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may interpolate only 2n+1 values of F , for instance. The symmetric Broyden
method takes up the remaining freedom by minimizing the Frobenius norm of the
difference between the second derivative matrices of the old and new models, which
usually works well in practice. We consider an extension of this technique that
combines changes in first derivatives with changes in second derivatives. A simple
example suggests that the extension does bring some advantages, but numerical
experiments on three test problems with up to 320 variables are disappointing.
On the other hand, rates of convergence are investigated numerically when F is a
homogeneous quadratic function, which allows very high accuracy to be achieved
in practice, the initial and final errors in the variables being about 10 and 10−5000,
respectively. It is clear in some of these experiments that the extension does
reduce the number of iterations. The main difficulty in the work was finding a
way of implementing the extension sufficiently accurately in only O(n2) operations
on each iteration. A version of the truncated conjugate gradient procedure is
suitable, that is used in the numerical experiments, and that is described in detail
in an appendix.
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1. Introduction

The symmetric Broyden method provides a very useful technique for updating
second derivative matrices of quadratic models in iterative algorithms for uncon-
strained minimization when first derivatives of the objective function are available.
At the beginning of the k-th iteration, the model has the form

Qk(x) = F (xk) + (x−xk)
T ∇F (xk) +

1
2
(x−xk)

TBk (x−xk), x∈Rn, (1.1)

where F (x), x∈Rn, is the objective function, where xk is the current best vector of
variables, which means usually that F (xk) is the least calculated value of F (x) so
far, and where Bk is an n×n symmetric matrix, chosen before the start of the k-th
iteration. Termination may occur if ∥∇F (xk)∥ is sufficiently small, but otherwise
the iteration generates a new vector of variables, xk+dk say, the construction of
the nonzero step dk being guided by the approximation Qk(x) ≈ F (x), x ∈ Rn.
If the strict reduction F (xk+dk)<F (xk) is achieved, then xk+1 is set to xk+dk,
and the quadratic model for the next iteration is expression (1.1) with k increased
by one. The symmetric Broyden method includes a formula that defines the new
matrix Bk+1.

That formula is derived from two considerations. Firstly, when F is twice
differentiable, it has the property{ ∫ 1

α=0
∇2F (xk+ αdk) dα

}
dk = ∇F (xk+ dk)−∇F (xk), (1.2)

so the constraint
Bk+1 dk = ∇F (xk+1)−∇F (xk) (1.3)

supplies Bk+1 with some true second derivative information from the objective
function. Secondly, changes to models should not be unnecessarily large, in order
to avoid both instabilities and the replacement of good models by less accurate
ones. Specifically, Bk+1 is set to a symmetric matrix that satisfies equation (1.3),
and all the remaining freedom in Bk+1 is taken up by minimizing the Frobenius
norm ∥Bk+1−Bk∥F , the Frobenius norm of a real matrix being the square root of
the sum of squares of its elements. It is well known that the difference Bk+1−Bk

is a matrix of rank two, and that Bk+1 can be calculated from Bk in only O(n2)
operations, as shown in equation (3.6.5) of Fletcher (1987), for instance.

Let Q be the linear space of polynomials of degree at most two in n variables.
We regard Q as an inner product space by equipping it with the semi-norm

∥Q∥θ =
{
∥∇2Q∥2F + 2θ ∥∇Q(v)∥22

}1/2
, Q∈Q, (1.4)

where θ and v for the moment are a nonnegative constant and a fixed point in Rn,
respectively. The title of our work begins “Beyond symmetric Broyden”, because
we study the idea of letting θ be positive, which extends the usual approach of
taking up the freedom in Qk+1 by minimizing ∥Qk+1−Qk∥θ with θ = 0, after
satisfying the constraint (1.3) and the equations

Qk+1(xk+1) = F (xk+1) and ∇Qk+1(xk+1) = ∇F (xk+1). (1.5)
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From now on, however, our attention is given to algorithms when first derivatives
of F are not available. Then, instead of the constraints (1.3) and (1.5), we let the
conditions on Qk+1 take the form

Qk+1(y
+
j
) = F (y+

j
), j=1, 2, . . . ,m, (1.6)

where the set of points {y+
j
∈Rn : j = 1, 2, . . . ,m} includes xk+1 and is revised

automatically as the iterations proceed. The number m is a prescribed constant,
the choice m=2n+1 being mentioned in the abstract.

