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Abstract

Saint Venant’s and Donati’s theorems constitute two classical characterizations of smooth
matrix fields as linearized strain tensor fields. Donati’s characterization has been extended
to matrix fields with components in L2 by T. W. Ting in 1974 and by J. J. Moreau in
1979, and Saint Venant’s characterization has been extended likewise by the second author
and P. Ciarlet, Jr. in 2005. The first objective of this paper is to further extend both
characterizations, notably to matrix fields whose components are only in H−1, by means
of different, and to a large extent simpler and more natural, proofs. The second objective
is to show that some of our extensions of Donati’s theorem allow to reformulate in a novel
fashion the pure traction and pure displacement problems of linearized three-dimensional
elasticity as quadratic minimization problems with the strains as the primary unknowns. The
third objective is to demonstrate that, when properly interpreted, such characterizations are
“matrix analogs” of well-known characterizations of vector fields. In particular, it is shown
that Saint Venant’s theorem is in fact nothing but the matrix analog of Poincaré’s lemma.
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Titre: Sur les caractérisations des champs de matrices comme des champs de
tenseurs de déformation linéarisés

Résumé: Les théorèmes de Saint Venant et de Donati constituent deux caractérisations clas-
siques de champs de matrices réguliers comme des champs de tenseurs de déformation linéarisés.
La caractérisation de Donati a été étendue aux champs de matrices dont les composantes sont
dans L2 par T.W. Ting en 1974 et par J.J. Moreau en 1979. La caractérisation de Saint Venant
a été pareillement étendue par le second auteur et P. Ciarlet, Jr. en 2005. Le premier objectif
de cet article est de montrer que l’on peut généraliser encore davantage ces caractérisations,
en particulier à des champs de matrices dont les composantes sont seulement dans H−1, au
moyen de démonstrations différentes, et dans une large mesure plus simples et plus naturelles.
Le second objectif est de montrer que certaines de nos généralisations du théorème de Donati
conduisent à de nouvelles façons de poser les problèmes de traction pure et de déplacement pur
de l’élasticité linéarisée tridimensionnelle, sous la forme de problèmes de minimisation quadra-
tique où les déformations deviennent les inconnues principales. Le troisième objectif est de
montrer que, une fois convenablement interprétées, ces caractérisations apparaissent comme les
“analogues matriciels” de caractérisations bien connues de champs de vecteurs. En particulier,
on montre que le théorème de Saint Venant n’est autre que l’analogue matriciel du lemme de
Poincaré.
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1 Introduction

Before describing the content of this paper, we first briefly review the genesis of the classical
characterizations of matrix fields as linearized strain tensor fields, as well as their various sub-
sequent extensions (for more historical details until 1972, see Gurtin [18]). The notations used,
but not defined, in this introduction are defined in Section 2.

Let Ω be an open subset of R3 and let v = (vi) be a smooth enough vector field defined over
Ω. The symmetric matrix field ∇sv defined over Ω by

(∇sv)ij :=
1
2
(∂ivj + ∂jvi)

is the linearized strain tensor field associated with the vector field v.
As is well known, the field ∇sv plays a key role in linearized three-dimensional elasticity,

where the field v is interpreted as a displacement field of the set Ω, itself viewed as the reference
configuration of a linearly elastic body.

The question of characterizing those symmetric matrix field e = (eij) that can be written
over Ω as

e = ∇sv for some vector field v,

has been arousing considerable interest for quite a long time. Indeed A. J. C. B. de Saint Venant
announced as early as 1864 what is since then known as Saint Venant’s theorem (in fact, it was
not until 1886 that E. Beltrami provided a rigorous proof of this result): Assume that the open
set Ω is simply-connected. Then there exists a vector field v ∈ C3(Ω) such that e = ∇sv in Ω if
(and clearly only if, even if Ω is not simply-connected) the functions eij are in the space C2(Ω)
and they satisfy

Rijkl(e) := ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in Ω for all i, j, k, l ∈ {1, 2, 3}.

It is easily seen (Theorem 5.1) that the Saint Venant compatibility conditions Rijkl(e) =
0 in Ω are equivalent to the relations

CURLCURL e = 0 in Ω;

besides the matrix field CURLCURL e is always symmetric. Hence the eighty-one relations
Rijkl(e) = 0 reduce in effect to six relations only.

It is only recently that the Saint Venant compatibility conditions were shown to remain
sufficient under substantially weaker regularity assumptions. More specifically, Ciarlet & Ciarlet,
Jr. [10] just established the following Saint Venant theorem in L2

s(Ω), where L2
s(Ω) stands for

the space of all symmetric matrix fields with components in L2(Ω)): Let Ω be a bounded and
simply-connected open subset of R3 with a Lipschitz-continuous boundary and let e ∈ L2

s(Ω) be
a matrix field that satisfies the Saint Venant compatibility conditions Rijkl(e) = 0 in H−2(Ω).
Then there exists a vector field v ∈ H1(Ω) such that e = ∇sv in L2

s(Ω).
Not only is such an extension interesting per se, but, perhaps more importantly, it also

allows to reformulate in a novel way some classical problems of linearized three-dimensional
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elasticity. Indeed, this was the main motivation of Ciarlet & Ciarlet, Jr. [10], who used the Saint
Venant theorem in L2

s(Ω) to revisit the pure traction problem of linearized elasticity. While the
unknown displacement field for such a problem is sought as the minimizer in H1(Ω) of a quadratic
functional, it is now the linearized strain tensor field that is considered as the primary unknown
in their new approach. As expected, this new unknown now satisfies a constrained minimization
problem, in the sense that it minimizes a quadratic functional over the closed subspace of L2

s(Ω)
that consists of all matrix fields e ∈ L2

s(Ω) satisfying the relations Rijkl(e) = 0 in H−2(Ω). Note
in passing that, since the constitutive laws of linearized elasticity are invertible, this constrained
minimization problem can be immediately recast as one with the stresses as the sole unknowns.
This observation paves the way for potentially attractive finite element methods (see [11]).

In 1890, L. Donati proved that, if Ω is an open subset of R3 and the components eij of a
symmetric matrix field e = (eij) are in the space C2(Ω) and they satisfy:

∫

Ω
eijsijdx = 0 for all s = (sij) ∈ Ds(Ω) such that div s = 0 in Ω,

where Ds(Ω) denotes the space of all symmetric tensor fields whose components are infinitely
differentiable in Ω and have compact supports in Ω, then

CURLCURL e = 0 in Ω.

This result, known as Donati’s theorem, thus provides, once combined with Saint Venant’s
theorem, another characterization of symmetric matrix fields as linearized strain tensor fields,
at least for simply-connected open subsets Ω of R3.

A first extension of Donati’s theorem was given in 1974 by Ting [27]: If Ω is bounded and
has a Lipschitz-continuous boundary and if the components eij of the symmetric tensor field e
are in L2(Ω) and again satisfy

∫

Ω
eijsijdx = 0 for all s = (sij) ∈ Ds(Ω) such that div s = 0 in Ω,

then there exists v ∈ H1(Ω) such that e = ∇sv in L2
s(Ω).

Then Moreau [21] showed in 1979 that Donati’s theorem holds even in the sense of distrib-
utions, according to the following theorem, where Ω is now an arbitrary open subset of R3: If
the components eij of the symmetric tensor field e are in D′(Ω) and satisfy

D′(Ω)< eij , sij >D(Ω)= 0 for all s = (sij) ∈ Ds(Ω) such that div s = 0 in Ω,

then there exists a vector field v = (vi) with vi ∈ D′(Ω) such that e = ∇sv in the sense
of distributions. Note that Ting’s and Moreau’s extensions do not require that Ω be simply-
connected.

