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A New Approach to Linear Shell Theory

Philippe G. CIARLET and Liliana GRATIE

Abstract
We proposed a new approach to the existence theory for quadratic minimization

problems that arise in linear shell theory. The novelty consists in considering the
linearized change of metric and change of curvature tensors as the new unknowns,
instead of the displacement vector field as is customary.

Such an approach naturally yields a constrained minimization problem, the con-
straints being ad hoc compatibility relations that these new unknowns must satisfy in
order that they indeed correspond to a displacement vector field. Our major objec-
tive is thus to specify and justify such compatibility relations in appropriate function
spaces. Interestingly, this result provides as a corollary a new proof of Korn’s inequal-
ity on a surface. While the classical proof of this fundamental inequality essentially
relies on a basic lemma of J. L. Lions, the keystone in the proposed approach is instead
an appropriate weak version of a classical theorem of Poincaré.

The existence of a solution to the above constrained minimization problem is then
established, also providing as a simple corollary a new existence proof for the original
quadratic minimization problem.

Keywords: Linearly elastic shell theory; Korn’s inequality on a surface; quadratic
minimization problems

Ccode: AMS Subject Classification: 49N10, 73K15

1 Introduction

All notions and definitions used in this introduction are explained in the next section.
Let ω be a domain in R2 and let θ : ω → R3 be a smooth enough immersion. Consider

a linearly elastic shell with middle surface S = θ(ω) and thickness 2ε > 0. According
to Koiter19, the pure traction problem for such a shell takes the form of the following
quadratic minimization problem: The unknown η∗ = (η∗i ), whose components are the
covariant components η∗i : ω → R of the unknown displacement field η∗i a

i of the points of
the middle surface S (the vector fields ai form the contravariant bases along S), satisfies:

η∗ = (η∗i ) ∈ V (ω) = H1(ω) × H1(ω) × H2(ω) and j(η∗) = inf
η∈V (ω)

j(η),

where the quadratic functional j : η = (ηi) ∈ V (ω) → R is defined by

j(η) =
1
2

∫

ω

{
εaαβστγστ (η)γαβ(η) +

ε3

3
aαβστρστ (η)ραβ(η)

}√
adω −

∫

ω
piηi

√
adω,
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the functions pi ∈ L2(ω) account for the given applied forces, the functions aαβστ are the
contravariant components of the elasticity tensor of the shell (which is uniformly positive
definite in ω), and γαβ(η) and ραβ(η) are the covariant components of the linearized
change of metric, and linearized change of curvature, tensors associated with an arbitrary
displacement field ηia

i of the surface S.
Clearly, this minimization problem can have solutions only if the applied forces satisfy

the compatibility conditions

l(η) = 0 for all η = (ηi) ∈ Rig(ω),

where

l(η) =
∫

ω
piηi

√
ady and Rig(ω) = {η ∈ V (ω); γαβ(η) = ραβ(η) = 0 in ω}.

It is well known that these compatibility conditions are also sufficient for the existence
of solutions to the above minimization problem (such solutions are then unique up to
the addition of vector fields in the space Rig(ω)). For the sake of later comparison with
our approach (see the discussion in Section 7), we begin by briefly reviewing in Section 2
this classical existence theory, which goes back to Bernadou and Ciarlet5. However, we
follow here the subsequent, and more illuminating, approach of Bernadou, Ciarlet and
Miara6, who established for this purpose a basic Korn inequality on a surface “over the
space V (ω)”. Like its three-dimensional counterpart (see Chapter 3 of Duvaut & Lions16),
this inequality hinges on a fundamental lemma of J. L. Lions (details are provided in the
proof of Theorem 2.1). From this inequality, we then derive another Korn inequality on a
surface, this time “over the quotient space V (ω)/Rig(ω)” (see Theorem 2.2), from which
the existence and uniqueness of a solution to the above minimization problem easily follow.

An inspection of the first integral occurring in the functional j suggests another ap-
proach to this minimization problem, where the covariant components of the linearized
change of metric and change of curvature tensors are considered as the primary unknowns,
instead of the customary covariant components of the displacement field. To describe and
analyze such an approach constitute the main objectives of this paper.

To these ends, our primary aim (see Theorem 4.1) is to identify an ad hoc Hilbert space
X and a linear and continuous operator

R : ((cαβ), (rαβ)) ∈ L2
sym(ω) × L2

sym(ω) → R((cαβ), (rαβ)) ∈ X

with the following fundamental property: Assume that the set ω is simply-connected.
Then, if a pair ((cαβ), (rαβ)) ∈ L2

sym(ω) × L2
sym(ω) of symmetric matrix fields satisfies

R((cαβ), (rαβ)) = 0 in X,

there exists a vector field η ∈ V (ω) such that

cαβ = γαβ(η) and rαβ = ραβ(η) in L2(ω),

3



and conversely (naturally, if η ∈ V (ω) is a solution to these equations, all other solutions
η′ ∈ V (ω) are such that (η′ − η) ∈ Rig(ω)).

For this purpose, we will resort to a result of Ciarlet and Ciarlet, Jr.10 who have
recently re-examined from a similar perspective the pure traction problem of linearized
three-dimensional elasticity. Their approach consists in considering the linearized strain
tensor as the “primary” unknown instead of the displacement itself (note that Antman1 al-
ready proposed that the “full” strain tensor be analogously considered as the new unknown
in minimization problems arising in three-dimensional nonlinear elasticity).

The main objective then consists in characterizing those symmetric 3 × 3 matrix fields
e ∈ L2

sym(Ω) that can be written as e = 1
2(∇vT + ∇v) for some vector fields v ∈ H1(Ω),

where Ω is a domain in R3. As shown in Ciarlet & Ciarlet, Jr.10, this is possible if the set
Ω is simply-connected and the components eij of the matrix field e satisfy the following
weak form of the classical St Venant compatibility relations:

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω) for all i, j, k, l ∈ {1, 2, 3}.

Their justification crucially hinges on an H−2-version of a classical theorem of Poincaré.
For completeness, these results are briefly reviewed in Section 3 (see Theorems 3.1 and
3.2).

The seemingly natural “extension to a surface” of these “three-dimensional” compati-
bility relations turns out to be a not-so-simple endeavor, however (see the proof of Theorem
4.1). Suffice it to mention at this stage that it relies on results that were recently obtained
(albeit for an entirely different purpose) by Ciarlet and S. Mardare14 and on the same
H−2-version of a classical theorem of Poincaré alluded to above, which likewise “replaces”
the lemma of J. L. Lions as the keystone to the present analysis. As a result, the sought
linear and continuous operator R maps the space L2

sym(ω) × L2
sym(ω) into the space

X = (H−2(Ω̂))6,

where Ω̂ is an ad hoc open tubular neighborhood of the surface θ(ω).
We then use this result in the following way. Define the Hilbert space

T (ω) = {((cαβ), (rαβ)) ∈ L2
sym(ω) × L2

sym(ω); R((cαβ), (rαβ)) = 0 in (H−2(Ω̂))6}

and let
H : T (ω) → η̇ ∈ V (ω)/Rig(ω)

be the linear mapping defined for each (c, r) = ((cαβ), (rαβ)) ∈ T (ω) by H((cαβ), (rαβ)) =
η̇ where η̇ is the unique equivalence class in the quotient space V (ω)/Rig(ω) that satisfies
γαβ(η̇) = cαβ and ραβ(η̇) = rαβ in L2(ω).

