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Abstract
In this paper, we study the asymptotics of the Krawtchouk polynomials

KN
n (z; p, q) as the degree n becomes large. Asymptotic expansions are obtained

when the ratio of the parameters n/N tends to a limit c ∈ (0, 1) as n →∞. The
results are globally valid in one or two regions in the complex z-plane depending
on the values of c and p; in particular, they are valid in regions containing the
interval on which these polynomials are orthogonal. Our method is based on
the Riemann-Hilbert approach introduced by Deift and Zhou.
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1 Introduction

Let p > 0, q > 0 and p + q = 1, and let N be a positive integer. By the binomial

expansion, we have

(1− pw)N−x(1 + qw)x =
∞∑

n=0

KN
n (x; p, q)wn, (1.1)

where

KN
n (x; p, q) =

n∑

k=0

(
N − x

n− k

)(
x

k

)
(−p)n−kqk. (1.2)

For convenience, we put KN
n (x) ≡ KN

n (x; p, q). It is easy to see that KN
n (x) is

a polynomial in x of degree n. These polynomials are known as the Krawtchouk

polynomials, and they are orthogonal on the discrete set {0, 1, 2, · · · , N} with respect

to the weight function

ρ(x) =

(
N

x

)
pxqN−x, x = 0, 1, · · · , N. (1.3)

More precisely, we have

N∑
j=0

KN
n (j)KN

m (j)

(
N

j

)
pjqN−j =

(
N

n

)
pnqnδn,m, n, m = 0, 1, · · · , N. (1.4)

For further properties of this type of polynomial, we refer to Szegő [22].

Formula (1.4) tells us that these polynomials are orthogonal on an unbounded

interval as n →∞. To facilitate our future analysis, we wish to introduce a rescaling

so that the polynomials become orthogonal on a bounded interval. Let XN be a set

defined by:

XN := {xN,j} for j = 0, 1, · · · , N − 1,

where

xN,j =

(
j +

1

2

)
/N.

The xN,j’s are called nodes, and they all lie in the interval (0, 1). Also, let

wN,j :=
NN−1√pq

qNΓ(N)

(
N − 1

j

)
pjqN−1−j (1.5)

and

PN,n(z) := KN−1
n (Nz − 1

2
).
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It can be easily verified that the polynomials PN,n(x) are orthogonal on the nodes

xN,j with respect to the weight wN,j; that is

N−1∑
j=0

PN,n(xN,j)PN,m(xN,j)wN,j

{
= 0 for n 6= m,

6= 0 for n = m.
(1.6)

As usual, we also define the monic polynomials

πN,n(z) :=
n!

Nn
PN,n(z). (1.7)

Rewriting the weight function (1.5) in the form

wN,j = e−NWN (xN,j)

N−1∏
m=0
m6=j

|xN,j − xN,m|−1, (1.8)

then a simple calculation shows

WN(x) ≡ W (x) := νx, (1.9)

where ν = log(q/p). Without loss of generality, we can assume 0 < p < q < 1 so that

ν > 0. Also, let cn = n/N , and assume that it tends to a limit c ∈ (0, 1) as n →∞.

The case p = q = 1
2

is trivial and we will not consider it here.

It is well-known that the properties of zeros of Krawtchouk polynomials are impor-

tant in the study of the Hamming scheme of classical coding theory; see [4, 14, 16, 21].

Also, Lloyd’s theorem [13, 16] states that the existence of a perfect code in the Ham-

ming metric corresponds to the Krawtchouk polynomials having integer zeros. Re-

cently, there has been a considerable amount of interest in the asymptotics of the

Krawtchouk polynomials, when the degree n grows to infinity; see [11, 15, 19].

Since the Krawtchouk polynomials do not satisfy a differential equation, most of

the results in the literature are obtained by using the steepest descent method or

the saddle point method for integrals, which come from the generating function in

(1.1); see [11, 15, 19]. For more information about these classical integral methods,

we refer to Wong [25]. Recently, Baik et al. [2, 3] have studied the asymptotics of

discrete orthogonal polynomials with respect to a general weight function by using

the Riemann-Hilbert approach, introduced by Deift and Zhou in [8] and further de-

veloped in [6, 7]. The starting point of this method is a theorem of Fokas, Its and

Kitaev [10], which makes a beautiful connection between orthogonal polynomials and

Riemann-Hilbert problems (RHP). However, the results in [3] are too general and, as
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a consequence, not very applicable. Moreover, the results are local in nature; that is,

they have different asymptotic formulas valid in different regions.

The purpose of this paper is to study uniform asymptotic behavior of the poly-

nomial PN,n(z) as n →∞. After transforming the discrete RHP associated with this

polynomial into a specific continuous one, we find that this problem is similar to some

of the problems considered previously (see, e.g., [23], [24] and [26]), and our method

in [5] can be applied. More precisely, for 0 < c < p, we present an infinite asymptotic

expansion which is valid uniformly in the whole complex plane bounded away from

(−∞, 0] and [1,∞). This expansion involves parabolic cylinder functions. For the

case p < c < 1
2
, since there exists a so-called hard edge (see [3, p.27]), we need two

expansions each valid in a different region; these regions overlap and together cover

the whole complex plane bounded away from the two infinite lines on the real axis,

mentioned in the former case. Since there is a kind of dual property between the

cases c and 1− c, the result for the case 1
2

< c < 1 is very similar to that for the case

0 < c < 1
2
.

The presentation of this paper is arranged as follows: In Section 2, we review some

preliminaries, including weak asymptotics of the zero distribution and the formulation

of the first RHP. In Sections 3 and 4, we solve the RHP in two different cases:

0 < c < p and p < c < 1
2
. The limiting case c = p is quite different, and the method

used here is not applicable. We will study this exceptional case in a separate paper.

2 Preliminaries

2.1 Weak asymptotics

From the orthogonal properties in (1.4), the following proposition can be easily es-

tablished; see also Baik et al. [3].

Proposition 1. Each discrete polynomial PN,n(z) has n simple real zeros. All zeros

lie in the range xN,0 < z < xN,N−1 and no more than one zero lies in the closed

interval [xN,j, xN,j+1] between any two consecutive nodes.

It is known that the zero distribution of these kinds of discrete orthogonal polyno-

mials is related to a constrained equilibrium problem for logarithmic potential with

an external field ϕ(x), which is given by the formula

ϕ(x) := W (x) +

∫ b

a

log |x− y|ρ0(y)dy (2.1)
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for x ∈ (a, b); see [12] and references therein. Here, ρ0(y) is the density function of the

nodes and is real analytic in a complex neighborhood of [a, b]. In our case, ρ0(y) = 1

and the external field ϕ(x) is given explicitly as

ϕ(x) = νx +

∫ 1

0

log |x− y|dy

= νx + x log x + (1− x) log(1− x)− 1.

(2.2)

Note that e−Nϕ(x) is the limit of wN,j in (1.8). The function ϕ(x) is real analytic in the

interval (0, 1), and the variational problem related to the Krawtchouk polynomials

can be stated as follows:

With ϕ(x) and c given, the variational problem is to find a Borel measure µc on

[0, 1] which minimizes the following energy functional

Ec[µc] := −c

∫ 1

0

∫ 1

0

log |x− y|µc(x)dxµc(y)dy +

∫ 1

0

ϕ(x)µc(x)dx, (2.3)

where µc(x) satisfies the upper and lower constraints

0 ≤ µc(x) ≤ 1

c
(2.4)

and the normalization condition
∫ 1

0

µc(x)dx = 1. (2.5)

The minimizer is called the equilibrium measure. From (2.4) one can see that there

is an upper bound for the measure µc, which does not appear in the continuous case.

This fact is the key difference between discrete orthogonal polynomials and continuous

ones. This can also be seen in Proposition 1, since the equilibrium measure reflects

the distribution of the zeros of the orthogonal polynomials.

The equilibrium measure µc(x)dx divides the interval [0, 1] into subintervals of

three kinds: (1) achieving the lower constraint; (2) attaining the upper constraint;

(3) not reaching the constraints. We call the open intervals of type (1) Voids (V),

type (2) Saturated Regions (S), and type (3) Bands (B). These terminologies are

taken from Baik et al. [3].

The theory about the existence of a unique minimizer measure under the con-

straint in an external field is well established; see [20]. Recently, Dragnev and Saff

[9] have given the exact density function for the zeros of Krawtchouk polynomials in

three different cases. More precisely, let

αc := (
√

(1− c)p−√cq)2, βc := (
√

(1− c)p +
√

cq)2. (2.6)
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They show that for 0 < c < p, it is a V-B-V case, which means µc(x)dx is supported

on [αc, βc] ⊂ [0, 1], and the density function is given by

µc(x) =
1

cπ

[
π

2
− arctan

√
αc(βc − x)

βc(x− αc)
− arctan

√
(1− βc)(x− αc)

(1− αc)(βc − x)

]
. (2.7)

For p ≤ c < q, this is a S-B-V case; that is µc(x) = 1/c for x ∈ [0, αc],

µc(x) =
1

cπ

[
π

2
+ arctan

√
αc(βc − x)

βc(x− αc)
− arctan

√
(1− βc)(x− αc)

(1− αc)(βc − x)

]
(2.8)

for x ∈ [αc, βc], and µc(x) = 0 for x ∈ [βc, 1]. For q ≤ c < 1, this is a S-B-S case; i.e.,

µc(x) =
1

cπ

[
π

2
+ arctan

√
αc(βc − x)

βc(x− αc)
+ arctan

√
(1− βc)(x− αc)

(1− αc)(βc − x)

]
(2.9)

for x ∈ [αc, βc], and µc(x) = 1/c for x ∈ [0, αc]∪ [βc, 1]. From here, it can be seen that

the zero density function µc(x) satisfies a symmetry property in c and 1 − c; more

precisely, we have

µ1−c(1− x) =
1

1− c

[
1− cµc(x)

]
(2.10)

for x ∈ [0, 1]. Notice that there are two critical values c = p and c = q. In the

two cases, αp and βq coincide with the left endpoint 0 and the right endpoint 1,

respectively; see (2.6). Furthermore, µc(x) does not reach the upper or the lower

constraints at the points αp and βq, which is different from other cases; more precisely,

µp(0) =
1

2p
and µq(1) =

1

2q
. These two cases are special, and the method in [3] is

not applicable. As mentioned in Sect. 1, we will study these special cases in a

separate paper. For convenience, in situations with no confusion we will ignore the

dependence of c and use the simpler notations µ(x), α and β instead of µc(x), αc and

βc, respectively.