The main objective of this paper is to provide further extensions of Donati’s and Saint Venant
theorems that hold under a “very weak” regularity assumption on the matrix field e.

More specifically, we first prove in Section 4 three different extensions of Donati’s theorems.
The first characterization holds for symmetric matrix fields e = (eij) whose components eij
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are only in H−1(Ω) (Theorem 4.1). The second and third ones, which both hold for fields e
with components in L2(Ω), differ in that the resulting vector field v (i.e., the field that satisfies
e = ∇sv in L2

s(Ω)) is found either in H1
0(Ω) (Theorem 4.2) or in H1(Ω) (Theorem 4.3). Note

that analogous results have been simultaneously and independently obtained by Geymonat &
Krasucki [14], albeit by different methods.

We then show in Section 5 how these extensions of Donati’s theorem allow to reformulate
in a novel way the pure traction problem (Theorem 5.1) and the pure displacement problem
(Theorem 5.3) of linearized three-dimensional elasticity, as constrained quadratic minimization
problems with the linearized strain tensor as the primary unknown. This approach, which is
called “intrinsic” in the Engineering and Computational Mechanics circles (see, e.g., Opoka &
Pietraszkiewicz [24]), presents the advantage of directly providing the stress tensor field, since
the constitutive equation of a linearly elastic material is invertible. Note also that such a
reformulation also provides a new proof of the classical Korn inequality (Theorem 5.2).

Finally, we prove in Section 7 an extension of Saint Venant’s theorem that holds if the
components of the symmetric matrix field e are only in H−1(Ω) (Theorem 7.1), in which case
the vector field v is of course only in L2(Ω). Not surprisingly, we also recover as a corollary
(Theorem 7.2) the Saint Venant theorem in L2

s(Ω) (mentioned earlier) of Ciarlet & Ciarlet, Jr.
[10], albeit with a substantially simpler proof.

The keystone of our analysis is a matrix analog of the lemma of J. L. Lions (Theorem
3.1). Other key ingredients (used in the proof of Theorem 7.1) are a matrix analog of the well-
known Stokes problem, the hypoellipticity of the Laplacian, and the “classical” Saint Venant
theorem. Otherwise, the novelty of our approach is reminiscent of that used by Kesavan [19],
who provided an illuminating proof of Poincaré’s lemma, based on a generalization due to
Amrouche & Girault [4] of a well-known lemma of J. L. Lions (precise statements of this lemma
and of its generalization are found in the proof of Theorem 3.1).

Another objective of this paper is to show that, when put in a proper perspective, the above
extensions appear as natural “matrix analogs” of well-known characterizations of vector fields
(in particular because the “matrix” operators ∇s and CURLCURL are, in some respects at
least, the matrix analogs of the “vector” operators grad and curl; see Sections 3 and 5). In
this respect, a worthwhile conclusion of the present study, discussed at the end of Section 7, is
that our extension of Saint Venant’s theorem is nothing but the matrix analog of a weak form
of Poincaré’s lemma.

The results of this paper were announced in [2] and [3].

2 Notations and preliminaries

Throughout this article, Latin indices vary in the set {1, 2, 3} save when they are used for index-
ing sequences, and the summation convention with respect to repeated indices is systematically
used in conjunction with this rule.

All the vector spaces considered in this article are over R. Let V denote a normed vector
space with norm || · ||V . Given a closed subspace Z of V , the equivalence class of v ∈ V in the
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quotient space V̇ := V/Z is denoted v̇ and its norm is defined by ||v̇||V̇ := inf
z∈Z

||v + z||V . The

notation V ′ designates the dual space of V and V ′< ·, · >V denotes the duality bracket between V ′

and V . Given a subspace W of V , the notation W 0 := {v′ ∈ V ′;V ′< v′, w >V = 0 for all w ∈ W}
designates the polar set of W .

Let U and V denote two vector spaces and let A : U → V be a linear operator. Then
KerA ⊂ U and Im A ⊂ V respectively designate the kernel and the image of A.

Let Ω be an open subset of R3 and let x = (xi) designate a generic point in Ω. Partial
derivative operators of the first, second, and third order are then denoted ∂i := ∂/∂xi, ∂ij :=
∂2/∂xi∂xj, and ∂ijk := ∂3/∂xi∂xj∂xk. The same symbols also designate partial derivatives in
the sense of distributions.

Spaces of functions, vector fields, and matrix fields, defined over Ω are respectively denoted by
italic capitals, boldface Roman capital, and special Roman capitals. The subscript s appended
to a special Roman capital denotes a space of symmetric matrix fields.

The notations Cm(Ω),m ≥ 0, and C∞(Ω) denote the usual spaces of continuously differen-
tiable functions; the notation D(Ω) denotes the space of functions that are infinitely differentiable
in Ω and have compact supports in Ω. The notation D′(Ω) denotes the space of distributions
defined over Ω. The notations Hm(Ω),m ∈ Z, with H0(Ω) = L2(Ω), and H1

0 (Ω) designate the
usual Sobolev spaces.

Combining the above rules, we shall thus encounter spaces such as D′(Ω),D′(Ω), D′(Ω),
H1

0,s(Ω), H−1
s (Ω), etc. Note that the same notation || · ||m,Ω,m ∈ Z, will be used to designate the

usual norms in the spaces Hm(Ω),Hm(Ω), and Hm
s (Ω).

The notation (v)i designates the i-th component of a vector v ∈ R3 and the notation v = (vi)
means that vi = (v)i. The notation (A)ij designates the element at the i-th row and j-th column
of a square matrix A of order three and the notation A = (aij) means that aij = (A)ij . The
inner-product and vector product of a ∈ R3 and b ∈ R3 are denoted a ·b and a∧b. The notation
s : t := sijtij designates the matrix inner-product of two matrices s := (sij) and t := (tij) of order
three.

The orientation tensor (εijk) is defined by

εijk =





+1 if {i, j, k} is an even permutation of {1, 2, 3},
−1 if {i, j, k} is an odd permutation of {1, 2, 3},
0 if at least two indices are equal.

The following differential operators will be constantly used throughout the article: The vector
gradient operator grad: D′(Ω) → D′(Ω) is defined by

(grad v)i := ∂iv for any v ∈ D′(Ω).

The divergence operator div: D′(Ω) → D′(Ω) is defined by

div v =: ∂ivi for any v = (vi) ∈ D′(Ω).

The vector curl operator curl: D′(Ω) → D′(Ω) is defined by

(curl v)i =: εijk∂jvk for any v = (vi) ∈ D′(Ω).
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The matrix gradient operator ∇ : D′(Ω) → D′(Ω) is defined by

(∇v)ij := ∂jvi for any v = (vi) ∈ D′(Ω).

The vector divergence operator div: D′(Ω) → D′(Ω) is defined by

(div e)i := ∂jeij for any e = (eij) ∈ D′(Ω).

The matrix Laplacian ∆ : D′(Ω) → D′(Ω) is defined by

(∆ e)ij := ∆eij for any e = (eij) ∈ D′(Ω).

The matrix curl operator CURL: D′(Ω) → D′(Ω) is defined by

(CURL e)ij := εilk∂lejk for any e = (eij) ∈ D′(Ω).

