e = 1
2 (∇vT + ∇v) for some vector

fields v ∈ H1(Ω), again uniquely defined up to infinitesimal rigid displacements.
As shown in Theorem 3.2, this is possible if (and only if) the components eij of
the field e satisfy the following weak form of the classical St Venant compatibility
conditions:

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω) for all i, j, k, l ∈ {1, 2, 3}.

The proof crucially hinges on an H−2-version of a classical theorem of Poincaré
(Theorem 3.1). We prove this result here under the simplifying assumption that
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the set Ω is simply-connected. Note, however, that this assumption can in fact be
disposed of with some extra care; see Ref.9. Note that another, albeit of a completely
different nature, characterization of such matrix fields e = (eij) has also been given
by Ting16 (see Remark 3.2).

Let E(Ω) denote the closed subspace of L2
sym(Ω) formed by the 3 × 3 matrix

fields that satisfy the above weak St Venant compatibility conditions. We then show
that the mapping F : e ∈ E(Ω) → v̇ ∈ Ḣ

1
(Ω), where v̇ is such that e(v̇) = e, is an

isomorphism between the Hilbert spaces E(Ω) and Ḣ
1
(Ω), a property that in turn

yields a new proof of Korn’s inequality; see Theorem 4.1 and its Corollary.
We conclude this analysis by showing (Theorem 5.1) that, thanks to the iso-

morphism F, the pure traction problem of linearized elasticity may be equivalently
posed in terms of the new unknown e ∈ L2

sym(Ω) as a constrained minimization
problem. More specifically, we now seek a 3 × 3 matrix field ε ∈ E(Ω) that satisfies

j(ε) = inf
e∈E(Ω)

j(e),

where

j(e) =
1
2

∫

Ω

{λ tr e tr e + 2µe : e}dx − Λ(e),

and the continuous linear form Λ : E(Ω) → R is defined by Λ = L ◦ F.

The results of this paper have been announced in Ref 4.

2. The classical approach to existence theory in linearized
elasticity

To begin with, we list some notation and conventions that will be used throughout
the article. Except when they are used for indexing sequences, Latin indices range
over the set {1, 2, 3} and the summation convention with respect to repeated indices
is used in conjunction with this rule. The Euclidean and exterior products of a, b ∈
R3 are denoted a · b and a ∧ b. The matrix inner product of two 3 × 3 matrices ε

and e is denoted ε : e = tr εT e. The identity mapping of a set X is denoted idX .
The restriction of a mapping f to a set X is denoted f |X .

Given an open subset Ω of R3, spaces of vector-valued or matrix-valued functions
or distributions defined on Ω are denoted by boldface letters. The norm in the space
L2(Ω) or L2(Ω) is denoted || · ||0,Ω and that in the space H1(Ω) or H1(Ω) is denoted
||·||1,Ω. If V is a vector space and R a subspace of V , the quotient space of V modulo
R is denoted V/R and the equivalence class of v ∈ V modulo R is denoted v̇.

Let xi denote the coordinates of a point x ∈ R3, let ∂i := ∂/∂xi and ∂ij :=
∂2/∂xi∂xj . Given a vector field v = (vi), the 3 × 3 matrix with ∂jvi as its element
at the i-th row and j-th column is denoted ∇v.

Let Ω be an open, bounded, and connected subset of R3 whose boundary Γ is
Lipschitz-continuous in the sense of Nečas13 or Adams1. Assume that the set Ω is the
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reference configuration occupied by a linearly elastic body in the absence of applied
forces. The elastic material constituting the body, which may be nonhomogeneous
and isotropic, is thus characterized by its elasticity tensor A = (Aijkl) ∈ L∞(Ω),
whose elements possess the symmetries Aijkl = Ajikl = Aklij , and which is uni-
formly positive-definite a.e. in Ω, in the sense that there exists a constant α > 0
such that

A(x)t : t ≥ αt : t

for almost all x ∈ Ω and all 3 × 3 symmetric matrices t = (tij), where (A(x)t)ij :=
Aijkl(x)tkl.