2.2 Riemann-Hilbert problem

Like the continuous orthogonal polynomials, it is easily verified that the discrete ones

are also connected with RHP; see [3]. For instance, the discrete RHP for Krawtchouk

polynomials PN,n(z) can be stated as follows:

(Ya) Y (z) is analytic for z ∈ C \XN ;
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(Yb) at each xN,k ∈ XN , the second column of Y has a simple pole where the residue

is

Res
z=xN,k

Y (z; N,n) = lim
z→xN,k

Y (z; N,n)

(
0

wN,k

2i

0 0

)
; (2.11)

(Yc) as z →∞,

Y (z) =

(
I + O

(
1

z

))(
zn 0

0 z−n

)
.

Using the theorem of Fokas, Its and Kitaev [10], it can be shown that the solution

to the above RHP is

Y (z) =




πN,n(z)
1

2i

N−1∑

k=0

wN,k πN,n(xN,k)

z − xN,k

γN,k−1PN,n−1(z)
1

2i

N−1∑

k=0

γN,k−1 wN,k PN,n−1(xN,k)

z − xN,k




. (2.12)

The proof of this result is very similar to that of the continuous case, just using the

discrete orthogonal property instead of the continuous one; see Baik et al. [3]. Here,

πN,n(z) is the monic polynomial defined in (1.7).

If we can transform a discrete Riemann-Hilbert problem into a continuous one,

then we can apply the techniques that we have developed in [5] and [23]. Due to the

sensitivity of parameter c, this transformation is different in different cases.

3 Case I: 0 < c < p

In this V-B-V case, the upper constraint is not active. To get a continuous RHP, we

introduce the first transformation

R(z) := Y (z)


 1 ∓1

2
e∓iNπ(1−z)e−Nνz 1∏N−1

k=0 (z − xN,k)
0 1


 (3.1)

for z ∈ Ω±. For z /∈ Ω±, we put R(z) := Y (z). The regions Ω± and the contour

Σ = (0, 1)∪Σ± are depicted in Figure 1. It is easy to verify that this transformation

removes all the poles xN,k, and makes R+(x) and R+(x) continuous on the interval

(0, 1). Therefore, we get the continuous RHP for R given below.

(Ra) R(z) is analytic in C \ Σ;
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x

y

0 1

−Σ

−Ω

+

Σ

Ω

+

Figure 1: The domains Ω± and the contour Σ

(Rb) for x ∈ (0, 1),

R+(x) = R−(x)

(
1 rn(x)

0 1

)
, (3.2)

where

rn(x) = (−1)N−1 cos(Nπx) e−Nνx 1∏N−1
k=0 (x− xN,k)

; (3.3)

for z ∈ Σ+ ∪ Σ−,

R+(z) = R−(z)

(
1 r̃n,±(z)

0 1

)
, (3.4)

where

r̃n,±(z) = −1

2
e∓iNπ(1−z)e−Nνz 1∏N−1

k=0 (z − xN,k)
; (3.5)

(Rc) as z →∞,

R(z) =

(
I + O

(
1

z

))(
zn 0

0 z−n

)
;

(Rd) as z → 0 and z → 1,

R(z) = O

(
1 1

1 1

)
, (3.6)

where the O-symbol on the right-hand side is used to mean that all entries in

the matrix are O(1).

By using l’Hospital’s rule, it can be easily verified that the entry rn(x) in the jump

matrix (3.2) is continuous in (0, 1) and can be extended into the complex plane. More
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precisely, by using the Gamma function and its reflection formula Γ(z)Γ(1 − z) =

π csc πz, (3.3) can be rewritten as

rn(z) = − NNπe−Nνz

Γ(Nz + 1
2
) Γ(N(1− z) + 1

2
)
, (3.7)

which is an entire function.

Because of the term e∓iNπ(1−z) in the definition of r̃n,±(z), we find that it is

exponentially small as N → ∞, comparing with rn(x) in the jump matrix on (0, 1).

This fact indicates that the jump matrix on (0, 1) dominates the jump matrices on

Σ+ and Σ−.

Before we set out to solve our problem, we need several auxiliary functions. First,

we assume that the equilibrium measure µn(x) related to the weight function rn(x)

is supported on the interval [αn, βn] ⊂ [0, 1], where the constants αn, βn are to be

determined later. Thus, µn(x) ≥ 0 for αn ≤ x ≤ βn and

∫ βn

αn

µn(x)dx = 1. (3.8)

Then, we introduce two auxiliary functions given below.

Definition 1. The so-called g-function is the complex logarithmic potential of the

corresponding measure µn; that is

gn(z) :=

∫ βn

αn

log(z − s)µn(s)ds, z ∈ C \ (−∞, βn]. (3.9)

Definition 2. The φ-function is defined by

φn(z) :=

∫ z

βn

vn(s)ds, z ∈ C \ (−∞, βn] ∪ [1, +∞). (3.10)

Here µn(x) and vn(z) are two measures to be determined later. Furthermore, vn(z)

is a complex measure extended from µn(x) and satisfies the requirement

vn,±(x) = ±πiµn(x) for x ∈ (αn, βn). (3.11)

3.1 Determination of the auxiliary functions

Following the usual argument, we first find a probability measure µn(x) such that the

related g-function satisfies the property

(n +
1

2
)(gn,+(x) + gn,−(x)) + log

{
− NNπe−Nνx

Γ(Nx + 1
2
) Γ(N(1− x) + 1

2
)

}
= 0 (3.12)
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for x ∈ (αn, βn). (This is essentially what is needed in the normalization of the RHP

for R.) Differentiating both sides yields

(n +
1

2
)(g′n,+(x) + g′n,−(x))−N

[
ν + ψ(Nx +

1

2
)− ψ(

1

2
+ N −Nx)

]
= 0,

where ψ(z) is the Psi function, which is the logarithmic derivative of the Gamma

function given by

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
.

Therefore, we get

g′n,+(x) + g′n,−(x) =
1

c̃n

(
ν + ψ(Nx +

1

2
)− ψ(

1

2
+ N −Nx)

)
, (3.13)

where c̃n = (n+ 1
2
)/N and tends to the limit c as n →∞. For simplicity, we introduce

the notation

hn(x) := ν + ψ(Nx +
1

2
)− ψ(

1

2
+ N −Nx). (3.14)

We need one more function Gn(z) defined by

Gn(z) :=
1

πi

∫ βn

αn

µn(s)

s− z
ds =

i

π
g′n(z), z ∈ C \ [αn, βn]. (3.15)

The following result provides an important relation between the functions gn(z)

and φn(z).

Proposition 2. Let ln be defined as

ln := 2gn(βn) +
log rn(βn)

n + 1
2

. (3.16)

Then, the following relation between the g-function and φ-function holds

gn(z) + φn(z) = − 1

2n + 1
log rn(z) +

ln
2

(3.17)

for z ∈ C \ (−∞, 0] ∪ [1,∞), where rn(z) is given in (3.7).

Proof. Coupling (3.13) and (3.15) yields

Gn,+(x) + Gn,−(x) =
i

πc̃n

hn(x). (3.18)
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Since Gn,±(x) = limε→0 Gn(x± iε), it follows that

Gn,±(x) = lim
ε→0

1

πi

∫ βn

αn

µn(s)(s− x± iε)

(s− x)2 + ε2
ds

= ±µn(x) +
1

πi
P.V.

∫ βn

αn

µn(s)

s− x
ds.

(3.19)

This means Re Gn,±(x) = ±µn(x) and Im Gn(x) ≡ Im Gn,±(x) for x ∈ (αn, βn).

Furthermore, from (3.18) we also have

Im Gn(x) =
1

2c̃nπ
hn(x). (3.20)

Recalling the requirement (3.11) between µn(x) and vn(z), we need

vn,+(x) = πiµn(x) = πi Re Gn,+(x). (3.21)

This evokes us to define vn(z) to be

vn(z) = πi

(
Gn(z)− i Im Gn(z)

)
.

From (3.20), we get

vn(z) = πiGn(z) +
1

2c̃n

hn(z). (3.22)

Since g′n(z) = −πiGn(z), one easily obtains (3.17) by integrating both sides of the

formula (3.22) from βn to z. Furthermore, since φn(βn) = 0, letting z = βn in (3.17)

immediately gives (3.16).

Now, let us find αn, βn and µn(x). Equation (3.18) is actually a scalar RHP, and

can be solved explicitly as

Gn(z) =

√
(z − αn)(z − βn)

2πi

∫ βn

αn

hn(s)

c̃nπ
√

(s− αn)(βn − s)

ds

s− z
(3.23)

for z ∈ C \ [αn, βn]. From the definition of gn(z), we know that

g′n(z) =

∫ βn

αn

1

z − s
µn(s)ds =

1

z
+ O

(
1

z2

)

as z →∞. Since Gn(z) = i
π
g′n(z), from the above formula we can obtain Gn(z) → 0

and zGn(z) → i
π

as z → ∞. Therefore, one gets two integral equations for αn and

βn: ∫ βn

αn

hn(s)√
(s− αn)(βn − s)

ds = 0 (3.24)
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and
1

2π

∫ βn

αn

shn(s)√
(s− αn)(βn − s)

ds = c̃n, (3.25)

where c̃n = (n+ 1
2
)/N as before. To solve them, we need more information about the

function hn(x). Recall the asymptotic expansion for the ψ-function given by

ψ(z) ∼ ln z − 1

2z
−

∞∑
r=1

B2r

2r
z−2r

as z → ∞ in | arg z| < π, where B2r are the Bernoulli numbers; see (6.3.18) in [1].