We combine the situations with and without first derivatives by defining A to
be the affine set in the linear space Q, such that Q∈Q satisfies the constraints on
Qk+1 if and only if Q is in A. Thus, when calculating Qk+1 from Qk, we require
Qk+1 to be the quadratic Q∈Q that solves the subproblem

Minimize ∥Q−Qk∥θ subject to Q∈A. (1.7)

In other words, Qk+1 is the closest point to Qk in the affine set A, distance being
measured by the semi-norm ∥·∥θ. It follows from the basic theory of inner product
spaces and least squares projection that Qk+1 has the property

∥Qk+1−Q∥2θ = ∥Qk−Q∥2θ − ∥Qk+1−Qk∥2θ, Q∈A. (1.8)

The case when F is a quadratic function is of interest. Then F is an element
of the affine set A, because it must satisfy the conditions on Qk+1 that are taken
from itself. Therefore the property (1.8) gives the equation

∥Qk+1− F∥2θ = ∥Qk− F∥2θ − ∥Qk+1−Qk∥2θ, k=1, 2, 3, . . . . (1.9)

We see that the errors ∥Qk−F∥θ, k=1, 2, 3, . . ., decrease monotonically and that
∥Qk+1−Qk∥θ tends to zero as k→∞. It follows from the definition (1.4) that, if
θ>0 and v∈Rn are fixed, then the changes to the quadratic models achieve both
of the conditions

lim
k→∞

∥∇2Qk+1−∇2Qk∥F = 0 and lim
k→∞

∥∇Qk+1(v)−∇Qk(v)∥2 = 0. (1.10)

If θ were zero, however, then equation (1.9) would yield only the first of these
limits. Therefore positive values of θ may be very helpful to proofs of convergence.

The book by Conn, Scheinberg and Vicente (2009) includes much careful work
on optimization without derivatives, with some convergence theory of algorithms
that employ quadratic models. That analysis requires the derivatives of the models
to be sufficiently accurate approximations to derivatives of the objective function,
and, when necessary, there are some extra evaluations of F in order to achieve
these conditions. The remarks in the last paragraph suggest, however, that a
version of the symmetric Broyden method may provide some useful theory without
any extra calculations of values of F . Further attention is given to this possibility
at the beginning of Section 5.
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An advantage of θ > 0 over θ = 0 is shown by a simple algebraic example in
Section 2, the number of variables and the number of interpolation conditions
(1.6) being only n=2 and m=4, respectively. Choices of θ and v for the norm
(1.4) are the subject of Section 3, with an explanation that constant values of
these parameters are not suitable in practice.

Section 4 compares θ> 0 with θ=0 by presenting numerical results for three
different forms of F that allow large numbers of variables, the values of n being
20, 40, 80, 160 and 320. Many features need careful attention in such calcula-
tions without derivatives, including the changes that are made to the variables
by the iterative procedure, the positions of the interpolation points of expression
(1.6), the adjustments of trust region radii, and the stability of updating pro-
cedures that provide economically some required factorizations and inverses of
matrices. Answers to these needs have been included already in the development
of the BOBYQA Fortran software (Powell, 2009), so our numerical results were
obtained by an extended version of BOBYQA, where the extension allows θ to be
positive in the subproblem (1.7) that provides the new quadratic model Qk+1, the
choices of θ>0 and v being taken from Section 3. The subproblem is not solved
exactly, because in experiments with hundreds of variables it is very welcome if
the amount of computation for each k is only O(m2+n2). Instead a conjugate
gradient procedure is truncated when enough attention seems to have been given
to the contribution from θ to the norm (1.4), a full description of this construction
of Qk+1 being supplied in Appendix A.

