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Abstract

If a symmetric matrix field e of order three satisfies the Saint-Venant compatibility conditions in a simply-
connected domain Ω in R3, there then exists a displacement field u of Ω with e as its associated linearized strain
tensor, i.e., e = 1

2
(∇uT + ∇u) in Ω. A classical result, due to Cesàro and Volterra, asserts that, if the field e is

sufficiently smooth, the displacement u(x) at any point x ∈ Ω can be explicitly computed as a function of the
matrix fields e and CURL e, by means of a path integral inside Ω with endpoint x.

We assume here that the components of the field e are only in L2(Ω) (as in the classical variational formulation
of three-dimensional linearized elasticity), in which case the classical path integral formula of Cesàro and Volterra
becomes meaningless. We then establish the existence of a “Cesàro-Volterra formula with little regularity”, which
again provides an explicit solution u to the equation e = 1

2
(∇uT + ∇u) in this case. We also show how the

classical Cesàro-Volterra formula can be recovered from the formula with little regularity when the field e is
smooth. Interestingly, our analysis also provides as a by-product a variational problem that satisfies all the
assumptions of the Lax-Milgram lemma, and whose solution is precisely the unknown displacement field u.

It is also shown how such results may be used in the mathematical analysis of “intrinsic” linearized elasticity,
where the linearized strain tensor e (instead of the displacement vector u as is customary) is regarded as the
primary unknown.

Résumé

Une formule de Cesàro-Volterra avec peu de régularité. Si un champ e de matrices symétriques d’ordre
trois vérifie les conditions de compatibilité de Saint-Venant dans un ouvert Ω simplement connexe de R3, alors
il existe un champ de déplacements u de Ω ayant e comme tenseur linéarisé des déformations associé, i.e., e =
1
2
(∇uT + ∇u) dans Ω. Un résultat classique de Cesàro et Volterra affirme que, si le champ e est suffisamment

régulier, le déplacement u(x) en chaque point x ∈ Ω peut être calculé explicitement en fonction des champs de
matrices e et CURL e, au moyen d’une intégrale curviligne dans Ω ayant x comme extrémité.

On suppose ici que les composantes du champ e sont seulement dans L2(Ω) (comme dans la formulation
variationnelle classique de l’élasticité linéarisée tri-dimensionnelle), auquel cas la formule classique de Cesàro-
Volterra n’a plus de sens. On établit alors une “formule de Cesàro-Volterra avec peu de régularité”, qui donne
à nouveau une solution explicite u de l’équation e = 1

2
(∇uT + ∇u) dans ce cas. On montre aussi comment la
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formule classique de Cesàro-Volterra peut être retrouvée à partir de la formule “avec peu de régularité” lorsque
le champ e est régulier. Il est intéressant de noter que l’un des corollaires de notre analyse est la formulation
d’un problème variationnel qui vérifie toutes les hypothèses du lemme de Lax-Milgram, et dont la solution est
précisément le champ u.

On montre également comment de tels résultats peuvent être utilisés dans l’analyse mathématique de l’élasticité
linéarisée “intrinsèque”, où le tenseur linéarisé des déformations e (au lieu du champ de déplacements comme il
est usuel) est considéré comme étant l’inconnue principale.

Keywords : Saint-Venant compatibility equations ; Poincaré’s lemma ; Cesàro-Volterra formula, three-dimensional linearized elasticity.
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1. Introduction

For simplicity, we consider only the three-dimensional case in this introduction. But the results pre-
sented here can be extended to, and are subsequently established in, the n-dimensional case for any
n ≥ 2.

Latin indices range in the set {1, 2, 3} and the summation convention with respect to repeated Latin
indices is used in conjunction with this rule. The sets of all real matrices of order three and of all real
symmetric matrices of order three are respectively denoted M3 and S3. Other notations used, but not
defined, in this introduction are defined in the next section.

Let Ω be an open subset of R3. Given a vector field u = (ui) ∈ C3(Ω; R3), let the associated linearized
strain tensor field e = (eij) ∈ C2(Ω; S3) be defined by

eij :=
1
2

(∂jui + ∂iuj) in Ω. (1)

It is then immediately verified that the components eij defined in (1.1) necessarily satisfy the following
compatibility conditions, which were discovered and analyzed by Saint-Venant [17] in 1864, and since then
bear his name:

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in C0(Ω). (2)
It is well known that, if Ω is simply-connected, these compatibility conditions become also sufficient.

This means that, if a matrix field e = (eij) ∈ C2(Ω; S3) satisfies the Saint-Venant compatibility conditons
(1.2) in such an open set Ω, then conversely, there exists a vector field u = (ui) ∈ C3(Ω; R3) that satisfies
the equations

1
2

(∂jui + ∂iuj) = eij in Ω. (3)

Besides, all other solutions ũ = (ũi) ∈ C3(Ω; R3) to the equations 1
2 (∂j ũi + ∂iũj) = eij in Ω are of the

form
ũ(x) = u(x) + a+ b ∧ ox, x ∈ Ω, for some a, b ∈ R3. (4)

It is less known (Ref. [15] constitutes an exception) that an explicit solution u = (ui) to the equations
(1.3) can be given in the form of the following Cesàro-Volterra path integral formula, so named after
Cesàro [5] and Volterra [18], who discovered it in 1906 and 1907: Let γ(x) be any path of class C1

contained in Ω and joining a point x0 ∈ Ω (considered as fixed) to any point x ∈ Ω. Then

ui(x) =
∫
γ(x)

{eij(y) + (∂keij(y)− ∂iekj(y))(xk − yk)}dyj , x ∈ Ω. (5)

It can then be verified that each component ui(x) computed by formula (1.5) is independent of the path
chosen for joining x0 to x (as it should be), precisely because the functions eij satisfy the compatibility
conditions (1.2).

The Cesàro-Volterra path integral formula (1.5) can be equivalently rewritten in vector-matrix form,
as

u(x) =
∫
γ(x)

e(y)dy +
∫
γ(x)

yx ∧ ([CURL e(y)]dy), x ∈ Ω, (6)

where ∧ designates the vector product in R3, and the matrix curl operator CURL : D′(Ω; M3) →
D′(Ω; M3) is defined by

(CURL e)ij := εilk∂lejk for any matrix field e = (eij) ∈ D′(Ω; M3), (7)

where (εilk) denotes the orientation tensor.

Email addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), mcgratie@cityu.edu.hk (L. Gratie),
mardare@ann.jussieu.fr (C. Mardare).
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The sufficiency of the Saint-Venant compatibility conditons (1.2) was recently shown to hold under
substantially weaker reqularity assumptions on the given tensor field e = (eij), according to the following
result, due to Ciarlet & Ciarlet, Jr. [6]: Let Ω be a bounded and simply-connected open subset of R3 with
a Lipschitz-continuous boundary, and let there be given functions eij = eji ∈ L2(Ω) that satisfy

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω). (8)

Then there exists a vector field (ui) ∈ H1(Ω; R3) that satisfies

1
2

(∂jui + ∂iuj) = eij in L2(Ω). (9)

Besides, all the other solutions ũ = (ũi) ∈ H1(Ω; R3) to the equations 1
2 (∂j ũi + ∂iũj) = eij are again of

the form (1.4).
Clearly, the “classical” Cesàro-Volterra path integral formula (1.5) becomes meaningless when the

functions eij satisfying (1.8) are only in the space L2(Ω). The question then naturally arises as to whether
there exists any “Cesàro-Volterra formula with little regularity”, which (i) would again provide an explicit
solution to the equations (1.9) when the functions eij are only in L2(Ω) and (ii) would in some way
resemble (1.5).