Remark 2.1. If the body is homogeneous and isotropic (as that considered in the
Introduction), the elements of the elasticity tensor are given by

Aijkl = λδijδkl + µ(δikδjl + δilδjk),

where λ and µ are the Lamé constants of the constituting material.

The body is assumed to be subjected to applied body forces in its interior with
density f ∈ L6/5(Ω) and to applied surface forces on its boundary with density
g ∈ L4/3(Γ). The assumed regularity on the vector fields f and g thus ensure that
the linear form L : H1(Ω) → R defined by

L(v) :=
∫

Ω

f · v dx +
∫

Γ

g · v dΓ for all v ∈ H1(Ω)

is continuous.
Then it is well known that the unknown displacement field u ∈ H1(Ω) satisfies

the following variational equations, which constitute the weak formulation of the
pure traction problem of linearized elasticity:

∫

Ω

Ae(u) : e(v)dx = L(v) for all v ∈ H1(Ω),

where

e(v) :=
1
2
(∇vT + ∇v) = (

1
2
(∂ivj + ∂jvi)) ∈ L2

sym(Ω)

denotes the linearized strain tensor field associated with an arbitrary vector field
v ∈ H1(Ω), and

L2
sym(Ω) := {e = (eij) ∈ L2(Ω); eij = eji in Ω}.

Let

R(Ω) := {r ∈ H1(Ω); e(r) = 0 in Ω} = {r = a + b ∧ idΩ; a ∈ R3, b ∈ R3}

denote the space of infinitesimal rigid displacements of the set Ω. The applied forces
are also assumed to be such that the associated linear form L satisfies the (clearly
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necessary) relation L(r) = 0 for all r ∈ R(Ω). Hence the above variational problem
amounts to finding u̇ ∈ Ḣ

1
(Ω) := H1(Ω)/R(Ω) such that

∫

Ω

Ae(u̇) : e(v̇)dx = L(v̇) for all v̇ ∈ Ḣ
1
(Ω),

where e(v̇) := e(v) and L(v̇) := L(v) for all v̇ ∈ Ḣ
1
(Ω). In order to apply the

Lax-Milgram lemma, it thus remains to show that the mapping v̇ → ||e(v̇)||0,Ω is
a norm over the quotient space Ḣ

1
(Ω) equivalent to the quotient norm, which is

defined by

||v̇||1,Ω := inf
r∈R(Ω)

||v + r||1,Ω for all v̇ ∈ Ḣ
1
(Ω).

The proof comprises two stages, whose proofs are well known. We nevertheless
record these here (see Theorems 2.1 and 2.2) so that they can be fruitfully compared
with those found in the present approach.

The first stage consists in establishing the classical Korn inequality in the space
H1(Ω):

Theorem 2.1. There exists a constant C such that

||v||1,Ω ≤ C{||v||20,Ω + ||e(v)||20,Ω}1/2 for all v ∈ H1(Ω).

Proof. As shown in Theorem 3.2, Chapter 3 of Duvaut & Lions10, the essence of
this remarkable inequality is that the two Hilbert spaces H1(Ω) and

K(Ω) := {v ∈ L2(Ω); e(v) ∈ L2
sym(Ω)}

coincide. The Korn inequality in H1(Ω) then becomes an immediate consequence of
the closed graph theorem applied to the identity mapping from H1(Ω) into K(Ω),
which is thus surjective and otherwise clearly continuous. To show that K(Ω) ⊂
H1(Ω) (the other inclusion evidently holds), let v = (vi) ∈ K(Ω). Then

∂kvi ∈ H−1(Ω) and ∂jkvi = ∂jeik(v) + ∂keij(v) − ∂iejk(v) ∈ H−1(Ω).

