ON THE CONTINUITY OF A
DEFORMATION AS A FUNCTION OF ITS
CAUCHY-GREEN TENSOR
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Abstract. If the Riemann-Christoffel tensor associated with
a field of class C? of positive definite symmetric matrices of order
three vanishes in a connected and simply connected open subset
Q C R3, then this field is the Cauchy-Green tensor field associated
with a deformation of class C? of the set €2, uniquely determined
up to isometries of R®. We establish here that the mapping defined
in this fashion is continuous, for ad hoc metrizable topologies.

SUR LA CONTINUITE D’UNE
DEFORMATION EN FONCTION DE SON
TENSEUR DE CAUCHY-GREEN

Résumé. Si le tenseur de Riemann—Christoffel associé a
un champ de classe C? de matrices symétriques définies positives
d’ordre trois s’annule sur un ouvert connexe et simplement con-
nexe  C R?, alors ce champ est celui du tenseur de Cauchy—Green
associé & une déformation de classe C® de ’ensemble €2, déterminée
de facon unique & une isométrie de R? pres. On établit ici la conti-
nuité de ’application ainsi définie, pour des topologies métrisables
convenables.
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INTRODUCTION

During the past decades, considerable attention has been devoted to the
mathematical analysis of deformations in a three—dimensional Euclidean space
E? and to the (right) Cauchy-Green tensor field that they engender. Most
of these analyses found their motivation in nonlinear three—dimensional elas-
ticity.

After the earlier fundamental contributions of John [1961, 1972] and Kohn
[1982], these works culminated with the existence theory of Ball [1977] and
with the recent solution of the long-standing question of how to rigorously
identify and justify nonlinear two—dimensional plate and shell theories from
three-dimensional elasticity, by Le Dret & Raoult [1995, 1996] and Friesecke,
Miiller & James [2002a, 2002b, 2002c].

Having likewise in mind applications to nonlinear three-dimensional elas-
ticity, we consider here the following question: Given an open, connected and
simply connected subset Q of E?, let F denote the mapping that associates
a deformation of €2 to any field of positive definite matrices whose Riemann—
Christoffel tensor vanishes in € (naturally, F is defined up to isometries of
E? only). Then, do there exist topologies such that F is continuous? The
object of this paper is to provide an affirmative answer to this question (see
Theorem 4).

It is worth emphasizing that our continuity result holds “at any Cauchy—
Green tensor”, i.e., not only at the identity, which is the Cauchy—Green tensor
corresponding to an isometry in E®, also known in elasticity as a “rigid body
motion”.

In Ciarlet [2002b], we likewise establish, albeit by a different method, the
continuity of a surface in E>, considered as a function of its two fundamental
forms.

These results have been announced in Ciarlet & Laurent [2002] and
Ciarlet [2002a).

1 FORMULATION OF THE PROBLEM

To begin with, we list some notations and conventions that will be consis-
tently used throughout the article.

All spaces, matrices, etc., considered are real. The notations M2, Q?, S3,
and S? respectively designate the sets of all square matrices of order three,
of all orthogonal matrices of order three, of all symmetric matrices of order



three, and of all symmetric and positive definite matrices of order three.

Latin indices and exponents vary in the set {1,2,3}, except when they
are used for indexing sequences or when otherwise indicated, and the sum-
mation convention with respect to repeated indices or exponents is used in
conjunction with this rule. Kronecker’s symbols are designated by d;; or 6
according to the context.

Let E® denote a three—dimensional Euclidean space, let a - b denote the
Euclidean inner product of a,b € E® and let |a| = y/a-a denote the
Euclidean norm of @ € E®. Let p(A) denote the spectral radius and let
|A| := {p(A" A)}'/? denote the spectral norm of a matrix A € M®. Finally,
id denotes the identity mapping of E3.

