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2 A NONLINEAR KORN INEQUALITY ON A SURFACE

Abstract. Let ω be a domain in R
2 and let θ : ω → R

3 be a smooth immersion.
The main purpose of this paper is to establish a “nonlinear Korn inequality on
the surface θ(ω)”, asserting that, under ad hoc assumptions, the H1(ω)-distance
between the surface θ(ω) and a deformed surface is “controlled” by the L1(ω)-
distance between their three fundamental forms. Naturally, the H1(ω)-distance
between the two surfaces is only measured up to proper isometries of R

3.
This inequality implies in particular the following interesting per se sequential

continuity property for a sequence of surfaces. Let θk : ω → R
3, k > 1, be mappings

with the following properties: They belong to the space H1(ω); the vector fields

normal to the surfaces θk(ω), k > 1, are well defined a.e. in ω and they also

belong to the space H1(ω); the principal radii of curvature of the surfaces θk(ω),
k > 1, stay uniformly away from zero; and finally, the three fundamental forms of
the surfaces θk(ω) converge in L1(ω) toward the three fundamental forms of the

surface θ(ω) as k → ∞. Then, up to proper isometries of R
3, the surfaces θk(ω)

converge in H1(ω) toward the surface θ(ω) as k → ∞.
Such results have potential applications to nonlinear shell theory, the surface

θ(ω) being then the middle surface of the reference configuration of a nonlinearly
elastic shell.

Résumé. Soit ω un domaine de R
2 et soit θ : ω → R

3 une immersion régulière.
L’objet principal de cet article est d’établir une “inégalité de Korn non linéaire
sur la surface θ(ω)”, affirmant que, moyennant des hypothèses convenables, la
distance dans H1(ω) entre la surface θ(ω) et une surface déformée est “controlée”
par la distance dans L1(ω) entre leurs trois formes fondamentales. Naturellement,
la distance dans H1(ω) entre les deux surfaces est mesurée seulement modulo les
isométries propres de R

3.
Cette inégalité implique en particulier la propriété de continuité séquentielle

suivante, intéressante par elle-même. Soit θk : ω → R
3, k > 1, des applications

ayant les propriétés suivantes: Elles appartiennent à l’espace H1(ω); les champs

de vecteurs normaux aux surfaces θk(ω), k > 1, sont définis presque partout dans
ω et appartiennent aussi à l’espace H1(ω); les modules des rayons de courbure

principaux des surfaces θk(ω), k > 1, sont uniformément minorés par une constante

strictement positive; finalement, les trois formes fondamentales des surfaces θk(ω)
convergent dans L1(ω) vers les trois formes fondamentales de la surface θ(ω) lorsque

k → ∞. Alors, à des isométries propres de R
3 près, les surfaces θk(ω) convergent

dans H1(ω) vers la surface θ(ω) lorsque k → ∞.

Ce type de résultat a des applications potentielles à la théorie non linéaire des co-

ques, la surface θ(ω) étant alors la surface moyenne de la configuration de référence

d’une coque non linéairement élastique.

MSC: 53A05; 73K15
Keywords: Differential Geometry; Nonlinear shell theory
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1. Introduction

Let ω be a bounded and connected open subset of R
2 with a Lipschitz-

continuous boundary, let θ : ω → R
3 be a smooth enough immersion, and

let θ(ω) be the middle surface of the reference configuration of a nonlinearly
elastic shell. Let S

2 denote the space of all symmetric matrices of order two.
Let (aαβ) and (bαβ) denote the first and second fundamental forms of the

“undeformed” middle surface S = θ(ω) and let (ãαβ) and (b̃αβ) denote the

first and second fundamental forms of a “deformed” surface θ̃(ω) associated

with a smooth enough mapping θ̃, whose normal vector field is well defined
a.e. in ω (so as to insure that the second fundamental form (b̃αβ) is well
defined). Then the change of metric tensor field (ãαβ − aαβ) : ω → S

2 and

the change of curvature tensor field (b̃αβ − bαβ) : ω → S
2 associated with

such a deformation θ̃ play a major rôle in two-dimensional nonlinear shell
theories.

For instance, the well-known stored energy function wK proposed by Koi-
ter [22, Eqs. (4.2),(8.1), and (8.3)] for modeling shells made with a homo-
geneous and isotropic elastic material takes the form

wK =
ε

2
aαβστ (ãστ − aστ )(ãαβ − aαβ) +

ε3

6
aαβστ (b̃στ − bστ )(b̃αβ − bαβ),

where 2ε is the (constant) thickness of the shell and

aαβστ =
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ),

where (aαβ) = (aαβ)
−1 and λ > 0 and µ > 0 denote the Lamé constants of

the elastic material.
The stored energy functions of a nonlinearly elastic membrane shell and

of a nonlinearly elastic flexural shell have been identified and fully justified
by means of Γ-convergence theory in two key contributions, respectively by
Le Dret & Raoult [25] and Friesecke, James, Mora & Müller [20] (a nonlin-
early elastic shell is a “membrane shell” if there are no nonzero admissible
deformations of its middle surface S that preserve the metric of S; other-
wise, the shell is a “flexural shell”). It then turns out that the stored energy
function of a membrane shell is an ad hoc quasiconvex envelope that is only
a function of the change of metric tensor field, and that the stored energy
function wF of a flexural shell is of the form

wF =
ε3

6
aαβστ (b̃στ − bστ )(b̃αβ − bαβ),

i.e., it is only a function of the change of curvature tensor field (in this
case, the minimizers of the total energy are sought in a set of admissible
deformations that preserve the metric of S; see again [20], or Ciarlet &
Coutand [11]).
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Conceivably, an alternative approach to existence theory in nonlinear shell
theory could thus regard the change of metric and change of curvature ten-
sors, or equivalently, the first and second fundamental forms (ãαβ) and (b̃αβ)
of the unknown deformed middle surface, as the primary unknowns, instead
as the deformation θ̃ itself as is customary.

This observation is one of the reasons underlying the present study, the
other one being differential geometry per se. As such, it is a continuation of
the works initiated by Ciarlet [8] and continued by Ciarlet & Mardare [18]
for “smooth” topologies, respectively those of spaces Cm(ω) and Cm(ω).

Let us henceforh restrict ourselves to deformations θ̃ ∈ H1(ω;R3) whose

normal vector field ã3 =
ã1 ∧ ã2
|ã1 ∧ ã2|

, where ãα = ∂αθ̃, is well defined a.e.

in ω and satisfies ã3 ∈ H1(ω;R3). The covariant components of the three

fundamental forms of the deformed surface θ̃(ω), viz.,

ãαβ = ãα · ãβ , b̃αβ = −∂αã3 · ãβ , c̃αβ = ∂αã3 · ∂βã3,

are then well defined as functions in L1(ω) and clearly, the mapping

(θ̃, ã3) ∈ [H1(ω;R3)]2 −→ ((ãαβ), (b̃αβ), (c̃αβ)) ∈ [L1(ω; S2)]3,

restricted to such deformations θ̃, is continuous.
One of the purposes of this paper is to show that, under appropriate

assumptions, the converse also holds, i.e., the surfaces θ̃(ω), together with
their normal vector fields ã3, depend continuously on their three fundamental
forms, the topologies being those of the same spaces, viz., [H1(ω;R3)]2 and
[L1(ω; S2)]3.