Finally, a domain in R3 is a bounded, connected, open subset of R3 whose boundary is
Lipschitz-continuous in the sense of Nečas [22] or Adams [1].

3 The operator ∇s

Let Ω be an open subset in R3. For any vector field v = (vi) ∈ D′(Ω), the symmetric matrix
field ∇sv ∈ D′

s(Ω) is defined by

∇sv :=
1
2
(∇vT + ∇v),

or equivalently, by

(∇sv)ij =
1
2
(∂ivj + ∂jvi).

When Ω is connected, the kernel of the operator ∇s has the well-known characterization (see,
e.g., [10, Theorem 6.3-4]), viz.,

Ker∇s = {v ∈ D′(Ω);∇sv = 0 in D′(Ω)} = {v = a + b ∧ idΩ;a ∈ R3, b ∈ R3},

where idΩ denotes the identity mapping of the set Ω.
One objective in this paper is to illustrate why the operator ∇s : D′(Ω) → D′

s(Ω) thus defined
may be viewed as the “matrix analog” of the “vector” operator grad: D′(Ω) → D′(Ω). In this
direction, a first important property of the operator ∇s is given in the next theorem. For reasons
that will become clear from its proof, this result will be subsequently referred to as the Hm

s (Ω)
- matrix version of J. L. Lions’ lemma.

THEOREM 3.1. Let Ω be a domain in R3 and let a vector field v ∈ D′(Ω) be such that
∇sv ∈ Hm

s (Ω) for some integer m ∈ Z. Then v ∈ Hm+1(Ω).
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Proof. A well-known lemma of J. L. Lions (first mentioned in 1958; see footnote (27) in
Magenes & Stampacchia [20]) asserts the following: Let Ω be a bounded open subset of R3

with a smooth boundary and let a distribution v ∈ H−1(Ω) be such that grad v ∈ H−1(Ω).
Then v ∈ L2(Ω). After its first published proof appeared in Duvaut & Lions [14, Chapter 3],
various extensions of this lemma to Lipschitz-continuous boundaries have been given, notably
by Bolley & Camus [6], Geymonat & Suquet [16], Borchers & Sohr [7], and Amrouche & Girault
[4, Proposition 2.10]. We shall use here the latter extension, which will be referred to as J. L.
Lions’ lemma in Hm(Ω): Let Ω be a domain in R3 and let a distribution v ∈ D′(Ω) be such that
grad v ∈ Hm(Ω) for some integer m ∈ Z. Then v ∈ Hm+1(Ω).

Let then v = (vi) ∈ D′(Ω) be such that ∇sv ∈ Hm
s (Ω) for some integer m ∈ Z. The identity

(grad(∂kvi))j = ∂j{(∇sv)ik} + ∂k{(∇sv)ij} − ∂i{(∇sv)jk}

shows that each distribution ∂kvi ∈ D′Ω) is such that grad(∂kvi) ∈ Hm−1(Ω). Therefore J.
L. Lions’ lemma in Hm−1(Ω) implies that ∂kvi ∈ Hm(Ω). In other words, each distribution
vi ∈ D′(Ω) is such that grad vi ∈ Hm(Ω). An application of J. L. Lions’ lemma in Hm(Ω) then
shows that vi ∈ Hm+1(Ω), i.e., that v ∈ Hm+1(Ω). �

The next theorem lists two properties of the operator ∇s, considered as acting from the space
L2(Ω) into the space H−1

s (Ω).

THEOREM 3.2. Let Ω be a domain in R3.
(a) The operator

∇s : L̇2(Ω) := L2(Ω)/Ker∇s → H−1
s (Ω),

where for any v̇ ∈ L̇2(Ω),∇sv̇ := ∇sw for any w ∈ v̇, is an isomorphism from L̇2(Ω) onto
Im∇s. Consequently, the space Im∇s is closed in H−1

s (Ω).
(b) The dual operator of ∇s : L2(Ω) → H−1

s (Ω) is -div: H1
0,s(Ω) → L2(Ω) and the dual

operator of ∇s : L̇2(Ω) → H−1
s (Ω) is -div: H1

0,s(Ω) → L̇2(Ω).

Proof. (i) It is readily seen that the space

K(Ω) := {v ∈ H−1(Ω);∇sv ∈ H−1
s (Ω)},

equipped with the norm v → ‖v‖−1,Ω + ‖∇sv‖−1,Ω is complete. The identity mapping ι from
the space L2(Ω) equipped with ‖ · ‖0,Ω into the space K(Ω) equipped with the above norm is
injective, continuous (there clearly exists a constant c such that ‖v‖−1,Ω + ‖∇v‖−1,Ω ≤ c‖v‖0,Ω

for all v ∈ L2(Ω)), and surjective since the space K(Ω) coincides with the space L2(Ω) by the
H−1

s (Ω)-matrix version of J. L. Lions’ lemma established in Theorem 3.1. Therefore the closed
graph theorem shows that the inverse mapping ι−1 is also continuous, i.e., that there exists a
constant C such that the following Korn inequality in L2(Ω) holds:

‖v‖0,Ω ≤ C(‖v‖−1,Ω + ‖∇sv‖−1,Ω) for all v ∈ L2(Ω).

(ii) Define the Hilbert space

L̇2(Ω) := L2(Ω)/Ker∇s,where Ker∇s = {v ∈ L2(Ω);∇sv = 0 in H−1
s (Ω)}.
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Recall that we are considering here that the operator ∇s maps the space L2(Ω), hence also
the quotient space L̇2(Ω), into the space H−1

s (Ω). Note also that, since the space Ker∇s is finite-
dimensional, given any v̇ ∈ L2(Ω), there exists w ∈ v̇ such that ‖w‖0,Ω = ‖v̇‖0,Ω. We then
claim that there exists a constant Ċ such that

‖v̇‖0,Ω := inf
z∈Ker∇s

‖v + z‖0,Ω ≤ Ċ‖∇sv̇‖−1,Ω for all v̇ ∈ L2(Ω).

Assume that such a constant Ċ does not exist. Then there exist v̇k ∈ L̇2(Ω) and wk ∈
L2(Ω), k ≥ 0, such that ẇk = v̇k and

‖wk‖0,Ω = ‖v̇k‖0,Ω = 1 for all k ≥ 0,

‖∇swk‖−1,Ω = ‖∇sv̇k‖−1,Ω → 0 as k → ∞.

Let (wl)∞l=0 denote a subsequence of the sequence (wk)∞k=0 that converges in H−1(Ω) (such a
subsequence exists by Rellich’ theorem). The Korn inequality established in (i) implies that this
subsequence is a Cauchy sequence for the norm v → ‖v‖−1,Ω+‖∇sv‖−1,Ω, hence also for the norm
‖ · ‖0,Ω. Consequently, there exists w ∈ L2(Ω) such that wl → w in L2(Ω) as l → ∞. Besides,
∇sw = 0 in H−1(Ω) since ∇swl → ∇sw in H−1(Ω) as l → ∞. This means that w ∈ Ker∇s,
so that ẇl → ẇ = 0̇ in L̇2(Ω) as l → ∞, a contradiction with ‖ẇl‖0,Ω = 1 for all l ≥ 0.