We then show (Theorem 5.1) that the mapping H is an isomorphism from T (ω) onto
V (ω)/Rig(ω), a property that in turn provides a new proof of the Korn inequality on a
surface “over the space V (ω)” mentioned earlier; see Theorem 5.2.

We will then be in a position (see Theorem 6.1) to answer the main question addressed
here, at least for the so-called “pure traction problem” for a linearly elastic shell modeled by
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Koiter’s equations. Recall that, in this case, the quadratic functional j is to be minimized
over the whole space V (ω) = H1(ω) × H1(ω) × H2(ω) (i.e., the unknown displacement
field is not subjected to any boundary condition).

More specifically, that the mapping H is an isomorphism implies that the following
minimization problem, with the linearized change of metric and change of curvature tensors
as the new unknowns, has one and only one solution: Find

(c∗, r∗) = ((c∗αβ), (r∗αβ)) ∈ T (ω) such that κ(c∗, r∗) = inf
(c,r)∈T (ω)

κ(c, r),

where

κ(c, r) =
1
2

∫

ω
{εaαβστ cστ cαβ +

ε3

3
aαβστrστrαβ}

√
adω − ` [(c, r),

and the continuous linear form ` [ : T (ω) → R is defined by ` [ = ` ◦ H. Furthermore,
((c∗αβ), (r∗αβ)) = ((γαβ(η̇∗), ραβ(η̇∗)) where η̇∗ is the unique solution to the “classical”
formulation of the pure traction problem as a minimization problem over the quotient
space V (ω)/Rig(ω).

Naturally, such results in turn constitute the basis for other investigations, which are
briefly discussed in Section 7. We only mention two here:

First, in addition to its mathematical novelty, such an approach could also present a
significant practical advantage. Since the constitutive equations of linear shell theory are
invertible, the new minimization problem above can be immediately recast as a minimiza-
tion problem with the stress resultants and bending moments as the only unknowns, i.e.,
those that are of primary interest from the mechanical and computational viewpoints.

Second, this approach could shed some light on the considerably more challenging
minimization problems that arise in fully nonlinear “intrinsic” shell theory, where the
“full” change of metric, and change of curvature, tensors appear in the energy, instead
of their linearized versions considered here. Developing a similar approach in this case
could provide existence theorems that are so far essentially lacking for nonlinear Koiter
shell equations.

The results of this paper were announced in Ciarlet and Gratie11.

2 The classical approach to linear shell theory

To begin with, we list some notations, definitions, and conventions that will be used
throughout the article. Greek indices, resp. Latin indices, range in the set {1, 2}, resp.
{1, 2, 3}, save when they are used for indexing sequences or when otherwise indicated. The
summation convention with respect to repeated indices is used in conjunction with these
rules.

The notation E3 designates a three-dimensional Euclidean space, with vectors êi form-
ing an orthonormal basis. The Euclidean norm of a ∈ E3 is denoted |a| and the Euclidean
and exterior products of a, b ∈ E3 are denoted a · b and a ∧ b.

A generic point in R2 will be denoted y = (yα); then ∂α := ∂/∂yα and ∂αβ :=
∂2/∂yα∂yβ. A generic point in R3 will be denoted x = (xi); then ∂i := ∂/∂xi and
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∂ij := ∂2/∂xi∂xj . Given a smooth enough vector field v = (vi) defined on a subset of
R3, the 3 × 3 matrix field with ∂jvi as its element at the i-th row and j-th column is
denoted ∇v. A generic point in E3 will be denoted x̂ = (x̂i); then ∂̂i := ∂/∂x̂i and
∂̂ij := ∂2/∂x̂i∂x̂j ; the notation ∇̂v̂ should be self-explanatory. The coordinates x̂i of a
point x̂ ∈ E3 will be referred to as Cartesian coordinates.

A domain U in Rn, n ≥ 2, or in E3, is an open, bounded connected subset with a
Lipschitz continuous boundary, the set U being locally on the same side of its boundary,
in the sense of Nečas20 or Adams1. Spaces of vector-valued, or matrix-valued, functions
over U are denoted by boldface letters, and the norms of the spaces L2(U) or L2(U), and
Hm(U) or Hm(U), m ≥ 1, are denoted ‖ · ‖0,U , and ‖ · ‖m,U .

If V is a vector space and R a subspace of V , the quotient space of V modulo R is
denoted V/R and the equivalence class of v ∈ V modulo R is denoted v̇. The space of all
continuous linear mappings from a normed vector space X into a normed vector space Y
is denoted L(X; Y ).

Given a domain ω ⊂ R2, a mapping θ ∈ C1(ω; E3) is an immersion if the vectors
∂αθ(y) are linearly independent at all points y ∈ ω. Given a domain Ω ⊂ R3, a mapping
Θ ∈ C1(Ω; E3) is an immersion if the vectors ∂iΘ(x) are linearly independent at all points
x ∈ Ω (equivalently, the matrix ∇Θ(x) is invertible at all points x ∈ Ω).

Given a domain ω in R2 and an immersion θ ∈ C3(ω; E3), define the surface S := θ(ω).
The covariant components aαβ = aβα ∈ C2(ω) and bαβ = bβα ∈ C1(ω) of the first and
second fundamental forms of the surface S are then respectively given by

aαβ := aα · aβ and bαβ := a3 · ∂αaβ,

where the vector fields
aα := ∂αθ and a3 :=

a1 ∧ a2

|a1 ∧ a2|
form the covariant bases along S. We also let

a := det(aαβ) ∈ C2(ω),

so that
√

ady is the area element along S. Note that there clearly exist constants a0 and
a1 such that 0 < a0 ≤ a(y) ≤ a1 for all y ∈ ω.

Two other fundamental tensors play a key rôle in the two-dimensional theory of linearly
elastic shells, the linearized change of metric tensor and the linearized change of curvature
tensor, each one being associated with a displacement vector field

η̃ : =ηia
i

of the surface S, where

η = (ηi) ∈ V (ω) := H1(ω) × H1(ω) × H2(ω)

and the vector fields ai, which form the contravariant bases along S, are defined by the
relations ai·aj = δi

j . The covariant components of these tensors are given by

γαβ(η) :=
1
2
[aαβ(η) − aαβ ]lin =

1
2
(∂βη̃ · aα + ∂αη̃ · aβ),
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ραβ(η) := [bαβ(η) − bαβ]lin = (∂αβη̃ − Γσ
αβ∂ση̃) · a3

where aαβ(η) and bαβ(η) are the covariant components of the first and second fundamental
forms of the deformed surface (θ + η̃)(ω), the notation [· · · ]lin represents the linear part
with respect to η = (ηi) in the expression [· · · ], and Γσ

αβ := aσ · ∂αaβ are the Christoffel
symbols of S. Note that γαβ(η) ∈ L2(ω) and ραβ(η) ∈ L2(ω) if η ∈ V (ω).