Hence ∂kvi ∈ L2(Ω) since a fundamental lemma of J. L. Lions asserts that, if
a distribution v ∈ H−1(Ω) is such that ∂jv ∈ H−1(Ω), then v ∈ L2(Ω) (this
implication was first proved - though remained unpublished until its appearance
in Theorem 3.2, Chapter 3 of Duvaut & Lions10 − by J. L. Lions ca. 1958 for
domains with smooth boundaries; it was later extended and generalized to Lipschitz-
continuous boundaries by various authors, the “last word” in this respect being
seemingly due to Amrouche & Girault2).

The second stage consists in establishing the (equally classical) Korn inequality
in the quotient space Ḣ

1
(Ω):
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Theorem 2.2. There exists a constant Ċ such that

||v̇||1,Ω ≤ Ċ||e(v̇)||0,Ω for all v̇ ∈ Ḣ
1
(Ω).

Proof. By the Hahn-Banach theorem, there exist six continuous linear forms lα on
H1(Ω), 1 ≤ α ≤ 6, with the following property: An element r ∈ R(Ω) is equal to 0
if and only if lα(r) = 0, 1 ≤ α ≤ 6. We then claim that there exists a constant D

such that

||v||1,Ω ≤ D(||e(v)||0,Ω +
6∑

α=1

|lα(v)|) for all v ∈ H1(Ω).

This inequality in turn implies Korn’s inequality in Ḣ
1
(Ω): Given any v ∈ H1(Ω),

let r(v) ∈ R(Ω) be such that lα(v + r(v)) = 0, 1 ≤ α ≤ 6; then

||v̇||1,Ω = inf
r∈R(Ω)

||v + r||1,Ω ≤ ||v + r(v)||1,Ω ≤ D||e(v)||0,Ω = D||e(v̇)||0,Ω.

To establish the existence of such a constant D, assume the contrary. Then there
exist vk ∈ H1(Ω), k ≥ 1, such that

||vk||1,Ω = 1 for all k ≥ 1 and (||e(vk)||0,Ω +
6∑

α=1

|lα(vk)|) −→
k→∞

0.

By Rellich theorem, there exists a subsequence (vl)∞l=1 that converges in L2(Ω).
Since the sequence (e(vl))∞l=1 also converges in L2(Ω), the subsequence (vl)∞l=1 is
a Cauchy sequence with respect to the norm v → {||v||20,Ω + ||e(v)||20,Ω}1/2, hence
also with respect to the norm || · ||1,Ω by Korn’s inequality in H1(Ω) (Theorem
2.1). Consequently, there exists v ∈ H1(Ω) such that ||vl − v||1,Ω −→

l→∞
0. But then

v = 0 since e(v) = 0 and lα(v) = 0, 1 ≤ α ≤ 6, in contradiction with the relations
||vl||1,Ω = 1 for all l ≥ 1.

Remark 2.2 Another proof of Theorem 2.2 is found in Theorem 3.4, Chapter 3 of
Duvant & Lions10.

Interestingly, our subsequent analysis will provide “as a by-product” an essen-
tially different proof of Korn inequalities in both spaces H1(Ω) and Ḣ

1
(Ω) (see the

corollary to Theorem 4.1).

3. Weak versions of a classical theorem of Poincaré and of St
Venant compatibility conditions

A classical theorem of Poincaré (see, e.g., page 235 in Schwartz14) asserts that,
if functions hk ∈ C1(Ω) satisfy ∂lhk = ∂khl in a simply-connected open subset Ω
of R3 (or Rn for that matter), then there exists a function p ∈ C2(Ω) such that
hk = ∂kp in Ω. This theorem was extended by Girault & Raviart12 (see Theorem
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2.9 in Chapter 1), who showed that, if functions hk ∈ L2(Ω) satisfy ∂lhk = ∂khl in
H−1(Ω) on a bounded, connected and simply-connected open subset Ω of R3 with
a Lipschitz-continuous boundary, then there exists p ∈ H1(Ω) such that hk = ∂kp

in L2(Ω). We now carry out this extension one step further.

Theorem 3.1. Let Ω be a bounded, connected, and simply-connected open subset
of R3 with a Lipschitz-continuous boundary. Let hk ∈ H−1(Ω) be distributions that
satisfy

∂lhk = ∂khl in H−2(Ω).