(iii) The operator ∇s : L̇2(Ω) → H−1
s (Ω) is injective, continuous, and has an inverse from

Im∇s ⊂ H−1
s (Ω) onto L̇2(Ω) that is also continuous by (ii). In other words, the operator

∇s : L̇2(Ω) → Im∇s is an isomorphism. Consequently, the space Im∇s is a Banach space and
therefore necessarily a closed subspace of H−1

s (Ω). This proves (a).
(iv)For any v = (vi) ∈ L2(Ω) and any e = (eij) ∈ H1

0,s(Ω),

H−1(Ω)< ∇sv, e >H1
0,s(Ω) =H−1(Ω)< ∂jvi, eij >H1

0 (Ω)

=L2(Ω)< vi,−∂jeij >L2(Ω)

=L2(Ω)< v,−div e >L2(Ω)

(the first relation uses the symmetry of e). This proves (b). �
The two theorems above show that, indeed, the operator ∇s may be aptly regarded as the “ma-

trix analog” of the usual gradient operator grad. More specifically, the implication established
in Theorem 3.1 is the matrix analog of the implication

v ∈ D′(Ω) and grad v ∈ Hm(Ω) ⇒ v ∈ Hm+1(Ω)

used in its proof; the inequalities established in parts (i) and (ii) of the proof of Theorem 3.2
are the matrix analogs of the inequality

‖v‖0,Ω ≤ C(‖v‖−1,Ω + ‖grad v‖−1,Ω) for all v ∈ L2(Ω),

established in Nečas [23], and of the inequality
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‖v̇‖L2(Ω)/R ≤ Ċ‖grad v‖−1,Ω for all v̇ ∈ L2(Ω)/R,

established in Girault & Raviart [17, Corollary 2.1] (as an application of an abstract result due to
Peetre [25] and Tartar [26]); finally, part (a) of Theorem 3.2 mimics that grad is an isomorphism
from L2(Ω)/R onto its image in H−1(Ω) (cf. Girault & Raviart [17, Corollary 2.4]) and part (b)
mimics that the dual operator of grad: L2(Ω) → H−1(Ω) is -div: H1

0(Ω) → L2(Ω).
The next theorem lists two properties of the operator ∇s, now considered as acting from

H1
0(Ω) into L2

s(Ω).

THEOREM 3.3. Let Ω be a domain in R3.
(a) The operator

∇s : H1
0(Ω) → L2

s(Ω)

is an isomorphism from H1
0(Ω) onto Im∇s. Consequently, the space Im∇s is closed in L2

s(Ω).
(b) The dual operator of ∇s : H1

0(Ω) → L2
s(Ω) is -div: L2

s(Ω) → H−1(Ω).

Proof. The proof is similar to that of parts (a) and (b) of Theorem 3.2, and actually simpler
since Ker∇s = {0} in this case. Besides, a well-known elementary computation shows that

{∑

i,j

‖∂ivj‖2
0,Ω

}1/2

≤
√

2‖∇sv‖0,Ω for all v = (vj) ∈ H1
0(Ω).

Hence the existence of a constant C such that

‖v‖1,Ω ≤ C‖∇sv‖0,Ω for all v ∈ H1
0(Ω),

i.e., the analog to the inequality established in part (ii) of the proof of Theorem 3.2, immediately
follows. The rest of the proof is analogous to that of parts (iii) and (iv) of the proof of Theorem
3.2. �

The operator ∇s can also be considered as acting from H1(Ω) into L2
s(Ω), in which case

similar arguments show that the operator ∇s : H1(Ω)/Ker∇s → L2
s(Ω) is an isomorphism, so

that Im∇s is again a closed subspace of L2
s(Ω). Interestingly, under the additional assumption

that the domain Ω is simply-connected, the space Im∇s can be given an explicit characterization
in this case, as

Im∇s = {e = (eij) ∈ L2
s(Ω); ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω)},

thus providing another proof that Im∇s is closed in L2
s(Ω) when the operator ∇s is considered

as acting from H1(Ω) into L2
s(Ω). This characterization of Im∇s, which was first established by

Ciarlet & Ciarlet, Jr. [10], is recovered later in this paper as a simple corollary (Theorem 7.2).
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4 Extensions of Donati’s theorem

As a corollary to Theorem 3.2, we obtain a first extension of Donati’s theorem (this classical
result is recalled in Section 1).

THEOREM 4.1. Let Ω be a domain in R3 and let there be given a matrix field e ∈
H−1

s (Ω). Then there exists a vector field v ∈ L2(Ω) such that e = ∇sv in H−1
s (Ω) if and only if

H−1
s (Ω)< e, s >H1

0,s(Ω)= 0 for all s ∈ H1
0,s(Ω) satisfyingdiv s = 0 in L2(Ω).

All other vector fields ṽ ∈ L2(Ω) satisfying e = ∇sṽ in H−1
s (Ω) are of the form ṽ = v + a +

b ∧ idΩ for some vectors a ∈ R3 and b ∈ R3.

Proof. Since the dual operator of ∇s : L2(Ω) → H−1
s (Ω) is -div: H1

0,s(Ω) → L2(Ω) and the
space Im∇s is closed in H−1

s (Ω) (Theorem 3.2), Banach’s closed range theorem implies that

Im∇s =
(
Ker(−div)

)0 = {e ∈ H−1
s (Ω); H−1

s (Ω)< e, s >H1
0,s(Ω)= 0 for all s ∈ Ker(−div)},

which is exactly what the theorem asserts. That all other solutions ṽ of the equation e = ∇sṽ are
of the form indicated above follows from the characterization of the space Ker∇s recalled in Sec-
tion 3. �

This extension of Donati’s theorem is the “matrix analog” of a well-known characterization
of vector fields as gradients of scalar functions (see Girault & Raviart [17, Lemma 2.1]): Let
Ω be a domain in R3 and let there be given a vector field h ∈ H−1(Ω). Then there exists a
function p ∈ L2(Ω) such that h = grad p in H−1(Ω) if and only if

H−1(Ω)< h,v >H1
0(Ω)= 0 for all v ∈ H1

0(Ω) satisfying div v = 0 in L2(Ω).

In other words, the operator grad and the spaces H−1(Ω) and H1
0(Ω) appearing in this

characterization are replaced in Theorem 4.1 by their “matrix analogs” ∇s and H−1
s (Ω) and

H1
0,s(Ω) (naturally, the scalar operator div is replaced by the vector operator div in the process).

We similarly obtain a second extension of Donati’s theorem, this time as a corollary to
Theorem 3.3.

THEOREM 4.2. Let Ω be a domain in R3 and let there be given a matrix field e ∈ L2
s(Ω).

Then there exists a vector field v ∈ H1
0(Ω) such that e = ∇sv in L2

s(Ω) if and only if
∫

Ω
e : sdx = 0 for all s ∈ L2

s(Ω) satisfying div s = 0 in H−1(Ω).

If this is the case, the vector field v is unique.

Proof. Since the dual operator of ∇s : H1
0(Ω) → L2

s(Ω) is − div : L2
s(Ω) → H−1(Ω) and

the space Im∇s is closed in L2
s(Ω) (Theorem 3.3), the existence of the vector field v again fol-

lows from Banach’s closed range theorem, this time applied to operator ∇s considered as acting
from H1

0(Ω) into L2
s(Ω). That Ker ∇s = {0} in this case implies that such a vector field v is

unique. �
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We mention that characterizations similar of Theorems 4.1 and 4.2 have been simultaneously
obtained by Geymonat & Krasucki [14], albeit by a different proof for their analog of Theorem
4.2. In addition, they noticed that Theorem 4.1 and its proof can be extended almost verbatim
to matrix fields e ∈ W−1,p

s (Ω), 1 < p < ∞, that satisfy W−1,p
s (Ω) < e, s >W1,q

0,s(Ω)= 0 for all

s ∈ W1,q
0,s(Ω) satisfying div s = 0 in Lq(Ω), where q := p

p−1 (as expected, the resulting field v is
then found in the space Lp(Ω)). They also showed how to derive an analog of Theorem 4.2 that
can handle the more general “boundary condition” v = 0 on any relatively open subset of the
boundary of Ω.