Therefore, hn(x) has an asymptotic expansion of the form

hn(x) ∼ ν + ln x− ln(1− x) +
∞∑

k=2

h(k)(x)

nk
(3.26)

as n →∞, where the coefficient functions h(k)(x) can be given explicitly; for example,

we have

h(2)(x) =
c2

24

(
1

x2
− 1

(1− x)2

)
.

Moreover, to derive the asymptotic expansions of αn and βn, we assume cn has an

asymptotic expansion of the form

cn ∼ c +
∞∑

k=1

ck

nk
. (3.27)

Substituting (3.26) and (3.27) into (3.24) and (3.25), we also obtain the asymptotic

expansions

αn ∼ α +
∞∑

k=1

α(k)

nk
, βn ∼ β +

∞∑

k=1

β(k)

nk
, (3.28)

where α and β are given in (2.6). Since µn(x) = Re Gn,+(x), we have from (3.23)

µn(x) =

√
(x− αn)(βn − x)

2π
P.V.

∫ βn

αn

hn(s)

c̃nπ
√

(s− αn)(βn − s) (s− x)
ds (3.29)

for x ∈ (αn, βn), and it can be shown that

µn(x) = µ(x) + O

(
1

n

)
(3.30)

uniformly for x ∈ [α, β], where µ(x) is given in (2.7).
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Once the measure µn(x) is determined, vn(z) is well defined. Furthermore, one can

obtain the important mapping properties of the function φn(z) as shown in Figure 2,

where we have used the same letters to indicate corresponding points on the boundary.

From the definition of φn(z) in (3.10), it is easy to see that φn(βn) = 0 and φn,+(αn) =

−πi.

0 1 x

y

α βn A

BCD

n

E

F

u

v

A

B

C

D

0

E

F

Figure 2: The upper half plane under the transformation of φn(z)

3.2 Construction of the parametrix

As usual, to simplify the jump conditions in (Rb), we introduce the transformation

R → V defined by

V (z) := e−
1
2
(n+ 1

2
)lnσ3R(z)rn(z)

1
2
σ3 , (3.31)

where rn(z) is given in (3.7). It is readily seen that V is a solution of the following

RHP:

(Va) V (z) is analytic for z ∈ C \ Σ;

(Vb) for x ∈ (0, 1),

V+(x) = V−(x)

(
1 1

0 1

)
; (3.32)

for z ∈ Σ±,

V+(z) = V−(z)


1

1

1 + e∓2Nπiz

0 1


 ; (3.33)

(Vc) as z →∞,

V (z) =

(
I + O

(
1

z

))
z−

1
2
σ3e−(n+ 1

2
)φn(z)σ3 ;

13



(Vd) as z → 0 and z → 1,

V (z) = O

(
1 1

1 1

)
.

To construct a parametrix for the above RHP, we recall the properties of φn(z)

illustrated in Figure 2, which are very similar to those of the function

f(ξ) := ξ
√

ξ2 − 1− log(ξ +
√

ξ2 − 1), (3.34)

where ξ ∈ C \ (−∞, 1]; see Figure 3. Simple calculation gives f(1) = 0 and f+(−1) =

−πi. The function f(ξ) plays an important role in describing the asymptotic behavior

of the parabolic cylinder function U(−τ, 2
√

τ ξ) as τ →∞; see [1] and [18]. This fact

0 1 x

y

A

B

CD

1
_

F

E

0 u

v

A

B

C

D

E

F

Figure 3: The upper half plane under the transformation of f(ξ)

invokes us to construct our approximate solution by using the parabolic cylinder

function, and to introduce the mapping between ξ ↔ z defined by

f(ξ(z)) = φn(z), (3.35)

or equivalently

ξ(z) = (f−1 ◦ φn)(z). (3.36)

As z traverses the boundary of the semi-circular region in the upper half-plane once,

the image point φn(z) also traverses once the corresponding boundary in Figure 2.

Similarly, as ξ describes the semi-circular region once, f(ξ) goes once along the cor-

responding curve in Figure 3. This establishes the one-to-oneness of the mapping

z ↔ ξ on the boundary of the semi-circular region. By Theorem 4.5 in [17, Vol.2,

p.118], this mapping is also one-to-one in the interior of the region. By Schwarz’s

reflection principle, the transformation z ↔ ξ defined in (3.35) is, in fact, one-to-one
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and analytic in the whole z-plane with two cuts (−∞, 0] and [1,∞). From condition

(Vc) and the asymptotic property of U(−τ, 2
√

τ ξ), it is readily seen that we should

take the parameter τ to be n + 1
2
. The advantage of adopting the parabolic cylinder

function, over the Airy function as done in [5], is that the region of validity of the

asymptotic expansion we get here can include both the critical values αn and βn,

whereas the region of validity of the Airy-type expansion given in [5] includes only

one critical value.

We now begin to construct the parametrix. From formula (19.4.7) in [1], we have

√
2π U(a,±x) = Γ(

1

2
− a){e−iπ( 1

2
a+ 1

4
)U(−a,±ix) + eiπ( 1

2
a+ 1

4
)U(−a,∓ix)}, (3.37)

which provides the matrix equation


U(−τ, 2

√
τ ξ) Γ(n+1)√

2π
eiπn/2 U(τ, 2i

√
τ ξ)

U ′(−τ, 2
√

τ ξ) Γ(n+1)√
2π

eiπ(n+1)/2 U ′(τ, 2i
√

τ ξ)


 =


U(−τ, 2

√
τ ξ) −Γ(n+1)√

2π
e−iπn/2 U(τ,−2i

√
τ ξ)

U ′(−τ, 2
√

τ ξ) −Γ(n+1)√
2π

e−iπ(n+1)/2 U ′(τ,−2i
√

τ ξ)





1 1

0 1


 ,

(3.38)

where

τ = τn := n +
1

2
. (3.39)

For convenience, we sometimes suppress the dependence of τ on the large variable n.

We also recall the asymptotic expansions

U(−τ, 2
√

τ ξ) ∼ 2−
1
2 e−

1
2
ττ

n
2

e−τf(ξ)

(ξ2 − 1)1/4

and

U ′(−τ, 2
√

τ ξ) ∼ −2−
1
2 e−

1
2
ττ (τ+ 1

2
)/2(ξ2 − 1)1/4e−τf(ξ)

as n → ∞, uniformly for ξ ∈ C \ (−∞, 1]; see [18, p.140]. With the above results,

simple calculation yields


U(−τ, 2

√
τ ξ) Γ(n+1)√

2π
eiπn/2 U(τ, 2i

√
τ ξ)

U ′(−τ, 2
√

τ ξ) Γ(n+1)√
2π

eiπ(n+1)/2 U ′(τ, 2i
√

τ ξ)




∼ 1√
2
(ξ2 − 1)−

1
4
σ3


m11e

−τf(ξ) m12e
τf(ξ)

m21e
−τf(ξ) m22e

τf(ξ)


 ,

(3.40)
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where the constants mij are given by

m11 := e−
1
2
(n+ 1

2
)(n + 1

2
)

n
2 , m12 := −iΓ(n+1)√

2π
e

1
2
(n+ 1

2
)(n + 1

2
)−

n+1
2 ,

m21 := −e−
1
2
(n+ 1

2
)(n + 1

2
)

n+1
2 , m22 := −iΓ(n+1)√

2π
e

1
2
(n+ 1

2
)(n + 1

2
)−

n
2 .

(3.41)

Note that there is a relation between these constants; namely, −m11

m21

=
m12

m22

.

For z ∈ C+, we define

Q(z) :=
√

2




1
m11

0

2z−αn−βn

4m12

1
2m22




(
(ξ2 − 1)

1
4

bn(z)

)σ3

×

U(−τ, 2

√
τ ξ) Γ(n+1)√

2π
eiπn/2 U(τ, 2i

√
τ ξ)

U ′(−τ, 2
√

τ ξ) Γ(n+1)√
2π

eiπ(n+1)/2 U ′(τ, 2i
√

τ ξ)


 ,

(3.42)

where bn(z) is the analytic function in C \ (−∞, βn] given by

bn(z) := (z − βn)
1
4 (z − αn)

1
4 . (3.43)

The reason why we divide (ξ2 − 1)
1
4 by bn(z) is to make sure that (ξ2 − 1)

1
4 /bn(z) is

analytic in C \ (−∞, 0]∪ [1,∞), with no jump on the interval (0, 1). Furthermore, it

can be easily verified that Q(z) satisfies the same large -z behavior as V (z) given in

(Vc).

Similarly, we can construct the parametrix in the lower half plane. For z ∈ C−,

we define

Q(z) :=
√

2




1
m11

0

2z−αn−βn

4m12

1
2m22




(
(ξ2 − 1)

1
4

bn(z)

)σ3

×

U(−τ, 2

√
τ ξ) −Γ(n+1)√

2π
e−iπn/2 U(τ,−2i

√
τ ξ)

U ′(−τ, 2
√

τ ξ) −Γ(n+1)√
2π

e−iπ(n+1)/2 U ′(τ,−2i
√

τ ξ)


 .