This continuity result is itself a consequence of the following “nonlinear
Korn inequality on a surface”, which constitutes the main result of this
paper (see Theorem 4.1): Assume that θ ∈ C1(ω;R3) is an immersion with
a normal vector field a3 ∈ C

1(ω;R3). Then, for each ε > 0, there exists

a constant c(θ, ε) with the following property: Given any mapping θ̃ ∈

H1(ω;R3) such that the normal vector field ã3 to the surface θ̃(ω) is well
defined and satisfies ã3 ∈ H1(ω;R3), and such that the principal radii of

curvature R̃α of the surface θ̃(ω) satisfy |R̃α| > ε a.e. in ω, there exists a

vector b := b(θ, θ̃, ε) ∈ R
3 and a matrix R = R(θ, θ̃, ε) ∈ O

3
+ such that

‖(b+Rθ̃)− θ‖H1(ω;R3) + ε‖Rã3 − a3‖H1(ω;R3)

6 c(θ, ε)
{

‖(ãαβ − aαβ)‖
1/2
L1(ω;S2)

+ ε1/2‖(b̃αβ − bαβ)‖
1/2
L1(ω;S2)

+ ε‖(c̃αβ − cαβ)‖
1/2
L1(ω;S2)

}

,

where O
3
+ denotes the set of all proper orthogonal matrices of order three.

The proof of the above inequality relies in an essential way on a nonlin-
ear Korn inequality in an open set of R

3 recently established by Ciarlet &
Mardare [16] (see Theorem 3.1). This inequality in turn makes an essential
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use of the fundamental “geometric rigidity lemma” of Friesecke, James, &
Müller [21] and of the methodology developed in Ciarlet & Laurent [14].

That a vector b ∈ R
3 and a matrixR ∈ O

3
+ should appear in the left-hand-

side of this inequality is no surprise in light of the following extension, due to
Ciarlet & Mardare [15], of the classical rigidity theorem: Let θ ∈ C1(ω;R3)

be an immersion that satisfies a3 ∈ C
1(ω;R3) and let θ̃ ∈ H1(ω;R3) be a

mapping that satisfies

ãαβ = aαβ a.e. in ω, ã3 ∈ H1(ω;R3), b̃αβ = bαβ a.e. in ω

(as shown in ibid., the assumption ãαβ = aαβ a.e. in ω insures that the
normal vector field a3 is well defined a.e. in ω). Then the two surfaces

θ(ω) and θ̃(ω) are properly isometrically equivalent, i.e., there exist a vector
b ∈ R

3 and a matrix R ∈ O
3
+ such that

θ̃(y) = b+Rθ(y) for almost all y ∈ ω.

One application of the nonlinear Korn inequality on a surface is the fol-
lowing sequential continuity property (cf. Corollaries 5.1 and 5.2; in the
same spirit, the same inequality is also recast as one involving distances in
Corollary 5.3): Let θk : ω → R

3, k > 1, be mappings with the following
properties: They belong to the spaceH1(ω); the vector fields normal to the

surfaces θk(ω), k > 1, are well defined a.e. in ω and they also belong to the

space H1(ω); the principal radii of curvature of the surfaces θk(ω), k > 1,
stay uniformly away from zero; and finally, the three fundamental forms of
the surfaces θk(ω) converge in L1(ω) toward the three fundamental forms
of the surface θ(ω) as k → ∞. Then, for each k > 1, there exists a surface

θ̂
k
(ω) that is properly isometrically equivalent to the surface θk(ω) such

that the surfaces θ̂
k
(ω) and their normal vector fields converge in H1(ω) to

the surface θ(ω) and its normal vector field.
Should the fundamental forms of the unknown deformed surface be viewed

as the primary unknowns in a shell problem (as suggested earlier), this kind
of sequential continuity result could thus prove to be useful when considering
infimizing sequences of the energy of a nonlinearly elastic shell (in particular
for handling the part of the energy that takes into account the applied forces
and the boundary conditions, which are both naturally expressed in terms
of the deformation itself).

In this respect, it is worth mentioning that a similar program has been
successfully carried out in the linear case. More specifically, Ciarlet & Gratie
[12] have recently revisited from a similar perspective the quadratic minimi-
sation problem proposed by Koiter [23] for modeling a linearly elastic shell.
As expected, the stored energy function then takes the form

wlinK =
ε

2
aαβστγστ (η̃)γαβ(η̃) +

ε3

6
aαβστρστ (η̃)ραβ(η̃),

where (γαβ(η̃)) : ω → S
2 and (ραβ(η̃)) : ω → S

2 are the linearized change of
metric, and linearized change of curvature, tensor fields associated with a
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displacement field η̃ = θ̃− θ of the middle surface of the shell (“linearized”
means that only the linear part with respect to η̃ are retained in the “com-
plete” differences (ãαβ − aαβ) and (b̃αβ − bαβ)). Then the novelty in [12]
has consisted in considering these linearised tensors as the new unknowns,
instead of the displacement field η̃ as is customary in linear shell theory. A
new existence theory for the resulting minimisation problem has been estab-
lished in [12], which interestingly also provides a new proof of the linear Korn
inequality on a surface (in so doing, an essential use is made of a similar ap-
proach, which has been successfully applied to linearized three-dimensional
elasticity by Ciarlet and Ciarlet, Jr [10]).

This linear inequality on a surface is also briefly reviewed here in Section
7), for the (different) purpose of showing that it is indeed a linearization
of the nonlinear inequality established here, thus justifying the terminology
“nonlinear Korn inequality on a surface” proposed in the present paper.

The results of this paper have been announced in [13].

2. Notations and definitions

The symbols M
n, S

n, and O
n
+ respectively designate the sets of all real

matrices of order n, of all real symmetric matrices of order n, and of all real
orthogonal matrices R of order n with detR = 1. The Euclidean norm of a
vector b ∈ R

n is denoted |b| and |A| := sup
|b|=1

|Ab| denotes the spectral norm

of a matrix A ∈ M
n.

Let U be an open subset in R
n. Given any smooth enough mapping

χ : U → R
n, we let ∇χ(x) ∈ M

n denote the gradient matrix of the mapping
χ at x ∈ U and we let ∂iχ(x) denote the i-th column of the matrix ∇χ(x).
Given any mapping F ∈ Lp(U ;Mn), p > 1, we let

‖F ‖Lp(U ;Mn) :=
{

∫

U
|F (x)|pdx

}1/p
,

and we define ‖F ‖Lp(U ;Sn) in an analoguous manner if F ∈ Lp(U ; Sn). Given

any mapping χ ∈ H1(U ;Rn), we let

‖χ‖H1(U ;Rn) :=

{

∫

U

(

|χ(x)|2 +

n
∑

i=1

|∂iχ(x)|
2
)

dx

}1/2

.

A domain U in R
n is an open and bounded subset of R

n with a boundary
that is Lipschitz-continuous in the sense of Adams [2] or Nec̆as [26], the set
U being locally on the same side of its boundary. If U is a domain in R

n,
the space C1(U ;Rm) consists of all vector-valued mappings χ ∈ C1(U ;Rm)
that, together with all their partial derivatives of the first order, possess
continuous extensions to the closure U of U . The space C1(U ;Rm) also
consists of restrictions to U of all mappings in the space C1(Rn;Rm) (for a
proof, see, e.g., [29] or [17]).