Section 5 provides numerically some insight into whether or not positive values
of θ may help the theoretical convergence properties of algorithms for minimization
without derivatives. The objective functions F of that section are homogeneous
quadratics, which means that they have the property

F (λx) = λ2F (x), λ∈R, x∈Rn, (1.11)

and every second derivative matrix ∇2F is positive definite. Therefore the calcu-
lated vectors xk, k=1, 2, 3, . . ., should converge to the zero vector, and the speed of
convergence can be observed even if the limited precision of computer arithmetic
causes substantial relative errors in every xk. Furthermore, the property (1.11)
implies that, if all calculated function values and all calculated vectors of variables
are scaled by λ2 and λ, respectively, at any time during the iterative procedure,
where λ is any positive constant, then the resultant changes to the later itera-
tions are by the same scaling factors. Thus the current problem is replaced by an
equivalent one occasionally in a way that avoids computer underflows. In terms
of the original scaling, this technique allows the initial and final values of ∥xk∥
in the experiments of Section 5 to be of magnitude 10 and 10−5000, respectively,
which is sufficient to expose situations where positive values of θ are beneficial to
the achievement of very high accuracy.
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2. An algebraic example

Only one new value of the objective function F is calculated on each iteration of
the BOBYQA algorithm. Let F (xk+dk) = F (y+

t
), say, be the new value of the

k-th iteration, the reason for the notation y+
t
=xk+dk being that the new value is

always included in the interpolation conditions (1.6) on Qk+1. It follows that the
other m−1 function values F (y+

j
), j ̸= t, were available when Qk was chosen, and

BOBYQA provides the property

Qk(y
+
j
) = F (y+

j
), j∈{1, 2, . . . ,m}\{t}. (2.1)

Hence the difference Qk+1(x)−Qk(x), x∈Rn, is a quadratic that vanishes at the
points x=y+

j
, j ̸= t, which allows Qk+1 to be written in the form

Qk+1(x) = Qk(x) + {F (y+
t
)−Qk(y

+
t
)} Λt(x), x∈Rn, (2.2)

for some quadratic function Λt that satisfies Λt(y
+
j
) = δjt, j = 1, 2, . . . ,m, where

δjt is the Kronecker delta. We recall from Section 1 that Qk+1 is derived from
the projection (1.7), which is equivalent to the construction of Λt ∈Q from the
subproblem

Minimize ∥Λt∥θ subject to Λt(y
+
j
)=δjt, j=1, 2, . . . ,m. (2.3)

The example of this section addresses the dependence on θ of the solution Λt

of subproblem (2.3) in a case with n=2, m=4 and v=0 in the definition (1.4).
We pick the interpolation points

y+
1
=

(
0
0

)
, y+

2
=

(
1
0

)
, y+

3
=

(
0
M

)
and y+

4
=

(
1/2
η/M

)
, (2.4)

M being large and positive and η being of magnitude one, and we pick t = 4.
These values are possible if the initial interpolation points are about distance M
apart, one of them being at the origin, and if the first three iterations of BOBYQA
replace the far interpolation points by new ones that are within distance one from
the origin. Then the situation (2.4) would occur during the second iteration, y+

2
being the new point of the first iteration, y+

4
= y+

t
being the new point of the

second iteration, and y+
3
being the initial interpolation point that is going to be

replaced by the third iteration.
The positions (2.4) with t=4 imply that Λt ∈Q satisfies Λt(y

+
j
) = 0, j ̸= t, if

and only if it has the form

Λt(x) = Λt(x, y) = p x (1− x) + q y (M − y) + r x y, x∈R2, (2.5)

for some real multipliers p, q and r. Therefore the calculation (2.3) is equivalent
to finding the values of p, q and r that minimize ∥Λt∥θ subject to the constraint

Λt(y
+
4
) = p/4 + η (1−η/M2) q + η r/(2M) = 1. (2.6)
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In the case v=0, equations (1.4) and (2.5) provide the expression

1
4
∥Λt∥2θ = 1

2
(2+θ) p2 + 1

2
(2+θM2) q2 + 1

2
r2. (2.7)

It follows from first order conditions for optimality that we require p, q and r to
be such that the gradient of expression (2.7) with respect to them is a multiple of
the gradient of the constraint function (2.6). Thus the subproblem (2.3) has the
solution

Λt(x) = χ−1

{
1

8+4 θ
x (1− x) +

η(1−η/M2)

2+θM2
y (M − y) +

η

2M
xy

}
, x∈R2,

(2.8)
for some denominator χ∈R, which takes the value

χ =
1

32+16 θ
+

η2(1−η/M2)2

2+θM2
+

η2

4M2
, (2.9)

in order to satisfy the constraint Λt(y
+
t
)=1.