(3.44)

It is easy to see that Q(z) satisfies all four conditions in the RHP for V , except for

a new jump on (−∞, 0) ∪ (1,∞). In view of the transformation from V (z) to R(z)

introduced in (3.31), a reasonable parametrix to the RHP for R is given by

R̃(z) := e
1
2
(n+ 1

2
)lnσ3Q(z)rn(z)−

1
2
σ3 . (3.45)
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Since rn(z) in (3.7) is an entire function and ξ(z) in (3.36) is analytic on (0, 1), it is

readily verified that

R̃+(x) = R̃−(x)


1 rn(x)

0 1


 for x ∈ (0, 1).

But there is an additional jump matrix on the part (−∞, 0] ∪ [1,∞) of the real axis.

In the following subsection, we will show that this jump matrix tends to the identity

matrix.

3.3 Uniform asymptotic expansions

Define the matrix

D(z) := e−
1
2
(n+ 1

2
)lnσ3R(z)R̃−1(z)e

1
2
(n+ 1

2
)lnσ3 . (3.46)

Since R̃(z) has the same jump as R(z) on the interval (0, 1), the matrix D(z) satisfies

the relation

D+(x) = D−(x), x ∈ (0, 1).

Furthermore, since R(z) is analytic on (−∞, 0)∪ (1,∞), it is easy to verify that D(z)

is a solution of the following RHP:

(Da) D(z) is analytic in z ∈ C \ (−∞, 0] ∪ [1,∞);

(Db) for x ∈ (−∞, 0) ∪ (1,∞),

D+(x) = D−(x)JD(x), (3.47)

where

JD(x) := e−
1
2
(n+ 1

2
)lnσ3R̃−(x)(R̃+(x))−1e

1
2
(n+ 1

2
)lnσ3 ; (3.48)

(Dc) for z ∈ C \ R,

D(z) = I + O

(
1

z

)
as z →∞;

(Dd) as z → 0 and z → 1,

D(z) = O


1 1

1 1


 .
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To solve this problem, we need to derive the explicit asymptotic expansion of

JD(x). Note that for x ∈ (1,∞), we have

U(−τ, 2
√

τ ξ+(x)) ∼ ρ(
√

2τ)
e−τf(ξ+(x))

(ξ2
+(x)− 1)1/4

∞∑
s=0

As(ξ+(x))

(2τ)s
, (3.49a)

U(τ, 2i
√

τ ξ+(x)) ∼ ρ(i
√

2τ)
eτf(ξ+(x))

(ξ2
+(x)− 1)1/4

∞∑
s=0

As(ξ+(x))

(−2τ)s
, (3.49b)

U ′(−τ, 2
√

τ ξ+(x)) ∼−√τ ρ(
√

2τ)(ξ2
+(x)− 1)1/4e−τf(ξ+(x))

×
∞∑

s=0

Bs(ξ+(x))

(2τ)s
, (3.49c)

U ′(τ, 2i
√

τ ξ+(x)) ∼− i
√

τ ρ(i
√

2τ)(ξ2
+(x)− 1)1/4eτf(ξ+(x))

×
∞∑

s=0

Bs(ξ+(x))

(−2τ)s
, (3.49d)

where

ρ(
√

2τ) ∼ 2−
1
2 e−

1
2
τ τ

τ
2
− 1

4

[
1 +

1

2

∞∑
s=1

γs

τ s

]
(3.50)

and

As(ξ) = us(ξ)/(ξ
2 − 1)

3
2
s, Bs(ξ) = vs(ξ)/(ξ

2 − 1)
3
2
s; (3.51)

see [18, p.140]. Here u0(ξ) = v0(ξ) = 1; and when s > 0, both us(ξ) and vs(ξ)

are polynomials of degree 3s if s is odd, and 3s − 2 if s is even. Moreover, the

polynomials us(ξ) and vs(ξ) can be successively determined through the following

recurrence relations:

(ξ2 − 1)u′s(ξ)− 3sξus(ξ) = rs−1(ξ), vs(ξ) = us(ξ) +
1

2
ξus−1(ξ)− rs−2(ξ),

with r−1(ξ) = 0 and

8rs(ξ) = (3ξ2 + 2)us(ξ)− 12(s + 1)ξrs−1(ξ) + 4(ξ2 − 1)r′s−1(ξ).

Therefore, it is easily seen from (3.51) that A0(ξ) = B0(ξ) ≡ 1, and for s = 1, 2, · · ·

A2s(ξ) = O

(
1

ξ2

)
, B2s(ξ) = O

(
1

ξ2

)
, A2s−1 = O (1) , B2s−1 = O (1) (3.52)

as ξ → ∞. The coefficients γs in the expansion (3.50) are given by the following

formula

Γ(z +
1

2
) ∼ (2π)

1
2 e−zzz

∞∑
s=0

γs

zs
, | arg z| < π,
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and the first three terms are

γ0 = 1, γ1 = − 1

24
, γ2 =

1

1152
.

Now let us construct the asymptotic expansion of JD(x). For x ∈ (1,∞), we get

from (3.45) and (3.48)

JD(x) = e−
1
2
(n+ 1

2
)lnσ3R̃−(x)(R̃+(x))−1e

1
2
(n+ 1

2
)lnσ3

= Q−(x) rn,−(x)−
1
2
σ3rn,+(x)

1
2
σ3Q+(x)−1.

(3.53)

From the Wronskian

i U(−τ, 2
√

τ ξ) U ′(τ, 2i
√

τ ξ)− U ′(−τ, 2
√

τ ξ) U(τ, 2i
√

τ ξ) = −i e−
nπi
2 ,

we have

JD(x) =




1
m11

0

2x−αn−βn

4m12

1
2m22




(
(ξ2
−(x)− 1)

1
4

bn(x)

)σ3

×

U(−τ, 2

√
τ ξ−(x)) −Γ(n+1)√

2π
e−iπn/2 U(τ,−2i

√
τ ξ−(x))

U ′(−τ, 2
√

τ ξ−(x)) −Γ(n+1)√
2π

e−iπ(n+1)/2 U ′(τ,−2i
√

τ ξ−(x))




× rn,−(x)−
1
2
σ3rn,+(x)

1
2
σ3

i
√

2π

Γ(n + 1)

×



Γ(n+1)√
2π

eiπ(n+1)/2 U ′(τ, 2i
√

τ ξ+(x)) −Γ(n+1)√
2π

eiπn/2 U(τ, 2i
√

τ ξ+(x))

−U ′(−τ, 2
√

τ ξ+(x)) U(−τ, 2
√

τ ξ+(x))




×
(

(ξ2
−(x)− 1)

1
4

bn(x)

)−σ3



1
m11

0

2x−αn−βn

4m12

1
2m22



−1

.

Inserting the expansions in (3.49) into the last formula yields

JD(x) ∼



1
m11

0

2x−αn−βn

4m12

1
2m22


 bn(x)−σ3

∞∑
s=0

Ms(x)

(2τ)s


ρ(

√
2τ) 0

0 ρ(−i
√

2τ)




× e−(n+ 1
2
)f(ξ−(x))σ3rn,−(x)−

1
2
σ3rn,+(x)

1
2
σ3e(n+ 1

2
)f(ξ+(x))σ3

i
√

2π

Γ(n + 1)

×

ρ(i

√
2τ) 0

0 ρ(
√

2τ)




∞∑
s=0

Ns(x)

(2τ)s
bn(x)σ3




1
m11

0

2x−αn−βn

4m12

1
2m22



−1

,

(3.54)
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where

Ms(x) :=


 As(ξ−(x)) −Γ(n+1)√

2π
e−nπi/2(−1)sAs(ξ−(x))

−√τ Bs(ξ−(x)) −Γ(n+1)√
2π

e−nπi/2
√

τ (−1)sBs(ξ−(x))




and

Ns(x) :=




Γ(n+1)√
2π

enπi/2
√

τ (−1)sBs(ξ+(x)) −Γ(n+1)√
2π

enπi/2(−1)sAs(ξ+(x))

√
τ Bs(ξ+(x)) As(ξ+(x))


 .

From (3.9), it is readily seen that gn,+(x) = gn,−(x) for x ∈ (1,∞). Hence, by using

(3.17), it can be shown that

e−(n+ 1
2
)f(ξ−(x))σ3rn,−(x)−

1
2
σ3rn,+(x)

1
2
σ3e(n+ 1

2
)f(ξ+(x))σ3 = I.

Furthermore, since ρ(i
√

2τ) = (−1)τ+1/2ρ(−i
√

2τ) (see (3.50)), equation (3.54) can

be written in the form

JD(x) ∼ ienπi/2ρ(
√

2τ) ρ(i
√

2τ)




1
m11

0

2x−αn−βn

4m12

1
2m22


 bn(x)−σ3

×





2
√

τ 0

0 2
√

τ


 +

∞∑
t=1

∑

j+k=t

Mj,k(x)

(2τ)t





× bn(x)σ3




1
m11

0

2x−αn−βn

4m12

1
2m22



−1

(3.55)

for x ∈ (1,∞), where Mj,k(x) is the matrix



√

τ [(−1)k + (−1)j]Aj(ξ−)Bk(ξ+) [(−1)k+1 + (−1)j]Aj(ξ−)Ak(ξ+)

τ [(−1)k+1 + (−1)j]Bj(ξ−)Bk(ξ+)
√

τ [(−1)k + (−1)j]Bj(ξ−)Ak(ξ+)


 . (3.56)

Also from (3.50), we have

ρ(
√

2τ) ρ(i
√

2τ) ∼ 1

2
e−( τ

2
+ 1

4
)πi τ−

1
2

∞∑
s=0

ηs

τ s
,
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where η0 = 1 and

ηs =
1

2
[(−1)s + 1]γs +

1

4

∑
j+k=s
j,k 6=0

(−1)kγjγk

for s = 1, 2 · · · . Therefore, we get

JD(x) ∼ I +
∞∑

m=1

J
(m)
D (x)

(2n + 1)m
, (3.57)

where J
(m)
D (x) is equal to

∑

s+j+k=m

2s−1 ηs√
n + 1

2




1
m11

0

2x−αn−βn

4m12

1
2m22


 bn(x)−σ3Mj,k(x)bn(x)σ3




1
m11

0

2x−αn−βn

4m12

1
2m22



−1

.