Let there be also given a three-dimensional vector space, identified with
R3. Let x; denote the coordinates of a point z € R® and let 9; := 9/dz;,
8”- = 82/6$Z‘85Ej, and 8z'jk = 83/(%,8%83:,6

Let Q be an open subset of R®. The notation K € 2 means that K is a
compact subset of Q. If g € C*({4;R), £ > 0, and K € , we let

9lex = sup |0%(z)[ and |lgllex = sup |0%g(z)],
TeK TEK

where 0¢ stands for the standard multi-index notation for partial derivatives.
If © € CH; E?) or A € CHQLM?) and K € (, we likewise let

©lx = sup [0°O(z)| and ||O|gx = sup [0“O(z)],
{iae RS

[Alex = sup [0A(z)| and |[Allox = sup |0%A(z)],

TeK TeEK
| =£ la|<e
where | - | denotes the Euclidean vector norm or the matrix spectral norm,

respectively.

Let © € C!(Q; E?) be an immersion, i.e., a mapping such that the three
vectors 0;0(x) are linearly independent at all points x € €. Then the metric
tensor field (gi;) € C°(€%;S2) of the set ©(Q) (which is open in E? since ©
is an immersion) is defined by means of its covariant components

gij(z) == 0,0(x) - 0,0(x), z € Q,

which are used in particular for computing lengths of curves inside the set
©(9), considered as being isometrically imbedded in E®. This means that
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their length is precisely that induced by the Euclidean metric of the Euclidean
space E2.

When R? is identified with E* immersions such as ©® = (0;) € C'(Q; E®)
may be thought of as deformations of the set (2 viewed as a reference config-
uration, in the sense of geometrically exact three—dimensional elasticity (al-
though they should then be in addition injective and orientation—preserving
in order to qualify for this definition; for details, see, e.g., Ciarlet [1988, Sect.
1.4] or Antman [1995, Chap. XII, Sect. 1]).

In this context, the matrix (g;;(x)) is usually denoted

C(z) := (9:(x)),
and is called the (right) Cauchy—Green tensor at x. Note that one also has
(9:(2)) = VO(z)" VO(),

where

VO(z) = (9;0i(z)) € MP,

denotes the deformation gradient at x (j denotes the column index in the
matrix VO(z)).

The Cauchy-Green tensor field C = VOTVO : Q — S? associated with
a deformation © : Q — E? plays a major role in nonlinear three—dimensional
elasticity, since the response function, or the stored energy function, of a
frame—indifferent elastic, or hyperelastic, material necessarily depends on
the deformation gradient through the Cauchy—Green tensor (see, e.g., Ciarlet
[1988, Chapters 3 and 4]).

It is well known that the matrix field C' = (g;;) : @ — S? cannot be
arbitrary, in that its components g;; and some of their partial derivatives
must satisfy necessary conditions taking the form of the relations Ry, = 0 in
2 shown below (according to our rule governing Latin indices, these relations
are meant to hold for all 4, j, k, q € {1, 2, 3}).

More specifically, given an immersion ® € C*(Q; E?), let the functions
Tijg € CH(Q) and T, € C1(Q) be defined by

1 —
Lijq == 5(5jgz~q + 0,9jq — 0ggi;) and I := gPTyj,, where (g71) := (g;) "
Then, necessarily,
qujk = 8jrikq — 8kFZ~jq + Ffjl“kqp — karjqp =01in .
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To see this, let g; := 0;0. As is easily verified, the necessary conditions
Ryijr = 0 then simply amount to re-writing the relations dixg; = 0;;g; in
the form of the equivalent relations dixg, - g, = 0i;9x - g,-

The vectors g, introduced above form the covariant bases, the function
g% are the contravariant components of the metric tensor, the functions Ffj
and I';;, are the Christoffel symbols of the first, and second, kind and finally,
the functions

Ryiji := 0jlikg — Olijq + T Tkgp — T ljgp

are the covariant components of the Riemann—Christoffel curvature tensor,
of the set ©(£2). The relations Ry , = 0 thus express that the Riemann-—
Christoffel tensor of the set ©(f) (equipped with the metric tensor with
covariant components g;;) vanishes. For details, see, e.g., Choquet-Bruhat,
Dewitt—Morette & Dillard-Bleick [1977, p. 303].