Remark 2.1 More details about the elementary notions of differential geometry of sur-
faces needed here are found in, e.g., Chapter 2 of Ciarlet8.

Let ε > 0 be such that the mapping Θ ∈ C2(ω × [−ε, ε]; E3) defined by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ ω × [−ε, ε]

is an immersion (for a proof that this is indeed the case if ε > 0 is small enough, see
Theorem 3.1-1 in ibid.). Assume that the set Θ(ω × [−ε, ε]) is the reference configuration
occupied in the absence of applied forces by a linearly elastic shell with middle surface S
and thickness 2ε, with a constituting material that is homogeneous and isotropic, hence
characterized by its two Lamé constants λ and µ > 0. The functions

aαβστ :=
4λµ

λ + 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ) ∈ C2(ω), where (aστ ) := (aαβ)−1,

then denote the contravariant components of the two-dimensional elasticity tensor of the
shell. This tensor is uniformly positive definite, in the sense that there exists a constant
b0 = b0(ω, θ, µ) > 0 such that (see Theorem 3.3-2 in ibid.):

b0

∑

α,β

|tαβ |2 ≤ aαβστ (y)tστ tαβ

for all y ∈ ω and all symmetric matrices (tαβ) of order two.
Assume that the shell is subjected to applied forces acting only in its interior and on

its upper and lower faces (there are thus no applied forces acting on its lateral face), whose
resultant after integration across the thickness of the shell has contravariant components
pi ∈ L2(ω) (this means that each area element of the shell is subjected to the elemen-
tary force piai

√
ady). Assume, finally, that the lateral face of the shell is free, i.e., the

displacement is not subjected to any boundary condition there. In other words, we are
considering a pure traction problem for a linearly elastic shell.

As a mathematical model for this problem, we select the well-known two-dimensional
Koiter equations (so named after Koiter19), in the form of the following quadratic mini-
mization problem: The unknowns are the three covariant components η∗i : ω → R of the
displacement field η∗i a

i : ω → R3 of the middle surface S of the shell and the vector field
η∗ := (η∗i ) satisfies

η∗ ∈ V (ω) = H1(ω) × H1(ω) × H2(ω) and j(η∗) = inf
η∈V (ω)

j(η),
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where

j(η) :=
1
2

∫

ω

{
εAγ(η) : γ(η) +

ε3

3
Aρ(η) : ρ(η)

}√
ady − l(η),

and
At : t := aαβστ tστ tαβ ∈ L1(ω) for all t = (tαβ) ∈ L2

sym(ω),

γ(η) : = (γαβ(η)) ∈ L2
sym(ω) := {c = (cαβ) ∈ (L2(ω))4; cαβ = cβα} for all η ∈ V (ω),

ρ(η) : = (ραβ(η)) ∈ L2
sym(ω) for all η ∈ V (ω),

l(η) :=
∫

ω
piηi

√
adω for all η = (ηi) ∈ V (ω).

Remark 2.2 A detailed mathematical analysis of Koiter’s equations, together with their
justification from three-dimensional linearized elasticity and numerous references, are
found in Section 2.6 and Chapter 7 of Ciarlet8. See also Blouza and Le Dret7 who showed
how to handle shells whose middle surface has “little regularity”, e.g., when the mapping
θ is only in the space W 2,∞(ω; E3), instead of C3(ω; E3) as here.

Define the Hilbert space

Rig(ω) := {η ∈ V (ω); γ(η) = ρ(η) = 0 in L2
sym(ω)}.

Then one can show that (see, e.g., Theorem 2.6-3 of ibid.):

Rig(ω) =
{
η = (ηi) ∈ V (ω) ; ηia

i = a + b ∧ θ, a ∈ R3, b ∈ R3
}
.

In other words, the components ηi of any vector field η = (ηi) ∈ Rig (ω) are the covariant
components of an infinitesimal rigid displacement ηia

i of the surface S.
We will henceforth assume that the linear form l associated with the applied forces

satisfies the compatibility conditions

l(η) = 0 for all η ∈ Rig(ω),

since these are clearly necessary for the existence of a minimizer of the functional j over
the space V (ω). This being the case, the above minimization problem thus amounts to
finding an equivalence class η̇∗ that satisfies

η̇∗ ∈ V̇ (ω) := V (ω)/Rig(ω) and j(η̇∗) = inf
η̇∈V̇ (ω)

j(η̇).

Before analyzing this problem, let us define several norms, which will be of constant
use in the sequel:

‖(c, r)‖0,ω :=
{∑

α,β

‖cαβ‖2
0,ω +

∑

α,β

‖rαβ‖2
0,ω

}1/2
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for all (c, r) = ((cαβ), (rαβ)) ∈ L2
sym(ω) × L2

sym(ω),

‖η‖V (ω) :=
{∑

α

‖ηα‖2
1,ω + ‖η3‖2

2,ω

}1/2 for all η = (ηi) ∈ V (ω),

‖η̇‖V̇ (ω) := inf
ξ∈ Rig (ω)

‖η + ξ‖V (ω) for all η̇ ∈ V̇ (ω).

In order to establish the existence and uniqueness of a minimizer of the functional j
over the space V̇ (ω), it suffices, thanks to the positive definiteness of the two-dimensional
elasticity tensor of the shell, to show that the mapping

η̇ ∈ V̇ (ω) → ‖(γ(η̇), ρ(η̇)‖0,ω

is a norm over the quotient space V̇ (ω) equivalent to the quotient norm ‖ · ‖V̇ (ω).
To prove that this is indeed the case will be achieved in two stages, which constitute

Theorems 2.1 and 2.2 below. The first stage, which is due to Bernadou, Ciarlet and
Miara6, consists in establishing a first basic Korn inequality on a surface, “over the space
V (ω)”. Although its proof is thus known, we nevertheless summarize it, for the sake of a
later comparison with the present approach.

Theorem 2.1 Let there be given a domain ω in R2 and an immersion θ ∈ C3(ω; E3).
Then there exists a constant c = c(ω, θ) such that

‖η‖V (ω) ≤ c
{∑

α

‖ηα‖2
0,ω + ‖η3‖2

1,ω + ‖(γ(η), ρ(η))‖2
0,ω

}1/2

for all η ∈ V (ω) = H1(ω) × H1(ω) × H2(ω).
Proof. The essence of this inequality is that the two Hilbert spaces V (ω) and

W (ω) :=
{
η = (ηi) ∈ L2(ω) × L2(ω) × H1(ω); γ(η) ∈ L2

sym(ω), ρ(η) ∈ L2
sym(ω)

}

coincide. Korn’s inequality on a surface then becomes an immediate consequence of the
closed graph theorem applied to the identity mapping from V (ω) into W (ω), which is thus
surjective (and otherwise clearly continuous.)