One of our objectives is to provide the following positive answer to this question (thus justifying the
title of this paper). Let < · , · > denote the duality pairing between a topological space and its dual, and
let

T = (Ti) : L2
0(Ω) := {v ∈ L2(Ω);

∫
Ω

vdx = 0} → H1
0 (Ω; R3) (10)

be a specific continuous linear operator that satisfies (the precise definition of T is given in Lemma 2.5)

−div(T v) = v for all v ∈ L2
0(Ω). (11)

Note that the operator T of (1.10)−(1.11) plays a key role throughout this paper.
We then show (cf. Theorem 4.2) that a vector field u = (ui) ∈ H1(Ω; R3) satisfies equations (1.9) if

and only if
< ui, ϕi >=< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] > (12)

for all vector field fields ϕ = (ϕi) ∈ D(Ω; R3) that satify∫
Ω

ϕidx =
∫

Ω

(xjϕi − xiϕj)dx = 0. (13)

In other words, we are able to compute all the “components”

< u,ϕ >:=< ui, ϕi >

of the solution u = (ui) against all vector fields ϕ = (ϕi) ∈ D(Ω; R3) that satisfy (1.13). Note in passing
that it is no surprise that conditions (1.13) should be satisfied: They simply reflect (cf. Lemma 2.3) that
the solution to the equations (1.9) is defined only up to infinitesimal rigid displacements, i.e., vector fields
in D′(Ω; R3) of the form (cf.(1.4))

x ∈ Ω→ a+ b ∧ ox, for some vectors a, b ∈ R3. (14)

As a consequence, the knowledge of the duality pairings < u,ϕ > for all fields ϕ ∈ D(Ω; R3) satisfying
(1.13) uniquely defines a vector field u = (ui) ∈ D′(Ω; R3) up to infinitesimal rigid displacements.

Our claim that formula (1.12) is indeed a bona fide generalization of the “classical” Cesàro-Volterra
formula (1.5) rests on two justifications.

First, we show that formula (1.12) can be rewritten in the following vector-matrix form:

< u,ϕ >=� e,T ⊗ϕ� +� CURL e,T ⊗ (T ∧ϕ)� (15)
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(cf. Theorem 5.1; the notations used in (1.15) are explained at the beginning of Section 5), which clearly
displays a strong, albeit formal, resemblance with the vector-matrix form (1.6) of the classical Cesàro-
Volterra formula.

Second, and surely more convincingly, we show (cf. Theorem 5.2) that, if the functions eij happen to
be in the space C2(Ω) (as in the “classical” Saint-Venant conditons (1.2)), the classical Cesàro-Volterra
path integral formula (1.5) can be indeed recovered from formulas (1.12).

The proof of the equivalence between equations (1.9) and (1.12) given in Theorem 4.2 crucially relies
on the following Poincaré lemma with little regularity (due to Ciarlet & Ciarlet, Jr. [6]; see also Remark
3.1 for various recent extensions): Let Ω be a bounded and simply-connected open subset of R3 with a
Lipschitz-continuous boundary, and let fi ∈ H−1(Ω) be distributions that satisfy

∂ifj − ∂jfi = 0 in H−2(Ω). (16)

Then there exists a function u ∈ L2(Ω), unique up to an additive constant, that satisfies

∂iu = fi in H−1(Ω). (17)

We then prove (cf. Theorem 3.2) the following complement to the above Poincaré lemma, which may
be also of interest by itself: Given distributions fi ∈ H−1(Ω) that satisfy (1.16), a function u ∈ L2(Ω)
satisfies (1.17) if and only if

< u,ϕ >=< fi, Tiϕ > for all ϕ ∈ D(Ω) that satisfy
∫

Ω

ϕdx = 0, (18)

where T = (Ti) is again the mapping of (1.10)−(1.11).
Formula (1.18) thus provides a means to compute a solution to equations (1.17) in the same manner

that formula (1.12) provides a means to compute a solution to equations (1.9), in both cases when the
data have too little regularity for a path integral formula to make sense.

Incidentally, a noticeable feature of our analysis is that it provides, as a by-product, a way to find
either the solution of equations (1.9), or the solution of equations (1.17), in each case as the solution of
a variational problem, which satisfies all the assumptions of the Lax-Milgram lemma (cf. Theorems 3.3
and 4.3).

One of our main motivations here is to provide another building stone for the mathematical analysis
of intrinsic linearized three-dimensional elasticity, as begun in Ref. [6] (see Ref. [9] for a general survey
of intrinsic methods in elasticity). It was shown there that the pure traction problem (to fix ideas) of
linearized three-dimensional elasticity could be reformulated in a novel way, where the linearized strain
tensor e ∈ L2(Ω; S3) is regarded as the primary unknown, instead of the displacement field u ∈ H1(Ω; R3)
as is customary.

More specifically, define the space

E(Ω) := {e = (eij) ∈ L2(Ω; S3); ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω)},

and let
R(Ω) := {r ∈ H1(Ω; R3); r(x) = a+ b ∧ ox, x ∈ Ω, for some a, b ∈ R3}

denote the space of all infinitesimal rigid displacements of the set Ω. Then (cf. Theorem 4.1 in ibid.) the
mapping

F : e = (eij) ∈ E(Ω)→ v̇ ∈H1(Ω)/R(Ω), (19)
where v̇ denotes the equivalence class of any vector field v = (vi) ∈ H1(Ω; R3) that satisfies eij =
1
2 (∂jvi + ∂ivj) in L2(Ω), is an isomorphism between the Hilbert spaces E(Ω) and H1(Ω)/R(Ω).

Thanks to the isomorphism F of (1.19), the pure traction problem of linearized elasticity can then be
equivalently posed in terms of the new unknown e ∈ L2(Ω,S3) as the following constrained minimization
problem: Find a matrix field ε ∈ E(Ω) that satisfies
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j(ε) = inf
e∈E(Ω)

j(e), (20)

where the functional j : E(Ω)→ R is defined by

j(e) :=
1
2

∫
Ω

{λ tr e tr e+ 2µe : e}dx− Λ(e) for all e ∈ E(Ω). (21)

In (1.21), λ and µ denote the Lamé constants of the constituting material (assumed for simplicity to be
homogeneous and isotropic), the notation : denotes the matrix inner product, and the continuous linear
form Λ : E(Ω)→ R is defined by

Λ(e) =
∫

Ω

f ·Fedx+
∫

Γ

g ·FedΓ (22)

where f ∈ L2(Ω; R3), resp. g ∈ L2(Γ; R3) where Γ := ∂Ω, denotes the density of the applied body, resp.
surface, forces.

Our main results (cf. Theorem 4.2 and 4.3) thus provide a means to handle, via an explicit formula for
computing the mapping F , the term (1.22) involving the applied forces in the functional (1.21). They
similarly provide a means to handle boundary conditions involving the displacement field, e.g., u = 0
on a portion of the boundary Γ. Besides its mathematical interest regarding the minimization problem
(1.20), the Cesàro-Volterra formula with little regularity could be as well conveniently put to use in the
numerical implementation of intrinsic models, as recently advocated and analyzed in Ciarlet & Ciarlet,
Jr. [7].

The results of this paper were announced in Ref. [10].

2. Notations and preliminaries

Latin indices henceforth range in the set {1, 2, . . . , n}, where n is any integer ≥ 2, and the summation
convention with respect to repeated indices is used in conjunction with this rule.

The notations Mn,Sn, and An, respectively designate the sets of all real square, symmetric, and anti-
symmetric, matrices of order n. The notation (aij) designates the matrix in Mn with aij as its elements,
the first index being the row index. The notation (A)ij designates the element at the i-th row and j-th
column of a matrix A. When it is identified with a matrix, a vector in Rn is a column vector.

The coordinates of a point x ∈ Rn are denoted xi. Partial derivative operators, in the usual sense or in
the sense of distributions, of the first and second order are denoted ∂i := ∂/∂xi and ∂ij := ∂2/∂xi∂xj .

All the vector spaces considered in this paper are over R. Given an open subset Ω of Rn, the notations
D(Ω) and D′(Ω) respectively designate the space of all functions that are infinitely differentiable in Ω
and have compact support in Ω and the space of distributions over Ω. The notation < · , · > denotes
the duality pairing between a topological space and its dual space, such as L2(Ω) and itself, H1

0 (Ω) and
H−1(Ω), or D(Ω) and D′(Ω).

The notation Cm(Ω), m ≥ 0, designates the space of all continuous if m = 0, or m times continuously
differentiable if m ≥ 1, functions over Ω. The notations Hm(Ω), Hm

0 (Ω), and H−m(Ω) = (Hm
0 (Ω))′,m ≥

1, designate the usual Sobolev spaces. If X is a finite-dimensional space such as Rn,Sn, etc., notations
such as D(Ω; X), H1

0 (Ω; X), etc., designate spaces of vector fields or matrix fields with values in X and
components in D(Ω), H1

0 (Ω), etc.
Lemmas 2.1 to 2.4 list some properties of specific subspaces of D(Ω) and D(Ω; Rn) (these subspaces

naturally appear in the next two sections).
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Lemma 2.1. Let Ω be an open subset of Rn. Define the space

D0(Ω) := {ϕ ∈ D(Ω);
∫

Ω

ϕdx = 0}. (23)

Then a distribution u ∈ D′(Ω) satisfies

< u,ϕ >= 0 for all ϕ ∈ D0(Ω) (24)

if and only if u is a constant function.