Finally, a third extension of Donati’s theorem can also be obtained that “mixes” the regularity
assumption of Theorem 4.2 on the matrix field e with the necessary and sufficient condition of
Theorem 4.1. Note that Theorem 4.3 also constitutes an extension of Ting’s theorem (recalled
in Section 1). The proof given here is considerably simpler, however, than that given by Ting
[27] (especially when the domain Ω is not simply-connected).

THEOREM 4.3. Let Ω be a domain in R3 and let there be given a matrix field e ∈ L2
s(Ω).

Then there exists a vector field v ∈ H1(Ω) such that e = ∇sv in L2
s(Ω) if and only if

∫

Ω
e : sdx = 0 for all s ∈ H1

0,s(Ω) satisfying div s = 0 in L2(Ω).

All other vector fields v ∈ H1(Ω) satisfying e = ∇sv are of the form ṽ = v + a + b∧ idΩ for
some vectors a ∈ R3 and b ∈ R3.

Proof. Let e ∈ L2
s(Ω) be such that

∫
Ω e : sdx = 0 for all s ∈ H1

0,s(Ω) satisfying div s =
0 in L2(Ω). Since L2

s(Ω) ⊂ H−1
s (Ω), Theorem 4.1 shows that there exists v ∈ L2(Ω) such that

e = ∇sv, and thus the L2
s(Ω)-matrix version of J. L. Lions’ lemma (Theorem 3.1) further shows

that v ∈ H1(Ω). The announced relations are therefore sufficient.
If, conversely, e = (eij) = ∇sv for some v = (vi) ∈ H1(Ω), then the symmetry of e and

Green’s formula together imply that
∫

Ω
eijsijdx =

∫

Ω
(∂jvi)sijdx = −

∫

Ω
vi∂jsijdx for all s = (sij) ∈ H1

0,s(Ω).

Consequently,
∫
Ω eijsijdx = 0 if div s = 0, and thus the announced relations are also necessary.

The non-uniqueness issue is dealt with as in Theorem 4.1. �
A comparison between the necessary and sufficient conditions found in Theorems 4.2 and 4.3

shows that the closure with respect to the norm ‖ · ‖0,Ω of the space {s ∈ H1
0,s(Ω);div s = 0} is

thus strictly contained in the space {s ∈ L2
s(Ω);div s = 0}(otherwise, the vector field v found in

Theorem 4.3 would be necessarily in H1
0(Ω)). Naturally, the same conclusion applies a fortiori

to the closure of the space {s ∈ Ds(Ω);div s = 0} appearing in Ting’s theorem.

5 Another approach to linearized elasticity

Let Ω be a domain in R3, now viewed as the reference configuration of a linearly elastic body. This
body is characterized by its elasticity tensor field A = (Aijkl) with components Aijkl ∈ L∞(Ω). It
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is assumed as usual that these components satisfy the symmetry relations Aijkl = Ajikl = Aklij,
and that there exists a constant α > 0 such that A(x)t : t ≥ αt : t for almost all x ∈ Ω and
all symmetric matrices t = (tij) of order three, where (A(x)t)ij := Aijkl(x)tkl. The body is
subjected to applied body forces with density f ∈ L6/5(Ω). Finally, it is assumed that the linear
form L ∈ L(H1(Ω); R) defined by L(v) =

∫
Ω f ·vdx for all v ∈ H1(Ω) vanishes for all v ∈ Ker∇s,

where ∇s is here considered to be acting from H1(Ω) into L2
s(Ω), i.e.,

Ker∇s := {v ∈ H1(Ω);∇sv = 0 in L2
s(Ω)}.

Then the corresponding pure traction problem of three-dimensional linearized elasticity clas-
sically consist in finding u̇ ∈ Ḣ1(Ω) := H1(Ω)/Ker∇s such that

J(u̇) = inf
v̇∈Ḣ1(Ω)

J(v̇), where J(v̇) :=
1
2

∫

Ω
A∇sv̇ : ∇sv̇dx − L(v̇).

As is well known (see, e.g., Duvaut & Lions [13, Theorem 3.4 in Chapter 3]), this minimization
problem has one and only one solution.

Thanks to Theorem 4.3, this problem can be recast as another quadratic minimization prob-
lem, this time with ε := ∇su̇ ∈ L2

sym(Ω) as the primary unknown. Note that this minimization
problem can be in turn immediately recast as yet another one, this time with the linearized
stress tensor Aε as the primary unknown, since the elasticity tensor field A is invertible almost
everywhere in Ω.

THEOREM 5.1. Let Ω be a domain in R3. Define the Hilbert space

E1(Ω) := {e ∈ L2
s(Ω);

∫

Ω
e : s dx = 0 for all s ∈ H1

0,s(Ω) satisfying div s = 0 in L2(Ω)},

and, for each e ∈ E1(Ω), let F1(e) denote the unique element in the quotient space Ḣ1(Ω) that
satisfies ∇sF1(e) = e (Theorem 4.3). Then the mapping F1 : E1(Ω) → Ḣ1(Ω) defined in this
fashion is an isomorphism between the Hilbert spaces E1(Ω) and Ḣ1(Ω).

The minimization problem: Find ε ∈ E1(Ω) such that

j1(ε) = inf
e∈E1(Ω)

j1(e), where j1(e) :=
1
2

∫

Ω
Ae : e dx − L ◦ F1(e),

has one and only one solution ε, and this solution satisfies ε = ∇su̇, where u̇ is the unique
minimizer of the functional J in the space Ḣ1(Ω).

Proof. By Theorem 4.3, the mapping F1 is a bijection between the Hilbert spaces E1(Ω) and
Ḣ1(Ω). Furthermore, its inverse is continuous since there evidently exists a constant c such that

||∇s(v̇)||L2
s(Ω) = ||∇s(v + r)||L2

s(Ω) ≤ c||v + r||H1(Ω)

for any v ∈ H1(Ω) and any r ∈ Ker∇s, so that

||∇s(v̇)||L2
s(Ω) ≤ c inf

r∈Ker∇s

||v + r||H1(Ω) = c||v̇||Ḣ1(Ω).
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Hence F1 : E1(Ω) → H1(Ω) is an isomorphism by the closed graph theorem.
The bilinear form (e, ẽ) ∈ E1(Ω) × E1(Ω) →

∫
Ω Ae : ẽdx ∈ R and the linear form

Λ1 := L ◦ F1 : E1(Ω) → R thus satisfy all the assumptions of the Lax-Milgram lemma (Λ1

is continuous since F1 is an isomorphism). Consequently, there exists one, and only one, min-
imizer ε of the functional j over E1(Ω). That u̇ minimizes the functional J over Ḣ1(Ω) im-
plies that ∇su̇ minimizes the functional j1 over E1(Ω). Hence ε = e(u̇) since the minimizer is
unique. �

Remarkably, the Korn inequality in the space H1(Ω) can be recovered as a simple corollary
to Theorem 5.1, which thus provides an entirely new proof of this classical inequality (see [13,
Theorem 3.1 in Chapter 3]):

THEOREM 5.2. That the mapping F1 : E1(Ω) → Ḣ1(Ω) is an isomorphism (Theorem 5.1)
implies Korn’s inequality in the space H1(Ω), viz., the existence of a constant C such that

||v||H1(Ω) ≤ C{||v||2L2(Ω) + ||∇sv||2L2
s(Ω)}

1/2 for all v ∈ H1(Ω).