Latin indices and exponents henceforth range in the set {1, 2, 3} save when
they are used for indexing sequences, Greek indices and exponents range in
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the set {1, 2}, and the summation convention is used in conjunction with
these rules.

The notations (aαβ), (a
αβ), (bβα), and (gij) respectively designate matrices

in M
2 and M

3 with components aαβ , a
αβ, bβα, and gij , the index or exponent

denoted here α or i designating the row index.

3. Preliminaries

The proof of our main result (Theorem 3.1) relies on several preliminaries,
which are gathered in this section. The key preliminary is the following
nonlinear Korn inequality on an open subset in R

n recently established by
Ciarlet and Mardare [16], the proof of which is sketched below for the sake
of completeness. See also Reshetnyak [28] for related results.

Theorem 3.1. Let Ω be a domain in R
n, n > 2. Given any mapping

Θ ∈ C1(Ω;Rn) satisfying det∇Θ > 0 in Ω, there exists a constant C(Θ)

with the following property: Given any mapping Θ̃ ∈ H1(Ω;Rn) satisfying

det∇Θ̃ > 0 a.e. in Ω, there exist a vector b = b(Θ̃,Θ) ∈ R
n and a matrix

R = R(Θ̃,Θ) ∈ O
n
+ such that

‖(b+RΘ̃)−Θ‖H1(Ω;Rn) 6 C(Θ)‖∇Θ̃
T
∇Θ̃−∇ΘT∇Θ‖

1/2
L1(Ω;Sn)

.

Proof. We sketch the main parts of the proof under the additional assump-
tion that the mapping Θ is injective in Ω. The proof in the general case
is substantially more technical and relies on a methodology reminiscent to
that proposed in Ciarlet & Laurent [14].

(i) Let a matrix F ∈ M
n be such that detF > 0. Then

dist(F ,On
+) := inf

Q∈On
+

|F −Q| 6 |F TF − I|1/2.

It is known that

dist(F ,On
+) = |(F

TF )1/2 − I|.

Let 0 < v1 6 v2 6 ... 6 vn denote the singular values of the matrix F . Then

|(F TF )1/2 − I| = max{|v1 − 1|, |vn − 1|}

6 max{|v21 − 1|1/2, |v2n − 1|1/2} = |F TF − I|1/2.

(ii) Let Ω be a domain in R
n. Then there exists a constant Λ(Ω) with the

following property: Given any mapping Θ̃ ∈ H1(Ω;Rn) satisfying det∇Θ̃ >

0 a.e. in Ω, there exists a matrix R = R(Θ̃) ∈ O
n
+ such that

‖R∇Θ̃− I‖L2(Ω;Mn) 6 Λ(Ω)‖∇Θ̃
T
∇Θ̃− I‖

1/2
L1(Ω;Sn)

.

By the “geometric rigidity lemma” of Friesecke, James & Müller [21,
Theorem 3.1], there exists a constant Λ(Ω) depending only on the set Ω
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with the following property: For each Θ̃ ∈ H1(Ω;Rn), there exists a rotation

R = R(Θ̃) ∈ O
n
+ such that

‖R∇Θ̃− I‖L2(Ω;Mn) 6 Λ(Ω)‖dist(∇Θ̃,On
+)‖L2(Ω).

If in addition the mapping Θ̃ ∈ H1(Ω;Rn) satisfies det∇Θ̃ > 0 a.e. in
Ω, then part (i) implies that

dist(∇Θ̃(x),On
+) 6 |∇Θ̃(x)T∇Θ̃(x)− I|1/2

for almost all x ∈ Ω. Hence

‖dist(∇Θ̃,On
+)‖L2(Ω) 6 ‖∇Θ̃

T
∇Θ̃− I‖

1/2
L1(Ω;Sn)

.

(iii) Let Ω be a domain in R
n. Given any injective mappingΘ ∈ C1(Ω;Rn)

satisfying det∇Θ > 0 in Ω, there exists a constant c(Θ) with the following

property: Given any mapping Θ̃ ∈ H1(Ω;Rn) satisfying det∇Θ̃ > 0 a.e. in

Ω, there exists a rotation R = R(Θ̃,Θ) ∈ O
n
+ such that

‖R∇Θ̃−∇Θ‖L2(Ω;Mn) 6 c(Θ)‖∇Θ̃
T
∇Θ̃−∇ΘT∇Θ‖

1/2
L1(Ω;Sn)

.

Since Ω is a domain, any mapping Θ in the space C1(Ω;Rn) can be ex-

tended to a mappingΘ[ in the space C1(Rn;Rn). Moreover, since det∇Θ >
0 in Ω and Ω is bounded, there exists a connected open subset Ω] containing
Ω such that the restriction Θ] ∈ C1(Ω];Rn) to Ω] of such an extension Θ[

satisfies det∇Θ] > 0 in Ω]. Consequently, the set Ω̂ := Θ(Ω) is also a

domain in R
n. Besides, the inverse mapping Θ̂ : {Ω̂}− → Ω of Θ belongs

to the space C1({Ω̂}−;Rn).

Given any mapping Θ̃ ∈ H1(Ω;Rn), the composite mapping Φ̂ := Θ̃ ◦ Θ̂

belongs to the space H1(Ω̂;Rn) since the bijection Θ : Ω → {Ω̂}− is bi-
Lipschitzian. Moreover,

∇̂Φ̂(x̂) = ∇Θ̃(x)∇̂Θ̂(x̂) = ∇Θ̃(x)∇Θ(x)−1 for almost all x̂ = Θ(x) ∈ Ω̂,

the notation ∇̂ indicating that differentiation is performed with respect to
the variable x̂. Hence det ∇̂Φ̂ > 0 a.e. in Ω̂ if in addition det∇Θ̃ > 0 a.e.
in Ω.

By part (ii), there exists a constant c0(Θ) := Λ(Ω̂) with the following

property: Given any mapping Θ̃ ∈ H1(Ω;Rn) satisfying det∇Θ̃ > 0 a.e.

in Ω, there exists a matrix R = R(Θ̃,Θ) ∈ O
n
+ such that the mapping

Φ̂ = Θ̃ ◦ Θ̂ satisfies

‖R∇̂Φ̂− I‖L2(Ω̂;Mn) 6 c0(Θ)‖∇̂Φ̂
T
∇̂Φ̂− I‖

1/2

L1(Ω̂;Sn)
.

It is then easily seen that the assumed injectivity of the mapping Θ ∈
C1(Ω;Rn) and the relation det∇Θ > 0 in Ω together imply that

‖R∇̂Φ̂− I‖2
L2(Ω̂;Mn)

> c1(Θ)‖R∇Θ̃−∇Θ‖2L2(Ω;Mn),
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where c1(Θ) := inf
x∈Ω
{|∇Θ(x)|−2 det∇Θ(x)} > 0. Likewise, it is easily seen

that

‖∇̂Φ̂
T
∇̂Φ̂− I‖L1(Ω̂;Sn) 6 c2(Θ)‖∇Θ̃

T
∇Θ̃−∇ΘT∇Θ‖L1(Ω;Sn),

where c2(Θ) := sup
x∈Ω

{|∇Θ(x)−T ||∇Θ(x)−1| det∇Θ(x)} < ∞. The an-

nounced inequality thus holds with c(Θ) := c0(Θ)c1(Θ)−1/2c2(Θ)1/2.