Using (3.52) and (3.56), it can be shown that

J
(m)
D (x) = O

(
1

x2

)
, m = 1, 2, · · · ,

as x →∞. Thus, the expansion in (3.57) is uniformly valid for all x ∈ [1,∞).

For convenience, we put J∗D(x) := JD(x)− I so that

J∗D(x) ∼
∞∑

m=1

J
(m)
D (x)

(2n + 1)m
.

From (Db) and (3.57), we get

D+(x) = D−(x)[I + J∗D(x)] = D−(x)

[
I + O

(
1

n

)]
(3.58)

for x ∈ (1,∞). In a similar way, it can be shown that (3.58) also holds for x ∈ (−∞, 0).

Therefore, we have established the equation

(D+(x)− I)− (D−(x)− I) = D−(x)J∗D(x)

for x ∈ (−∞, 0) ∪ (1,∞).

As in [5], we first derive formally the expansion

D(z) ∼ I +
∞∑

k=1

Dk(z)

(2n + 1)k
(3.59)
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as n →∞. Let D0(z) = I, and define Dk(z) recursively by

Dk(z) =
1

2πi
(

∫ 0

−∞
+

∫ ∞

1

)

[
k∑

j=1

(Dk−j)−(x)J
(j)
D (x)

]
dx

x− z

for z ∈ C \ (−∞, 0]∪ [1,∞). Using induction, it can be verified that for k = 1, 2, · · · ,

Dk(z) = O

(
1

|z|
)

as z →∞.

Furthermore, by successive approximation (see [5]), it can be easily demonstrated

that the expansion (3.59) holds uniformly for all z ∈ C \ (−∞, 0] ∪ [1,∞).

Theorem 1. Let rn(z), ln and ξ(z) be defined in (3.7), (3.16) and (3.35), respectively.

Then the asymptotic expansion of the monic polynomial πN,n(z) in (1.7) is given by

πN,n(z) =
√

2 rn(z)−
1
2 e

1
2
(n+ 1

2
)ln

[
U(−n− 1

2
, 2

√
n +

1

2
ξ(z)) A(z, n)

+U ′(−n− 1

2
, 2

√
n +

1

2
ξ(z)) B(z, n)

]
,

(3.60)

where A(z, n) and B(z, n) are analytic functions of z in C \ (−∞, 0] ∪ [1,∞). Fur-

thermore, the asymptotic expansions

A(z, n) ∼ (ξ2 − 1)
1
4

m11(z − βn)
1
4 (z − αn)

1
4

[
1 +

∞∑

k=1

Ak(z)

(2n + 1)k

]
(3.61)

and

B(z, n) ∼ (z − βn)
1
4 (z − αn)

1
4

m11(ξ2 − 1)
1
4

∞∑

k=1

Bk(z)

(2n + 1)k+ 1
2

(3.62)

hold uniformly for z bounded away from (−∞, 0] ∪ [1,∞), where the constant m11 is

given in (3.41).

Proof. Let Rij(z) and R̃ij(z) denote the elements in R(z) and R̃(z), respectively.

Since R(z) = e
1
2
(n+ 1

2
)lnσ3D(z)e−

1
2
(n+ 1

2
)lnσ3R̃(z), we have

πN,n(z) = y11(z) = R11(z) = D11(z)R̃11(z) + D12(z)e(n+ 1
2
)lnR̃21(z). (3.63)

By (3.59), we have

D11(z) ∼ 1 +
∞∑

k=1

D
(k)
11 (z)

(2n + 1)k
, (3.64)
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D12(z) ∼
∞∑

k=1

D
(k)
12 (z)

(2n + 1)k
. (3.65)

From the definition of R̃(z) in (3.45), we also know that for z in either C+ or C−, the

entries in the first column of this matrix are the same. More precisely, we have

R̃(z) =
√

2


 R̃11(z) ∗

R̃21(z) ∗


 ,

where

R̃11(z) =
1

m11

(ξ2 − 1)
1
4

bn(z)
U(−n− 1

2
, 2

√
n +

1

2
ξ) rn(z)−

1
2 e

1
2
(n+ 1

2
)ln

and

R̃21(z) = e−
1
2
(n+ 1

2
)ln rn(z)−

1
2

(
(ξ2 − 1)

1
4

bn(z)
U(−n− 1

2
, 2

√
n +

1

2
ξ)

2z − αn − βn

4m12

+
bn(z)

(ξ2 − 1)
1
4

U ′(−n− 1

2
, 2

√
n +

1

2
ξ)

1

2m22

)
.

By (3.63), one easily obtains (3.60), with

A(z, n) =
(ξ2 − 1)

1
4

bn(z)

[
D11(z)

1

m11

+ D12(z)
2z − αn − βn

4m12

]

and

B(z, n) =
bn(z)

2m22(ξ2 − 1)
1
4

D12(z).

Note that A(z, n) and B(z, n) are analytic for z in C \ (−∞, 0] ∪ [1,∞). Hence, by

(3.64) and (3.65), we have the asymptotic expansions in (3.61) and (3.62). Here,

one additional thing that needs attention is
1

m22

∼ i√
n + 1

2

1

m11

as n → ∞. This

completes the proof of the theorem.

4 Case II: p < c < 1
2

Since the parameter c is defined in terms of the degree of the polynomial, the number

of zeros of the polynomial increases as c increases. Moreover, the zeros near the origin
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become as dense as the nodes; see [3, Theorem 2.12] and [19, Theorem 2]. Also, the

density function reaches its upper constraint; see (2.4) and (2.8). As we mentioned

before, this fact is a crucial difference between the discrete orthogonal polynomials

and the continuous ones; see the paragraph following (2.5).

Furthermore, since µ(x) is not differentiable at the point α in this case, the func-

tions v+(x) and φ+(x) are not analytic in the neighborhood of x = α, and we can

not expect to obtain a globally uniform asymptotic expansion (by using parabolic

cylinder functions) in a region which includes both of the critical values α and β.

However, as we shall see, each of these values lies in a region in which there is a

globally uniform asymptotic expansion in terms of the Airy function; the two regions

overlap, and together cover the whole plane with two cuts along (−∞, 0] and [1,∞).

4.1 Preliminary work

Now we need to modify our method to handle this case. First, we want to remove

the saturated region. Define

σn :=
1

2
(xN,k0−1 + xN,k0) =

k0

N
, (4.1)

and choose k0 so that σn tends to a limit σ ∈ (0, 1). Here, k0 is somewhat arbitrary,

as long as xN,k0−1 is in the band, not tending to its boundary and not asymptotically

equal to n. Under this assumption, we shall see later that α < σ < β and σ 6= c. Our

first transformation is

H(z) := Y (z)




∏k0−1
j=0 (z − xN,j)

−1 0

0
∏k0−1

j=0 (z − xN,j)


 . (4.2)

It is easy to see that H is a solution of the following RHP:

(Ha) H(z) is analytic for z ∈ C \XN ;

(Hb) the residue at the simple pole xN,k is given by

Res
z=xN,k

H(z; N,n) = lim
z→xN,k

H(z; N,n)




0
wn,k

2i

k0−1∏
j=0

(xN,k − xN,j)
2

0 0


 (4.3)
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for k = k0, · · · , N − 1, and

Res
z=xN,k

H(z; N,n) = lim
z→xN,k

H(z; N,n)




0 0

2i

wn,k

k0−1∏
j=0
j 6=k

(xN,k − xN,j)
−2 0


 (4.4)

for k = 0, · · · , k0 − 1;

(Hc) as z →∞,

H(z) =

(
I + O

(
1

z

)) 
 zn−k0 0

0 z−n+k0


 .

To introduce the second transformation, which removes the poles and transforms

the discrete RHP into a continuous one, we define

R∗(z) := H(z)




1 0

∓1

2
e∓iNπ(1−z)eNνz

∏N−1
j=k0

(z − xN,j)∏k0−1
j=0 (z − xN,j)

1


 (4.5)

for z ∈ Ω∆
±,

R∗(z) := H(z)




1 ∓1

2
e∓iNπ(1−z)e−Nνz

∏k0−1
j=0 (z − xN,j)∏N−1
j=k0

(z − xN,j)

0 1


 (4.6)

for z ∈ Ω∇
±, and

R∗(z) := H(z) (4.7)

for all other z ∈ C\Σ∗, where Σ∗ = (0, 1)∪Σ∆
±∪Σ∇

±. For the description of the domains

Ω∆
±, Ω∇

± and the contour Σ∗, see Figure 4. In this section, we use the superscript * to

indicate that we are considering Case II.

The matrix R∗(z) is a solution of the following continuous RHP:

(R∗
a) R∗(z) is analytic for z ∈ C \ Σ∗;

(R∗
b) the jump conditions on the curve Σ∗: for x ∈ (0, σn),

R∗
+(x) = R∗

−(x)


 1 0

r1,n(x) 1


 , (4.8)
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y

0
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1
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∆

∆
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∆
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∆
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∆
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∆
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∆

Ω

∆
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Figure 4: The domains Ω∆
±, Ω∇

± and the contour Σ∗

where

r1,n(x) = (−1)N−1 cos(Nπx) eNνx

∏N−1
j=k0

(x− xN,j)∏k0−1
j=0 (x− xN,j)

; (4.9)

for x ∈ (σn, 1),

R∗
+(x) = R∗

−(x)


1 r2,n(x)

0 1


 , (4.10)

where

r2,n(x) = (−1)N−1 cos(Nπx) e−Nνx

∏k0−1
j=0 (x− xN,j)∏N−1
j=k0

(x− xN,j)
; (4.11)

for z ∈ Σ∆
±,

R∗
+(z) = R∗

−(z)


 1 0

r∆
±(z) 1


 , (4.12)

where

r∆
±(z) =

1

2
e∓iNπ(1−z)eNνz

∏N−1
j=k0

(z − xN,j)∏k0−1
j=0 (z − xN,j)

; (4.13)

for z ∈ Σ∇
±,

R∗
+(z) = R∗

−(z)


1 r∇±(z)

0 1


 , (4.14)
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where

r∇±(z) =
1

2
e∓iNπ(1−z)e−Nνz

∏k0−1
j=0 (z − xN,j)∏N−1
j=k0

(z − xN,j)
; (4.15)

(R∗
c) as z →∞,

R∗(z) =

(
I + O

(
1

z

)) 
 zn−k0 0

0 z−n+k0


 ;

(R∗
d) as z → 0 and z → 1,

R∗(z) = O


1 1

1 1


 .