When θ is zero, which holds in the construction of Qk+1 by the unextended
version of BOBYQA, equations (2.8) and (2.9) imply that Λt is approximately
the function

Λt(x) ≈ { 1
32
+ 1

2
η2}−1 { 1

8
x (1−x) + 1

2
η y (M−y) + 1

2
ηM−1x y }, x∈R2, (2.10)

the approximation being the removal of the η/M2 and η2/M2 terms because they
are much less than one. We find that expression (2.10) gives the values

∥∇2Λt∥2F ≈ 4 (η2+ 1
16
)−1 and ∥∇Λt(0)∥22 ≈ (η2M2+ 1

16
) (η2+ 1

16
)−2, (2.11)

where again an η2/M2 term has been dropped. The fact that ∥∇Λt(0)∥2 is of
magnitude M is highly unwelcome, especially because the quadratic

Λ(x) = 4x (1− x), x∈R2, (2.12)

also satisfies the constraints Λ(y+
j
)=δjt, j=1, 2, . . . ,m, of subproblem (2.3), and

it is not troubled by large values of M .
We wish to update the quadratic model in a way that avoids changes to first

and second derivatives that are much larger than necessary near xk+1. In partic-
ular, in the example of this section where M is large, we would prefer to employ
the function (2.12) instead of the function (2.8) in the case θ= 0. The use of a
positive value of θ in the norm (1.4) is intended to provide such a replacement
automatically, because then the construction of Λt gives attention to both first
and second derivatives.

We compare Λt with Λ when the magnitude of θ is one, which is assumed to
mean that both M/θ and Mθ are of magnitude M . Then the denominator (2.9)
has the property

χ−1 = 4 (8 + 4 θ) +O(M−2). (2.13)
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It follows from equations (2.8) and (2.12) that the multiple of x(1−x) in Λt(x)
is an excellent approximation to Λ(x), x∈R2. Further, if ∥x∥ is O(1), then the
other terms of Λt(x) in equation (2.8) have magnitude M−1 or less. Therefore, in
the present setting, the subproblem (2.3) supplies a quadratic Λt that is suitable
for the updating formula (2.2), provided that θ is O(1), without any need to
give careful attention to the actual value of θ. Similarly, estimates of magnitudes
are employed in the technique of the next section, that defines θ and v for the
subproblem (2.3) on every iteration of the extended version of BOBYQA.

The value θ=∞ is also of interest. Then, because of the definition (1.4), the
subproblem (2.3) becomes the minimization of ∥∇2Λt∥2F subject to the constraints

Λt(y
+
j
) = δjt, j=1, 2, . . . ,m, and ∇Λt(v) = 0. (2.14)

It is possible that these constraints cannot be satisfied by any quadratic Λt when
the subproblem (2.3) has a solution for finite θ, this situation being usual in the
case m=(n+1)(n+2)/2. In the example of this section, however, the choice θ=∞
in expressions (2.8) and (2.9) gives the function

Λt(x) = (2M/η)x y, x∈R2, (2.15)

that has the properties (2.14), but ∥∇2Λt∥2F is unacceptably large. Instead we
want θ to be reasonably small.

3. The parameters of the semi-norm

It is suggested in Section 1 that the parameters θ and v of the semi-norm (1.4) be
fixed with θ positive, in order to provide the theoretical limits (1.10) when F itself
is quadratic, but this suggestion is unsuitable in practice. Our explanation of this
assertion begins by asking whether a good choice of θ in expression (1.4) remains
good if the variables x∈Rn, are scaled by the factor σ>0, say. Then the general
quadratic Q(x), x∈Rn, becomes Q+(x+)=Q(σ−1x+), x+∈Rn, where x+=σx is
the new vector of variables. Further, because first and second derivatives of Q+ at
x+=σx are the same as first and second derivatives of Q at x=σ−1x+ multiplied
by σ−1 and σ−2, respectively, the semi-norm (1.4) has the property

{
∥∇2Q∥2F + 2θ ∥∇Q(v)∥22

}1/2
= σ2

{
∥∇2Q+∥2F + 2θ+ ∥∇Q+(σv)∥22

}1/2
, (3.1)

where θ+=σ−2θ. Thus, if θ provides a good balance between the first and second
derivative terms on the left hand side, then θ+=σ−2θ provides a good balance on
the right hand side.