(iv) Let the assumptions on the set Ω and the mapping Θ be as in part
(iii). Then there exists a constant C(Θ) with the following property: Given

any mapping Θ̃ ∈ H1(Ω;Rn) satisfying det∇Θ̃ > 0 a.e. in Ω, there exist a

vector b = b(Θ̃,Θ) ∈ R
n and a matrix R = R(Θ̃,Θ) ∈ O

n
+ such that

‖(b+RΘ̃)−Θ‖H1(Ω;Rn) 6 C(Θ)‖∇Θ̃
T
∇Θ̃−∇ΘT∇Θ‖

1/2
L1(Ω;Sn)

.

Let there be given any mapping Θ̃ ∈ H1(Ω;Rn) satisfying det∇Θ̃ > 0

a.e. in Ω. By part (iii), there exists a matrix R = R(Θ̃,Θ) ∈ O
n
+ such that

‖R∇Θ̃−∇Θ‖L2(Ω;Mn) 6 c(Θ)‖∇Θ̃
T
∇Θ̃−∇ΘT∇Θ‖

1/2
L1(Ω;Sn)

.

Let the vector b = b(Θ̃,Θ) ∈ R
n be defined by

b :=

(
∫

Ω
dx

)−1 ∫

Ω
(RΘ̃(x)−Θ(x))dx.

By the generalized Poincaré inequality, there exists a constant d such that,
for all Ψ ∈ H1(Ω;Rn),

‖Ψ‖H1(Ω;Rn) 6 d

(

‖∇Ψ‖L2(Ω;Mn) +

∣

∣

∣

∣

∫

Ω
Ψ(x)dx

∣

∣

∣

∣

)

.

Applying this inequality to the mapping Ψ := (b + RΘ̃) − Θ yields the
desired conclusion, with C(Θ) := dc(Θ).

¤

The next two lemmas show that some classical definitions and properties
pertaining to surfaces in R

3 still hold under less stringent regularity assump-
tions than the usual ones (these definitions and properties are traditionally
given and established under the assumptions that the immersions denoted
θ in Lemma 3.2 and θ̃ in Lemma 3.3 below belong to the space C2(ω;R3)).
For this reason, we shall continue to use the classical terminology, e.g., sur-
face (for θ(ω) or θ̃(ω)), normal vector field (for a3 or ã3), first, second, and

third, fundamental forms (for (aαβ) or (ãαβ), (bαβ) or (b̃αβ), and (cαβ) or
(c̃αβ)), etc. If y = (yα) designates the generic point in a domain ω in R

2,
we let ∂α := ∂/∂yα.
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Lemma 3.2. Let ω be a domain in R
2 and let θ ∈ C1(ω;R3) be an immer-

sion such that

a3 :=
a1 ∧ a2
|a1 ∧ a2|

∈ C1(ω;R3) where aα := ∂αθ.

Then the functions

aαβ := aα · aβ , bαβ := −∂αa3 · aβ , bσα := aβσbαβ , and cαβ := ∂αa3 · ∂βa3,

where (aαβ) := (aαβ)
−1, belong to the space C0(ω). Besides,

bαβ = bβα.

Define the mapping Θ ∈ C1(ω × R;R3) by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ ω × R.

Then

det∇Θ(y, x3) =
√

a(y)
{

1− 2H(y)x3 +K(y)x23
}

for all (y, x3) ∈ ω × R,

where the functions

a := det(aαβ) = |a1 ∧ a2|
2, H :=

1

2
(b11 + b22), K := b11b

2
2 − b21b

1
2

belong to the space C0(ω). Finally, let

(gij) := ∇ΘT∇Θ.

Then the functions gij = gji belong to the space C
0(ω×R) and they are given

by

gαβ(y, x3) = aαβ(y)− 2x3bαβ(y) + x23cαβ(y) and gi3(y, x3) = δi3

for all (y, x3) ∈ ω × R.

Proof. Because the mapping θ ∈ C1(ω;R3) is an immersion, the symmetric
matrices (aαβ(y)) are positive-definite at all points y ∈ ω, the inverse ma-

trices (aαβ(y)) are well defined and also positive-definite at all points y ∈ ω,
and the functions aαβ belong to the space C0(ω). Therefore the functions
bσα are well-defined and they also belong to the space C0(ω).

While the relations bαβ = bβα clearly hold if θ ∈ C2(ω;R3) (since bαβ =
a3 · ∂αaβ in this case), this symmetry requires a proof under the present
weaker regularity assumptions. Following [15], we first note to this end
that the assumptions θ ∈ C1(ω;R3) and a3 ∈ C

1(ω;R3) imply that −bαβ =
∂βθ · ∂αa3 ∈ L1loc(ω), hence that ∂βθ · ∂αa3 ∈ D

′(ω).
Given any ϕ ∈ D(ω), let then U denote an open subset of R

2 such that
suppϕ ⊂ U and U is a compact subset of ω. Denoting by X′〈·, ·〉X the
duality pairing between a topological vector space X and its dual X ′, we
have

D′(ω)〈∂βθ · ∂αa3, ϕ〉D(ω) =

∫

ω
ϕ∂βθ · ∂αa3dy

=

∫

ω
∂βθ · ∂α(ϕa3)dy −

∫

ω
(∂αϕ)∂βθ · a3dy.
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Observing that ∂βθ · a3 = 0 a.e. in ω and that

−

∫

ω
∂βθ · ∂α(ϕa3)dy = −

∫

U
∂βθ · ∂α(ϕa3)dy

= H−1(U ;R3)〈∂α(∂βθ), ϕa3〉H1
0 (U ;R3),

we reach the conclusion that the expression D′(ω)〈∂βθ · ∂αa3, ϕ〉D(ω) is sym-

metric with respect to β and α since ∂βαθ = ∂αβθ in D′(U ;R3). Hence
∂βθ · ∂αa3 = ∂αθ · ∂βa3 in L1loc(ω), and the announced symmetry is estab-
lished.

Because ∂αa3 · a3 = 0 (since a3 · a3 = 1), the classical formula of Wein-
garten ∂αa3 = −bσαaσ still holds in the present case. The definition of the
mapping Θ shows that

gα := ∂αΘ = (aα + x3∂αa3) ∈ C
0(ω × R;R3),

g3 := ∂3Θ = a3 ∈ C
1(ω × R;R3),

hence that

det∇Θ = (g1 ∧ g2) · g3

= (a1 ∧ a2 + x3{a1 ∧ ∂2a3 + ∂1a3 ∧ a2}+ x23∂1a3 ∧ ∂2a3) · a3.

The announced expression of the function det∇Θ ∈ C0(ω × R) then
follows from the formula of Weingarten and the relation a = |a1∧a2|

2. The
announced expression of the functions gij = gi ·gj ∈ C

0(ω×R) follows from
the relations bαβ = bβα and ∂αa3 · a3 = 0.