Proof. If u(x) = C for all x ∈ Ω, then < u,ϕ >= C
∫

Ω
ϕdx for all ϕ ∈ D(Ω), and thus < u,ϕ >= 0 for

all ϕ ∈ D0(Ω). To establish the converse, let θ ∈ D(Ω) be a function that satisfies∫
Ω

θdx = 1. (25)

Given any function ψ ∈ D(Ω), the function

ϕ := ψ − λθ, where λ :=
∫

Ω

ψdx =< 1, ψ >,

belongs to the space D0(Ω). If a distribution u ∈ D′(Ω) satisfies (2.2), we thus have

< u,ψ >= λ < u, θ >=< C,ψ > for all ψ ∈ D(Ω), where C :=< u, θ > .

Hence u = C.

Remark 1. The above proof shows that, given any function θ ∈ D(Ω) that satisfies (2.3), the space D(Ω)
can be written as the direct sum D0(Ω)⊕ Span θ. More precisely, any function ψ ∈ D(Ω) can be written
as

ψ = ϕ+ λθ, with ϕ ∈ D0(Ω) and λ =
∫

Ω

ψdx.

Lemma 2.2. Let Ω be a bounded open subset of Rn. The space D0(Ω) defined in (2.1) is dense in the
space

L2
0(Ω) := {v ∈ L2(Ω);

∫
Ω

vdx = 0}, (26)

with respect to the norm of the space L2(Ω).

Proof. Let θ ∈ D(Ω) be a function that satisfies (2.3).
Let ‖ · ‖L2 designate the norm in the space L2(Ω). Given any function v ∈ L2

0(Ω), there exist functions
ψk ∈ D(Ω), k ≥ 1, such that ‖ψk − v‖L2 → 0 as k → ∞ (the space D(Ω) is dense in L2(Ω)). For each
k ≥ 1, let

ϕk := ψk −
(∫

Ω

ψkdx

)
θ,

so that ϕk ∈ D0(Ω). Besides,

‖ϕk − v‖L2 ≤ ‖ψk − v‖L2 +
∣∣∣∣∫

Ω

ψkdx

∣∣∣∣‖θ‖L2 .

Therefore, ‖ϕk − v‖L2 → 0 as k →∞, since∫
Ω

ψkdx →
k→∞

∫
Ω

vdx = 0.
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Lemma 2.3. Let Ω be an open subset of Rn, n ≥ 2. Define the space

D1(Ω; Rn) := {ϕ = (ϕi) ∈ D(Ω; Rn);
∫

Ω

ϕidx =
∫

Ω

(xjϕi − xiϕj)dx = 0}. (27)

Then a vector field u = (ui) ∈ D′(Ω; Rn) satisfies

< u,ϕ >:=< ui, ϕi >= 0 for all ϕ ∈ D1(Ω; Rn) (28)

if and only if

u(x) = a+A ox for all x = (xi) ∈ Ω, for some a = (ai) ∈ Rn and A = (aij) ∈ An. (29)

Proof. A vector field u ∈ D′(Ω; Rn) of the form (2.7) satisfies

< u,ϕ >=< ai + aijxj , ϕi >= ai

∫
Ω

ϕidx+
∑
i<j

aij

∫
Ω

(xjϕi − xiϕj)dx

for all ϕ = (ϕi) ∈ D(Ω; Rn), thanks to the antisymmetry of the matrix A. Hence such a a vector field
satisfies < u,ϕ >= 0 for all ϕ ∈ D1(Ω; Rn).

To establish the converse, we first notice that there is no loss of generality in assuming that 0 ∈ Ω.
Otherwise, let x0 = (x0

i ) ∈ Ω, let Ω̃ := {(x − x0) ∈ Rn;x ∈ Ω}, and, given any function ϕ = (ϕi) ∈
D1(Ω; R3), let the function ϕ̃ = (ϕ̃i) : Ω̃ → R3 be defined by ϕ̃(x − x0) := ϕ(x) for all x ∈ Ω, so that
ϕ̃ ∈ D(Ω̃; R3). Furthermore,∫

Ω̃

ϕ̃idx̃ =
∫

Ω

ϕidx = 0,∫
Ω̃

(x̃jϕ̃i − x̃iϕ̃j)dx̃ =
∫

Ω

(xjϕi − xiϕj)dx− x0
j

∫
Ω

ϕidx+ x0
i

∫
Ω

ϕjdx = 0,

which shows that ϕ̃ ∈ D1(Ω̃; R3). Besides, if a vector field ũ ∈ D′(Ω̃; Rn) is of the form ũ(x̃) = ã+ Ãox̃
for some ã ∈ Rn and Ã ∈ An, then the field u ∈ D′(Ω; Rn) defined by u(x) = ũ(x− x0) is indeed of the
form (2.7), with a := ã− Ãox0 and A = Ã.

Next, let θ ∈ D(Ω) and θj ∈ D(Ω), 2 ≤ j ≤ n, be functions that satisfy∫
Ω

θdx = 1 and
∫

Ω

xiθdx = 0, (30)∫
Ω

θjdx = 0 and
∫

Ω

xiθjdx = δij . (31)

For instance, let ω(x) := exp(‖x‖2 − 1)−1) if ‖x‖ < 1 and ω(x) := 0 if ‖x‖ ≥ 1, where ‖ · ‖ denotes the
Euclidean norm in Rn, and let r > 0 be such that {x ∈ Rn; ‖x‖ ≤ r} ⊂ Ω (recall that we may assume
that 0 ∈ Ω). Then the function θ defined by θ(x) :=

(∫
Ω
ω
(
x
r

)
dx
)−1

ω
(
x
r

)
for x ∈ Ω belongs to the space

D(Ω) and satisfies (2.8). Likewise for instance, let a function χ ∈ D(Ω) be such that
∫

Ω
χdx = −1; then

the functions θj := ∂jχ belong to the space D(Ω) and they satisfy (2.9), since∫
Ω

θjdx =
∫

Ω

∂jχdx = 0,∫
Ω

xiθjdx =
∫

Ω

xi∂jχdx = −
∫

Ω

δijχdx = δij .
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Given functions θ ∈ D(Ω) and θj ∈ D(Ω), 2 ≤ j ≤ n, satisfying (2.8)−(2.9), we then define vector fields
θi ∈ D(Ω; Rn) and θij ∈ D(Ω; Rn), 2 ≤ j ≤ n, by letting

θi := θei and θij = θjei, 1 ≤ i < j ≤ n, (32)

where ei denote the vectors of the canonical basis of Rn.
Given any vector field ψ = (ψi) ∈ D(Ω; Rn), let the vector field ϕ = (ϕi) ∈ D(Ω; Rn) be defined by

ϕi := ψi − λiθ −
∑
i<j

λijθj ,

or equivalently, by
ϕ = ψ − λiθi −

∑
i<j

λijθij , (33)

where

λi :=
∫

Ω

ψidx and λij :=
∫

Ω

(xjψi − xiψj)dx. (34)

We then observe that, thanks to relations (2.8)−(2.9), the vector field ϕ defined in (2.11) belongs to
the space D1(Ω; Rn) : First,∫

Ω

ϕidx =
∫

Ω

ψidx− λi
∫

Ω

θdx−
∑
i<j

λij

∫
Ω

θjdx = 0.

Second, for i < j (the case j < i is similar),∫
Ω

(xjϕi − xiϕj)dx = λij −
∑
i<p

λip

∫
Ω

xjθpdx+
∑
j<q

λjq

∫
Ω

xiθqdx = 0,

since
∑
i<p

λip

∫
Ω

xjθpdx = λij and
∑
j<q

λjq

∫
Ω

xiθqdx = 0.

If a vector field u ∈ D′(Ω; Rn) satisfies (2.6), we thus have

< u,ψ >= λi < u,θi > +
∑
i<j

λij < u,θij > for all ψ ∈ D(Ω; Rn), (35)

where the vector fields θi and θij and the coefficients λi and λij are respectively defined as in (2.10) and
(2.12). Letting

ai :=< u,θi >, aii = 0, and aij = −aji :=< u,θij > if i < j,

we can rewrite relations (2.13) as

< u,ψ > =
∫

Ω

aiψidx+
∑
i<j

∫
Ω

(aijxjψi − aijxiψj)dx (36)

=
∫

Ω

(ai + aijxj)ψidx.