It is remarkable that, conversely, given a smooth enough matrix field
(9i5) + © = S2 under the additional assumptions that © is connected and
simply connected, the necessary conditions R, = 0 in € are also sufficient
for the ezistence of an immersion © : Q — E? such that gi; = 0,0 - 0,0 in
. Besides, this immersion is unique up to isometries in R® (see Theorems
1 and 2).

A self-contained, complete, and essentially elementary, proof of this well-
known result from differential geometry, whose outline follows with some
modifications and simplifications that of Blume [1989], is found in Ciarlet
& Larsonneur [2002]. “Local” versions of the existence result, based on the
theory of locally integrable Pfaff systems and on the Frobenius theorem, are
found in, e.g., Malliavin [1972, p. 133] and Choquet-Bruhat, Dewitt—Morette
& Dillard-Bleick [1977, p. 303].

This result comprises two essentially distinct parts, a global existence
result (Theorem 1) and a uniqueness result (Theorem 2), the latter being
called a rigidity theorem. Note that these two results are established under
different assumptions on the set € and on the smoothness of the field (g;;).

Theorem 1 (global existence theorem) Let ) be a connected and simply
connected open subset of R® and let C = (g;;) € C*(;S2) be a matriz field
that satisfies

qujk; = ajrlkq - akrzjq + Ffjrkqp —_ kar,]qp = 0 in Q’



where
Dijg := %(@-giq + 0;9jq — 0q95) and I, := gPTyj, where (¢%7) := (g5) "
Then there exists an immersion © € C*(; E®) such that
C=ve'Vve i Q.

O

Theorem 2 (rigidity theoNrem) Let Q be a connected open subset of R?
and let © € C*(Q; E*) and © € C*(Q; E*) be two immersions whose associ-

ated Cauchy-Green tensors C = VOT'VO and C = VéTVé satisfy
C =C in Q.
Then there ezist a vector a € E* and a matriz Q € O such that
O(z) = a + QO(z) for all z € .
d

Together, Theorems 1 and 2 establish the existence of a mapping F that
associates to any matrix field C = (g;;) € C?(§%;S2) satisfying Ryijx = 0
in Q (the functions Ry, being defined in terms of the functions g;; as in
Theorem 1) a well-defined element F(C) in the quotient set C3(2; E*)/R,
where (©,©) € R means that there exists a vector @ € E* and a matrix
Q € 0 such that ©(z) = a + QO(z) for all z € Q.

A natural question thus arises as to whether there exist ad hoc topologies
on the space C%(Q2;S%) and on the quotient set C3(£2; E*)/R such that the

mapping F defined in this fashion is continuous.

2 A KEY PRELIMINARY RESULT

The next theorem constitutes the key step toward establishing the continuity
of the mapping F (see Theorem 4 in Section 3).



Theorem 3 Let Q be a connected and simply connected open subset of R3.
Let C = (gi;) € C*(%82), and C" = (gj}) € C*(,82), n > 0, be matriz
fields respectively satisfying Ryije = 0 in Q and Ry =0 4n Q, n > 0 (with
self-explanatory notations), such that

lim [|C" — C||2,x =0 for all K € 2.
n—oo

Let ©® € C*(; E®) be any mapping that satisfies VO'VO = C in Q
(such mappings exist by Theorem 1). Then there exist mappings O" €
C3(Q; E®) satisfying (VO™)TVO™ = C™ in Q, n > 0, such that

lim ||@n — @”3,}( = 0 for allK € €.
n—00
]

For clarity, the proof of Theorem 3 is broken into those of three lemmas.
Lemma 1 deals with the special case where C = I'; Lemma 2 deals with the
special case where the mapping ® € C3(Q; E?) is injective; finally, Lemma 3
deals with the general case.