Proof. Since F1 : E1(Ω) → Ḣ1(Ω) is an isomorphism, there exists a constant Ċ such that

||F1(e)||Ḣ1(Ω) ≤ Ċ||e||L2
s(Ω) for all e ∈ E1(Ω),

or equivalently, such that

||v̇||Ḣ1(Ω) ≤ Ċ||∇sv̇||L2
s(Ω) for all v̇ ∈ Ḣ1(Ω).

Assume that the announced Korn inequality does not hold. Then there exist vk ∈ H1(Ω), k ≥
1, such that

||vk||H1(Ω) = 1 for all k ≥ 1 and (||vk ||L2(Ω) + ||∇svk||L2
s(Ω)) → 0 as k → ∞.

Let rk ∈ Ker∇s denote for each k ≥ 1 the projection of vk on Ker∇s with respect to the
inner-product of H1(Ω). This projection therefore satisfies

||vk − rk||H1(Ω) = inf
r∈Ker∇s

||vk − r||H1(Ω),

||vk||2H1(Ω) = ||vk − rk||2H1(Ω) + ||rk||2H1(Ω).

The space Ker∇s being finite-dimensional, the inequalities ||rk||H1(Ω) ≤ 1 for all k ≥ 1 imply
the existence of a subsequence (rl)∞l=1 that converges in H1(Ω) toward an element r ∈ Ker∇s.
Besides, the existence of the above constant Ċ implies that ||vl − rl||H1(Ω) → 0 as l → ∞, so
that ||vl − r||H1(Ω) → 0 as l → ∞. Hence ||vl − r||L2(Ω) → 0 as l → ∞, which forces r to
be 0, since ||vl||L2(Ω) → 0 as l → ∞ on the other hand. We thus reach the conclusion that
||vl||H1(Ω) → 0 as l → ∞, a contradiction. �

Consider likewise the pure displacement problem of three-dimensional linearized elasticity,
which classically consists in finding u ∈ H1

0(Ω) such that

J(u) = inf
v∈H1

0(Ω)
J(v), where J(v) =

1
2

∫

Ω
A∇sv : ∇svdx − L(v),
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where again L(v) =
∫
Ω f · vdx for some f ∈ L6/5(Ω) (no extra condition need to be imposed on

the linear form L in this case, since Ker∇s = {0} in H1
0(Ω)).

Thanks to Theorem 4.2, this problem can be again recast as another quadratic minimization
problem, this time with ε := ∇su ∈ L2

s(Ω) as the primary unknown:

THEOREM 5.3. Let Ω be a domain in R3. Define the Hilbert space

E2(Ω) := {e ∈ L2
s(Ω);

∫

Ω
e : sdx = 0 for all s ∈ L2

s(Ω) satisfying div s = 0 in H−1(Ω)},

and, for each e ∈ E2(Ω), let F2(e) denote the unique element in the space H1
0(Ω) that satisfies

∇sF2(e) = e (Theorem 4.2). Then the mapping F2 : E2(Ω) → H1
0(Ω) defined in this fashion is

an isomorphism between the Hilbert spaces E2(Ω) and H1
0(Ω).

The minimization problem: Find ε ∈ E2(Ω) such that

j2(ε) = inf
e∈E2(Ω)

j2(e), where j2(e) :=
1
2

∫

Ω
Ae : edx − L ◦ F2(e),

has one and only one solution ε, and this solution satisfies ε = ∇su, where u is the unique
minimizer of the functional J in the space H1

0(Ω).

Proof. The proof is similar to that of Theorem 5.1 and, for this reason, is omitted. �
Naturally, the classical Korn inequality in the space H1

0(Ω), viz., the existence of a constant
C0 such that

||v||H1(Ω) ≤ C0{||v||2L2(Ω) + ||∇sv||2L2
s(Ω)}

1/2 for all v ∈ H1
0(Ω),

could be also recovered in a manner similar to that used in Theorem 5.2. This observation does
not have much significance, however, since (as already noted in the proof of Theorem 3.3) it is
well known that elementary computations directly show that this inequality holds with C0 =

√
2.

6 The operator CURLCURL

Let Ω be an open subset of R3. For any matrix field e = (eij) ∈ D′(Ω), the matrix field
CURLCURL e ∈ D′(Ω) is defined by

CURLCURL e := CURL (CURL e),

or equivalently by
(CURLCURL e)ij := εiklεjmn∂lnekm.

Another objective of this paper is to show that the operator CURLCURL : D′
s(Ω) → D′(Ω)

defined in this fashion is in various ways the “matrix analog” of the “vector” operator curl :
D′(Ω) → D′(Ω). The next theorem, which lists some algebraic properties of this operator,
includes some identities that constitute a first contribution to this objective.

15



THEOREM 6.1. Let Ω be any open subset of R3. The operator CURLCURL possesses
the following properties:

(a) For any matrix field e ∈ D′
s(Ω),

CURLCURL e = (CURLCURL e)T in D′(Ω),

div(CURLCURL e) = 0 in D′(Ω),

tr(CURLCURL e) = ∆ (tre) − div(dive) in D′(Ω).

(b) Given any matrix field e = (eij) ∈ D′
s(Ω), let

Rijkl(e) := ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil in D′(Ω).

Then each distribution Rijkl(e) that does not identically vanish is equal to some distribution
(CURLCURL e)pq for appropriate indices p and q, and conversely. Consequently, the eighty-
one relations

Rijkl(e) = 0 in D′(Ω)

are equivalent to the six relations (CURLCURL e)mn = 0 in D′(Ω),m ≤ n, i.e., to

CURLCURL e = 0 in D′
s(Ω).

(c)For any vector field v ∈ D′(Ω),

CURLCURL (∇sv) = 0 in D′(Ω).

Proof. First, let a matrix field e = (eij) ∈ D′(Ω) be given. Then we immediately obtain

(CURLCURL e)ji = εjmnεikl∂nlemk = (CURLCURL (eT ))ij .

Let a matrix field e ∈ D′
s(Ω) be given. Noting that the j-th component of the vector

div(CURLCURL e) is the divergence of the j-th column vector of (CURLCURL e)T =
CURLCURL e, we next infer that

(div(CURLCURL e))j = div (curl vj) = 0,

where vj denotes the j-th column vector of (CURL e)T .
Noting that

εiklεimn = δkmδln − δknδlm,

we finally obtain

tr(CURLCURL e) = εikl εimn ∂lnekm = (δkm δln − δkn δlm) ∂ln ekm

= ∂llekk − ∂n(∂menm) = ∆(tr e) − div(div e),

and thus all the identities announced in (a) are established.
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Second, let again a matrix field e = (eij) ∈ D′
s(Ω) be given and let q = (qij) := CURLCURL e.

Then a direct computation shows that

q11 = R2323(e), q12 = R2331(e), q13 = R1223(e),

q22 = R1313(e), q23 = R1312(e), q33 = R1212(e).