The objective function F is irrelevant to the present argument, because the
purpose of the semi-norm is to take up the freedom in the quadratic Λt that is
constructed from the subproblem (2.3). In particular, the right hand sides δjt of
the constraints on Λt do not depend on F . Further, the main difference between
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the positions of the interpolation points y+
j
, j=1, 2 . . . ,m, on the early and late

iterations of BOBYQA is that, as the calculation proceeds, the points become
much closer together, perhaps by the factor σ=10−6 when six decimal places of
accuracy are required in the final vector of variables. This factor would cause
first and second derivatives of Λt to increase by factors of about 106 and 1012,
respectively, as mentioned already, and such factors can also be deduced directly
from the conditions Λt(y

+
j
)=δjt, j=1, 2 . . . ,m. In this setting a good balance in

the semi-norm (1.4) requires θ to be increased by about the factor 1012, as shown
in equation (3.1), so we abandon the idea that θ be a constant.

Keeping v fixed would be even more disastrous in practice, unless its position
is very close to the final vector of variables, but this condition is unacceptable in
the usual practical situation when the solution to the optimization calculation is
not known in advance. One can pick v within the initial cluster of interpolation
points. When the points come closer together, however, it would be usual for
v to become outside the convex hull of the cluster, and then eventually all the
distances ∥v−y+

j
∥2, j=1, 2, . . . ,m, may be bounded below by a positive constant.

Moreover, if the algorithm were working as intended, then the magnitudes of the
terms ∥∇2Λt∥F , θ and ∥∇Λt(v)∥2 of ∥Λt∥θ would beO(∆−2), O(∆−2) andO(∆−1),
respectively, where ∆ is about the distance between the current interpolation
points. A positive lower bound on ∥v−xk+1∥ with the identity

∇Λt(xk+1) = ∇Λt(v) +∇2Λt (xk+1− v), (3.2)

however, would imply that the magnitude of the term ∥∇Λt(xk+1)∥2 is likely to be
O(∆−2) instead of O(∆−1) as required. Therefore we want the ratio ∥v−xk+1∥2/∆
to be not much larger than one throughout the calculation. The extension to
BOBYQA achieves this condition by setting v = xk+1 on every iteration, the
vector xk+1 being available before the updating formula (2.2) is applied, as stated
in Section 1.

The choice of θ for the subproblem (2.3) on the k-th iteration of the extension
to BOBYQA is θ=ηk/(2δk), where ηk and δk are estimates of the magnitudes of
∥∇2Λt∥2F and ∥∇Λt(v)∥22, respectively, the actual values of ηk and δk being given
below. Thus we try to balance the two terms of the semi-norm (1.4). Because
distances between interpolation points on the first iteration are about ρbeg, where
ρbeg is the initial trust region radius supplied by the user of BOBYQA, and because
Λt has to satisfy the constraints of subproblem (2.3), the values

η1 = ρ−4
beg and δ1 = ρ−2

beg (3.3)

are picked for the first iteration.
Both ηk+1 and δk+1 are set after the construction of Λk on the k-th iteration,

partly because the actual value of ∥∇Λt(xk+1)∥22=∥∇Λt(v)∥22 gives an indication
of its magnitude. On the other hand, if m=4 and n=2 occur in the subproblem
(2.3), and if we pick the points

y+
1
=

(
0
0

)
, y+

2
=

(
1
−1

)
, y+

3
=

(
1
1

)
and y+

4
=

(
2
0

)
, (3.4)
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with t= 4, θ= 0 and v= xk+1 = xk = y+
1
, then straightforward calculation shows

that the subproblem has the solution

Λt(x) = 1
4
(x2− y2), x=(x, y)∈R2. (3.5)