Lemma 1 Let Q be a connected and simply connected open subset of R3.
Let C" = (gpy) € C*(%S%), n > 0, be matriz fields satisfying Ry, = 0 in
Q, n >0, such that

lim ||C" — I||s.x =0 for all K € €.
n—00

Then there exist mappings O™ € C*(Q; E?) satisfying (VO™)TVO" = C"
i €2, n >0, such that

lim ||@n — Zd||3,}( =0 for all K € Q
n—00

where id denotes the identity mapping of R, identified here with E>.

Proof. The proof of Lemma 1 is broken into four parts, numbered (i) to
(iv). The first part is a preliminary result about matrices (for convenience,
it is stated here for matrices of order three, but it holds as well for matrices
of arbitrary order).



(i) Let there be given matrices A™ € M2, n > 0, that satisfy
lim (A")TA" = I.

n—oo

Then there exist matrices Q™ € @, n > 0, that satisfy
lim Q"A" = 1.

n—oo

Since the set Q? is compact, there exist matrices Q™ € Q*, n > 0, such
that
IQ"A™ —I| = inf |[RA" —I|.
Re@?

Then the matrices Q™ defined in this fashion satisfy lim,,_,,, Q" A™ = I. For
otherwise, there exist a subsequence (Q”),>¢ of the sequence (Q"),>o and
0 > 0 such that

IQPAP —I| = inf |[RAP —I|> ¢ forallp > 0.
RcO?

Since

lim | A?| = Tim \/p((AP)T A7) = \/p(T) = 1.
p—00 p—00

the sequence (A”),>¢ is bounded. Therefore there exists a further subse-
quence (A?),>¢ that converges to a matrix S. Besides, S is orthogonal since
STS = lim (A)TA? = 1.
q—00

But then
lim STAY= 8T8 =1,

q—0o0

which contradicts inf gegs |RA?—I| > § for all ¢ > 0. This proves (i). In the
remainder of the proof, the matrix fields C",n > 0, are meant to be those
appearing in the statement of Lemma 1.

(ii) Let there be given mappings ®" € C*(Q; E®), n > 0, that satisfy
(VOMITVO" = C" in Q (such mappings exist by Theorem 1). Then

lim |®" —id|yx = lim |@"|,x =0 for all K € 2 and for £ = 2,3.
n—oQ

n—00

Given any immersion ® € C3(Q; E?), let g, := 0,0, let the vectors g7 be
defined by means of the relations g, - g7 = 4] (the vectors g? form the con-
travariant bases in the set ©(2)), and let the Christoffel symbols of the
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second kind be defined by [';j, := £(0;iq + 0igjq — 049i;), as in Section 1. Tt
is then immediately verified that the same Christoffel symbols are also given
by Ty, = 0;g; - g,- Consequently,

1
0;;© = 0,9; = (0ig; - 9,)9" = 5(3]'91'11 + 0igjq — 049:5)9".

Applying this relation to the given mappings ®" thus gives (with self-
explanatory notations):

1
0;;0" = 5(87-931 + 0597, — 049:3)(g%)", n > 0.

Let K denote an arbitrary compact subset of 2. On the one hand,

Jim 10595, + 9igj, — Dagijlox = 0,

since limy, o0 [g75]1,6 = limy o0 |97 — dijl1,6 = 0 by assumption. On the
other, the norms |(g?)"|o,x are bounded independently of n > 0; to see this,
observe that (g?)" is the g—th column vector of the matrix (VO")™!, then
that

(VO™") ok = {p((VO™) T (VO™)"H}?

0,K
= {p((g5) ")} loxc < {I(95) loxc}''?,
and, finally, that
: n _ : n\—1 _
Jim |(g5) — Ilo,x = 0 == lim [(gi5)™" — Ifo,x = 0.