Taking also into account the relations

Rijkl(e) = 0 if i = j or k = l,

Rijkl(e) = Rklij(e) = −Rjikl(e) = −Rijlk(e),

we thus easily conclude that all the distributions Rijkl(e) that do not identically vanish are
known if and only if the six ones appearing above (i.e., R2323(e), . . . , R1212(e)) are known. This
proves (b).

Third, let a vector field v = (vj) ∈ D′(Ω) be given. As shown above, CURLCURL(eT ) =
(CURLCURL e)T for any e ∈ D(Ω); consequently,

CURLCURL(∇sv) =
1
2
CURLCURL(∇vT + ∇v)

=
1
2
CURLCURL(∇vT ) +

1
2
(CURLCURL(∇vT ))T .

Since the j-th column vector of ∇vT is gradvj , the j-th column vector of CURL(∇vT ) is
curl gradvj = 0. Hence (c) is proved. �

Note that the relations

div(CURLCURL e) = 0 and CURLCURL(∇sv) = 0,

established in Theorem 6.1 for arbitrary matrix fields e ∈ D′
s(Ω) and vector fields v ∈ D′(Ω),

are indeed the “matrix analogs” of the well-known relations

div(curl v) = 0 and curl(grad v) = 0,

which hold for arbitrary vector fields v ∈ D′(Ω) and distributions v ∈ D′(Ω).

7 An extension of Saint Venant’s theorem and its relation to

Poincaré’s lemma

Let Ω be any open subset in R3. Given any vector field v = (vi) ∈ D′(Ω), Theorem 6.1 shows
that CURLCURL(∇sv) = 0 in D′

s(Ω), or equivalently, that the Saint Venant compatibility
conditions Rijkl(∇sv) = 0 hold in D′(Ω).

As recalled in Section 1, it has been known for a long time that the following converse, known
as Saint Venant’s theorem, holds for smooth enough matrix fields: Let Ω be a simply-connected
open subset of R3. Assume that, for some integer m ≥ 2, a matrix field e ∈ Cm

s (Ω) satisfies the
relations Rijkl(e) = 0 in Ω. Then there exists a vector field v ∈ Cm+1(Ω) such that e = ∇sv in Ω.

We now show that the same Saint Venant compatibility conditions Rijkl(e) = 0 remain
sufficient in a much weaker sense, according to the following Saint Venant’s theorem in H−1

s (Ω).
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THEOREM 7.1. Let Ω be a simply-connected domain in R3 and let e ∈ H−1
s (Ω) be a

matrix field that satisfies
CURLCURL e = 0 in H−3

s (Ω).

Then there exists a vector field v ∈ L2(Ω) that satisfies

e = ∇sv in H−1
s (Ω).

All other vector fields ṽ ∈ L2(Ω) satisfying e = ∇sṽ in H−1
s (Ω) are of the form ṽ = v + a +

b ∧ idΩ for some vectors a ∈ R3 and b ∈ R3.

Proof. (i) We know from Theorem 3.2 that -div: H1
0,s(Ω) → L̇2(Ω) = L2(Ω)/Ker∇s is the

dual operator of ∇s : L̇2(Ω) → H−1
s (Ω) and that the operator ∇s : L̇2(Ω) → Im∇s = V0, where

V := Ker(−div) ⊂ H1
0,s(Ω), is an isomorphism. Consequently, the operator -div: (V0)′ → L̇2(Ω)

is also an isomorphism. Besides, the inclusion V0 ⊂ H−1
s (Ω) = (H1

0,s(Ω))′ implies that (V0)′ can
be identified with a (closed) subspace of H1

0,s(Ω) (as a Hilbert space, H1
0,s(Ω) is uniformly convex,

so that the extension from (V0)′ to H1
0,s(Ω) provided by the Hahn-Banach theorem can be defined

in a unique fashion).
We thus reach two conclusions. First, given any element v̇ ∈ L̇2(Ω), there exists a unique

matrix field q(v̇) ∈ (V0)′ ⊂ H1
0,s(Ω) such that

−div q(v̇) = v̇ in L̇2(Ω).

Second, there exists a constant β > 0 such that

β||q(v̇)||1,Ω ≤ ||v̇||0,Ω for all v̇ ∈ L̇2(Ω).

(ii) Define two bilinear forms a : H1
0,s(Ω) × H1

0,s(Ω) → R and b : L̇2(Ω) × H1
0,s(Ω) → R by

a(q, r) :=
∫

Ω
∂kqij∂krij dx for all (q, r) = ((qij), (rij)) ∈ H1

0,s(Ω) × H1
0,s(Ω),

b(v̇,q) := −
∫

Ω
vi∂jqij dx for all (v̇,q) = ((v̇i), (qij)) ∈ L̇2(Ω) × H1

0,s(Ω).

The bilinear form b is indeed unambiguously defined, because the symmetry of q implies that

−
∫

Ω
vi∂jqij dx =H−1

s (Ω)< ∇sv,q >H1
0,s(Ω) for all (v,q) = ((vi), (qij)) ∈ L2(Ω) × H1

0,s(Ω);

consequently, −
∫
Ω vi∂jqij dx = 0 if v = (vi) ∈ Ker∇s. Clearly, the two bilinear forms are

continuous and the bilinear form a is H1
0,s(Ω) -elliptic. Furthermore, the bilinear form b satisfies

the Babuška-Brezzi inf-sup condition:

inf
v̇∈L̇2(Ω)

1
||v̇|| 0,Ω

(
sup

q∈H1
0,s(Ω)

b(v̇,q)
||q||1,Ω

)
≥ β,

where β > 0 is the constant found in (i). To see this, we simply note that for any v̇ ∈ L̇2(Ω),

b(v̇, q̇(v̇)) = −
∫

Ω
v̇i∂jqij(v̇) dx = ||v̇||20,Ω,
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where q(v̇) ∈ H1
0,s(Ω) is defined as in (i), so that

sup
q∈H1

0,s(Ω)

b(v̇,q)
||q||1,Ω

≥ b(v̇, q̇(v̇))
||q(v̇)||0,Ω

=
||v̇||20,Ω

||q(v̇)||0,Ω
≥ β||v̇||0,Ω.

All the assumptions of the Babuška-Brezzi theorem (see Babuška [5] and Brezzi [8]) are
thus satisfied. Consequently, given any element e ∈ H−1

s (Ω), there exists a unique solution
(u̇,q) ∈ L̇2(Ω) × H1

0,s(Ω) to the equations

a(q, r) + b(u̇, r) =H−1
s (Ω)< e, r >H1

0,s(Ω) for all r ∈ H1
0,s(Ω),

b(v̇,q) = 0 for all v̇ ∈ L̇2(Ω),

or equivalently, to the equations

−∆q + ∇su̇ =e in H−1
s (Ω),

div q = 0 in L̇2(Ω).

(iii) Assume that the element e ∈ H−1
s (Ω) appearing in the right-hand side of the penultimate

equation satisfies in addition CURLCURL e = 0 in H−3
s (Ω), so that, by Theorem 6.1 (c),

∆(CURLCURL q) = CURLCURL (∆ q) = CURLCURL(∇su̇− e) = 0 in H−3
s (Ω).

The hypoellipticity of the Laplacian (see, e.g., Dautray & Lions [12, Section 2 in Chapter 5])
then implies that CURLCURL q ∈ C∞

s (Ω), and Theorem 6.1 (a) in turn shows that

∆(tr q) = div (div q) + tr(CURLCURL q) = tr (CURLCURL q) ∈ C∞(Ω).