The data (3.4) were chosen so that the function (3.5) has the property ∇Λt(v)=0.
It follows that this function is also the solution of subproblem (2.3) for any θ>0.
Further, the obvious choice δk+1=∥∇Λt(v)∥22 would cause θ=ηk+1/(2δk+1) to be
infinite on the next iteration, which would introduce the disadvantages that are
mentioned at the end of Section 2. We respond to this possibility by imposing
the lower bound ∆−2

k on δk+1, where ∆k is the current trust region radius, this
bound being a reasonable estimate of ∥∇Λt(v)∥22 on the next iteration, due to
the constraints Λt(y

+
j
) = δjt, j = 1, 2, . . . ,m. We also try to take advantage of

information from previous iterations. Specifically, the value of δk+1 in the extended
version of BOBYQA is given by the formula

δk+1 = max [ 0.7 δk, ∆
−2
k , ∥∇Λt(xk+1)∥22 ], k=1, 2, 3, . . . . (3.6)

The term 0.7δk occurs instead of δk on the right hand side, in order to admit the
possibility δk+1 < δk, which is often helpful if there are several increases in the
trust region radius.

It may be adequate to pick ηk+1 = ∥∇2Λt∥2F after Λt is constructed on the
k-th iteration, but, instead of being guided by Λt, we prefer to give attention to
∥∇2Λ

(0)
t ∥2F , where Λ

(0)
t (x), x ∈ Rn, is defined to be the solution to subproblem

(2.3) in the case θ=0, which has the property ∥∇2Λ
(0)
t ∥2F ≤∥∇2Λt∥2F . The main

reason for this preference is that, if θ became unsuitably large, there would be a
tendency for ∥∇2Λt∥2F to be unsuitably large too, and then ηk+1= ∥∇2Λt∥2F with
θ = ηk+1/(2δk+1) would cause the large value of θ to be inherited by the next

iteration. Instead the choice ηk+1= ∥∇2Λ
(0)
t ∥2F with formula (3.6) gives an upper

bound on the next value of θ that is independent of the current value of θ, this
bound being the product ∥∇2Λ

(0)
t ∥2F ∆2

k. It is prudent to let θ be too small in cases
of doubt, because of the good performance in practice of the unmodified version
of BOBYQA, which corresponds to setting θ=0 on every iteration. Furthermore,
we also wish to take advantage of information from previous iterations, without
forcing the sequence ηk, k=1, 2, 3, . . ., to be monotonic. Therefore the extended
version of BOBYQA employs the formula

ηk+1 = max [ 0.7 ηk, ∥∇2Λ
(0)
t ∥2F ], k=1, 2, 3, . . . . (3.7)

The specification of the values θ=ηk/(2δk), k=1, 2, 3, . . ., is complete.

4. Numerical results

The data that are required to run the extended version of BOBYQA with θ > 0
are the same as the data for the unmodified BOBYQA Fortran software that has
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been sent by e-mail to about 200 people. The objective function is specified by
a subroutine, provided by the user, that calculates F (x) for any x in Rn that
satisfies the bounds a ≤ x ≤ b, where a ∈ Rn and b ∈ Rn are also given by
the user. The components of a and b are set to −1060 and 1060, respectively,
in all our numerical experiments, which makes the bounds irrelevant. The user
also supplies the number of interpolation conditions m, introduced in equation
(1.6), and we are going to compare m = n+6 with m = 2n+1. A starting
point x0 ∈ Rn, say, has to be given too, and the first quadratic model satisfies
Q1(yj)=F (y

j
), j=1, 2, . . . ,m, where x0 is one of the points y

j
, the other points

being positioned nearby automatically (Powell, 2009). Finally, the initial and final
trust region radii, namely ρbeg and ρend, are required, the choices ρbeg=0.5 or 0.1
and ρend=10−6 being made for the numerical results of this section.

We recall that ∆k is the trust region radius of the k-th iteration. It satisfies
∆k≥ρk, where the sequence ρk, k=1, 2, 3, . . ., decreases monotonically from ρbeg
to ρend. The reduction ρk+1 < ρk is made only when it seems that the bound
∆k ≥ ρk is preventing further progress, a typical reduction being ρk+1 = 0.1 ρk.
Therefore it is usual for ρk to remain fixed for many consecutive iterations, during
which well-known techniques are employed for updating ∆k subject to ∆k ≥ ρk.
Termination occurs when the criteria for reducing ρk are achieved but ρk has
reached its final value ρend. Therefore we expect the error in the final vector of
variables to be of magnitude ρend, and this parameter provides a crude control of
accuracy.