That these two spaces are identical hinges on a fundamental lemma of J. L. Lions:
Let U be a domain in Rn. If a distribution v ∈ H−1(U) has its n first partial derivatives
also in H−1(U), then v ∈ L2(Ω) (see Theorem 3.2, Chapter 3 of Duvaut and Lions16 for
domains with smooth boundaries and Amrouche and Girault3 for domains with Lipschitz-
continuous boundaries).

To establish the inclusion W (ω) ⊂ V (ω) (the other inclusion evidently holds), let
η = (ηi) ∈ W (ω). The relations

ε̂αβ(η) :=
1
2
(∂αηβ + ∂βηα) = γαβ(η) + Γσ

αβησ + bαβη3

then imply that ε̂αβ(η) ∈ L2(ω). Hence

∂β(∂σηα) = {∂β ε̂ασ(η) + ∂σ ε̂αβ(η) − ∂αε̂βσ(η)} ∈ H−1(ω)
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since χ ∈ L2(ω) implies ∂αχ ∈ H−1(ω); likewise, ∂σηα ∈ H−1(ω). Hence ∂σηα ∈ L2(ω) by
the lemma of J. L. Lions and thus ηα ∈ H1(ω). This shows that

ραβ(η) = ∂αβη3 + Υαβ(η) with Υαβ(η) ∈ L2(ω).

Hence ∂αβη3 ∈ L2(ω) and thus η3 ∈ H2(ω).

Remark 2.3 The Korn inequality established in Theorem 2.1 in turn implies the more
commonly used Korn inequality “with boundary conditions” on a surface. This inequality
asserts that, given any measurable subset γ0 of the boundary of ω that satisfies length
γ0 > 0, there exists a constant c0 = c0(ω, θ, γ0) such that

‖η‖V (ω) ≤ c0‖(γ(η), ρ(η))‖0,ω

for all η = (ηi) ∈ V (ω) that satisfy ηi = ∂νη3 = 0 on γ0. For more details, see, e.g.,
Section 2.6 in Ciarlet8.

The second stage consists in establishing another basic Korn’s inequality on a surface,
this time “over the quotient space V̇ (ω)”.

Theorem 2.2 Let there be given a domain ω in R2 and an immersion θ ∈ C3(ω; E3).
Then there exists a constant ċ = ˙ c(ω, θ) such that

‖η̇‖V̇ (ω) ≤ ċ‖(γ(η̇), ρ(η̇))‖0,ω

for all η̇ ∈ V̇ (ω) = (H1(ω) × H1(ω) × H2(ω))/Rig(ω).

Proof. By the Hahn-Banach theorem, there exist six continuous linear forms lα on the
space V (ω) = H1(ω) × H1(ω) × H2(ω), 1 ≤ α ≤ 6, with the following property: A vector
field ξ ∈ Rig(ω) is equal to 0 if and only if lα(ξ) = 0, 1 ≤ α ≤ 6. It thus suffices to show
that there exists a constant ċ such that

‖η‖V (ω) ≤ ċ(‖(γ(η), ρ(η))‖0,ω +
6∑

α=1

|lα(η)|)

for all η ∈ V (ω). For, given any η ∈ V (ω), let ξ(η) ∈ Rig(ω) be such that lα(η+ξ(η)) =
0, 1 ≤ α ≤ 6. The above inequality then implies that, for all η̇ ∈ V̇ (ω),

‖η̇‖V̇ (ω) ≤ ‖η + ξ(η)‖V (ω) ≤ ċ‖(γ(η), ρ(η))‖0,ω.

Assume that there does not exist such a constant ċ. Then there exist ηk ∈ V (ω), k ≥ 1,
such that

‖ηk‖V (ω) = 1 for all k ≥ 1,

(‖(γ(ηk), ρ(ηk))‖0,ω +
6∑

α=1

|lα(ηk)|) →
k→∞

0.
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By Rellich theorem, there thus exists a subsequence (ηl)∞l=1 that converges in the space
L2(ω)×L2(ω)×H1(ω) on the one hand; on the other hand, each subsequence (γ(ηl))∞l=1

and (ρ(ηl))∞l=1 converges in the space L2
sym(ω). Therefore the subsequence (ηl)∞l=1 is a

Cauchy sequence with respect to the norm

η = (ηi) ∈ V (ω) →
{∑

α

‖ηα‖2
0,ω + ‖η3‖1,ω + ‖(γ(η), ρ(η))‖2

0,ω

}1/2
,

hence also with respect to the norm ‖·‖V (ω) by the Korn inequality on a surface established
in Theorem 2.1.

Consequently, there exists η ∈ V (ω) such that ‖ηl − η‖V (ω) →
l→∞

0. But then η = 0

since γ(η) = ρ(η) = 0 and lα(η) = 0, in contradiction with the relations ‖ηl‖V (ω) = 1 for
all l ≥ 1.

We emphasize that our subsequent analysis will provide “as by-products” entirely
different proofs of the above Korn inequalities on a surface.

3 Weak versions of a classical theorem of Poincaré and of
St Venant’s compatibility relations

Our first objective naturally consists in characterizing those pairs of symmetric 2×2 matrix
fields (cαβ) ∈ L2

sym(ω) and (rαβ) ∈ L2
sym(ω), i.e., the new unknowns in our approach, that

have the following property: There exists a vector field η = (ηi) ∈ H1(ω)×H1(ω)×H2(ω)
such that

cαβ = γαβ(η) and rαβ = ραβ(η),

where the components γαβ(η) and ραβ(η) are those of the linearized change of metric and
change of curvature tensors associated with the displacement field ηia

i of the surface θ(ω)
(these components are defined in Section 2).

To shed light on our proposed methodology for this purpose, we return to that of Ciarlet
& Ciarlet, Jr.10 for handling the three-dimensional analog, viz., the characterization of
those symmetric 3 × 3 matrix fields e with components in L2(Ω) that can be written as
e = 1

2(∇vT + ∇v) for some v ∈ H1(Ω), where Ω is a domain in R3.
A classical theorem of Poincaré (see, e.g., Schwartz22) asserts that, if functions hk ∈

C1(Ω) satisfy ∂lhk = ∂khl in a simply-connected open subset Ω of R3 (or Rn for that
matter), then there exists a function p ∈ C2(Ω) such that hk = ∂kp in Ω. This theorem
was extended by Girault and Raviart18 (see Theorem 2.9, Chapter 1), who showed that,
if functions hk ∈ L2(Ω) satisfy ∂lhk = ∂khl in H−1(Ω) on a simply-connected domain Ω
of R3, then there exists p ∈ H1(Ω) such that hk = ∂kp in L2(Ω). As shown by Ciarlet and
Ciarlet, Jr.10, this extension can be carried out one step further, as follows (the proof is
somewhat more delicate however):

Theorem 3.1 Let Ω be a simply-connected domain in R3. Let hk ∈ H−1(Ω) be distribu-
tions that satisfy ∂lhk = ∂khl in H−2(Ω). Then there exists a function p ∈ L2(Ω), unique
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up to an additive constant, such that hk = ∂kp in H−1(Ω).