These two properties thus imply that

lim |©" — id|yx = lim |©"|5 5 = 0 for all K € Q.
n—,oo

n—oo
Differentiating the relations 0;g, - g, = %(aj Giq + 0i9jq — 049i) yields
0ijp® = 3z'pgj = (3z'pgj 'Qq)gq

1
= <§(ajpgiq + OipGjq — apqgij) - aigj ) apgq) g’



Observing that lim, e [g75]¢,x = limy_s00 [g75 — d4jle,c = 0 for £ =1,2 by as-
sumption and recalling that the norms |(g?)"|o,x are bounded independently
of n > 0, we likewise conclude that

lim |®" — id|3 x = lim |®@"[3 x = 0 for all K € Q.
n—oo

n—0o0

(iii) There exist mappings 0" ¢ C3(Q; E®) that satisfy (Vén)TVén =C"
m Q,n >0, and

lim |©" — id|, x = 0 for all K € €.

n—00

Let 4" € C3(Q; E®) be mappings that satisfy (Vy")'V4" = C" in
2, n > 0 (such mappings exist by Theorem 1) and let 27 denote a point in
the set Q. Since lim, o, VY™ (20)" V4" (29) = I by assumption, Part (i)
implies that there exist orthogonal matrices Q", n > 0, such that

n—oo

Then the mappings

0" = Q" € C}(UE?), n >0,
satisfy B B
(VO")TVve" =C" in Q,
so that their gradients VO € C2(; M?) satisty
lim 0, VO ok = lim 10" |5, =0 for all K € Q,
by Part (ii). In addition,

lim VO (z0) = lim Q"V4™ (o) = I.
n—o n—oo

Hence a classical theorem about the differentiability of the limit of a
sequence of mappings that are continuously differentiable on a connected
open set and that take their values in a Banach space (see, e.g., Schwartz
(1992, Thm. 3.5.12]) shows that the mappings ve" uniformly converge on
every compact subset of Q0 toward a limit R € C'(Q; M?) that satisfies

O0;R(z) = lim aivé"(x) =0 for all x € Q.
n—oo
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This shows that R is a constant mapping since 2 isnconnected. Conse-
quently, R = I since in particular R(zo) = lim,,_,,, VO (z9) = I. We have
therefore established that

lim |©" —id|; x = lim [VO" — I|ox =0 for all K € Q.
n—00

n—0Q

(iv) There exist mappings O™ € C3(); E?) satisfying (VO")TVO™ = C"
m 2, n >0, and

lim |©" —id|,x =0 for all K € Q and for £ =0, 1.

n—oo
The mappings
" = (é” {0 (20) — a:o}) e C3 (O EY), n >0,
clearly satisfy

(VO")IVO" =C"in Q, n >0,
lim |®n — 'l:d|1,K = lim |V®n — IlO,K =0 forall K € Q,
n—oo n—oo

®"(x9) = xo, n > 0.

Applying again the theorem about the differentiability of the limit of
a sequence of mappings used in Part (iii), we conclude from the last two
relations that the mappings ®" uniformly converge on every compact subset
of Q toward a limit ® € C'(£2; E?®) that satisfies

VO(z) = lim VO"(z) =1 for all z € Q.

n—oQ

This shows that (©® — id) is a constant mapping since ) is connected.
Consequently, ® = id since in particular ©(zg) = lim,, o, O"(xy) = 2. We
have thus established that

lim [©" — id|ox =0 for all K € ©,

n—0Q

and the proof is complete. O
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Lemma 2 Let Q) be a connected and simply connected open subset of R®. Let
C = (g;5) € C*(;S2) and C" = (g}) € C*(Q;8%), n > 0, be matriz fields

satisfying respectively Ry = 0 in @ and Ry, =0 in Q, n > 0, such that

lim ||Cn - C”Q,K =0 for all K € Q.
n—»00

Assume that there exists an injective mapping © € C3(Q; E®) such that

vOTVO = C in 2 (any mapping © € C3(S); E®) that satisfies VO VO =
C in () is thus also injective by Theorem 2). Then there exrist mappings
O" € C3(); E?) satisfying (VO™)TVO" = C™ in Q, n > 0, such that

IL)III ||®n — @“3,}( =0 for all K € Q.