As in Case I, due to the term e∓iNπ(1−z) in the definitions of r∆
±(z) and r∇±(z), we

shall concentrate on the jump conditions on the real line. Again by using the Gamma

function, r1,n(z) and r2,n(z) can be written as

r1,n(z) = −N2k0−NπeNνz Γ(N(1− z) + 1
2
)

Γ(Nz + 1
2
) Γ2(k0 −Nz + 1

2
)

(4.16)

and

r2,n(z) = − NN−2k0πe−Nνz Γ(Nz + 1
2
)

Γ2(Nz − k0 + 1
2
) Γ(N(1− z) + 1

2
)
. (4.17)

As usual, we now define the auxiliary functions g∗ and φ∗.

Definition 3. The g-functions are defined by

g̃∗n(z) :=

∫ β∗n

α∗n

log(z − s)µ∗n(s)ds, z ∈ C \ [α∗n,∞) (4.18)

and

g∗n(z) :=

∫ β∗n

α∗n

log(z − s)µ∗n(s)ds, z ∈ C \ (−∞, β∗n], (4.19)

where the measure µ∗n(x) and the Mhaskar-Rakhmanov-Saff numbers α∗n and β∗n will

be determined later.

Definition 4. The φ-functions are defined by

φ̃∗n(z) := −
∫ z

α∗n

ṽ∗n(s)ds (4.20)
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for z ∈ C \ (−∞, 0] ∪ [α∗n,∞), and

φ∗n(z) :=

∫ z

β∗n

v∗n(s)ds (4.21)

for z ∈ C \ (−∞, β∗n] ∪ [1,∞). Here the measures ṽ∗n(z) and v∗n(z) are defined in the

complex plane and satisfy

n

n− k0

ṽ∗n,±(x) = ±πiµ∗n(x) for x ∈ (α∗n, σn) (4.22)

and
n

n− k0

v∗n,±(x) = ±πiµ∗n(x) for x ∈ (σn, β
∗
n). (4.23)

To find the measures in the above definitions, we need the following equations:

−(n− k0)(g̃
∗
n,+(x) + g̃∗n,−(x)) + log r1,n(x) = 0 (4.24)

for x ∈ (α∗n, σn), and

(n− k0)(g
∗
n,+(x) + g∗n,−(x)) + log r2,n(x) = 0 (4.25)

for x ∈ (σn, β
∗
n). These formulas correspond to (3.12) in Case I; they are what is

required in the normalization of the RHP for R∗.

Proposition 3. With the constants defined by

l∗n := 2g∗n(β∗n) +
log r2,n(β∗n)

n− k0

, (4.26)

l̃∗n := 2g̃∗n(α∗n)− log r1,n(α∗n)

n− k0

, (4.27)

the following connection formulas between the g-function (g̃-function) and the φ-

function (φ̃-function) hold

g∗n(z) +
n

n− k0

φ∗n(z) = − 1

2(n− k0)
log r2,n(z) +

l∗n
2

(4.28)

for z ∈ C \ (−∞, σn] ∪ [1,∞), and

g̃∗n(z)− n

n− k0

φ̃∗n(z) =
1

2(n− k0)
log r1,n(z) +

l̃∗n
2

(4.29)

for z ∈ C \ (−∞, 0] ∪ [σn,∞). Furthermore, we have

g̃∗n(z) =

{
g∗n(z), z ∈ C+,

g∗n(z) + 2πi, z ∈ C−,
(4.30)
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φ̃∗n(z) =





−φ∗n(z)− n− k0

n
πi− 1

2n
log r1,n(z)r2,n(z), z ∈ C+,

−φ∗n(z) +
n− k0

n
πi− 1

2n
log r1,n(z)r2,n(z), z ∈ C−

(4.31)

and

l̃∗n = ln + 2πi. (4.32)

Proof. The proof is similar to that of Proposition 2, and we only give a sketch of it.

Corresponding to (3.22), here we have

n

n− k0

ṽ∗n(z) =− g̃∗
′

n (z) +
1

2(cn − σn)

[
ν + 2ψ(N(σn − z) +

1

2
)

−ψ(Nz +
1

2
)− ψ(N(1− z) +

1

2
)

] (4.33)

for z ∈ C \ (−∞, 0] ∪ [α∗n,∞), and

n

n− k0

v∗n(z) =− g∗
′

n (z) +
1

2(cn − σn)

[
ν + 2ψ(N(z − σn) +

1

2
)

−ψ(Nz +
1

2
)− ψ(N(1− z) +

1

2
)

] (4.34)

for z ∈ C\(−∞, β∗n]∪ [1,∞). Integrating v∗n(z) and ṽ∗n(z) from β∗n and α∗n to z, respec-

tively, we obtain (4.28) and (4.29). Moreover, (4.26) and (4.27) follow immediately.

Equation (4.30) is obtained by observing the branch cut of log(z − s) in (4.18)

and (4.19). To get (4.31), we note that by using (4.33) and (4.34),

ṽ∗n(z) = v∗n(z) +
1

2n

d

dz
log r1,n(z)r2,n(z). (4.35)

From (4.20) and (4.21), it follows that

φ̃∗n(z) = −
∫ z

α∗n

ṽ∗n(s)ds

= −
∫ β∗n

α∗n

ṽ∗n,±(s)ds−
∫ z

β∗n

ṽ∗n(s)ds

= ∓n− k0

n
πi− φ∗n(z)− 1

2n
log r1,n(z)r2,n(z)

(4.36)

for z ∈ C±. In reaching the last equality, use has been made of (4.22), (4.23) and

(4.35). This establishes (4.31). Subtracting (4.29) from (4.28), we obtain (4.32) from

(4.30) and (4.31).
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From (4.24) and (4.25), one can derive the asymptotic expansions of α∗n and β∗n;

they have the same form as given in (3.28). It turns out that these expansions are in-

dependent of the choice of k0 and the corresponding number σn in (4.1). Furthermore,

µ∗n(x) can be shown to satisfy the relation

µ∗n(x) = µ∗(x) + O

(
1

n

)
(4.37)

uniformly for x ∈ [α, β]; see the corresponding result (3.30) in Case I. Note that due

to the transformation in (4.2), here µ∗(x) is discontinuous at the point σ. Moveover,

we have

µ∗(x) =





c

c− σ
(µ(x)− 1

c
), x ∈ (0, σ),

c

c− σ
µ(x), x ∈ (σ, β),

where µ(x) is defined in (2.8).

4.2 Construction of the parametrix

We now define the final transformation

V ∗(z) :=

{
e−

1
2
(n−k0)l∗nσ3R∗(z)r2,n(z)

1
2
σ3 for Re z > σn,

e−
1
2
(n−k0)l̃∗nσ3R∗(z)r1,n(z)−

1
2
σ3 for Re z < σn.

(4.38)

Let Γ be the line Re z = σn; see Figure 5. Using the relations (4.28) and (4.29), it

can be verified that V ∗(z) satisfies the RHP:

(V ∗
a ) V ∗(z) is analytic in C \ Σ∗ ∪ Γ;

(V ∗
b ) the jump conditions on the contour Σ∗ ∪ Γ: for x ∈ (σn, 1),

V ∗
+(x) = V ∗

−(x)


1 1

0 1


 ; (4.39)

for x ∈ (0, σn),

V ∗
+(x) = V ∗

−(x)


1 0

1 1


 ; (4.40)
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Figure 5: The domains Ω∆
±, Ω∇

± and the contours Σ∗ and Γ

for z ∈ Σ∇
±,

V ∗
+(z) = V ∗

−(z)




1 − 1

1 + e∓2Nπiz

0 1


 ; (4.41)

for z ∈ Σ∆
±,

V ∗
+(z) = V ∗

−(z)




1 0

− 1

1 + e∓2Nπiz
1


 ; (4.42)

for z ∈ Γ±,

V ∗
+(z) = (−1)n−k0V ∗

−(z)




i

eNπiz + e−Nπiz
0

0 −i(eNπiz + e−Nπiz)




±1

; (4.43)

(V ∗
c ) as z →∞,

V ∗(z) =

(
I + O

(
1

z

))
e−nφ∗n(z)σ3 (4.44)

for Re z > σn, and

V ∗(z) =

(
I + O

(
1

z

))
enφ̃∗n(z)σ3 (4.45)

for Re z < σn;
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(V ∗
d ) as z → 0 and z → 1,

V ∗(z) = O


1 1

1 1


 .

From the well-known formula

Ai(z) + ω Ai(ωz) + ω2 Ai(ω2z) = 0,

one can get the following matrix equations


 Ai(f ∗(z)) −ω2 Ai(ω2f ∗(z))

Ai′(f ∗(z)) −ω Ai′(ω2f ∗(z))


 =


 Ai(f ∗(z)) ω Ai(ωf ∗(z))

Ai′(f ∗(z)) ω2 Ai′(ωf ∗(z))




×

 1 1

0 1




(4.46)

and


 −ω2 Ai(ω2f ∗(z)) Ai(f ∗(z))

−ω Ai′(ω2f ∗(z)) Ai′(f ∗(z))


 =


 ω Ai(ωf ∗(z)) Ai(f ∗(z))

ω2 Ai′(ωf ∗(z)) Ai′(f ∗(z))




×

 1 0

1 1


 .