Idea of the proof: Given any h ∈ H−1(Ω), Theorem 5.1, Chapter 1 of Girault and
Raviart18 shows that there exist u ∈ H1

0(Ω) and p ∈ L2(Ω) such that (the assump-
tions that Ω is bounded and has a Lipschitz-continuous boundary are used here) −∆u +
grad p = h in H−1(Ω) and div u = 0 in Ω.

It then suffices to show that, if in addition curl h = 0 in H−2(Ω), then u = 0. The
proof of this implication, which is by no means trivial, relies in particular on an exten-
sion result of Girault17 (see Theorem 3.2) and on a representation result of Girault and
Raviart18 (see Theorem 2.9, Chapter 1), the assumption of simple-connectedness of Ω
playing a crucial rôle here (as in the “classical” version of Theorem 3.1).

In 1864, A. J. C. B. de Saint Venant showed that, if functions eij = eji ∈ C3(Ω) satisfy
in a simply-connected open subset Ω of R3 ad hoc compatibility relations that since then
bear his name, then there exists a vector field (vi) ∈ C4(Ω) such that eij = 1

2(∂jvi + ∂ivj)
in Ω. Thanks to Theorem 3.1, it can be shown that the same St Venant compatibility rela-
tions are also sufficient conditions in the sense of distributions, according to the following
result (again due to Ciarlet and Ciarlet, Jr.10):

Theorem 3.2 Let Ω be a simply-connected domain in R3. Let

e = (eij) ∈ L2
sym(Ω) := {e = (eij) ∈ (L2(Ω))9; eij = eji}

be a symmetric matrix field that satisfies the following compatibility relations:

Rijkl(e) := ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then there exists a vector field v = (vi) ∈ H1(Ω) such that

e =
1
2
(∇vT + ∇v) in L2

sym(Ω),

and all other solutions ṽ = (ṽi) ∈ H1(Ω) of the equations

e =
1
2
(∇ṽT + ∇ṽ) in L2

sym(Ω)

are of the form
ṽ = v + a + b ∧ id, with a ∈ R3 and b ∈ R3.

Proof. The compatibility relations Rijkl(e) = 0 in H−2(Ω) may be equivalently rewritten
as

∂lhijk = ∂khijl in H−2(Ω) with hijk := ∂jeik − ∂iejk ∈ H−1(Ω).

Hence Theorem 3.1 shows that there exist functions pij ∈ L2(Ω), unique up to additive
constants, such that ∂kpij = hijk = ∂jeik −∂iejk in H−1(Ω). Besides, since ∂kpij = −∂kpji
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in H−1(Ω), we have the freedom of choosing the functions pij in such a way that pij+pji = 0
in L2(Ω).

Noting that the functions qij := (eij + pij) ∈ L2(Ω) satisfy

∂kqij = ∂keij + ∂kpij = ∂keij + ∂jeik − ∂iejk = ∂jeik + ∂jpik = ∂jqik in H−1(Ω),

we again resort to Theorem 3.1 to assert the existence of functions vi ∈ H1(Ω), unique up
to additive constants, such that ∂jvi = qij = eij + pij in L2(Ω). Consequently,

1
2
(∂jvi + ∂ivj) = eij +

1
2
(pij + pji) = eij in L2(Ω),

as required. That all other solutions are of the indicated form is well-known; see, e.g.,
Chapter 3 of Duvaut and Lions16.

Remark 3.1 A direct computation immediately shows that the St Venant compatibil-
ity relations are also necessary, i.e., that Rijkl(∇vT + ∇v) = 0 in H−2(Ω) for any
v ∈ H1(Ω).

Remark 3.2 It is easily verified that the eighty-one relations Rijkl(e) = 0 in H−2(Ω) are
satisfied if only six of them hold, provided they are suitably chosen; for instance, it suffices
that they be satisfied for (i, j, k, l) = (1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 2, 3), (1, 3, 1, 3), (1, 3, 2, 3),
and (2, 3, 2, 3).

Remark 3.3 Another “weak” characterization of matrix fields e ∈ L2
sym(Ω) satisfying

e = 1
2(∇vT + ∇v) for some v ∈ H1(Ω) is found in Ting23.

Interestingly, the same “three-dimensional” St Venant compatibility relations also play
a key rôle in the proof of our main result, Theorem 4.1 below.

4 A necessary and sufficient condition for matrix fields to
be linearized change of metric and change of curvature
tensors

Thanks to Theorem 3.2, we are now in a position to establish an analog characterization,
but this time in the case of a surface.

Theorem 4.1 Let there be given a simply-connected domain ω in R2 and an injective
immersion θ ∈ C3(ω; E3). For each ε > 0, define the mapping Θ ∈ C2(ω × [−ε, ε]; R3) by

Θ(y, x3) := θ(y) + x3
∂1θ(y) ∧ ∂2θ(y)
|∂1θ(y) ∧ ∂2θ(y)|

for all (y, x3) ∈ ω × [−ε, ε].

Then there exist ε0 > 0 and a mapping R ∈ L(L2
sym(ω) × L2

sym(ω); H−2(Ω̂)), where

Ω̂ := ω×] − ε0, ε0[ and H−2(Ω̂) := (H−2(Ω̂))6,
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with the following property: A pair (c, r) ∈ L2
sym(ω)×L2

sym(ω) of symmetric matrix fields
satisfies

R(c, r) = 0 in H−2(Ω̂)

if and only if there exists a vector field η ∈ V (ω) := H1(ω) × H1(ω) × H2(ω) such that

c = γ(η) and r = ρ(η) in L2
sym(ω).

In this case, all other solutions η′ ∈ V (ω) of the equations

c = γ(η′) and r = ρ(η′) in L2
sym(ω)

are such that (η′ − η) ∈ Rig(ω).
Proof. The uniqueness up to vector fields in the space Rig(ω) is well known, as already
noted.

The outline of the proof is as follows: In Part(i), we briefly review some notions about
curvilinear coordinates that are needed in the sequel; in Part (ii), we “recast in curvilinear
coordinates” the sufficiency of the St Venant compatibility relations; in Part (iii), we
summarize those results from Ciarlet & S. Mardare14 that will be used in our analysis
(the objective in ibid. was to show how Korn’s inequality on a surface can be obtained
as a corollary to the three-dimensional Korn inequality in curvilinear coordinates; in this
respect, see also Akian2); combining all these results, we then conclude the proof in Part
(iv).

(i) For details about the results reviewed here, see, e.g., Chapter 1 of Ciarlet8. Let
Ω be a domain in R3 and let Θ ∈ C2(Ω; E3) be a C2-diffeomorphism from Ω onto its
image Θ(Ω) ⊂ E3. Then the coordinates of x ∈ Ω are called the curvilinear coordinates
of the point x̂ := Θ(x) ∈ Θ(Ω) and Ω̂ := Θ(Ω) is also a domain. The metric tensor of
Θ(Ω) is defined by means of its covariant components gij := gi ·gj , where the vector fields
gi := ∂iΘ form the covariant bases. The vector fields gj defined by the relations gj ·gi = δj

i

form the contravariant bases and the functions Γp
ij := gp · ∂igj are the Christoffel symbols.