Four versions of the extension to BOBYQA are compared for each test problem
of this section, these versions being given by combining m=n+6 or m=2n+1 with
θ=0 or θ>0. Every θ>0 is taken from the previous section, the value of θ being
changed automatically from iteration to iteration. When θ is zero, however, the
unmodified BOBYQA software could have been used, but instead all updating of
quadratic models is done by the procedure in Appendix A, so all our numerical
results are new. The three different forms of F , mentioned in Section 1, are given
below. For each of them, and for each n from {20, 40, 80, 160, 320}, we pick five
test problems by making five different choices of random numbers. Thus there are
75 different test problems altogether for our experiments with the four versions of
BOBYQA.

The first form of F has been used very much by the author, in particular in
the development of the original BOBYQA software. The objective function is the
sum of squares

F (x) =
2n∑
i=1

{
ci −

n∑
j=1

[Sij sin(xj/σj) + Cij cos(xj/σj) ]
}2

, x∈Rn, (4.1)

the parameters Sij and Cij being independent random integers from [−100, 100],
and the divisors σj being random constants from the continuous logarithmic distri-
bution on [1, 10]. Then the components of c∈R2n are defined by F (x∗)=0, after
choosing x∗ randomly from the uniform distribution on [−π, π]n. The starting
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m=n+6 m=n+6 m=2n+1 m=2n+1
n

θ=0 θ>0 θ=0 θ>0

20 1419—1584 1354—2223 786—919 991—1230
40 3622—4445 4442—5440 1692—1990 2201—3535
80 8549—9528 9048—12081 3186—3510 5535—6746
160 20169—21901 22021—39455 5733—6483 11228—19128
320 46923—51964 50379—75588 11064—12034 21723—35208

Table 1: Ranges of #F when F is the sum of squares (4.1)

vector x0 is picked by letting the weighted differences [x0−x∗]j/σj, j=1, 2, . . . , n,
be random numbers from [−π/10, π/10], where [x0−x∗]j is the j-th component of
x0−x∗. The values of ρbeg and ρend are set to 0.1 and 10−6, respectively.

Table 1 presents some of the numerical results when F has the form (4.1).
There is a row in the table for each n, and the four main columns are provided
by the four versions of the extension to BOBYQA. We recall there are five test
problems for each row, generated by different choices of random numbers. Entries
of the form a—b in the table show the least and greatest of the five values of #F
that occurred, using the version of BOBYQA that belongs to the column, where
#F is the total number of calculations of F (x) when a version of BOBYQA is
applied to a test problem. We see that, in most of the experiments of Table 1, it is
hardly ever advantageous to prefer θ>0 instead of θ=0, which is disappointing.

Next we let the objective function have the form

F (x) =
∑n−1

j=1 {(x2
j+ x2

n)
2− 4xj+ 3}, x∈Rn, (4.2)

taken from the Appendix of Conn et al (1994), and having the name ARWHEAD
because of the sparsity structure of ∇2F . We employ the usual starting point of
this example, namely x0=e∈Rn, e being the vector of ones, and we set ρbeg=0.5
and ρend = 10−6. These data define the first test problem for every n, but there
are no random numbers yet for supplying four more test problems. Therefore we
investigate whether changes to the order of the variables make much difference
in practice, by working with the five objective functions Fi(x)=F (Pix), x∈Rn,
i = 1, 2, 3, 4, 5, where the definition (4.2) is retained, where P1 is the n×n unit
matrix, and where Pi, i = 2, 3, 4, 5, are n×n permutation matrices, generated
randomly for each n. The least value of Fi(x), x ∈ Rn, occurs at the point x∗
that satisfies Pix∗=e−en, where en is the n-th coordinate vector in Rn, but the
reorderings of the variables do not disturb the starting point x0=e.