Proof. The assumptions made on the mapping © : 2 C R® — E? imply
that the set O 1= 0f) C E 1s open, connected, and simply connected and
that its inverse mapping © : O C E® — R3 belongs to the space C3(Q; R?).
Define the matrix fields (gj;) € CQ(Q, S2), n >0, by letting

(95;(@)) == V@(:13)_T(g?j(3:))V@(33)_1 forall7 =O(x) € Q.

Given any compact subset K of Q, let K := @(I? ). Since lim, o |lg7 —
gijll2,k = 0 as K is a compact subset of (2, the definition of the functions

@nj : Q0 = R and the chain rule together imply that

Tim {|g55 — 6yl z = 0.

Given T = (%;) € €, let 8; =

0 o ) .
T Since it is easily verified that the
Z;
fields (g7;) satisfy R;‘” K= = 0 in Q (with self-explanatory notations), Lemma 1
applied over the set Q) shows that there exist mappings 0" e C3(§; E3)

satisfying 5,@” . é}@n = gj; in ﬁ, n > 0, such that
lim |®" —id|); » = 0 for all K € Q,
n—oe ’

where id denotes the identity mapping of E®, identified here with R®. Define
the mappings ©" € C*(€%;S2), n > 0, by letting

O"(z) = ©"() for all z = O(7) € Q.
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Given any compact subset K of Q, let K := ©(K). Since lim,_,o ||(:jn -
ZEHMA( = 0, the definition of the mappings ®" and the chain rule together
imply that

Jim [|©" ~ O3 = 0.

on the one hand. Since, on the other, (VO™)TV®O" = C" in (), the proof is
complete. [l

Lemma 3 The assumption that the mapping © : Q C R® — E? is injective
s superfluous in Lemma 2, all its other assumptions holding verbatim. In
other words, Theorem 3 holds.

Proof. The proof is broken into four parts. In what follows, C and C"
designate matrix fields possessing the properties listed in the statement of
Theorem 3.

(i) Let ©® € C*(Q; E?) be any mapping that satisfies VO'VO = C in Q.
Then there exists a countable number of open balls B, C €2, r > 1, such that
Q=2 B, and such that, for each r > 1, the set | J,_, B is connected and
the restriction of © to B, is injective.

Given any x € (), there exists an open ball V, C 2 such that the re-
striction of @ to V; is injective. Since Q = |J,.q Vi can be also written as a
countable union of compact subsets of €2, there already exist countably many
such open balls, denoted V;, r > 1, such that Q = |J;2, V.

Let r :=1, By :=V,,, and ry := 2. If the set B,, UV,, is connected, let
By :=V,, and r3 := 3. Otherwise, let 7, be a path in €2 joining the centers
of V., and V,,. Then there exists a finite set I; = {r;(1),71(2),...,r1(N1)}
of integers, with Ny > 1 and 2 < r1(1) < r1(2) < ... < r1(N), such that

NV, uVu(JW).

relr

Furthermore there exists a permutation oy of {1,2, ..., N;} such that the sets
Vi, UUL Vo) 1 < 7 < Ny, and Vi, U (U2 Vouavy)) U Vy, are connected.
Let then

B, := Val('rfl)a 2<r< N+ 1, BN1+2 = ‘/;"25

and
r3 :=min {i € {o1(1),...,01(N1)}; i > 3}.
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If the set (Y B,) UV}, is connected, let By, 5 = V;,. Otherwise,
apply the same argument as above to a path 7, in €2 joining the centers of
V;, and V,,, and so on.