Since relations (2.14) hold for all ψ ∈ D(Ω; Rn), the vector field u ∈ D′(Ω; Rn) is indeed of the announced
form (2.7), with a := (ai) ∈ Rn and A := (aij) ∈ An.

Remark 2. (1) The above proof shows that, given any functions θ ∈ D(Ω) and θj ∈ D(Ω), 2 ≤ j ≤ n, that
satisfy (2.8)−(2.9), the space D(Ω; Rn) can be written as the direct sum D1(Ω; Rn)⊕ Span (θi)⊕ Span
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(θij)i<j, where the vector fields θi and θij are those defined in (2.10). More precisely, any vector field
ψ ∈ D(Ω; Rn) can be written as

ψ = ϕ+ λiθi +
∑
i<j

λijθij ,

with

ϕ ∈ D1(Ω; Rn), λi :=
∫

Ω

ψidx, λij :=
∫

Ω

(xjψi − xiψj)dx.

(2) If n = 3, a vector field of the form (2.7) is nothing but an infinitesimal rigid displacement, i.e., of
the form (1.14).

Lemma 2.4. Let Ω be a bounded open subset of Rn. The space D1(Ω; Rn) defined in (2.5) in dense in
the space

L2
1(Ω; Rn) := {v = (vi) ∈ L2(Ω; Rn);

∫
Ω

vidx =
∫

Ω

(xjvi − xivj)dx = 0}, (37)

with respect to the norm of the space L2(Ω; Rn).

Proof. Let the vector fields θi ∈ D(Ω; Rn) and θij ∈ D(Ω; Rn), 2 ≤ j ≤ n, be defined as in (2.10), where
the functions θ ∈ D(Ω) and θj ∈ D(Ω), 2 ≤ j ≤ n, satisfy relations (2.8)−(2.9).

Let ‖ ·‖L2 designate the norm in the space L2(Ω; Rn). Given any vector field v ∈ L2
1(Ω; Rn), there exist

vector fields ψk = (ψki ) ∈ D(Ω; Rn), k ≥ 1, such that ‖ψk − v‖L2 → 0 as k →∞. For each k ≥ 1, let

ϕk := ψk −
(∫

Ω

ψki dx

)
θi −

∑
i<j

(∫
Ω

(xjψki − xiψkj )dx
)
θij ,

so that ϕk ∈ D1(Ω; Rn) (to see this, argue as in the proof of Lemma 2.3). Besides,

‖ϕk − v‖L2 ≤ ‖ψk − v‖L2 +
∣∣∣∣∫

Ω

ψki dx

∣∣∣∣‖θi‖L2 +
∑
i<j

∣∣∣∣∫
Ω

(xjψki − xiψkj )dx
∣∣∣∣‖θij‖L2 .

Therefore, ‖ϕk − v‖L2 → 0 as k →∞, since∫
Ω

ψki dx →
k→∞

∫
Ω

vidx = 0,∫
Ω

(xjψki − xiψkj )dx →
k→∞

∫
Ω

(xjvi − xivj)dx = 0.

While Lemmas 2.1 and 2.3, resp. 2.2 and 2.4, hold in any open, resp. bounded open, subset of Rn,
some restrictions need to be imposed in the next lemma (which concludes our list of “preliminaries”),
according to the following definition : A domain in Rn is an open, bounded, connected subset Ω of Rn,
with a Lipschitz-continuous boundary Γ, the set Ω being locally on one side of Γ.

The mapping T = (Ti) defined in the next lemma plays a key role in the rest of the paper.

Lemma 2.5. Let Ω be a domain in Rn. Then the Hilbert space H1
0 (Ω; Rn) equipped with the norm

(vi) 7→ (
∫

Ω
∂jvi∂jvidx)1/2 can be written as the direct sum

H1
0 (Ω; Rn) = V ⊕ V ⊥, (38)
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where the subspace V and its orthogonal complement V ⊥ are defined by

V := {v ∈ H1
0 (Ω; Rn); div v = 0 in L2(Ω)}, (39)

V ⊥ := {v ∈ H1
0 (Ω; Rn);−∆v = grad q for some q ∈ L2(Ω)}. (40)

Let the space L2
0(Ω) be defined as in (2.4). Then there exists a bijection

T = (Ti) : v ∈ L2
0(Ω) 7→ T v = (Tiv) ∈ V ⊥ ⊂ H1

0 (Ω; Rn), (41)

which is linear and continuous, hence an isomorphism, between the spaces L2
0(Ω) and V ⊥, and that

satisfies
−div(T v) = v for all v ∈ L2

0(Ω). (42)

Proof. That the space H1
0 (Ω; Rn) can be written as the direct sum (2.16), with the spaces V and V ⊥

being defined as in (2.17)−(2.18), is proved in Corollary 2.3, Chapter 1, of Girault & Raviart [14]. It
is also shown in Corollary 2.4, Chapter 1, of ibid., that the operator div is an isomorphism of V ⊥ onto
L2

0(Ω); hence the operator T of (2.19) is an isomorphism of L2
0(Ω) onto V ⊥ since, in view of (2.20), T is

nothing but the inverse of the operator −div.

Remark 3. (1) That the domain of the operator T should be the subspace L2
0(Ω) of L2(Ω) is clear, since

the range of T is a subspace of H1
0 (Ω; Rn).

(2) For a given function v ∈ L2
0(Ω), all the solutions u ∈ H1

0 (Ω; Rn) to the equation −div u = v are
thus of the form u = T v +w for some w ∈ V .

(3) It is shown in Theorem 2’ of Bourgain & Brezis [4] that, more generally for any 1 < p <∞, there
likewise exists a linear and continuous mapping

T : Lp0(Ω) :=
{
v ∈ Lp(Ω);

∫
Ω

vdx = 0
}
→W 1,p

0 (Ω; Rn)

such that −div(T v) = v for all v ∈ Lp0(Ω).

3. A Poincaré lemma with little regularity

A classical lemma of Poincaré asserts that, if functions fi ∈ C1(Ω) satisfy ∂ifj − ∂jfi = 0 in a simply-
connected open subset Ω of Rn, then there exists a function u ∈ C2(Ω) such that ∂iu = fi in Ω. It is easily
verified that, in this case, an explicit solution to the equations ∂iu = fi in Ω is given by the path integral
formula

u(x) =
∫
γ(x)

fi(y)dyi for all x ∈ Ω, (43)

where γ(x) is any path of class C1 contained in Ω and joining a point x0 ∈ Ω (considered as fixed) to
the point x ∈ Ω, the relations ∂ifj − ∂jfi = 0 in Ω insuring that the value u(x) computed by (3.1) is
independent of the path chosen for joining x0 to x.

The above classical lemma of Poincaré was extended in Theorem 2.9, Chapter 1, of Girault & Raviart [14],
as follows: If functions fi ∈ L2(Ω) satisfy ∂ifj − ∂jfi = 0 in H−1(Ω), where Ω is a simply-connected do-
main in Rn (domains are defined before Lemma 2.5), then there exists a function u ∈ H1(Ω) such that
∂iu = fi in L2(Ω). This extension was then carried out one step further in Theorem 3.1 of Ciarlet &
Ciarlet, Jr. [6], according to the next theorem.
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Theorem 3.1 (Poincaré lemma with little regularity). Let Ω be a simply-connected domain in Rn, and
let fi ∈ H−1(Ω) be distributions that satisfy

∂ifj − ∂jfi = 0 in H−2(Ω).

Then there exists a function u ∈ L2(Ω), unique up to an additive constant, such that
∂iu = fi in H−1(Ω).

Remark 4. Theorem 3.1 holds in the more general situation where fi ∈ H−m(Ω) for any integer m ≥ 2 (in
which case u ∈ H−m+1(Ω)); see Amrouche, Ciarlet & Ciarlet, Jr. [1,2] and Geymonat & Krasucki [12,13],
where the extension to a non simply-connected domain is also treated. The last word in this direction is
due to S. Mardare [16], who has shown that the Poincaré lemma holds in fact in the sense of distributions.