Then there exists a function p ∈ L2(Ω), unique up to an additive constant, such
that

hk = ∂kp in H−1(Ω).

Proof. In this proof, we use the following notations: For any p ∈ D′(Ω), we let
grad p := (∂ip) ∈ D′(Ω), for any v = (vi) ∈ D′(Ω), we let curl v := (∂2v3 −
∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1) ∈ D′(Ω), and we let X′ < ·, · >X denote the duality
pairing between a topological vector space X and its dual X ′. We have to show
that, if h ∈ H−1(Ω) satisfies curl h = 0 in H−2(Ω), then there exists p ∈ L2(Ω)
such that h = grad p. To this end, we proceed in three stages:

(i) Given any h ∈ H−1(Ω), Theorem 5.1, Chapter 1 of Girault & Raviart12

shows that there exist u ∈ H1
0(Ω) and p ∈ L2(Ω) such that (the assumptions that

Ω is bounded and has a Lipschitz-continuous boundary are used here):

−∆u + grad p = h in H−1(Ω) and div u = 0 in Ω.

Our proof will then consist in showing that, if in addition curl h = 0 in H−2(Ω),
then u = 0. In this direction, we first infer from the relation curl curl u = −∆u+
grad div u in D′(Ω) that h = curl curl u+ grad p, hence that

curl curl curl u = curl h − curl grad p = 0 in H−2(Ω)

if curl h = 0 in H−2(Ω), since curl grad p = 0 in D′(Ω).

(ii) We next show that, if a vector field u ∈ H1
0(Ω) satisfies div u = 0 in Ω,

then there exists a vector field v ∈ H2
0(Ω) such that

u = curl v ∈ Ω.

To this end, let ũ denote the extension of u by 0 in R3 −Ω, which thus satisfies
ũ ∈ H1(R3) and div ũ = 0 in R3. By Theorem 3.2 in Girault11, there thus exists
an open ball B̃ containing Ω and a vector field w̃ ∈ H2(B̃) such that ũ = curl w̃

in B̃.
The open set Ω′ := B̃−Ω is bounded, has a Lipschitz-continuous boundary, and

is simply-connected since Ω is simply-connected by assumption (this is the only
place where this assumption is needed). Furthermore, the vector field w′ := w̃|Ω′ ∈
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H2(Ω′) satisfies curl w′ = 0 in Ω′. Hence Theorem 2.9, Chapter 1, of Girault &
Raviart12 shows that there exists a function φ′ ∈ H1(Ω′) such that w′ = grad φ′

in Ω′, so that in fact φ′ ∈ H3(Ω′).
Since the function φ′ ∈ H3(Ω′) can be extended to a function in H3(R3), there

exists a function φ̃ ∈ H3(B̃) such that φ′ = φ̃|Ω′ . The vector field ṽ := w̃− grad
φ̃ ∈ H2(B̃) thus satisfies

ṽ|Ω′ = w′ − grad φ′ = 0 in Ω′.

Hence the vector field v := ṽ|Ω is in the space H2
0(Ω). Besides,

curl ṽ = curl w̃ = ũ in B̃,

since curl grad φ̃ = 0 in D′(B̃). Consequently, u = curl v in Ω as desired.

(iii) Since curl curl curl u = 0 in H−2(Ω) by (i) and u = curl v in Ω with
v ∈ H2

0(Ω) by (ii), we conclude that

0 = H−2(Ω) < curl curl curl u,v >H2
0(Ω)= H−1(Ω) < curl curl u, curl v >H1

0(Ω)

= H−1(Ω) < curl curl u,u >H1
0(Ω)= L2(Ω) < curl u, curl u >L2(Ω)= ||curl u||20,Ω.

Noting that

||div v||20,Ω + ||curl v||20,Ω =
∫

Ω

∑

i,j

|∂jvi|2dx for any v = (vi) ∈ H1
0(Ω),

we thus conclude that u = 0 in Ω since u ∈ H1
0(Ω), div u = 0 in Ω by (i), and

curl u = 0 in Ω as shown above.