(4.47)

We divide the complex plane into four regions by using Γ and the real axis; see

Figure 6. With a similar technique as given in [5], we construct the parametrix of the

RHP for V ∗ by using the Airy functions in these four regions. Define

Q∗(z) := 2
√

π


 1 i

−1 i



−1 (

f ∗(z)
1
4

an(z)

)σ3

Ai(f ∗(z)) −ω2 Ai(ω2f ∗(z))

Ai′(f ∗(z)) −ω Ai′(ω2f ∗(z))


 (4.48)

for z ∈ II,

Q∗(z) := 2
√

π


 1 i

−1 i



−1 (

f ∗(z)
1
4

an(z)

)σ3

Ai(f ∗(z)) ω Ai(ωf ∗(z))

Ai′(f ∗(z)) ω2 Ai′(ωf ∗(z))


 (4.49)
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for z ∈ IV,

Q∗(z) := 2
√

π


i 1

i −1



−1

(
f̃ ∗(z)

1
4 an(z)

)σ3


−ω2 Ai(ω2f̃ ∗(z)) Ai(f̃ ∗(z))

−ω Ai′(ω2f̃ ∗(z)) Ai′(f̃ ∗(z))


 (4.50)

for z ∈ I and

Q∗(z) := 2
√

π


i 1

i −1



−1

(
f̃ ∗(z)

1
4 an(z)

)σ3


 ω Ai(ωf̃ ∗(z)) Ai(f̃ ∗(z))

ω2 Ai′(ωf̃ ∗(z)) Ai′(f̃ ∗(z))


 (4.51)

for z ∈ III, where f ∗(z) and f̃ ∗(z) are defined by

f ∗(z) :=

[
3

2
nφ∗n(z)

]2/3

, f̃ ∗(z) :=

[
3

2
nφ̃∗n(z)

]2/3

, (4.52)

and an(z) is the analytic function in C \ [α∗n, β
∗
n] given by

an(z) :=
(z − β∗n)1/4

(z − α∗n)1/4
. (4.53)

x

y

0 σn 1

Γ+

Γ−

I II

III IV

Figure 6: The domains I, II, III and IV

In view of the relations between V ∗(z) and R∗(z) given in (4.38), a reasonable

parametrix of the RHP for R∗ is

R̃∗(z) :=

{
e

1
2
(n−k0)l∗nσ3Q∗(z)r2,n(z)−

1
2
σ3 , z ∈ II ∪ IV,

e
1
2
(n−k0)l̃∗nσ3Q∗(z)r1,n(z)

1
2
σ3 , z ∈ I ∪ III.

(4.54)
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From these definitions, it is easy to verify that

R̃∗
+(x) = R̃∗

−(x)


 1 0

r1,n(x) 1


 , x ∈ (0, σn),

R̃∗
+(x) = R̃∗

−(x)


1 r2,n(x)

0 1


 , x ∈ (σn, 1),

and that R̃∗(z) satisfies the large -z behavior given in (R∗
c). The only difference

between R∗(z) and R̃∗(z) is that there are new jump matrices on (−∞, 0) ∪ (1,∞)

and the vertical line Γ. In the subsequent analysis, we will show that all these jump

matrices tend to the identity matrix as n →∞.

4.3 Uniform asymptotic expansions

Define the matrix

S(z) := e−
1
2
(n−k0)l∗nσ3R∗(z)(R̃∗(z))−1e

1
2
(n−k0)l∗nσ3 . (4.55)

From the construction of R̃∗(z), it is easy to see that

S+(x) = S−(x), x ∈ (0, 1).

Furthermore, it can be verified that S(z) is a solution to the RHP:

(Sa) S(z) is analytic for z ∈ C \ (−∞, 0] ∪ [1,∞) ∪ Γ;

(Sb) for z ∈ (−∞, 0] ∪ [1,∞) ∪ Γ,

S+(z) = S−(z)JS(z), (4.56)

where

JS(z) := e−
1
2
(n−k0)l∗nσ3R̃∗

−(z)(R̃∗
+(z))−1e

1
2
(n−k0)l∗nσ3 ; (4.57)

(Sc) for z ∈ C \ (−∞, 0] ∪ [1,∞) ∪ Γ,

S(z) = I + O

(
1

z

)
as z →∞;
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(Sd) as z → 0 and z → 1,

S(z) = O


1 1

1 1


 .

We consider only the case on the line Γ, since the discussions for the other cases

on the cuts (−∞, 0) and (1,∞) are very similar. Let Γ± ≡ Γ ∩ C±. For z ∈ Γ+, we

recall the asymptotic expansions of the Airy functions in [1, p.448]

Ai(f ∗(z)) ∼ 1

2
√

π
(f ∗(z))−

1
4 e−nφ∗n(z)

∞∑

k=0

(−1)kck (nφ∗n(z))−k,

Ai′(f ∗(z)) ∼− 1

2
√

π
(f ∗(z))

1
4 e−nφ∗n(z)

∞∑

k=0

(−1)kdk (nφ∗n(z))−k,

Ai(ω2f ∗(z)) ∼eiπ/6

2
√

π
(f ∗(z))−

1
4 enφ∗n(z)

∞∑

k=0

ck (nφ∗n(z))−k,

Ai′(ω2f ∗(z)) ∼− e−iπ/6

2
√

π
(f ∗(z))

1
4 enφ∗n(z)

∞∑

k=0

dk ((n− k0)φ
∗
n(z))−k,

(4.58)

where c0 = d0 = 1 and for k = 1, 2, · · · ,

ck =
Γ(3k + 1

2
)

54kk!Γ(k + 1
2
)
, dk = −6k + 1

6k − 1
ck.

Corresponding results can be given for Ai(f̃ ∗(z)), Ai′(f̃ ∗(z)), Ai(ω2f̃ ∗(z)) and Ai′(ω2f̃ ∗(z)).

Now we set out to derive the asymptotic expansion of JS(z) for z ∈ Γ+. From

(4.54) and (4.57), we have

JS(z) =


 1 i

−1 i



−1 (

f ∗(z)1/4

an(z)

)σ3


Ai(f ∗(z)) −ω2 Ai(ω2f ∗(z))

Ai′(f ∗(z)) −ω Ai′(ω2f ∗(z))


 r2,n(z)−

1
2
σ3

× r1,n(z)−
1
2
σ3


−ω2 Ai(ω2f̃ ∗(z)) Ai(f̃ ∗(z))

−ω Ai′(ω2f̃ ∗(z)) Ai′(f̃ ∗(z))



−1 (

1

f̃ ∗(z)1/4an(z)

)σ3

×

i 1

i −1


 e−

1
2
(n−k0)l̃∗nσ3e

1
2
(n−k0)l∗nσ3 .

Coupling (4.32) and the well-known formula (10.4.12) in [1, p.446]

ω Ai(f̃ ∗(z)) Ai′(ω2f̃ ∗(z))− ω2 Ai′(f̃ ∗(z)) Ai(ω2f̃ ∗(z)) =
1

2πi
,
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we get

JS(z) =(−1)n−k0πi


 1 −1

−i −i




(
f ∗(z)1/4

an(z)

)σ3


Ai(f ∗(z)) −ω2 Ai(ω2f ∗(z))

Ai′(f ∗(z)) −ω Ai′(ω2f ∗(z))




× r2,n(z)−
1
2
σ3r1,n(z)−

1
2
σ3


 Ai′(f̃ ∗(z)) −Ai(f̃ ∗(z))

ω Ai′(ω2f̃ ∗(z)) −ω2 Ai(ω2f̃ ∗(z))




×
(

1

f̃ ∗(z)1/4an(z)

)σ3


i 1

i −1


 .

Substituting the expansions in (4.58) into the last equation and taking into account

Proposition 3, we readily see that

JS(z) ∼ 1

4


 1 −1

−i −i


 an(z)−σ3





∞∑
j=0


 (−1)jcj icj

(−1)j+1dj idj




(
1

nφ∗n(z)

)j





×




∞∑

k=0


 (−1)k+1idk (−1)k+1ick

dk −ck




(
1

nφ̃∗n(z)

)k





× an(z)−σ3


 i 1

i −1


 .

Straightforward calculation yields

JS(z) ∼ 1

4


 1 −1

−i −i


 an(z)−σ3






 0 −2i

2i 0


 +

∞∑
m=1

∑

j+k=m

M∗
j,k(z)

nm





× an(z)−σ3


 i 1

i −1




(4.59)

for z ∈ Γ+, where

M∗
j,k(z) = i


 [(−1)m+1 + 1]cjdk [(−1)m+1 − 1]cjck

[(−1)m + 1]djdk [(−1)m − 1]djck




×
(

1

φ∗n(z)

)j (
1

φ̃∗n(z)

)k

.

(4.60)
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Thus, we obtain

JS(z) ∼ I +
∞∑

m=1

Jm(z)

nm
, (4.61)

where

Jm(z) =
1

4


 1 −1

−i −i


 an(z)−σ3

∑

j+k=m

M∗
j,k(z) an(z)−σ3


 i 1

i −1


 . (4.62)

From (4.60) and (4.62), it can be easily shown that

Jm(z) = O

(
1

(φ∗n(z))m

)
= O

(
1

zm

)
, m = 1, 2, · · · , as z →∞. (4.63)

This, in particular, infers that the expansion in (4.61) is uniformly valid for all z ∈ Γ+.