We first show that, even under the weaker regularity assumptions of Theorem 3.1 (in which case formula
(3.1) becomes meaningless), there is still a way to “compute” a solution u ∈ L2(Ω) to the equations ∂iu =
fi in H−1(Ω). This objective is achieved by means of an explicit expression in terms of the data fi of
the duality pairings < u,ϕ > for all functions ϕ ∈ D(Ω) that satisfy

∫
Ω
ϕdx = 0; cf. (3.4) below. Note

that, by Lemma 2.1, the knowledge of such duality pairings determines the distribution u only up to an
additive constant (as expected).

Theorem 3.2. Let Ω be a simply-connected domain in Rn, let the space D0(Ω) be defined as in (2.1),
viz.,

D0(Ω) := {ϕ ∈ D(Ω);
∫

Ω

ϕdx = 0},

and let fi ∈ H−1(Ω) be distributions that satisfy

∂ifj − ∂jfi = 0 in H−2(Ω). (44)

Then a function u ∈ L2(Ω) satisfies
∂iu = fi in H−1(Ω) (45)

if and only if
< u,ϕ >=< fi, Tiϕ > for all ϕ ∈ D0(Ω), (46)

where T = (Ti) : L2
0(Ω)→ H1

0 (Ω; Rn) is the continuous linear operator defined in Lemma 2.5.

Proof. Note that, in (3.4), < u,ϕ >=
∫

Ω
uϕdx, and < fi, Tiϕ > is the duality pairing between the spaces

H1
0 (Ω) and H−1(Ω).
Assume first that a function u ∈ L2(Ω) satisfies ∂iu = fi in H−1(Ω). Given any function ϕ ∈ D0(Ω) ⊂

L2
0(Ω), Lemma 2.5 shows that the vector field Tϕ = (Tiϕ) ∈ H1

0 (Ω; Rn) satisfies −∂i(Tiϕ) = ϕ in the
space L2

0(Ω) = {v ∈ L2(Ω);
∫

Ω
vdx = 0}. Therefore,

< u,ϕ >=< u,−∂i(Tiϕ) >=< ∂iu, Tiϕ >=< fi, Tiϕ > .

Assume next that a function u ∈ L2(Ω) satisfies < u,ϕ >=< fi, Tiϕ > for all ϕ ∈ D0(Ω). Since, given
any vector field (ψj) ∈ D(Ω; Rn), the function ∂jψj belongs to the space D0(Ω), it follows that

−∂iTi(∂jψj) = ∂jψj in L2
0(Ω),

which in turn implies that

< ∂ju, ψj > =< u,−∂jψj >= − < fi, Ti(∂jψj) >
=< fi, ψi > − < fi, ψi + Ti(∂jψj) > .
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But
∂i(ψi + Ti(∂jψj)) = ∂iψi + ∂iTi(∂jψj) = ∂iψi − ∂jψj = 0,

and since ∂ifj−∂jfi = 0 in H−2(Ω), there exists by Theorem 3.1 a function p ∈ L2(Ω) such that ∂ip = fi
in H−1(Ω). Therefore,

< fi, ψi + Ti(∂jψj) >=< ∂ip, ψi + Ti(∂jψj) >=< p,−∂i(ψi + Ti(∂jψj)) >= 0.

We are thus left with < ∂ju, ψj >=< fi, ψi > for all (ψi) ∈ D(Ω; Rn), which shows that ∂iu = fi in
H−1(Ω).

Remark 5. The function p appearing in the above proof is of course of the form p = u + C for some
constant C, but this observation is not used in the above proof. The only reason for introducing p is to
allow to rewrite the vector field (fi) as a gradient, in this case the gradient of the function p.

We next show that the solution to the equations ∂iu = fi in H−1(Ω) can also be found by solving a
variational problem (cf. (3.5) below), which satisfies all the assumptions of the Lax-Milgram lemma. The
operators Ti : L2

0(Ω)→ H1
0 (Ω) appearing in (3.5) are again those defined in Lemma 2.5.

Theorem 3.3. Let Ω be a simply-connected domain in Rn, let the space L2
0(Ω) be defined as in (2.4),

viz.,

L2
0(Ω) := {v ∈ L2(Ω);

∫
Ω

vdx = 0},

and let there be given distributions fi ∈ H−1(Ω) that satisfy

∂ifj − ∂jfi = 0 in H−2(Ω).

Then the variational problem: Find a function u ∈ L2
0(Ω) such that

< u, v >=< fi, Tiv > for all v ∈ L2
0(Ω), (47)

has a unique solution, which is also a solution to the equations

∂iu = fi in H−1(Ω), (48)

in effect the only solution to (3.6) that satisfies
∫

Ω
udx = 0.

Proof. Since < u, v >=
∫

Ω
uvdx, the bilinear form appearing in the left-hand side of the variational

equations (3.5) is clearly continuous and coercive over the space L2
0(Ω). The linear form appearing in

their right-hand side is clearly continuous, since Ti ∈ L(L2
0(Ω);H1

0 (Ω)) (Lemma 2.5). Hence the variational
equations (3.5) have a unique solution u in the space L2

0(Ω). Furthermore, u is a solution to the equations
∂iu = fi in H−1(Ω), by Theorem 3.2.

Remark 6. Interestingly, the existence of a solution to the variational equations (3.5) can be obtained
without a recourse to the Lax-Milgram lemma (its uniqueness is clear): Let u ∈ L2

0(Ω) denote the unique
solution to the equations ∂iu = fi in H−1(Ω) that satisfies

∫
Ω
udx = 0 (the existence of such a solution

follows from Theorem 3.1; its uniqueness is again clear). By Theorem 3.2, this solution satisfies

< u,ϕ >=< fi, Tiϕ > for all ϕ ∈ D0(Ω).

But the space D0(Ω) is dense in the space L2
0(Ω) (Lemma 2.2) and the operators Ti : L2

0(Ω)→ H1
0 (Ω)

are continuous (Lemma 2.5); hence the above variational equations hold more generally for all ϕ ∈ L2
0(Ω).
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4. A Cesàro-Volterra formula with little regularity

As shown in Ref. [6], the classical Saint-Venant compatibility conditions (1.2) remain sufficient when
they take the weaker form of the equations (4.1) below, which we will call the Saint-Venant compatibility
conditions with little regularity (although the proof in ibid. was given for n = 3, it readily extends to any
integer n ≥ 2):

Theorem 4.1 (Saint-Venant compatibility conditions with little regularity). Let Ω be a simply-connected
domain in Rn, and let eij = eji ∈ L2(Ω) be functions that satisfy

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω). (49)

Then there exists a vector field u = (ui) ∈ H1(Ω; Rn), unique up to the addition of a vector field of the
form x ∈ Ω→ a+A ox for some a ∈ Rn and A ∈ An, such that

1
2

(∂jui + ∂iuj) = eij in L2(Ω). (50)

Remark 7. Theorem 4.1 can be extended to non simply-connected domains; see Geymonat & Krasucki [11]
and Ciarlet, Ciarlet, Jr., Geymonat & Krasucki [8]. Theorem 4.1 similarly holds in the more general
situation where eij = eji ∈ H−1(Ω) for some integer m ≥ 0 (in which case u ∈ H−m+1(Ω; Rn); see
Amrouche, Ciarlet, Gratie & Kesavan [3]).

Under the weak regularity assumptions of Theorem 4.1, the classical Cesàro-Volterra path integral
formula (1.5) becomes meaningless. But we nevertheless show that there is still a way in this case to
“compute” a solution u = (ui) ∈ H1(Ω; Rn) to the equations (4.2) in this case.

This objective is achieved by means of an explicit expression in terms of the data eij ∈ L2(Ω) of the
duality pairings < u,ϕ >=< ui, ϕi > for all vector fields ϕ = (ϕi) ∈ D(Ω; Rn) that satisfy

∫
Ω
ϕidx =∫

Ω
(xjϕi− xiϕj)dx = 0; cf. (4.3) below. Note that, by Lemma 2.3, the knowledge of such duality pairings

determines the vector field u only up to a vector field of the form a+A ox for some a ∈ Rn and A ∈ An
(as expected). By reference with the classical Cesàro-Volterra path integral formula (1.5), we will say
that relations (4.3) contitute the Cesàro-Volterra formula with little regularity (this terminology will be
further substantiated in Theorem 5.1 and, especially, in Theorem 5.2).