Given any vector field v̂ = (v̂i) ∈ H1(Ω̂), the functions

ε̂ij(v̂) :=
1
2
(∂̂j v̂i + ∂̂iv̂j) ∈ L2(Ω̂)

are the linearized strains in Cartesian coordiantes associated with the displacement field
v̂iê

i of the set Ω̂ and
ε̂(v) := (ε̂ij(v̂)) ∈ L2

sym(Ω̂)

is the associated linearized strain tensor field in Cartesian coordinates.
Let the vector field v = (vj) ∈ H1(Ω) be defined by means of the relations

vj(x)gj(x) = v̂i(x̂)êi for almost all x = Θ−1(x̂) ∈ Ω.

Then the functions

εij(v) :=
{

1
2
(∂jvi + ∂ivj) − Γp

ijvp

}
∈ L2(Ω)
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are the linearized strains in curvilinear coordinates associated with the displacement field
vjg

i of the set Θ(Ω) and
ε(v) := (εij(v)) ∈ L2

sym(Ω)

is the associated linearized strain tensor field in curvilinear coordinates (here, “strain” is
to be understood as “change of metric”, thus reflecting that the matrix field ε(v) measures
half of the linearized difference between the metric tensor in the “deformed configuration”
(Θ + vig

i)(Ω) and the metric tensor in the “reference configuration” Θ(Ω)).
It is then easily seen that the two above linearized strain tensor fields are related by

the relations

ε̂(v̂)(x̂)(∇Θ−T ε(v)∇Θ−1)(x) for almost all x̂ = Θ(x) ∈ Ω̂.

(ii) Let Ω be a simply-connected domain in R3, let Θ ∈ C2(Ω; E3) be a C2−diffeomorphism
of Ω onto its image, let Ω̂ := Θ(Ω), let the mapping B ∈ L(L2

sym(Ω); L2
sym(Ω̂)) be defined

for any e ∈ L2
sym(Ω) by

(Be)(x̂) := (∇Θ−T e∇Θ−1)(x) for almost all x̂ = Θ(x) ∈ Ω̂,

and let, for any ê = (êij) ∈ L2
sym(Ω̂),

R̂(ê) := (R̂ijkl(ê)) where R̂ijkl(ê) := ∂̂lj êik + ∂̂kiêjl − ∂̂liêjk − ∂̂kj êil.

Then a matrix field e ∈ L2
sym(Ω) is such that there exists a vector field v = (vi) ∈

H1(ω) that satisfies
e = ε(v) in L2

sym(Ω)

if and only if
R(e) = 0 in H−2(Ω̂) = (H−2(Ω̂))6,

where the mapping R ∈ L(L2
sym(Ω); H−2(Ω̂)) is defined by

R := R̂ ◦ B.

First, we note that the domain Ω̂ ⊂ E3 is simply-connected if the domain Ω ⊂ R3

is simply-connected. Second, it is clear that B is an isomorphism from L2
sym(Ω) onto

L2
sym(Ω̂).

Let then e ∈ L2
sym(Ω) be a matrix field that satisfies R(e) = 0 in H−2(Ω̂). By

Theorem 3.2, there thus exists a vector field v̂ = (v̂i) ∈ H1(Ω̂) such that

Be = ε̂(v̂) in L2
sym(Ω̂).

By (i), the vector field v = (vj) ∈ H1(Ω) defined by vjg
j(x) = v̂i(x̂)êi for almost all

x = Θ−1(x̂) ∈ Ω satisfies
ε̂(v̂) = Bε(v).

Hence e = ε(v) since the mapping B is injective.
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Conversely, let v = (vj) ∈ H1(Ω) be given. Then, by Part (i), Bε(v) = ε̂(v̂), where the
vector field v̂ = (v̂i) ∈ H1(Ω̂) is defined by v̂i(x̂)êi = vjg

j(x) for almost all x̂ = Θ(x) ∈ Ω.
Hence R̂ijkl(ε̂(v̂)) = 0 in H−2(Ω̂) for all i, j, k, l since these relations are necessary (Re-
mark 3.1). We have already noted (Remark 3.2) that six of these relations suffice, thus
justifying the notation H−2(Ω̂) = (H−2(Ω̂))6.

(iii) The results recapitulated below are proved in Ciarlet and S. Mardare14. Let ω be
a domain in R2 and let θ ∈ C3(ω; E3) be an injective immersion. As before, we denote

by ai and aj the vector fields defined by the relations aα = ∂αθ, a3 =
a1 ∧ a2

|a1 ∧ a2|
, and

aj · ai = δj
i . Then there exists ε0 > 0 such that the mapping Θ : Ω → E3 defined by

Θ(y, x3) = θ(y) + x3a3(y) for all (y, x3) ∈ Ω, where Ω := ω×] − ε0, ε0[,

is a C2−diffeomorphism from Ω onto its image Θ(Ω). Let gi and gj denote the vector
fields defined by the relations gi = ∂iΘ and gj · gi = δj

i . With any vector field η = (ηi) ∈
V (ω) := H1(ω)×H1(ω)×H2(ω), let there be associated the vector field v = (vj) ∈ H1(Ω)
defined by

vj(y, x3)gj(y, x3) = ηi(y)ai(y) − x3(∂αη3(y) + bσ
α(y)ησ(y))aα(y)

for all (y, x3) ∈ Ω, where bσ
α := aβσbαβ . Then the linear mapping

F : η ∈ V (ω) → v ∈ H1(Ω)

defined in this fashion is an isomorphism from the space V (ω) onto the Hilbert space

V (Ω) := {v ∈ H1(Ω); εi3(v) = 0 in Ω}.

Besides,

εαβ(F (η)) = γαβ(η) − x3ραβ(η) +
x2

3

2
{
bσ
αρβσ(η) + bτ

βρατ (η) − 2bσ
αbτ

βγστ (η)
}
.

(iv) Let Ω be a simply-connected domain in R2 and let θ ∈ C3(ω; E3) be an injective
immersion. Let the open set Ω = ω×] − ε0, ε0[ be defined as in Part (iii), let the mapping
G ∈ L(L2

sym(ω) × L2
sym(ω); L2

sym(Ω)) be defined by

(G(c, r))αβ = cαβ − x3rαβ +
x2

3

2
{bσ

αrβσ + bτ
βrατ − 2bσ

αbτ
βcστ},

(G(c, r))i3 = 0,

for any (c, r) = ((cαβ), (rαβ)) ∈ L2
sym(ω) × L2

sym(ω), and finally, let Ω̂ := Θ(Ω), where Θ
is the C2−diffeomorphism from Ω onto its image defined in Part (iii).

Then a pair (c, r) ∈ L2
sym(ω) × L2

sym(ω) of matrix fields is such that there exists a
vector field η ∈ V (ω) satisfying

c = γ(η) and r = ρ(η) in L2
sym(ω)
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if and only if
R(c, r) = 0 in H−2(Ω̂) = (H−2(Ω̂))6,

where the mapping R ∈ L(L2
sym(Ω) × L2

sym(Ω); H−2(Ω̂)) is defined by

R = R ◦ G,

the mapping R ∈ L(L2
sym(Ω); H−2(Ω̂)) being that defined in Part (ii).