Hence tr q ∈ C∞(Ω), again by the hypoellipticity of the Laplacian.
By Theorem 6.1 (b), any distribution Rijkl(q) that does not identically vanish is equal to

some distribution (CURLCURL q)mn for ad hoc indices m and n. In particular then, for all
indices i and k,

Rilkl(q) =∂llqik + ∂kiqll − ∂i(∂lqkl) − ∂k(∂lqil)

={∆qik + ∂ik(tr q)} ∈ C∞(Ω),

which implies that ∆q ∈ C∞
s (Ω).

To sum up, we have shown that, if CURLCURL e = 0 in H−3
s (Ω), the second argument q of

the solution (u̇,q) ∈ L̇2(Ω)×H1
0,s(Ω) to the equations −∆q+∇su̇ = e in H−1

s (Ω) and div q = 0
in L̇2(Ω) satisfies

∆q ∈ C∞
s (Ω) and CURLCURL(∆q) = 0 in Ω.

(iv) Since the matrix field ∆q ∈ C∞
s (Ω) satisfies CURLCURL(∆q) = 0 in the simply-

connected open set Ω, the classical Saint Venant theorem (i.e., that holds for smooth functions;
see the beginning of this section) shows that there exists a vector field w ∈ C∞(Ω) such that
∆q = ∇sw in Ω (this is the only place where the simple-connectedness of Ω is used).
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The vector field w ∈ C∞(Ω) ⊂ D′(Ω) therefore satisfies ∇sw = {∇su̇ − e} ∈ H−1
s (Ω).

Consequently, the H−1
s (Ω)-matrix version of J. L. Lions’ lemma (Theorem 3.1) shows that

w ∈ L2(Ω). We have thus established that v̇ := {u̇ − ẇ} ∈ L̇2(Ω) satisfies e = ∇sv̇ in H−1
s (Ω),

which concludes the existence proof.
The non-uniqueness issue is dealt with as in Theorem 4.1. �
It is worth noticing that the equations (encountered in part (ii) of the above proof)

−∆q + ∇su̇ = e in H−1
s (Ω),

div q = 0 in L̇2(Ω),

constitute the “matrix analog” of the familiar stationary Stokes problem. We recall that this
problem consists in finding a pair (ṗ,u) ∈ L̇2(Ω) × H1

0(Ω), where L̇2(Ω) := L2(Ω)/R, that
satisfies the equations

−ν∆u + grad ṗ = f in H−1(Ω),

div u = 0 in L̇2(Ω).

Here, p is the unknown pressure inside an incompressible viscous fluid of viscosity ν and density
equal to one, u = (ui) is the unknown velocity field of the fluid, and the given vector field
f ∈ H−1(Ω) accounts for the body forces applied to the fluid. This observation explains in
particular why the existence theory used in part (ii) resembles that used for the Stokes problem
(see Girault & Raviart [17, Section 5.1])

In the same vein, we emphasize that the Saint Venant theorem in H−1
s (Ω) (Theorem 7.1)

constitutes the matrix analog of the Poincaré lemma in H−1(Ω), which takes the following form:
Let Ω be a simply-connected domain in R3. If a vector field h ∈ H−1(Ω) satisfies curl h = 0
in H−2(Ω), then there exists a function p ∈ L2(Ω) such that h = grad p (Poincaré’s lemma in
H−1(Ω), which is due to Ciarlet & Ciarlet, Jr. [10], was later given a different and simpler proof
by Kesavan [19]). In other words, the “vector” operators curl and grad appearing in Poincaré’s
lemma are “replaced” in Theorem 7.1 by their “matrix analogs” CURLCURL and ∇s.

As expected, a Saint Venant’s theorem in L2
s(Ω), i.e., similar to that of Theorem 7.1 but

with a “shift by +1” in the regularities of both fields e and v, likewise holds as a corollary to
Theorem 7.1:

THEOREM 7.2. Let Ω be a simply-connected domain in R3 and let e ∈ L2
s(Ω) be a

matrix field that satisfies
CURLCURL e = 0 in H−2

s (Ω).

Then there exists a vector field v ∈ H1(Ω) that satisfies

e = ∇sv in L2
s(Ω).

Proof. Since L2
s(Ω) ⊂ H−1

s (Ω), Theorem 7.1 shows that there exists v ∈ L2(Ω) such that e =
∇sv in L2

s(Ω). Theorem 3.1 then implies that v ∈ H1(Ω). �
Saint Venant’s theorem in L2

s(Ω) is due to Ciarlet & Ciarlet, Jr. [10]. More recently, another
proof of this result was given by Geymonat & Krasucki [14], by means of arguments that may
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not be able to provide a proof of Saint Venant’s theorem in H−1
s (Ω)(Theorem 7.1), however.

See also Geymonat & Krasucki [15], who showed how Saint Venant’s theorem in L2
s(Ω) can be

extended to non simply-connected domains Ω by means of Beltrami’s functions.
In Ciarlet & Ciarlet, Jr. [10], it is also shown how Saint Venant’s theorem in L2

s(Ω) can be
put to use so as to provide yet another reformulation of the pure traction problem of linearized
three-dimensional elasticity posed over simply-connected domains, which thus constitutes an
alternative to that found in Theorem 5.1.

To conclude our analysis, we return to Saint Venant theorem in H−1
s (Ω) (Theorem 7.1) and

put it in another perspective. To this end, we first record the following equivalence, which is
due to Kesavan [19]: Let Ω be a simply-connected domain in R3. Then the following statements
are equivalent:

(a) If v ∈ D′(Ω) is such that gradv ∈ H−1(Ω), then v ∈ L2(Ω)
(b) If h ∈ H−1(Ω) satisfies curl h = 0 in H−2(Ω), then h = gradp for some p ∈ L2(Ω).
In other words, J. L. Lions’ lemma in H−1(Ω) (statement (a)) is equivalent to Poincaré’s

lemma in H−1(Ω) (statement (b)).
We now show that, likewise, the H−1

s (Ω)-matrix version of J. L. Lions’ lemma (established
in Theorem 3.1; statement (a) in the next theorem) is equivalent to Saint Venant’s theorem in
H−1

s (Ω) (established in Theorem 7.1; statement (b) in the next theorem):

THEOREM 7.3. Let Ω be a simply-connected domain in R3. The following statements
are equivalent:

(a) If w ∈ D′(Ω) satisfies ∇sw ∈ H−1
s (Ω), then w ∈ L2(Ω).

(b) If e ∈ H−1
s (Ω) satisfies CURLCURL e = 0 in H−3

s (Ω), then e = ∇sv for some
v ∈ L2(Ω).

Proof. Theorem 3.1 is used in part (iv) of the proof of Theorem 7.1. Hence (a) implies (b).
Assume next that (b) holds and let w ∈ D′(Ω) be such that ∇sw ∈ H−1

s (Ω). Noting that
CURLCURL(∇sw) = 0 by Theorem 6.1 (c), we infer from (b) that ∇sw = ∇sv for some
v ∈ L2(Ω). Hence (w − v) ∈ Ker∇s ⊂ L2(Ω) and thus w ∈ L2(Ω). Hence (b) implies (a).

�
Theorem 7.3 constitutes another evidence that Saint Venant theorem in H−1

s (Ω) is indeed
the matrix analog of Poincaré’s lemma in H−1(Ω).
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