In 1864, A. J. C. B. de Saint Venant showed that, if functions eij = eji ∈ C3(Ω)
satisfy in Ω ad hoc compatibility relations that since then bear his name, then there
exists a vector field (vi) ∈ C4(Ω) such that eij = 1

2 (∂jvi + ∂ivj) in Ω. Thanks to
Theorem 3.1, we are now in a position to establish that these St Venant compatibility
relations are also sufficient conditions in the sense of distributions, according to the
following result:

Theorem 3.2. Let Ω be a bounded, connected, and simply-connected open subset of
R3 with a Lipschitz-continuous boundary. Let e = (eij) ∈ L2

sym(Ω) be a symmetric
matrix field that satisfies the following compatibility relations:

Rijkl(e) := ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then there exists a vector field v = (vi) ∈ H1(Ω) such that

eij =
1
2
(∂jvi + ∂ivj) in L2(Ω),

and all other solutions ṽ = (ṽi) ∈ H1(Ω) of the equations eij = 1
2 (∂j ṽi + ∂iṽj) are

of the form ṽ = v + a + b ∧ id, with a ∈ R3 and b ∈ R3.
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Proof. The compatibility relations Rijkl(e) = 0 in H−2(Ω) may be equivalently
rewritten as

∂lhijk = ∂khijl in H−2(Ω) with hijk := ∂jeik − ∂iejk ∈ H−1(Ω).

Hence Theorem 3.1 shows that there exist functions pij ∈ L2(Ω), unique up to
additive constants, such that

∂kpij = hijk = ∂jeik − ∂iejk in H−1(Ω).

Besides, since ∂kpij = −∂kpji in H−1(Ω), we have the freedom of choosing the
functions pij in such a way that pij + pji = 0 in L2(Ω).

Noting that the functions qij := (eij + pij) ∈ L2(Ω) satisfy

∂kqij = ∂keij + ∂kpij = ∂keij + ∂jeik − ∂iejk

= ∂jeik + ∂jpik = ∂jqik in H−1(Ω),

we again resort to Theorem 3.1 to assert the existence of functions vi ∈ H1(Ω),
unique up to additive constants, such that

∂jvi = qij = eij + pij in L2(Ω).

Consequently,
1
2
(∂jvi + ∂ivj) = eij +

1
2
(pij + pji) = eij in L2(Ω),

as required. That all other solutions are of the indicated form follow from the well-
known relation (for a proof, see, e.g., Theorem 6.3-4 in Ref.3):
{v = (vi) ∈ D′(Ω); ∂jvi + ∂ivj = 0 in D′(Ω)} = {v = a + b ∧ idΩ;a ∈ R3, b ∈ R3}.

Remark 3.1 A different necessary and sufficient condition for a tensor e ∈ L2
sym(Ω)

to be of the form e = 1
2 (∇vT + ∇v) for some v ∈ H1(Ω) has been given by

Ting16 in the following form: The tensor e should lie in the orthogonal comple-
ment in L2

sym(Ω) of the closure of the space spanned by all symmetric tensors
σ that have all their components in D(Ω) and that satisfy div σ = 0 in Ω.

4. A basic isomorphism and a new proof of Korn’s inequality

Let a symmetric matrix field e = (eij) ∈ L2
sym(Ω) satisfy Rijkl(e) = 0 in H−2(Ω),

i.e., the weak form of St Venant’s compatibility conditions considered in Theorem
3.2. We recall (see ibid.) that there then exists a unique equivalence class v̇ ∈
Ḣ

1
(Ω) = H1(Ω)/R(Ω) such that e = e(v̇) in L2

sym(Ω). We now show the mapping
F : e → v̇ defined in this fashion has a remarkable property.