The iterative procedure thus produces a countable number of open balls
B,, r > 1, that possess the announced properties. In particular, Q = |J)2, B,
since, by construction, the integer r; appearing at the i—th stage satisfies

(ii) By Lemma 2, there exist mappings O € C*(By; E®) and (:); €
C3(By; E?), n > 0, that satisfy

(VOHTVO] = C" in B; and lim |®F — O3« = 0 for all K € By,
(VO,)TVO, = C"in B, and lim ||©, — ©||sx = 0 for all K € B,
n—oo

and by Theorem 2, there ezist vectors a™ € E> and matrices Q" € Q*, n > 0,
such that .
O,(z) =a" + Q"% (x) for all z € B; N B,.

Then

lim @¢" =0 and lim Q" =1
n—oo n—oQ

Let (QP),>0 be a subsequence of the sequence (Q"),>¢ that converges to
an orthogonal matrix @ and let z; denote a point in the set By N By. Since
¢ = O)(z1) — QPO (z1) and lim,,_,0 O (1) = lim,_00 OF (1) = O(z1), the
subsequence (aP),>o also converges. Let a :=lim,_,o, a”. We thus have

O(z) = lim O} (z)

pP—0o0

= lim (a” + QYO (z)) = a + QO(z) for all z € B; N By,

pP—0o0

on the one hand. On the other, the differentiability of the mapping ® implies
that
O(z) =b+ A(x — 1) + o(|z — z1]) for all z € By N By,

where b := ©(z;) and A := VO(z;). Note that A is an invertible matrix,
since VO(z1)T'VO(z1) = (gi;(x1)).
Together, the last two relations imply that

b+ A(r —z1) =a+ Qb+ QA(r — 21) + o|z — 71|),
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hence (letting = = z; shows that b = a + Qb) that
A(x —x1) = QA(x — 1) + o(|z — z4]) for all x € B; N Bs.

The invertibility of A thus implies that @ = I and therefore that a =
b— Qb = 0. The uniqueness of these limits shows that the whole sequences

(Q")n>0 and (€"),>( converge.
(iii) Let the mappings ©f € C3(By U By; E*), n. > 0, be defined by

O5(z) := OF(z) for all z € By,
O (z) := (QMT (O, (z) — a") for all z € Bs.

Then
(VO)TVO! =C" in B, U B,

(as is clear), and

lim ”@721 — @“3’[( =0 for all K € By U B,.
n—00

The plane containing the intersection of the boundaries of the open balls
B, and B, is the common boundary of two closed half-spaces in R®, H;
containing the center of By, and H, containing that of By (by construction,
the set By U By is connected; see Part (i)). Any compact subset K of B; U By
may thus be written as K = K; U Ky, where K; := (K N Hy) C By and
K, := (K N Hy) C B, (that the open sets found in Part (i) may be chosen
as balls thus plays an essential role here). Hence

lim ||@g - @”3,](1 =0 and lim ||@g’ -0 |3,K2 = 0,
n—00 n—00

the second relation following from the definition of the mapping ®% on
B; D K, and on the relations lim, ||@; — O||s,x, = 0 (Part (ii)) and
lim, ,, Q" = I and lim,,_,,, @" = 0 (Part (iii)).

(iv) It remains to iterate the procedure described in Parts (ii) and (iii).
Assume that, for some r > 2, mappings O € C*(|J,_, By E*),n >0,
have been found that satisfy

(VOr)'ver =C"in | JB.and lim [|©] — Ol =0 for all K € | ] B,.
n—0oQ

s=1 s=1
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Since the restriction of © to B, is injective (Part (i)), Lemma 2 shows
~n
that there exist mappings ©,,; € C3(B,11; E*), n > 0, that satisfy

VO, )'VO ., =C"in B,.1, lim |®.,, — ©|sx = 0 for all K € B,1,
r+1 r+1 N300 r+ )

and since the set /1] B, is connected (Part (i)), Theorem 2 shows that there
exist vectors ¢” € E® and matrices Q" € O®, n > 0, such that