¤

Lemma 3.3. Let ω be a domain in R
2 and let there be given a mapping

θ̃ ∈ H1(ω;R3) such that ã1 ∧ ã2 6= 0 a.e. in ω, where ãα := ∂αθ̃, and such
that

ã3 :=
ã1 ∧ ã2
|ã1 ∧ ã2|

∈ H1(ω;R3).

Then the functions

ãαβ := ãα · ãβ , b̃αβ := −∂αã3 · ãβ , c̃αβ := ∂αã3 · ∂βã3

are well defined a.e. in ω and they belong to the space L1(ω). Besides,

b̃αβ = b̃βα a. e. in ω.

Define the mapping Θ̃ : ω × R → R
3 by

Θ̃(y, x3) := θ̃(y) + x3ã3(y) for almost all (y, x3) ∈ ω × R.

Then Θ̃ ∈ H1(ω×]− δ, δ[;R3) for any δ > 0. Furthermore,

det∇Θ̃(y, x3) =
√

ã(y)
{

1− 2H̃(y)x3 + K̃(y)x23

}
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for almost all (y, x3) ∈ ω × R, where

ã := det(ãαβ) = |ã1∧ã2|
2, H̃ :=

1

2
(b̃11+ b̃22), K̃ := b̃11b̃

2
2− b̃21b̃

1
2, b̃

σ
α := ãβσ b̃αβ ,

and (ãαβ) := (ãαβ)
−1. Finally, let

(g̃ij) := ∇Θ̃
T
∇Θ̃ a. e. in ω × R.

Then the functions g̃ij = g̃ji belong to the space L
1(ω×]−δ, δ[) for any δ > 0

and they are given by

g̃αβ(y, x3) = ãαβ(y)− 2x3b̃αβ(y) + x23c̃αβ(y) and g̃i3(y, x3) = δi3

for almost all (y, x3) ∈ ω × R.

Proof. The assumptions made on the mapping θ̃ and on the vector field ã3
clearly imply that the functions ãαβ , b̃αβ , and c̃αβ are in the space L1(ω).
Because the symmetric matrices (ãαβ(y)) are positive-definite for almost all

y ∈ ω, the inverse matrices (ãαβ(y)) are likewise positive-definite for almost

all y ∈ ω, and thus the functions b̃σα are well-defined a.e. in ω, like the

functions ã, H̃, and K̃ (however, these functions do not necessarily belong
to the space L1(ω)).

Since the assumptions θ̃ ∈ H1(ω;R3) and ã3 ∈ H1(ω;R3) again imply

that −b̃αβ = ∂βθ̃ · ∂αã3 ∈ L1loc(ω), the relations b̃αβ = b̃βα hold a.e. in
ω (see the proof of Lemma 3.2). Because ∂αã3 · ã3 = 0 a.e. in ω, the

formula of Weingarten ∂αã3 = −b̃
σ
αãσ now holds a.e. in ω. The announced

expressions of the function det∇Θ̃, which is well-defined a.e. in ω×R, and
of the functions g̃ij , which clearly belong to the space L1(ω×]−δ, δ[) for any
δ > 0, then follows from these observations.

¤

If a mapping θ̃ : ω → R
3 is a smooth immersion, the functions H̃ and K̃

simply represent the mean, and Gaussian, curvatures of the surface θ̃(ω).

These functions are also given by H̃ =
1

2

( 1

R̃1
+

1

R̃2

)

and K̃ =
1

R̃1R̃2
, where

R̃α are the principal radii of curvature along the surface θ̃(ω) (with the usual
convention that |Rα(y)| may take the value +∞ at some points y ∈ ω).

4. A nonlinear Korn inequality on a surface

We are now in a position to prove the announced nonlinear Korn inequal-
ity on a surface. The notations are the same as those in Lemmas 3.2 and 3.3.

Theorem 4.1. Let there be given a domain ω in R
2, an immersion θ ∈

C1(ω;R3) such that a3 ∈ C
1(ω;R3), and ε > 0.

Then there exists a constant c(θ, ε) with the following property: Given any

mapping θ̃ ∈ H1(ω;R3) such that ã1 ∧ ã2 6= 0 a.e. in ω, ã3 ∈ H1(ω;R3),
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and the principal radii of curvature R̃α of the surface θ̃(ω) satisfy

|R̃α| > ε a. e. in ω,

there exist a vector b = b(θ, θ̃, ε) ∈ R
3 and a matrix R = R(θ, θ̃, ε) ∈ O

3
+

such that

‖(b+Rθ̃)− θ‖H1(ω;R3) + ε‖Rã3 − a3‖H1(ω;R3)

6 c(θ, ε)
{

‖(ãαβ − aαβ)‖
1/2
L1(ω;S2)

+ ε1/2‖(b̃αβ − bαβ)‖
1/2
L1(ω;S2)

+ ε‖(c̃αβ − cαβ)‖
1/2
L1(ω;S2)

}

.

Proof. Given a mapping θ satisfying the assumptions of Theorem 4.1, let
the mapping Θ ∈ C1(ω × R;R3) be constructed as in Lemma 3.2. Conse-
quently,

det∇Θ(y, x3) =
√

a(y)
{

1− 2H(y)x3 +K(y)x23
}

for all (y, x3) ∈ ω × R,

by the same lemma. Since the functions a, H, and K are in the space
C0(ω) and there exists a0 > 0 such that a(y) > a0 for all y ∈ ω, there

exists a constant δ̃(θ) > 0 such that det∇Θ(y, x3) > 0 for all (y, x3) ∈

ω × [−δ̃(θ), δ̃(θ)].

Given any mapping θ̃ satisfying the assumptions of Theorem 4.1, let the
mapping Θ̃ : ω × R → R

3 be constructed as in Lemma 3.3. By this lemma,

det∇Θ̃(y, x3) =
√

ã(y)
{

1− 2H̃(y)x3 + K̃(y)x23

}

for almost all (y, x3) ∈ ω×R. The assumption |R̃α| > ε a.e. in ω imply that

|H̃| 6
1

ε
and |K̃| 6

1

ε2
a.e. in ω. Hence there exists a constant c̃ such that

1− 2H̃(y)x3 + K̃(y)x23 > 0 for almost all (y, x3) ∈ ω×]− c̃ε, c̃ε[.

Without loss of generality, we henceforth assume that ε 6 1. Letting
δ(θ) := min{c̃, δ̃(θ)} and

Ω = Ω(θ, ε) := ω×]− δ(θ)ε, δ(θ)ε[,

and noting that ã > 0 a.e. in ω by assumption, we conclude that the restric-
tion, still denoted Θ̃ for convenience, of the mapping Θ̃ to the set Ω belongs
to the space H1(Ω;R3) and satisfies det∇Θ̃ > 0 a.e. in Ω on the one hand.