Theorem 4.1. Let Ω be a bounded, connected, and simply-connected open subset
of R3 with a Lipschitz-continuous boundary. Define the space

E(Ω) := {e = (eij) ∈ L2
sym(Ω);Rijkl(e) = 0 in H−2(Ω)},
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and let F : E(Ω) → Ḣ1(Ω) be the linear mapping defined for each e ∈ E(Ω) by
F(e) = v̇, where v̇ is the unique element in the quotient space Ḣ

1
(Ω) that satisfies

e(v̇) = e. Then F is an isomorphism between the Hilbert spaces E(Ω) and Ḣ1(Ω).

Proof. Clearly, E(Ω) is a Hilbert space as a closed subspace of L2
sym(Ω). The

mapping F is injective since F(e) = 0̇ means that e = e(0̇) = 0 and surjective
since, given any v̇ ∈ Ḣ1(Ω), the matrix field e(v̇) ∈ L2

sym(Ω) necessarily satisfies

Rijkl(e(v̇)) = 0 in H−2(Ω). Finally, the inverse mapping F−1 : v̇ ∈ Ḣ1(Ω) →
e(v̇) ∈ E(Ω) is continuous, since there evidently exists a constant c such that

||e(v̇)||0,Ω = ||e(v + r)||0,Ω ≤ c||v + r||1,Ω

for any v ∈ H1(Ω) and any r ∈ R(Ω), so that

||e(v̇)||0,Ω ≤ c inf
r∈R(Ω)

||v + r||1,Ω = c||v̇||1,Ω.

The conclusion thus follows from the closed graph theorem.

Remarkably, the classical Korn’s inequalitites of Section 2 can now be very sim-
ply recovered:

Corollary to Theorem 4.1 That the mapping F : E(Ω) → Ḣ1(Ω) is an isomor-
phism implies Korn’s inequalities in both spaces H1(Ω) and Ḣ1(Ω) (see Theorems
2.1 and 2.2).

Proof. (i) Since F is an isomorphism, there exists a constant Ċ such that

||F(e)||1,Ω ≤ Ċ||e||0,Ω for all e ∈ E(Ω),

or equivalently such that

||v̇||1,Ω ≤ Ċ||e(v̇)||0,Ω for all v̇ ∈ Ḣ1(Ω).

But this is exactly Korn’s inequality in the quotient space Ḣ1(Ω), obtained by dif-
ferent means in Theorem 2.2.

(ii) We now show that Korn’s inequality in the quotient space Ḣ1(Ω) implies
Korn’s inequality in the space H1(Ω) (Theorem 2.1).

Assume the contrary. Then there exist vk ∈ H1(Ω), k ≥ 1, such that

||vk||1,Ω = 1 for all k ≥ 1 and (||vk||0,Ω + ||e(vk)||0,Ω) −→
k→∞

0.

Let rk ∈ R(Ω) denote for each k ≥ 1 the projection of vk on R(Ω) with respect
to the inner-product of H1(Ω), which thus satisfies:

||vk − rk||1,Ω = inf
r∈R(Ω)

||vk − r||1,Ω and ||vk||21,Ω = ||vk − rk||21,Ω + ||rk||21,Ω.
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The space R(Ω) being finite-dimensional, the inequalities ||rk||1,Ω ≤ 1 for all
k ≥ 1 imply the existence of a subsequence (rl)∞l=1 that converges in H1(Ω) to
an element r ∈ R(Ω). Besides, Korn’s inequality in Ḣ1(Ω) implies that ||vl −
rl||1,Ω −→

l→∞
0, so that ||vl − r||1,Ω −→

l→∞
0. Hence ||vl − r||0,Ω −→

l→∞
0, which forces r

to be 0, since ||vl||0,Ω → 0 on the other hand. We thus reach the conclusion that
||vl||1,Ω → 0, a contradiction.

Remark 4.1 By contrast with the implication of Theorem 2.2, the implication
established in part (ii) of the above proof does not seem to have been previously
recorded.