First, we note that the domain Ω ⊂ R3 is simply-connected if the domain ω ⊂ R2

is simply-connected. Second, we show that the mapping G is injective. To see this, let
functions f, g, h ∈ L2(ω) be such that F = 0 in L2(Ω), where the function F is defined by

F(y, x3) := f(y) + x3g(y) + x2
3h(y) for (y, x3) ∈ Ω.

Then ∂33F = 0 in D′(Ω) and since the distribution ∂33F is in this case the function in
L2(Ω) defined by ∂33F(y, x3) = 2h(y) for almost all (y, x3) ∈ Ω, we conclude that h = 0;
since ∂3F = 0 in D′(Ω), we likewise conclude that g = 0; hence we are left with f = 0.

Let then (c, r) ∈ L2
sym(ω)×L2

sym(ω) be a pair of matrix fields that satisfies R(c, r) = 0
in H−2(Ω̂). By Part (ii), there thus exists a vector field v = (vi) ∈ H1(Ω) that satisfies

G(c, r) = ε(v) in L2
sym(Ω).

In particular then, εi3(v) = (G(c, r))i3 = 0 by definition of G, which shows that v ∈ V (Ω).
Let the vector field η ∈ V (ω) be defined by η := F−1(v), where F : V (ω) → V (Ω) is the
isomorphism defined in Part (iii). By definition of G and by Part (iii),

(G(γ(η), ρ(η)))αβ = εαβ(F (η)) = εαβ(v),
(G(γ(η), ρ(η)))i3 = 0 = εi3(v).

In other words, G(γ(η), ρ(η)) = ε(v) in L2
sym(Ω). We thus conclude that

c = γ(η) and r = ρ(η) in L2
sym(ω),

since the mapping G is injective.
Conversely, let η ∈ V (ω) be given. Then, by definition of the mappings F and G,

we have G(γ(η), ρ(η)) = ε(v), where the vector field v ∈ V (Ω) ⊂ H1(Ω) is defined by
v := F (η). Hence R(ε(v)) = 0 in H−2(Ω̂) by Part (ii). Equivalently,

R(γ(η), ρ(η)) = 0 in H−2(Ω̂),

which shows that the relation R(c, r) = 0 in H−2(Ω̂) is also necessary.

Remark 4.1 In Part (iv), we showed that the mapping G is injective. It can be easily
shown that, in addition, its image ImG is a closed subspace of L2

sym(Ω). The closed
graph theorem then shows that G is in fact an isomorphism from the Hilbert space
L2

sym(ω) × L2
sym(ω) onto the Hilbert space ImG.
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Remark 4.2 More explicit necessary and sufficient conditions can be also found that
take the form of relations in the space H−2(ω) satisfied by the components of the tensor
fields r and c and some of their partial derivatives, with coefficients involving the two
fundamental forms and the Christoffel symbols of the surface θ(ω); see Ciarlet, Gratie
and C. Mardare.12

5 A new proof of Korn’s inequality on a surface

Thanks to Theorem 4.1, we can define in a natural way a basic isomorphism (denoted by
H in the next theorem), which plays a key rôle in the rest of this paper (see Theorems
5.2 and 6.1).

Theorem 5.1 Let there be given a simply-connected domain ω in R2 and an injective
immersion θ ∈ C3(ω; E3). Define the space

T (ω) :=
{
(c, r) ∈ L2

sym(ω) × L2
sym(ω); R(c, r) = 0 in H−2(Ω̂)

}
,

where the open set Ω̂ and the mapping R ∈ L(L2
sym(ω) × L2

sym(ω); H−2(Ω̂)) are defined
as in Theorem 4.1.

Given any element (c, r) ∈ T (ω), there exists, again by Theorem 4.1, a unique equiva-
lence class η̇ in the quotient space V̇ (ω) = H1(ω)×H1(ω)×H2(ω))/Rig(ω) that satisfies

γ(η̇) = c and ρ(η̇) = r in L2
sym(ω).

Then the mapping
H : T (ω) → V̇ (ω)

defined by H(c, r) := η̇ is an isomorphism between the Hilbert spaces T (ω) and V̇ (ω).
Proof. Clearly, T (ω) is a Hilbert space as a closed subspace of L2

sym(ω) × L2
sym(ω). The

mapping H is injective, for H(c, r) = 0̇ implies that c = γ(0̇) = 0 and r = ρ(0̇) = 0. It
is also surjective since, given any η̇ ∈ V̇ (ω), the pair (γ(η̇), ρ(η̇)) ∈ L2

sym(ω) × L2
sym(ω)

necessarily satisfies R(γ(η̇), ρ(η̇)) = 0 in H−2(Ω̂) by Theorem 5.1.
Finally, the inverse mapping

η̇ ∈ V̇ (ω) → (γ(η̇), ρ(η̇)) ∈ T (ω)

is clearly continuous, since there evidently exists a constant C such that, for any η ∈ V (ω)
and any ξ ∈Rig(ω),

‖(γ(η̇), ρ(η̇))‖0,ω = ‖(γ(η + ξ), ρ(η + ξ))‖0,ω ≤ C‖η + ξ‖V (ω).

Hence
‖(γ(η̇), ρ(η̇))‖0,ω ≤ C inf

ξ∈ Rig(ω)
‖η + ξ‖V (ω) = C‖η̇‖V̇ (ω).

The conclusion then follows from the closed graph theorem.
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Remarkably, the two Korn inequalities on a surface recalled earlier in Theorems 2.1
and 2.2, can now be recovered as simple corollaries to Theorem 5.1.

Theorem 5.2. Let there be given a simply-connected domain ω in R2 and an injective
immersion θ ∈ C3(ω; R3). That the mapping H : T (ω) → V̇ (ω) is an isomorphism implies
both Korn’s inequalities on a surface, i.e., “over the space V (ω) = H1(ω)×H1(ω)×H2(ω)”
(Theorem 2.1) and “over the quotient space V̇ (ω) = V (ω)/Rig(ω)” (Theorem 2.2).
Proof. (i) Since H is an isomorphism, there exists a constant ċ such that

‖H(c, r)‖V̇ (ω) ≤ ċ‖(c, r)‖0,ω for all (c, r) ∈ T (ω),

or equivalently, again because H is an isomorphism, such that

‖η̇‖V̇ (ω) ≤ ċ‖(γ(η̇), ρ(η̇)‖0,ω for all η̇ ∈ V̇ (ω).

But this is exactly Korn’s inequality “over the quotient space V̇ (ω)” of Theorem 2.2.
(ii) We now show that this Korn inequality in turn implies Korn’s inequality “over the

space V (ω)” of Theorem 2.1.
Assume that this last inequality does not hold. Then there exist ηk = (ηk

i ) ∈ V (ω), k ≥
1, such that

‖ηk‖V (ω) = 1 for all k ≥ 1,
({∑

α

‖ηk
α‖2

0,ω + ‖ηk
3‖2

1,ω

}1/2 + ‖((γ(ηk), ρ(ηk))‖0,ω

)
−→ 0
k→∞

.