Theorem 4.2 (Cesàro-Volterra formula with little regularity). Let Ω be a simply-connected domain in
Rn, let the space D1(Ω; Rn) be defined as in (2.5), viz.,

D1(Ω; Rn) := {ϕ = (ϕi) ∈ D(Ω; Rn);
∫

Ω

ϕidx =
∫

Ω

(xjϕi − xiϕj)dx = 0},

and let there be given a matrix field e = (eij) ∈ L2(Ω; S3) whose components eij = eji ∈ L2(Ω) satisfy the
Saint-Venant compatibility conditions with little regularity (4.1), viz.,

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then a vector field u = (ui) ∈ H1(Ω; Rn) satisfies equations (4.2), viz.,
1
2

(∂jui + ∂iuj) = eij in L2(Ω),

if and only if

< ui, ϕi >=< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] > for all ϕ = (ϕi) ∈ D1(Ω; Rn), (51)

where T = (Ti) : L2
0(Ω)→ H1

0 (Ω; Rn) is the continuous linear operator defined in Lemma 2.5.
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Proof. Note that the duality pairings < · , · > appearing in (4.3) are simply those of the space L2(Ω).

(i) Assume first that a vector field u = (ui) ∈ H1(Ω; Rn) satisfies
1
2

(∂jui + ∂iuj) = eij in L2(Ω), and

let there be given a vector field ϕ = (ϕi) ∈ D1(Ω; Rn).
Define the functions

aij = −aij :=
1
2

(∂jui − ∂iuj) ∈ L2(Ω),

so that ∂jui = eij +aij . Since each component ϕi of the vector field ϕ belongs to the space D0(Ω) = {ϕ ∈
D(Ω);

∫
Ω
ϕdx = 0} ⊂ L2

0(Ω), Lemma 2.5 shows that, for each i, the vector field Tϕi = (Tjϕi) ∈ H1
0 (Ω; Rn)

satisfies −∂j(Tjϕi) = ϕi in L2(Ω). Consequently,

< ui, ϕi > = − < ui, ∂j(Tjϕi) >=< ∂jui, Tjϕi >=< eij + aij , Tjϕi > (52)

=< eij , Tiϕj > +
1
2
< aij , Tjϕi − Tiϕj >,

since eij = eji and aij = −aji.
We next note that each function (Tjϕi − Tiϕj) ∈ H1

0 (Ω) also belongs to the space L2
0(Ω), since

0 =
∫

Ω

(xjϕi − xiϕj)dx =
∫

Ω

{xj [−∂k(Tkϕi)] + xi[∂k(Tkϕj)]}dx

=
∫

Ω

{δjkTkϕi − δikTkϕj}dx =
∫

Ω

(Tjϕi − Tiϕj)dx.

Consequently,
Tjϕi − Tiϕj = −∂kTk(Tjϕi − Tiϕj). (53)

We also note that
∂kaij =

1
2

(∂jkui − ∂ikuj) = −∂iekj + ∂jeki in H−1(Ω). (54)

Using (4.5) and (4.6), we then obtain

< aij ,Tjϕi − Tiϕj >= − < aij , ∂kTk(Tjϕi − Tiϕj) > (55)
=< ∂kaij , Tk(Tjϕi − Tiϕj) >=< −∂iekj + ∂jeki, Tk(Tjϕi − Tiϕj) >
=< ekj , ∂i[Tk(Tjϕi − Tiϕj)] > − < eki, ∂j [Tk(Tjϕi − Tiϕj)] >
=< eij , ∂k[Ti(Tjϕk − Tkϕj)] > − < eji, ∂k[Tj(Tkϕi − Tiϕk)] >
= 2 < eij , ∂k[Ti(Tjϕk − Tkϕj)] > .

Therefore, relations (4.3) follow from (4.4) and (4.7).
(ii) Assume next that a vector field u = (ui) ∈ H1(Ω; Rn) satisfies relations (4.3).
Let then a matrix field ψ = (ψij) ∈ D(Ω; Sn) be given. We first note that (∂jψij)ni=1 ∈ D1(Ω; Rn), since∫

Ω

∂jψij = 0, (56)∫
Ω

(xk∂jψlj − xl∂jψkj)dx = −
∫

Ω

(δjkψlj − δjlψkj)dx = −
∫

Ω

(ψlk − ψkl)dx = 0. (57)

We thus have, by (4.3),
1
2
< ∂jui + ∂iuj , ψij >=< ∂jui, ψij >= − < ui, ∂jψij > (58)

= − < eij , Ti(∂kψjk) + ∂k[Ti(Tj(∂lψkl)− Tk(∂lψjl))] >
= − < eij , Ti(∂kψjk) > + < ∂keij , Ti(Tj(∂lψkl)− Tk(∂lψjl)) >
= − < eij , Ti(∂kψjk) > + < ∂keij − ∂jeik, Ti(Tj(∂lψkl)) > .
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We next observe that the Saint-Venant compatibility conditions with little regularity (4.1) may be
rewritten as

∂lhjki = ∂ihjkl in H−2(Ω), where hjki = −hkji := ∂keji − ∂jeki ∈ H−1(Ω).

The Poincaré lemma with little regularity (Theorem 3.1) then shows that there exist functions pjk ∈
L2(Ω), each one being unique up to an additive constant, such that

∂ipjk = hjki = ∂keij − ∂jeik in H−1(Ω). (59)

Since ∂i(pjk + pkj) = hjki + hkji = 0, these additive constants can be adjusted in such a way that

pjk + pkj = 0 in L2(Ω). (60)

Thanks to relations (4.11)−(4.12), we thus have

< ∂keij − ∂jeik, Ti(Tj(∂lψkl)) >=< ∂ipjk, Ti(Tj(∂lψkl)) > (61)
= − < pjk, ∂i[Ti(Tj(∂lψkl))] >

= −1
2
< pjk, ∂i[Ti(Tj(∂lψkl)− Tk(∂lψjl))] > .

As shown in (4.8), for each k = 1, . . . , n, the function ∂lψkl belongs to the space L2
0(Ω). Consequently,

relations (4.9) combined with the definition of the operator T = (Ti) : L2
0(Ω) → H1

0 (Ω; Rn) (cf. Lemma
2.5) give

0 =
∫

Ω

(xj∂lψkl − xk∂lψjl)dx

=
∫

Ω

(
−xj∂pTp(∂lψkl) + xk∂qTq(∂lψjl)

)
dx

=
∫

Ω

(
δjpTp(∂lψkl)− δkqTq(∂lψjl)

)
dx =

∫
Ω

(
Tj(∂lψkl)− Tk(∂lψjl

)
dx,

which means that, for each j = 1, . . . , n and each k = 1, . . . , n, the function (Tj(∂lψkl)− Tk(∂lψjl)) also
belongs to the space L2

0(Ω). As a result, relations (4.13) become

< ∂keij − ∂jeik, Ti(Tj(∂lψkl)) >=
1
2
< pjk, Tj(∂lψkl)− Tk(∂lψjl) > (62)

=< pjk, Tj(∂lψkl) >,

thanks again to relations (4.12).
Using (4.14) in (4.10) then gives

1
2
< ∂jui + ∂iuj , ψij > = − < eij , Ti(∂kψjk) > + < pjk, Tj(∂lψkl) >

=< eij , ψij > + < pjk − ejk, ψjk + Tj(∂lψkl) >,
(63)

since < pjk, ψjk >= 0 (recall that pjk = −pkj and ψjk = ψkj). Noting that, by (4.11), the functions

qjk := pjk − ejk ∈ L2(Ω)

satisfy
∂lqjk = ∂jqlk in H−1(Ω),

we again resort to the Poincaré lemma with little regularity (Theorem 3.1) to conclude that there exist
functions vk ∈ H1(Ω), each one being unique up to an additive constant, such that

qjk = ∂jvk = pjk − ejk in L2(Ω).
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Consequently,

< pjk − ejk,ψjk + Tj(∂lψkl) >=< ∂jvk, ψjk + Tj(∂lψkl) > (64)
= − < vk, ∂jψjk + ∂jTj(∂lψkl) >,

since (ψjk+Tj(∂lψkl)) ∈ H1
0 (Ω). But the definition of the operators Tj (recall that ∂lψkl ∈ D0(Ω) ⊂ L2

0(Ω))
and the symmetries ψkl = ψlk together imply that

−∂jTj(∂lψkl) = ∂lψkl = ∂jψjk. (65)

Combining (4.15), (4.16), and (4.17), we are thus left with
1
2
< ∂jui + ∂iuj , ψij >=< eij , ψij > .