Since, on the other hand, the restriction, still denoted Θ for convenience,
of the mapping Θ to the set Ω belongs to the space C1(Ω;R3) and satisfies
det∇Θ > 0 in Ω, all the assumptions of Theorem 3.1 are satisfied. There-
fore, given any ε > 0, there exists a constant c0(θ, ε) with the following

property: Given any mapping θ̃ satisfying the assumptions of Theorem 4.1,
there exist a vector b := b(θ, θ̃, ε) ∈ R

3 and a matrix R = R(θ, θ̃, ε) ∈ O
3
+

such that

‖(b+RΘ̃)−Θ‖H1(Ω;R3) 6 c0(θ, ε)‖(g̃ij − gij)‖
1/2
L1(Ω;S3)

.
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In the remainder of this proof, we let δ := δ(θ) for conciseness. In order
to get a lower bound of the left-hand side of this inequality in terms of
H1(ω;R3)-norms of the mappings θ̃ and θ, we simply note that, given any
vector fields u ∈ L2(ω;R3) and v ∈ L2(ω;R3),

∫

Ω
|u(y) + x3v(y)|

2dx = 2δε

∫

ω
|u(y)|2dy +

2

3
δ3ε3

∫

ω
|v(y)|2dy,

since

∫

Ω
x3(u(y) · v(y))dx = 0. Consequently,

∫

Ω
|(b+RΘ̃)−Θ|2dx = 2δε

∫

ω
|(b+Rθ̃)−θ|2dy+

2

3
δ3ε3

∫

ω
|Rã3−a3|

2dy,

and

∫

Ω

∑

i

|R∂iΘ̃− ∂iΘ|
2dx

=

∫

Ω

{

∑

α

|R∂αθ̃ − ∂αθ + x3(R∂αã3 − ∂αa3)|
2 + |Rã3 − a3|

2
}

dx

= 2δε

∫

ω

∑

α

|∂α(Rθ̃ − θ)|
2dy + 2δε

∫

ω
|Rã3 − a3|

2dy

+
2

3
δ3ε3

∫

ω

∑

α

|∂α(Rã3 − a3)|
2dy.

There thus exists a constants c1(θ) such that

‖(b+RΘ̃)−Θ‖H1(Ω;R3)

> c1(θ)ε
1/2
{

‖(b+Rθ̃)− θ‖H1(ω;R3) + ε‖Rã3 − a3‖H1(ω;R3)

}

.

In order to get an upper bound of the L1(Ω; S3)-norm of the matrix field
(g̃ij − gij) in terms of L1(ω; S2)-norms of the fundamental forms of surfaces

θ̃(ω) and θ(ω), we again resort to Lemmas 3.2 and 3.3, which imply that

g̃αβ − gαβ = (ãαβ − aαβ)− 2x3(b̃αβ − bαβ) + x23(c̃αβ − cαβ) a.e. in Ω,

g̃i3 − gi3 = 0 a.e. in Ω.

Given a matrix field F ] := (f ]
αβ) ∈ L1(ω; S2), define the matrix field F =

(fij) ∈ L1(Ω; S3) by letting fαβ(y, x3) = f ]
αβ(y) and fi3(y, x3) = 0 for almost

all (y, x3) ∈ Ω. Then it is easily seen that

‖F ‖L1(Ω;S3) = 2δε‖F ]‖L1(ω;S2).
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Combining these observations, we conclude that there exists a constant
c2(θ) such that

‖(g̃ij − gij)‖
1/2
L1(Ω;S3)

6 c2(θ)ε
1/2
{

‖(ãαβ − aαβ)‖
1/2
L1(ω;S2)

+ ε1/2‖(b̃αβ − bαβ)‖
1/2
L1(ω;S2)

+ ε‖(c̃αβ − cαβ)‖
1/2
L1(ω;S2)

}

.

The announced inequality then follows with c(θ, ε) := c0(θ, ε)c1(θ)
−1c2(θ).

¤

The essence of the inequality established above can thus be summed up
as follows: Given any family of surfaces θ̃(ω) whose principal radii of cur-
vature stay uniformly away from zero, the H1(ω;R3)-distance between the

two surfaces θ̃(ω) and θ(ω) and between their normal vector fields ã3 and
a3 is “controlled” by the L1(ω; S2)-distance between their three fundamental
forms (recall that the principal radii of curvature of such “admissible” sur-

faces θ̃(ω) are possibly understood in a generalised sense, viz., as the inverses

of the eigenvalues of the associated matrices (b̃βα)). Naturally, theH1(ω;R3)-
distance between the surfaces is only measured up to properly isometrically
equivalent surfaces, since such surfaces share the same fundamental forms.

5. Some consequences

Define the set (the notations are those of Lemma 3.3)

H1
] (ω;R

3) := {θ̃ ∈ H1(ω;R3); ã1 ∧ ã2 6= 0 a.e. in ω, ã3 ∈ H1(ω;R3)}.

Then two mappings θ̂ ∈ H1
] (ω;R

3) and θ̃ ∈ H1
] (ω;R

3) are said to be properly

isometrically equivalent if there exist a vector b ∈ R
3 and a matrix R ∈ O

3
+

such that

θ̂(y) = b+Rθ̃(y) for almost all y ∈ ω,

and, by extension, the surfaces θ̂(ω) and θ̃(ω) are also said to be properly
isometrically equivalent. Note that, while the fundamental forms of properly
isometrically equivalent surfaces are clearly equal a.e. in ω, the converse
does not hold in general. The converse does hold, however, if one of the
mappings is in C1(ω) and its associated normal vector field is also in C1(ω)
(see Ciarlet & Mardare [15, Theorem 3]).

One application of Theorem 4.1 is then the following result of sequential
continuity for surfaces:

Corollary 5.1. Let (aαβ), (bαβ), (cαβ) denote the three fundamental forms
of a surface θ(ω), where θ ∈ C1(ω;R3) is an immersion satisfying a3 ∈

C1(ω;R3). Let θk ∈ H1
] (ω;R

3), k > 1, be a sequence of mappings with the
following properties: There exists a constant ε > 0 such that the principal
radii of curvature Rk

α of the surfaces θk(ω) satisfy

|Rk
α| > ε > 0 a. e. in ω for all k > 1,
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and (with self-explanatory notations)

(akαβ) −→
k → ∞

(aαβ), (bkαβ) −→
k → ∞

(bαβ), (ckαβ) −→
k → ∞

(cαβ) in L1(ω; S2).

Then there exist mappings θ̂
k
∈ H1

] (ω;R
3) that are properly isometrically

equivalent to the mappings θk, k > 1, such that

θ̂
k

−→
k → ∞

θ and âk
3 −→

k → ∞
a3 in H1(ω;R3).

Proof. The proof is an immediate consequence of the inequality established
in Theorem 4.1. ¤

A significant strengthening of the regularity assumptions regarding the
convergence of the first and second fundamental forms yields another result
of sequential continuity for surfaces, this time without any assumptions on
their third fundamental forms nor on their principal radii of curvature.

Corollary 5.2. Let (aαβ) and (bαβ) denote the first and second fundamental
forms of a surface θ(ω), where θ ∈ C1(ω;R3) is an immersion satisfying

a3 ∈ C
1(ω;R3). Let θk ∈ H1

] (ω;R
3), k > 1, be a sequence of mappings such

that (with self-explanatory notations) akαβ ∈ L∞(ω), bkαβ ∈ L∞(ω), and

(akαβ) −→
k → ∞

(aαβ) and (bkαβ) −→
k → ∞

(bαβ) in L∞(ω; S2).

Then there exist mappings θ̂
k
∈ H1

] (ω;R
3) that are properly isometrically

equivalent to the mappings θk, k > 1, such that

θ̂
k

−→
k → ∞

θ and âk
3 −→

k → ∞
a3 in H1(ω;R3).