5. Another approach to existence theory in linearized elasticity

Since the bilinear form (u̇, v̇) ∈ Ḣ1(Ω)×Ḣ1(Ω) →
∫
Ω

Ae(u̇) : e(v̇)dx is symmetric,
solving the “classical” variational formulation of the pure traction problem of lin-
earized elasticity (see Section 2.2) is equivalent to solving the following minimization
problem: Find u̇ ∈ Ḣ1(Ω) such that

J(u̇) = inf
v̇∈Ḣ1(Ω)

J(v̇), where J(v̇) :=
1
2

∫

Ω

Ae(v̇) : e(v̇)dx − L(v̇).

Thanks to the isomorphism F : E(Ω) → Ḣ1(Ω) introduced in Theorem 4.1, this
problem can be recast as another minimization problem, this time in terms of an
unknown that lies in the space E(Ω):

Theorem 5.1. Let Ω be a bounded, connected, and simply-connected open subset
of R3 with a Lipschitz-continuous boundary. The minimization problem : Find ε ∈
E(Ω) such that

j(ε) = inf
e∈E(Ω)

j(e), where j(e) :=
1
2

∫

Ω

Ae : e dx − Λ(e)

and the linear form Λ : E(Ω) → R is defined by Λ := L ◦ F, has one and only
one solution ε. Besides, ε = e(u̇) where u̇ is the unique solution to the “classical”
variational formulation of the pure traction problem of linearized elasticity.

Proof. By assumption (Section 2), there exists α > 0 such that
∫
Ω

Ae : e dx ≥
α||e||20,Ω for all e ∈ L2

sym(Ω). The linear form Λ is continuous since L and F are
continuous. Finally, E(Ω) is a closed subspace of L2

sym(Ω). Consequently, there
exists one, and only one, minimizer of the functional j over E(Ω).

That u̇ minimizes the functional J over Ḣ1(Ω) implies that e(u̇) minimizes j

over E(Ω). Hence ε = e(u̇) since the minimizer is unique.
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6. Miscellaneous remarks

(a) While the minimization problem over the space Ḣ1(Ω) is an unconstrained
one with three unknowns, that found in Theorem 5.1 over the space E(Ω) is in effect
a constrained minimization problem over the space L2

sym(Ω) with six unknowns, the
constraints (in the sense of optimization theory) being the compatibility relations
Rijkl(e) = 0 in H−2(Ω) that the matrix fields e ∈ E(Ω) satisfy (it is easily seen
that these compatibility relations reduce in fact to six independent ones).

(b) As shown in the proof of Theorem 2.1, the lemma of J. L. Lions recalled
there is the keystone of the classical proof of Korn’s inequality. In a sense, the same
rôle is played in the present approach by the “H−2−version of a classical theorem
of Poincaré ” established in Theorem 3.1.

(c) In linearized elasticity, the stress tensor field σ ∈ L2
sym(Ω) is given in terms

of the displacement field by σ = Ae(v). Since the elasticity tensor A is assumed to
be uniformly positive-definite a.e. in Ω, the minimization problem of Theorem 5.1
can be immediately recast as a constrained minimization problem with the stress
tensor as the primary unknown.

(d) Various attempts to consider the “fully nonlinear” Green-St Venant strain
tensor E(v) = 1

2 (∇vT + ∇v + ∇vT ∇v), or equivalently the Cauchy-Green ten-
sor I + 2E(v), as the “primary” unknown in three-dimensional nonlinear elasticity
have been recently undertaken in the same spirit; see Refs. 5, 6, 7, 8 and 15. These
attempts have met only partial success, however, since nonlinearity per se creates
specific challenging difficulties.

For instance, since the mapping F introduced here in Theorem 4.1 is linear, its
continuity at e = 0 automatically implies its continuity at any e ∈ E(Ω). By con-
trast, considerable extra work is needed to extend the continuity of the “nonlinear
analog of the mapping F ” at the particular Cauchy-Green tensor I to its continuity
at any Cauchy-Green tensor. Besides, the choice of the “right” function spaces, i.e.,
between which such a nonlinear mapping is continuous, is a much trickier issue than
in the linearized case considered here.
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