Since this relation holds for any matrix field ψ = (ψij) ∈ D(Ω; Sn), it follows that 1
2 (∂jui + ∂iuj) = eij

in L2(Ω), as announced.

We next show that the solution u = (ui) to the equations 1
2 (∂jui + ∂iuj) = eij in L2(Ω) can be found

by solving a variational problem (cf (4.18) below), which satisfies all the assumptions of the Lax-Milgram
lemma. The operators Ti : L2

0(Ω)→ H1
0 (Ω) are again those defined in Lemma 2.5.

Theorem 4.3. Let Ω be a simply-connected domain in Rn, let the space L2
1(Ω; Rn) be defined as in (2.15),

viz.,

L2
1(Ω; Rn) := {v = (vi) ∈ L2(Ω; Rn);

∫
Ω

vidx =
∫

Ω

(xjvi − xivj)dx = 0},

and let there be given functions eij = eji ∈ L2(Ω) that satisfy the Saint-Venant compatibility conditions
with little regularity, viz.,

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then the variational problem : Find a vector field (ui) ∈ L2
1(Ω; Rn) such that

< ui, vi >=< eij , Tivj + ∂k[Ti(Tjvk − Tkvj)] > for all (vi) ∈ L2
1(Ω; Rn), (66)

has a unique solution. Besides, (ui) is in fact in the space H1(Ω; Rn) and is a particular solution to the
equations

1
2

(∂jui + ∂iuj) = eij in L2(Ω), (67)

in effect the only solutions to (4.19) that satisfy
∫

Ω
uidx =

∫
Ω

(xjui − xiuj)dx = 0.

Proof. We first note that, given any vector field (vi) ∈ L2
1(Ω; Rn), each function vi belongs to the space

L2
0(Ω) (by definition of the space L2

1(Ω; Rn)), and each function (Tjvk − Tkvj) also belongs to L2
0(Ω) (the

proof is the same as that given for a vector field (ϕi) ∈ D1(Ω; Rn) in part (i) of the proof of Theorem
4.2). Hence the right-hand side of the variational equations (4.18) makes sense; besides, it clearly defines
a continuous linear form on the space L2

1(Ω; Rn) since the operators Ti : L2
0(Ω)→ H1

0 (Ω) are continuous.
Since < ui, vi >=

∫
Ω
uividx, the bilinear form appearing in the left-hand side of equations (4.18) is clearly

continuous and coercive over the space L2
1(Ω; Rn). Hence the variational equations (4.18) have a unique

solution u = (ui) ∈ L2
1(Ω; Rn).

We then observe that there exists a unique vector field ũ = (ũi) ∈ H1(Ω; Rn)∩L2
1(Ω; Rn) that satisfies

1
2 (∂j ũi + ∂iũj) = eij in L2(Ω) (the existence follows from Theorem 4.1; the uniqueness follows from
Lemma 2.3). Therefore this vector field ũ ∈ H1(Ω; Rn) satisfies

< ũi, ϕi >=< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] > for all ϕ = (ϕi) ∈ D1(Ω; Rn),
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by Theorem 4.2. But, since the space D1(Ω; Rn) is dense in the space L2
1(Ω; Rn) (cf. Lemma 2.4) and the

operators Ti : L2
0(Ω)→ H1

0 (Ω) are continuous, the vector field u also satisfies

< ũi, vi >=< eij , Tivj + ∂k[Ti(Tjvk − Tkvj)] > for all v ∈ L2
1(Ω; Rn).

Hence ũ = u, since the variational equations (4.18) have a unique solution in the space L2
1(Ω; Rn).

Therefore, u ∈ H1(Ω; Rn).

5. The Cesàro-Volterra formula with little regularity is indeed a generalization of the
classical formula

To begin with, we show how the Cesàro-Volterra formula with little regularity (4.3) in dimension n = 3
can be rewritten in a vector-matrix form (cf. (5.5) below) that is, at least formally, highly reminiscent of
the vector-matrix form (1.6) of the classical Cesàro-Volterra path integral formula. To this end, we need
some additional notation.

Given any vector fields u = (ui) and ϕ = (ϕi) in L2(Ω; R3), and given any matrix fields e = (eij) ∈
D′(Ω; M3) and ψ = (ψij) ∈ D′(Ω; M3), we let

< u,ϕ >:=
∫

Ω

uiϕidx and � e,ϕ�:=< eij , ψij > . (68)

Given any matrix field e = (eij) ∈ D′(Ω; M3), we let the matrix field CURL e ∈ D′(Ω; M3) be defined
as in (1.7), viz.,

CURL e =


∂2e13 − ∂3e12 ∂3e11 − ∂1e13 ∂1e12 − ∂2e11

∂2e23 − ∂3e22 ∂3e21 − ∂1e23 ∂1e22 − ∂2e21

∂2e33 − ∂3e32 ∂3e31 − ∂1e33 ∂1e32 − ∂2e31

 . (69)

Given any vector field ϕ = (ϕi) ∈ L2
0(Ω; R3), we define the vector field

T ∧ϕ :=


T2ϕ3 − T3ϕ2

T3ϕ1 − T1ϕ3

T1ϕ2 − T2ϕ1

 ∈ H1
0 (Ω; R3), (70)

and the matrix field

T ⊗ϕ :=


T1ϕ1 T1ϕ2 T1ϕ3

T2ϕ1 T2ϕ2 T2ϕ3

T3ϕ1 T3ϕ2 T3ϕ3

 ∈ H1
0 (Ω; M3), (71)

where the operator T = (Ti) : L2
0(Ω)→ H1

0 (Ω; R3) is that defined in Lemma 2.5.

Remark 8. The notations (5.3)−(5.4) are to be viewed as symbolic, like the notation (u ·∇)u often used
to denote the vector field ((∂jui)uj) found in the Navier-Stokes equations.

Theorem 5.1. Let n = 3 and let the assumptions be those of Theorem 4.2. With the notations of
(5.1)− (5.4), the Cesàro-Volterra formula with little regularity (4.3) becomes

< u,ϕ >=� e,T ⊗ϕ� +� CURL e,T ⊗ (T ∧ϕ)� for all ϕ ∈ D1(Ω; R3). (72)
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Proof. Formula (4.3) may be equivalently rewritten as

< ui, ϕi >=< eij , Tiϕj > − < ∂keij , Ti(Tjϕk − Tkϕj) > . (73)

It is then easily verified that formula (5.5) is simply the vector-matrix form of formula (5.6), rewritten
with the notations defined in (5.1)−(5.4) (recall that each function ϕj and each function (Tjϕk − Tkϕj)
belongs to the domain L2

0(Ω) of the operators Ti when ϕ = (ϕi) ∈ D1(Ω; R3); cf. the proof of Theorem
4.2).

While the first justification above is admittedly not fully convincing, the second one (given in Theorem
5.2 below) is clearly so, since it establishes that the Cesàro-Volterra formula with little regularity reduces to
the classical Cesàro-Volterra formula (1.5) (reproduced in (5.8) below) when the data are smooth enough.

Note that relation (5.7) below, which only involves the functions eij, is established without using that its
left-hand side is also given by < ui, ϕi >, by Theorem 4.2 (otherwise this information would immediately
provide a “proof” of (5.7), through the expression of ui(x) given by the classical Cesàro-Volterra formula
(1.5)). In the same vein, note that the following proof clearly associates each term in the classical formula
with a corresponding one in the formula with little regularity.

Finally, note that, by contrast with Theorem 5.1, the next result holds in any dimension n ≥ 2.