Let ζk ∈ Rig(ω) denote for each k ≥ 1 the projection of ηk on Rig(ω) with respect
to the inner product of the space V (ω). This projection thus satisfies:

‖ηk − ζk‖V (ω) = inf
ξ∈ Rig(ω)

‖ηk + ξ‖V (ω) = ‖η̇k‖V̇ (ω),

‖ηk‖ 2
V (ω)

= ‖ηk − ζk‖ 2
V (ω)

+ ‖ζk‖ 2
V (ω)

.

The space Rig(ω) being finite-dimensional, the inequalities ‖ζk‖V (ω) ≤ 1 for all k ≥ 1
imply the existence of a subsequence (ζl)∞l=1 that converges in the space V (ω) to an element
ζ = (ζi) ∈Rig(ω). Besides, Korn’s inequality in the quotient space V̇ (ω) obtained in Part
(i) implies that

‖ηl − ζl‖V (ω) = ‖η̇l‖V̇ (ω) −→ 0
l→∞

,

since ‖(γ(η̇l), ρ(η̇l))‖0,ω −→ 0
l→∞

. Consequently,

‖ηl − ζ‖V (ω) −→ 0
l→∞

.

Hence {
∑

α

‖ηl
α − ζα‖2

0,ω + ‖ηl
3 − ζ3‖2

1,ω}1/2 −→ 0
l→∞

a fortiori, which shows that ζ = 0

since {
∑

α

‖ηl
α‖2

0,ω + ‖ηl
3‖2

1,ω}1/2 −→ 0
l→∞

on the other hand. We thus reach the conclusion

that ‖ηl‖V (ω) −→ 0
l→∞

, a contradiction.

19



Remark 5.1 Together, Theorem 2.1 and Part (ii) of the above proof thus show that both
Korn’s inequalities on a surface, viz., on the space V (ω) and on the quotient space V̇ (ω),
are equivalent.

6 A new approach to existence theory for Koiter’s linear
shell equations

Thanks again to the isomorphism H introduced in Theorem 5.1, we are now in a position
to recast the quadratic minimization problem that models the pure traction problem of a
linearly elastic shell (see Section 2) as another quadratic minimization problem, this time
over the space T (ω) introduced in Theorem 5.1. The various notations found in the func-
tional κ below are all defined in Section 2.

Theorem 6.1 Given a simply-connected domain ω in R2 and an injective immersion
θ ∈ C3(ω; E3), define the Hilbert space T (ω) as in Theorem 5.1, viz.,

T (ω) = {(c, r) ∈ L2
sym(ω) × L2

sym(ω); R(c, r) = 0 in H−2(Ω̂)}.

Furthermore, define the quadratic functional κ : L2
sym(ω) × L2

sym(ω) → R by

κ(c, r) :=
1
2

∫

ω
{εAc : c +

ε3

3
Ar : r}

√
ady − l[(c, r)

for all (c, r) = ((cαβ), (rαβ)) ∈ L2
sym × L2

sym(ω), where l[ := l ◦ H.
Then the minimization problem : Find (c∗, r∗) ∈ T (ω) such that

κ(c∗, r∗) = inf{κ(c, r); (c, r) ∈ T (ω)}

has one and only one solution (c∗, r∗). Besides,

(c∗, r∗) = (γ(η̇∗), ρ(η̇∗)),

where η̇∗ is the unique solution to the “classical” minimization problem inf
η̇∈V̇ (ω)

j(η̇) de-

scribed in Section 2.
Proof. Thanks to the uniform positive definiteness of the two-dimensional elasticity tensor
of the shell, there exists a constant b1 > 0 such that

∫

ω

{
εAc : c +

ε3

3
Ar : r

}√
ady ≥ b1‖(c, r)‖2

0,ω

for all (c, r) in the space L2
sym(ω)×L2

sym(ω). Besides, the linear form l[ is continuous over
the space T (ω) since the mapping H : T (ω) → V̇ (ω) and the linear form l : V̇ (ω) → R
are both continuous. Finally, T (ω) is a Hilbert space. Hence there exists one, and only
one, minimizer (c∗, r∗) of the functional κ over the space T (ω).

That η̇∗ minimizes the functional j over the quotient space V̇ (ω) implies that (γ(η̇∗),
ρ(η̇∗)) minimizes the functional κ over the space T (ω). Hence (c∗, r∗) = ((γ(η̇∗), ρ(η̇∗))
since the minimizer of κ is unique.
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7 Concluding remarks

(a) While the original minimization problem over the space H1(ω)×H1(ω)×H2(ω)/Rig(ω)
is an unconstrained one with three unknowns (see Section 2), that found in Theorem
6.1 is a constrained minimization problem over the space L2

sym(ω) × L2
sym(ω) with six

unknowns. The constraints (in the sense of optimization theory) are the compatibility
relations R(c, r) = 0 in H−2(Ω̂) that the pairs of matrix fields (r, c) ∈ T (ω) must satisfy
(as shown in Ciarlet, Gratie and C. Mardare12, in fact these relations ultimately reduce
to only three independent ones, which can be set in the space H−2(ω)).

(b) In linear shell theory, the contravariant components of the stress resultant tensor
field (nαβ) ∈ L2

sym(ω) and the bending moment tensor field (mαβ) ∈ L2
sym(ω) are given in

terms of the displacement vector field by

nαβ = εaαβστγαβ(η) and mαβ =
ε3

3
aαβστραβ(η),

where the functions aαβστ are the contravariant components of the two-dimensional elas-
ticity tensor of the shell. Since this tensor is uniformly positive definite (see Section 2),
the above formulas are invertible and thus the minimization problem of Theorem 6.1 can
be immediately recast as a minimization problem with the stress resultants and bending
moments (the “unknowns of choice” in engineering!) as the primary unknowns.

(c) There remains the task of devising efficient numerical schemes for approaching
such a constrained minimization problem. Most likely, these approximate methods will
be similar in their principle to those proposed by Ciarlet and Sauter15 for approximating
the constrained minimization problem that similarly arises in linearized three-dimensional
elasticity (see Ciarlet and Ciarlet, Jr.10).

(d) The most daunting task consists in extending the present approach to nonlinearly
elastic shells, where the “full” differences (aαβ(η) − aαβ) and (bαβ(η) − bαβ) (see Section
2) are considered as the new unknowns, instead of their linearizations γαβ(η) and ραβ(η)
as here. Various attempts in this direction have been recently undertaken, by Ciarlet9

and Ciarlet and C. Mardare13. These attempts have met only partial success, however,
since nonlinearity creates considerable difficulties, as expected. Nevertheless and quite
interestingly, the soundness of this kind of approach is also corroborated in the mechanics
literature, where such an approach bears the befitting name of “intrinsic equations of shell
theory”; in this direction, see the key paper of Opoka and Pietraszkiewicz21.
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