Proof. The notations used in this proof should be self-explanatory. The
above assumptions imply the following properties: The third fundamental
forms (ckαβ) = (aστ,kbkατ b

k
σβ) of the surfaces θ

k(ω) are also in L∞(ω; S2), they
satisfy

(ckαβ) −→
k → ∞

(cαβ) in L∞(ω; S2),

and the eigenvalues of matrices (bσ,kα ) converge in L∞(ω) to the eigenvalues
of the matrix (bσα) as k → ∞. This last property implies that there exists
ε > 0 such that |Rk| > ε for all k > 1. The conclusion is then another
consequence of the Korn inequality of Theorem 4.1. ¤

The Korn inequality of Theorem 4.1 can also be recast as one involving
distances in metric spaces. To this end, define the quotient set

Ḣ1
] (ω;R

3) = H1
] (ω;R

3)/R,

where (χ,θ) ∈ R means that χ ∈ H1
] (ω;R

3) and θ ∈ H1
] (ω;R

3) are

properly isometrically equivalent, and let θ̇ denote the equivalence class of
θ ∈ H1

] (ω;R
3) modulo R. Since the norm ‖ · ‖H1(ω;R3) is invariant under the

action of O
3
+ (in the sense that ‖Qθ‖H1(ω;R3) = ‖θ‖H1(ω;R3) for any Q ∈ O

3
+
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and any θ ∈ H1(ω;R3)), the mapping d : Ḣ1
] (ω;R

3) × Ḣ1
] (ω;R

3) → R

defined by

d(
˙̃
θ, θ̇) := inf

{

b∈R3

R∈O3
+

{

‖(b+Rθ̃)− θ‖H1(ω;R3) + ‖Rã3 − a3‖H1(ω;R3)

}

is a distance on the quotient set Ḣ1
] (ω;R

3). In terms of this distance, the
inequality of Theorem 4.1 then becomes:

Corollary 5.3. Let there be given a domain ω in R
2, an immersion θ ∈

C1(ω;R3) such that a3 ∈ C
1(ω;R3), and ε > 0. Then there exists a constant

ċ(θ, ε) with the following property: Given any mapping θ̃ ∈ H1
] (ω;R

3) such

that |R̃α| > ε a.e. in ω,

d(
˙̃
θ, θ̇) 6 ċ(θ, ε)

{

‖(ãαβ − aαβ)‖
1/2
L1(ω;S2)

+ ε1/2‖(b̃αβ − bαβ)‖
1/2
L1(ω;S2)

+ ε‖(c̃αβ − cαβ)‖
1/2
L1(ω;S2)

}

.

¤

6. The linear Korn inequality on a surface revisited

To begin with, we observe that the nonlinear Korn inequality on a surface
established in Theorem 4.1 may be equivalently restated as follows, thanks
to the invariance of the norm ‖ · ‖H1(ω;R3) under the action of the group

O
3
+. Given an immersion θ ∈ C1(ω;R3) such that a3 ∈ C1(ω;R3) and

ε > 0, there exists a constant c(θ, ε) with the following property: Given any

mapping θ̃ ∈ H1(ω;R3) such that ã1 ∧ ã2 6= 0 a.e. in ω, ã3 ∈ H1(ω;R3),

and the principal radii of curvature R̃α of the surface θ̃(ω) satisfy

|R̃α| > ε a. e. in ω,

there exist a vector a = a(θ, θ̃, ε) ∈ R
3 and a matrix Q = Q(θ, θ̃, ε) ∈ O

3
+

such that

‖θ̃ − (a+Qθ)‖H1(ω;R3) + ε‖ã3 −Qa3‖H1(ω;R3)

6 c(θ, ε)
{

‖(ãαβ − aαβ)‖
1/2
L1(ω;S2)

+ ε1/2‖(b̃αβ − bαβ)‖
1/2
L1(ω;S2)

+ ε‖(c̃αβ − cαβ)‖
1/2
L1(ω;S2)

}

.

To shed more light on this inequality, we now compare it with its linear
counterpart, the genesis of which we first briefly review.

Let ω be a domain in R
2 and let there be given an immersion θ ∈ C1(ω;R3)

such that a3 ∈ C
1(ω;R3). The “linear” Korn’s inequality on a surface then
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asserts the existence of a constant c0(θ) such that

{

‖η̃‖2H1(ω;R3) + ‖∆a3(η̃)‖
2
H1(ω;R3)

}1/2
6 c0(θ)

{

‖η̃‖2L2(ω;R3)

+ ‖∆a3(η̃)‖
2
L2(ω;R3) + ‖(γαβ(η̃))‖

2
L2(ω;S2) + ‖(ραβ(η̃))‖

2
L2(ω;S2)

}1/2

for all vector fields

η̃ ∈ Ṽ (ω) := {η̃ ∈ H1(ω;R3);∆a3(η̃) ∈ H1(ω;R3)}

where

∆a3(η̃) := −(∂αη̃ · a3)a
αβaβ ,

γαβ(η̃) :=
1

2
(∂βη̃ · aα + ∂αη̃ · aβ) ∈ L2(ω),

ραβ(η̃) := −(∂βη̃ · ∂αa3 + ∂α∆a3(η̃) · aβ) ∈ L2(ω),

and the vectors ai are defined as in Lemma 3.2 in terms of the immersion
θ (the notation ∆a3(η̃) will be justified later). Under the assumption that
θ ∈ C3(ω;R3), this inequality was first proved by Bernadou & Ciarlet [4] and
was later given a simpler proof by Ciarlet & Miara [19] (see also Bernadou,
Ciarlet & Miara [5]). The regularity assumption on the immersion θ was
weakened to that considered here by Le Dret [24] (see also Blouza & Le Dret
[6]).

The linear Korn inequality is the basis of the existence theorems in linear
shell theory (see, e.g., [7] or [9]). In this context, the surface θ(ω) is the

middle surface of a linearly elastic shell, the vector fields η̃ ∈ Ṽ (ω) are dis-
placement fields of the surface θ(ω), and the matrix fields (γαβ(η̃)) ∈ L

2(ω)

and (ραβ(η̃)) ∈ L
2(ω) are respectively the linearized change of metric, and

linearized change of curvature, tensors associated with such displacement
fields. Let

Riglin(ω) = {η̃ ∈ Ṽ (ω); γαβ(η̃) = ραβ(η̃) = 0 in ω}

denote the space of infinitesimal rigid displacement of the surface θ(ω).
Then this space can be equivalently defined as (see [3])

Riglin(ω) = {η̃ ∈ Ṽ (ω); η̃ = a+ b ∧ θ for some a, b ∈ R
3}.