Theorem 5.2. Let the assumptions be those of Theorem 4.2, the functions eij = eji ∈ L2(Ω) being in
addition assumed to be in the space C1(Ω) ∩ H1(Ω), and let the operator (Ti) : L2

0(Ω) → H1
0 (Ω; Rn) be

that defined in Lemma 2.5.
Fix a point x0 ∈ Ω, and, given any point x ∈ Ω, let γ(x) be any path of class C1 contained in Ω and

joining x0 to x. Then the right-hand side of the Cesàro-Volterra formula with little regularity (4.3) can
be rewritten in this case as

< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] > (74)

=
∫

Ω

[∫
γ(x)

{eij(y) + (∂keij(y)− ∂iekj(y))(xk − yk)}dyj
]
ϕi(x)dx

for all (ϕi) ∈ D1(Ω; Rn).
Relations (5.7) in turn imply that any vector field (ui) ∈ H1(Ω; Rn) that satisfies the Cesàro-Volterra

formula with little regularity (4.3) is also given by

ui(x) =
∫
γ(x)

{eij(y) + (∂keij(y)− ∂iekj(y))(xk − yk)}dyj , x ∈ Ω, (75)

up to the addition of a vector field of the form x ∈ Ω 7→ a+Aox for some a ∈ Rn and A ∈ An. Besides,
(ui) ∈ C2(Ω; Rn) in this case.

Proof. (i) A preliminary result : Let Ω be a simply-connected domain in Rn, and let fi ∈ C0(Ω) ∩ L2(Ω)
be functions that satisfy

∂ifj − ∂jfi = 0 in H−1(Ω). (76)

Fix a point x0 ∈ Ω and, given any point x ∈ Ω, let γ(x) be any path of class C1 contained in Ω and joining
x0 to x. Then

< fi, Tiϕ >=
∫

Ω

[∫
γ(x)

fj(y)dyj

]
ϕ(x)dx for all ϕ ∈ L2

0(Ω). (77)

19



Relations (5.9) imply that there exists a function ũ ∈ L2(Ω) such that

∂iũ = fi in C0(Ω) ∩ L2(Ω), (78)

so that ũ ∈ C1(Ω) ∩H1(Ω). Therefore, given any function ϕ ∈ L2
0(Ω), Green’s formula gives (recall that

Tiϕ ∈ H1
0 (Ω)) :

< fi, Tiϕ >=< ∂iũ, Tiϕ >= − < ũ, ∂iTiϕ >=< ũ, ϕ >,

by definition of the operator (Ti).
Since the function ũ ∈ C1(Ω) satisfies equation (5.11), its value ũ(x) at any point x ∈ Ω is given by the

path integral

ũ(x) = ũ(x0) +
∫
γ(x)

fj(y)dyj .

Consequently,

< fi, Tiϕ >= ũ(x0)
∫

Ω

ϕdx+
∫

Ω

[∫
γ(x)

fj(y)dyj

]
ϕdx.

Hence the conclusion follows, since
∫

Ω
ϕdx = 0.

(ii) Let the assumption be those of Theorem 5.2. First we observe that any vector field (ui) ∈ H1(Ω; Rn)
that satisfies (4.3) is in the space C2(Ω; Rn) ∩H2(Ω; Rn), since the relations 1

2 (∂jui + ∂iuj) = eij imply
that

∂jkui = ∂jeik + ∂keij − ∂iejk in C0(Ω) and L2(Ω),
for all indices i, j, k. Noting that (ϕi) ∈ D1(Ω; Rn) implies ϕi ∈ L2

0(Ω) for each index i, we next infer from
the preliminary result of (i) that

< eij , Tiϕj >=
∫

Ω

[∫
γ(x)

eij(y)dyj

]
ϕi(x)dx for all (ϕi) ∈ D1(Ω; Rn), (79)

which takes care of the first term appearing in the left-hand side of (5.7).
(iii) It remains to take care of the remaining term < eij , ∂k[Ti(Tjϕk − Tkϕj)] > appearing in the left-

hand side of (5.7). To this end, we first recall that (ϕi) ∈ D1(Ω; Rn) implies that (Tjϕk − Tkϕj) ∈ L2
0(Ω)

(cf. the proof of Theorem 4.2). Noting that eij = eji ∈ H1(Ω) and that Ti(Tjϕk − Tkϕj) ∈ H1
0 (Ω), we

next obtain, by Green’s formula:

< eij , ∂k[Ti(Tjϕk − Tkϕj)] >= − < ∂keij , Ti(Tjϕk − Tkϕj) > (80)

= −1
2
< ∂keij − ∂jeik, Ti(Tjϕk − Tkϕj) > .

The functions hjki := ∂keij − ∂jeik ∈ L2(Ω) satisfy ∂lhjki = ∂ihjkl in H−1(Ω). Therefore the Poincaré
lemma with little regularity (Theorem 3.1) shows that there exist functions p̃jk = −p̃kj ∈ H1(Ω) such
that

∂ip̃jk = ∂keij − ∂jeik in L2(Ω).
Combining another application of Green’s formula with the defining property of the operator (Ti), the
preliminary result of (i), and the antisymmetries p̃jk = −p̃kj , we then obtain

−1
2
< ∂keij − ∂jeik, Ti(Tjϕk − Tkϕj) >= −1

2
< ∂ip̃jk, Ti(Tjϕk − Tkϕj) > (81)

=
1
2
< p̃jk, ∂iTi(Tjϕk − Tkϕj) >= −1

2
< p̃jk, Tjϕk − Tkϕj >

= −1
2

∫
Ω

[∫
γ(x)

p̃jk(y)dyj

]
ϕk(x)dx+

1
2

∫
Ω

[∫
γ(x)

p̃kj(y)dyj

]
ϕk(x)dx

=
∫

Ω

[∫
γ(x)

p̃ij(y)dyj

]
ϕi(x)dx.
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The path γ(x) can be written as γ(x) = f([0, 1]), where the mapping f = (fj) ∈ C1([0, 1]; Rn) satisfies
f(0) = x0 and f(1) = x. Consequently,∫

γ(x)

p̃ij(y)dyj =
∫ 1

0

p̃ij(f(t))
dfj
dt

(t)dt

= −
∫ 1

0

[
d

dt

(
p̃ij(f(t)

)]
fj(t)dt+ p̃ij(f(1))fj(1)− pij(f(0))fj(0)

= −
∫ 1

0

∂j p̃ik(f(t))fk(t)
dfj
dt

(t)dt+ xkp̃ik(x)− x0
kp̃ik(x0)

= −
∫
γ(x)

∂j p̃ik(y)ykdyj + xk(p̃ik(x)− p̃ik(x0)) + (xk − x0
k)p̃ik(x0),

where x0
k designates the k-th coordinate of x0. Since

p̃ik(x)− p̃ik(x0) =
∫ 1

0

d

dt
(p̃ik(f(t))dt =

∫ 1

0

∂j p̃ik(f(t))
dfj
dt

(t)dt

=
∫
γ(x)

∂j p̃ik(y)dyj ,

it follows that ∫
γ(x)

p̃ij(y)dyj = (xk − x0
k)p̃ik(x0) +

∫
γ(x)

(xk − yk)∂j p̃ik(y)dyj (82)

= (xk − x0
k)p̃ik(x0) +

∫
γ(x)

(xk − yk)(∂keij(y)− ∂iejk(y))dyj .

Combining relations (5.12)−(5.15) then yields

< eij ,Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] > (83)

=
∫

Ω

[∫
γ(x)

{eij(y) + (∂keij(y)− ∂iejk(y))(xk − yk)}dyj
]
ϕi(x)dx

+
∫

Ω

p̃ik(x0)(xk − x0
k)ϕi(x)dx for all (ϕi) ∈ D1(Ω; Rn).

(iv) By Lemma 2.3, ∫
Ω

p̃ik(x0)(xk − x0
k)ϕi(x)dx = 0 for all (ϕi) ∈ D1(Ω; Rn), (84)

since the matrix (p̃ik(x0)) is antisymmetric. We therefore conclude from (5.16)−(5.17) that, when the
functions eij = eji belong to the space C1(Ω) ∩ H1(Ω), any vector field (ui) ∈ H1(Ω; Rn) that satisfies
equations (4.3) for all (ϕi) ∈ D1(Ω; Rn) also satisfies

< ui, ϕi >=
∫

Ω

[∫
γ(x)

{eij(y) + (∂keij(y)− ∂iejk(y))(xk − yk)}dyj
]
ϕi(x)dx

for all (ϕi) ∈ D1(Ω; Rn), and is in the space C2(Ω; Rn) ∩H2(Ω; Rn) by part (ii).
Lemma 2.3 then shows that there exist a vector (ai) ∈ Rn and an antisymmetric matrix (aij) ∈ An

such that

ui(x) =
[∫

γ(x)

{eij(y) + (∂keij(y)− ∂iejk(y))(xk − yk)}dyj
]

+ ai + aijxj

for all x = (xi) ∈ Ω, which completes the proof.
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