Similar results hold for z ∈ Γ− ∪ (−∞, 0) ∪ (1,∞). Therefore, formally we have

S(z) ∼ I +
∞∑

k=1

Sk(z)

nk
(4.64)

as n →∞, where

Sk(z) =
1

2πi
(

∫

Γ

+

∫ 0

−∞
+

∫ ∞

1

)

[
k∑

j=1

(Sk−j)−(t)Jj(t)

]
dt

t− z
(4.65)

for z ∈ C \Γ∪ (−∞, 0]∪ [1,∞), with S0(z) = I. By induction, it can be verified that

for k = 1, 2, · · · ,

Sk(z) = O

(
1

|z|
)

as z →∞.

Using the usual method of successive approximation, we can show that the formal

expansion in (4.64) is actually uniformly valid for z ∈ C \Γ∪ (−∞, 0]∪ [1,∞). Thus,

we arrive at our second main result stated below.

Theorem 2. Let rn(z), l∗n and f ∗(z) be defined in (3.7), (4.26) and (4.52), respec-

tively. The asymptotic expansion of the monic polynomial πN,n(z) is given by

πN,n(z) =
√

π rn(z)−
1
2 e

1
2
(n−k0)l∗n

[
Ai(f ∗(z))A∗(z, n) + Ai′(f ∗(z))B∗(z, n)

]
, (4.66)

where A∗(z, n) and B∗(z, n) are analytic functions of z in C \ [1,∞) and Re z > α.
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Similarly, with l̃∗n and f̃ ∗(z) defined in (4.27) and (4.52),

πN,n(z) =
(−1)N−1

2

√
π rn(z)−

1
2 e

1
2
(n−k0)l̃∗n

{[
cos(Nπz) Bi(f̃ ∗(z))− sin(Nπz) Ai(f̃ ∗(z))

]
Ã(z, n)

+
[
cos(Nπz) Bi′(f̃ ∗(z))− sin(Nπz) Ai′(f̃ ∗(z))

]
B̃(z, n)

}
,

(4.67)

where Ã(z, n) and B̃(z, n) are analytic functions of z in C \ (−∞, 0] and Re z < β.

Furthermore, A∗(z, n) and B∗(z, n) have the asymptotic expansions

A∗(z, n) ∼ f ∗(z)
1
4

an(z)

[
1 +

∞∑

k=1

A∗
k(z)

nk

]
, B∗(z, n) ∼ an(z)

f ∗(z)
1
4

[
−1 +

∞∑

k=1

B∗
k(z)

nk

]
, (4.68)

and Ã(z, n), B̃(z, n) have the asymptotic expansions

Ã(z, n) ∼ f̃ ∗(z)
1
4 an(z)

[
1 +

∞∑

k=1

Ãk(z)

nk

]
, B̃(z, n) ∼ 1

f̃ ∗(z)
1
4 an(z)

[
1 +

∞∑

k=1

B̃k(z)

nk

]
.

(4.69)

All four expansions hold uniformly for z in their respective regions of analyticity.

Proof. From the definition of S(z) in (4.55), we have

R∗(z) = e
1
2
(n−k0)l∗nσ3S(z)e−

1
2
(n−k0)l∗nσ3R̃∗(z).

For any matrix X, we shall denote by Xij the (i, j) element in X. The above formula

then gives

R∗
11(z) = S11(z)R̃∗

11(z) + S12(z)R̃∗
21(z)e(n−k0)l∗n

and

R∗
12(z) = S11(z)R̃∗

12(z) + S12(z)R̃∗
22(z)e(n−k0)l∗n .

First, let us consider z in the half plane on the right side of Γ. Recalling the

definition of R̃∗(z) in (4.54), one obtains

R∗
11(z) =

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l∗n [Ai(f ∗(z))A∗(z, n) + Ai′(f ∗(z))B∗(z, n)], (4.70)

where

A∗(z, n) =
f ∗(z)

1
4

an(z)
(S11(z)− iS12(z)) and B∗(z, n) =

an(z)

f ∗(z)
1
4

(−S11(z)− iS12(z)).
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From (4.2) and (4.6), it also follows that

πN,n(z) = Y11(z) = R∗
11(z)

k0−1∏
j=0

(z − xN,j).

This, together with the fact that

rn(z) = r2,n(z)

k0−1∏
j=0

(z − xN,j)
−2, (4.71)

(see (3.3) and (4.11)), gives us the main result (4.66). From the asymptotic expansion

of S(z) in (4.64), we immediately obtain (4.68).

Next, let us consider z in the half plane on the left of Γ, and restrict it to the

region I indicated in Figure 6. From (4.54), we have

R∗
11(z) =

√
π r1,n(z)

1
2 e

1
2
(n−k0)l̃∗n

[
e−

1
6
πi Ai(ω2f̃ ∗(z))Ã(z, n)− e

1
6
πi Ai′(ω2f̃ ∗(z))B̃(z, n)

]

and

R∗
12(z) =

√
π r1,n(z)−

1
2 e

1
2
(n−k0)l̃∗n

[
−i Ai(f̃ ∗(z))Ã(z, n)− i Ai′(f̃ ∗(z))B̃(z, n)

]
,

where

Ã(z, n) = f̃ ∗(z)
1
4 an(z)(S11(z) + iS12(z))

and

B̃(z, n) =
1

f̃ ∗(z)
1
4 an(z)

(S11(z)− iS12(z)).

Similarly, for z ∈ III,

R∗
11(z) =

√
π r1,n(z)

1
2 e

1
2
(n−k0)l̃∗n

[
e

1
6
πi Ai(ωf̃ ∗(z))Ã(z, n)− e−

1
6
πi Ai′(ωf̃ ∗(z))B̃(z, n)

]

and

R∗
12(z) =

√
π r1,n(z)−

1
2 e

1
2
(n−k0)l̃∗n

[
−i Ai(f̃ ∗(z))Ã(z, n)− i Ai′(f̃ ∗(z))B̃(z, n)

]
.

From (4.5), we know that H11(z) has different expressions in different parts of regions

I and III. Let us first consider regions Ω∆
+ and Ω∆

− shown in Figure 4. For z ∈ Ω∆
+, we
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have from (4.5)

H11(z) = R∗
11(z) +

1

2
e−iNπ(1−z)eNνz

∏N−1
j=k0

(z − xN,j)∏k0−1
j=0 (z − xN,j)

R∗
12(z)

= −1

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃∗n

×
{

(e−iNπ(1−z) + eiNπ(1−z))

×
[
e−

1
6
πi Ai(ω2f̃ ∗(z))Ã(z, n)− e

1
6
πi Ai′(ω2f̃ ∗(z))B̃(z, n)

]

+ i e−iNπ(1−z)
[
Ai(f̃ ∗(z))Ã(z, n) + Ai′(f̃ ∗(z))B̃(z, n)

]}
.

(4.72)

In view of the well-known formula of the Airy functions [1, p.446]

Bi(z) = ±i[2e∓πi/3 Ai(ω±1z)− Ai(z)], (4.73)

equation (4.72) can be rewritten as

H11(z) =
(−1)N−1

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃∗n

{[
cos(Nπz) Bi(f̃ ∗(z))− sin(Nπz) Ai(f̃ ∗(z))

]
Ã(z, n)

+
[
cos(Nπz) Bi′(f̃ ∗(z))− sin(Nπz) Ai′(f̃ ∗(z))

]
B̃(z, n)

}
.

(4.74)

Similarly, for z ∈ Ω∆
−

H11(z) = R∗
11(z)− 1

2
eiNπ(1−z)eNνz

∏N−1
j=k0

(z − xN,j)∏k0−1
j=0 (z − xN,j)

R∗
12(z)

= −1

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃∗n

×
{

(e−iNπ(1−z) + eiNπ(1−z))

×
[
e

1
6
πi Ai(ωf̃ ∗(z))Ã(z, n)− e−

1
6
πi Ai′(ωf̃ ∗(z))B̃(z, n)

]

− i eiNπ(1−z)
[
Ai(f̃ ∗(z))Ã(z, n) + Ai′(f̃ ∗(z))B̃(z, n)

]}
.

(4.75)

Again by (4.73), we get exactly the same formula given in (4.74). On account of (4.2)

and (4.71), one now easily gets the main result (4.67) for z ∈ Ω∆
± ∪ (0, σn). Using the

asymptotic formula of S(z) in (4.64) again, we obtain (4.69).
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Now, we show that the asymptotic expansion of H11(z) in (4.74) holds for z in I

and III, rather than for z only in Ω∆
±. Recall that, in our analysis the choice of Ω∆

± is

quite arbitrary and these regions may be large. Moreover, from the relation between

R∗(z) and H(z) in (4.7), we know that H11(z) = R∗
11(z) for z ∈ I ∪ III \ Ω∆

±. In

contrast to the expansions in (4.72) and (4.75), for z outside Ω∆
± the terms

∓ i

2

√
π r2,n(z)−

1
2 e

1
2
(n−k0)l̃∗ne∓iNπ(1−z)

[
Ai(f̃ ∗(z))Ã(z, n) + Ai′(f̃ ∗(z))B̃(z, n)

]
(4.76)

do not appear. Note that, due to the quantity e∓iNπ(1−z), these two terms are ex-

ponentially small as n goes to infinity in comparison with the other term in (4.72)

and (4.75), respectively. This suggests that the region of validity of the expansion

given in (4.74) can be extended to z ∈ I ∪ III. As a consequence, (4.67) holds for

z ∈ C \ (−∞, 0] and Re z < σ.

So far we have established the asymptotic expansions of πN,n(z) in the form of

(4.66) and (4.67) only for z > σ and z < σ, respectively. Recall that the choice of

σn in (4.1) is also somewhat arbitrary, as long as α < σ < β and σ 6= c. Hence,

by choosing appropriate σn, we can make the regions of validity of (4.66) and (4.67)

bigger. Indeed, the expansion (4.66) is valid as long as Re z > α, and the expansion

(4.67) is valid for Re z < β.

This completes the proof of Theorem 2.
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