Given any displacement field η̃ ∈ Ṽ (ω) of the surface θ(ω), let

θ̃ := (θ + η̃) ∈ H1(ω;R3)

denote the associated deformation of the surface θ(ω), and assume in addi-

tion that ã1 ∧ ã2 6= 0 a.e. in ω and ã3 :=
ã1 ∧ ã2
|ã1 ∧ ã2|

∈ H1(ω;R3); in other

words, the mappings θ̃ precisely satisfies the assumptions of Theorem 4.1.
Let

(aαβ) = (aα · aβ) ∈ L
2(ω) and (bαβ) = (−∂αa3 · aβ) ∈ L

2(ω),
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and

(ãαβ) = (ãα · ãβ) ∈ L
2(ω) and (b̃αβ) = (−∂αã3 · ãβ) ∈ L

2(ω),

respectively denote the first and second fundamental forms of the surfaces
θ(ω) and θ̃(ω). Then it is well known (see, e.g., [7] or [9]) that the tensors
(γαβ(η̃)) and (ραβ(η̃)) can also be defined as

(γαβ(η̃)) =
(1

2
[ãαβ − aαβ ]

lin
)

and (ραβ(η̃)) =
(

[b̃αβ − bαβ ]
lin
)

,

where [...]lin denotes the linear part with respect to η̃ in the expression [...].
In the same vein, it can also be easily verified that

∆a3(η̃) = [ã3 − a3]
lin.

Finally, define the quotient space

˙̃
V (ω) := Ṽ (ω)/Riglin(ω)

and let ‖ · ‖ ˙̃
V (ω)

denote the associated quotient norm. Arguing as in [12],

it can then be shown that the above linear Korn inequality is equivalent to

the following Korn inequality in the quotient space ˙̃
V (ω): There exists a

constant c1(θ) such that

‖ ˙̃η‖ ˙̃
V (ω)

6 c1(θ)
{

‖(γαβ( ˙̃η))‖
2
L2(ω;S2) + ‖(ραβ(

˙̃η))‖2L2(ω;S2)

}1/2

for all ˙̃η ∈ ˙̃
V (ω). Thanks to the definition of the quotient norm and to the

specific form taken by the infinitesimal rigid displacements of the surface
θ(ω), this inequality can be immediately recast as follows: Given any vector

field η̃ ∈ Ṽ (ω), there exist vectors a = a(η̃,θ) ∈ R
3 and b = b(η̃,θ) ∈ R

3

such that
{

‖η̃ − (a+ b ∧ θ)‖2H1(ω;R3) + ‖∆a3(η̃ − (a+ b ∧ θ))‖2H1(ω;R3)

}1/2

6 c1(θ)
{

‖(γαβ(η̃))‖
2
L2(ω;S2) + ‖(ραβ(η̃))‖

2
L2(ω;S2)

}1/2
.

In terms of deformation of surfaces and fundamental forms, the linear
Korn inequality on a surface thus asserts the existence of a constant c1(θ)

with the following property: Given any deformation θ̃ = (θ + η̃) of the

surface θ(ω) such that η̃ ∈ Ṽ (ω), ã1 ∧ ã2 6= 0 a.e. in ω, and ã3 ∈ H
1(ω),

there exist vectors a = a(θ̃,θ) ∈ R
3 and b = b(θ̃,θ) ∈ R

3 such that

{

‖θ̃ − (a+ θ + b ∧ θ)‖H1(ω;R3) + ‖∆a3(θ̃ − (a+ θ + b ∧ θ))‖H1(ω;R3)

}1/2

6 c1(θ)
{

‖([ãαβ − aαβ ]
lin)‖2L2(ω;S2) + ‖([b̃αβ − bαβ ]

lin)‖2L2(ω;S2)

}1/2
.

This last inequality provides the essence of the linear Korn inequality on
a surface: The H1(ω;R3)-distance between the deformed surface θ̃(ω) and
the surface θ(ω) and the H1(ω;R3)-norm of the linearized difference between
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their normal vector fields ã3 and a3 are “controlled” by the L
2(ω; S2)-norms

of the linearized change of metric, and change of curvature, tensors associ-
ated with the vector field η̃ = θ̃ − θ.

As expected, the distance between the two surfaces is only measured up to
infinitesimal rigid displacements of the surface θ(ω), since these are precisely

those whose associated matrix fields ([ãαβ−aαβ ]
lin) and ([b̃αβ− bαβ ]

lin) van-
ishes (this indeterminacy would no longer hold if the displacements fields η̃
were subjected to appropriate boundary conditions, such as those of clamp-
ing along a portion γ0 of ∂ω satisfying lengthγ0 > 0; cf. [3, Theorem 4.1]
and [7, Theorem 2.6-3]). In the same spirit, the term Qθ appearing in the
nonlinear inequality is replaced by the term θ + b ∧ θ in the linear inequal-
ity. This replacement simply reflects that the matrix Q ∈ O

3
+ is close to the

identity matrix if the displacement vector field η̃ is small (it is well known
that the tangent space to the manifold O

3
+ at the identity matrix coincides

with the space of all antisymmetric matrices of order three; cf., e.g., Avez
[1]).

Recast in this way, the “linear” Korn inequality on a surface thus appears
as a natural linearization of the nonlinear Korn inequality on a surface, as
rewritten at the beginning of this section.

This is obvious for their right-hand sides, where the matrix fields (ãαβ −

aαβ) and (b̃αβ− bαβ) are replaced by their linearized fields ([ãαβ−aαβ ]
lin) =

(γαβ(η̃)) and ([b̃αβ−bαβ ]
lin) = (ραβ(η̃)) (that the L

1(ω; S2)-norm is replaced
by L2(ω; S2)-norm is no surprise, since each norm corresponds to the regu-

larity of the mappings θ̃ and θ respectively assumed in the nonlinear and
linearized cases).

This is true, albeit less evident, for their left-hand sides. As shown by
Ciarlet & Mardare [15], the underlying reason is that the set

M(ω) := {θ̃ ∈ H1(ω;R3); ãαβ = aαβ a.e. in ω,

ã3 ∈ H1(ω;R3), b̃αβ = bαβ a.e. in ω}

is a submanifold (of dimension 6) of the space H1(ω;R3), and furthermore,

the space Riglin(ω) (also of dimension 6) is nothing but the tangent space
TθM(ω) at θ to M(ω). In other words,

TθM(ω) = {η̃ ∈ H1(ω;R3); η̃ = a+ b ∧ θ for some a, b ∈ R
3}.

Finally, that the linearized tensor field ([c̃αβ − cαβ]
lin) does not appear

in the right-hand side of the linear Korn inequality is no surprise: it is an
easy matter to show that the L2(ω; S2)-norm of this linearized tensor field is
controlled by the sum of the L2(ω; S2)-norms of the linearized tensor fields

([ãαβ − aαβ ]
lin) and ([b̃αβ − bαβ ]

lin).

7. Concluding remarks

The nonlinear inequality established in this paper has potential appli-
cations to differential geometry and to nonlinear shell theory. From the
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viewpoint of differential geometry, the continuity result implied by this in-
equality is a mathematical expression of a natural idea: If the fundamental
forms of two surfaces in R

3 are close, then the two surfaces are also close (up
tu proper isometries, of course). While the previous results in this direction
involved topologies of spaces of continuously differentiable mappings (see [8],
[18] and [27]), the present result can be considered as a genuine improvement
over these, inasmuch as the norms used for evaluating the distance between
the fundamental forms and surfaces are “weaker”.

From the viewpoint of nonlinear shell theory, this inequality also repre-
sents a first step toward considering the fundamental forms of the unknown
deformed surface as the primary unknowns. But, unlike in the linear case
[12], much further work is clearly needed before a satisfactory existence the-
ory can be developed along these lines.
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