O ,(z) =a" + Q"O"(z) for all z € ( U Bs) OB, s.
s=1

Then an argument similar to that used in Part (ii) shows that lim,, ., Q" = I
and lim,, ., @” = 0 and an argument similar to that used in Part (iii) (note
that the ball B,;; may intersect more than one of the balls B, 1 < s < r)
shows that the mappings ©F,; € C3(._, Bs; E®), n > 0, defined by

O (z) := O} () for all z € U B,
s=1

", (z) == (Q") (O, (z) — a") for all z € B, 1,
satisfy
lim [|©7,; — ©|lsx =0 for all K € U B..

s=1

Then the mappings ©™ : Q — E* n > 0, defined by

O"(z) = O (x) for all x € UBS’ r>1,

s=1

possess all the required properties: They are unambiguously defined since
for all s > r, O} (z) = O (z) for all z € |J|_, By by construction; they are
of class C? since the mappings ©" : | Ji_, B, — E° are themselves of class
C3; they satisfy (VO™)TVO" = C" in () since the mappings O satisfy the
same relations in | J]_, B,; and finally, they satisfy lim,,_,q, ||@" — ©||5.x =0
for all K € Q since any compact subset of  is contained in (J|_, B, for r
large enough. O
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3 CONTINUITY IN METRIC SPACES

Let © be an open subset of R®. For any integers £ > 0 and d > 1, the space
C*(Q;RY) becomes a locally convex topological space when its topology is
defined by the family of semi-norms || - ||, x, K € €2, and a sequence (®"),>¢
converges to ® with respect to this topology if and only if

lim [|®" — O,k =0 for all K € Q.
n—r00

Furthermore, this topology is metrizable: Let (K;);>o be any sequence of
subsets of ) that satisfy

K; € Qand K; C int K4y for all i > 0, and @ = | J K.

1=0
Then
Tim [|©" — O] =0 for all K € Q <= lim dy(©",0) =0,
e =1 |-©
- L,K;
WO =D T g Ofn

For details, see, e.g., Yosida [1966, Chapter 1].

Let C3(; E®) := C3(Q; E®)/R denote the quotient set of C*(Q; E®) by
the equivalence relation R, where (©,®) € R means that there exist a vector
a € E® and a matrix Q € Q® such that ©(z) = a + QO(z) for all z € Q.
Then it is easily verified that the set C3(€; E*) becomes a metric space when
it is equipped with the distance d3 defined by

d3(©, 1) := inf ds(k,x) = inf d3(©,a+ Q),
KEO acE3
XEY Qcw?

where © denotes the equivalence class of ® modulo R.

The announced continuity of a deformation as a function of its Cauchy-
Green tensor is then a corollary to Theorem 3. If d is a metric defined on a
set X, the associated metric space is denoted {X;d}.

17



Theorem 4 Let Q be a connected and simply connected open subset of R3.
Let
Co(482) = {(g45) € C*(2SY); Ryije = 0 in Q},

where the functions Ry, are defined in terms of the functions g;; as in The-
orem 1. Given any matriz field C = (g;;) € C2(;S2), let F(C) € C3(Q; E®)
denote the equivalence class modulo R of any © € C3(Q; E*) that satisfies
ve've =C in Q.

Then the mapping

F{C2(S2); dy} — {CP(%; B®); ds)

defined in this fashion is continuous.

Proof. Since {C2(€%;S%);d,} and {C3(Q; E®); ds} are both metric spaces,
it suffices to show that convergent sequences are mapped through F into
convergent sequences.

Let then C € C}(€;S2) and C™ € CZ(%;S2), n > 0, be such that

lim dg(Cm,C) = 0,

n—oo
i.e., such that lim, , ||C" — C|ls,x = 0 for all K € Q. Given any © €
F(C), Theorem 3 shows that there exist ®" € F(C"), n > 0, such that
lim, ;o [|O" — O||3,x = 0 for all K € Q, i.e., such that

lim d3(©", ®) = 0.
n—oo

Consequently, _
lim d3(F(C"), F(C)) = 0.

n—oo
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