Table 2 gives some results of the ARWHEAD calculations, all details of the
format being the same as those of Table 1. We find again that most of the θ>0
values of #F are greater than the θ = 0 values. It is interesting that several
of the a—b entries in the table have the property b > 1.5a, because now all the
differences between the five test problems for each n are due only to the ordering
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m=n+6 m=n+6 m=2n+1 m=2n+1
n

θ=0 θ>0 θ=0 θ>0

20 305—616 367—576 738—801 678—765
40 822—1401 929—1569 1758—2201 2504—3083
80 1665—1915 1623—1989 5795—7016 6702—7530
160 3543—4004 3658—9492 11898—12970 15963—20382
320 8295—8992 12462—13624 8327—30130 33491—44068

Table 2: Ranges of #F when F is the ARWHEAD function (4.2)

of the variables. In particular, the five values of #F that provide the n = 40
entry in the first column are 822, 845, 852, 870 and 1401, so only one of the
calculations is much more inefficient than the rest, which suggests some kind of
instability. The author had hoped that such inefficiencies would be removed by
making θ positive, but the n= 40 entry in the second column of Table 2 comes
from the values 929, 932, 985, 1008 and 1569 of #F , while the n=160 entry in
this column is due to the values 3658, 3757, 4697, 4958 and 9492, so it seems
that any instability has survived. Furthermore, the very wide a—b range at the
bottom of the third column is given by the numbers 8327, 12103, 28403, 29195
and 30130. Fortunately, the accuracy of the calculations is not impaired by these
anomalies, the greatest value of ∥xfin−x∗∥∞ throughout the experiments of Table
2 being 1.7×10−5, where xfin and x∗ are the final and optimal vectors of variables,
respectively. Another interesting feature of Table 2, unlike Table 1, is that many
of the m=n+6 values of #F are much smaller than the corresponding m=2n+1
values.

The third and final form of F for the experiments of this section is the “chained
Rosenbrock” function

F (x) =
∑n−1

j=1 {4 (xj− x2
j+1)

2+ (1−xj+1)
2}, x∈Rn, (4.3)

which can be found in the Buckley (1989) collection of test problems. Again
the least value of F is zero, the optimal vector of variables being e ∈ Rn. The
usual starting point for minimization calculations is x0 = −e ∈ Rn, but then
convergence to a local minimum may occur. Instead we let the components of
x0 be independent random numbers from the logarithmic distribution on [0.5, 2],
and we let this randomness provide five different problems for each n. We pick
ρbeg = 0.1 and ρend = 10−6. Some results of these calculations are presented in
Table 3, using the same format as before. The entries in the m=n+6 columns for
n=160 are unusual, because they suggest clearly that #F becomes smaller when
θ becomes positive. Therefore ten more random starting points x0 were tried for
these choices of m and n. The new values of #F are in the intervals [9350, 11412]
and [7675, 8986] for θ = 0 and θ > 0, respectively, which confirms that positive
values of θ are helpful in this case. The author is puzzled by this finding.
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m=n+6 m=n+6 m=2n+1 m=2n+1
n

θ=0 θ>0 θ=0 θ>0

20 609—880 697—1664 672—808 747—970
40 1661—2222 2272—5763 1732—2164 2010—2623
80 4015—4876 4045—18547 3849—4362 3694—5406
160 9556—11557 7048—7994 8388—9280 7621—15275
320 22684—28862 16954—51500 10559—33477 19925—40106

Table 3: Ranges of #F for the chained Rosenbrock function (4.3)

There are more numerical results in the next section, but they are not relevant
to practical computation, because they investigate rates of convergence in a set-
ting that requires the optimal vector of variables to be at the origin, in order that
very high accuracy can be achieved. Therefore we ask now whether or not positive
values of θ in the semi-norm (1.4) are likely to provide more efficient software for
general optimization calculations without derivatives. Most of the comparisons
of values of #F in Tables 1–3 are not promising. Furthermore, it is disadvanta-
geous that the procedure in Appendix A for the subproblem (2.3) requires much
more work than the updating of quadratic models in the unextended version of
BOBYQA. Good support for θ > 0, however, is given by the example of Section
2. Another consideration is that Tables 1 and 2 show that efficiency can depend
strongly on the choice of m, which provides encouragement for the development of
new techniques that choose and adjust m automatically. Therefore more research
is expected, and it is too early to advance the view that going beyond symmetric
Broyden will not be useful in practice.

5. On the speed of convergence

Algorithms for unconstrained optimization that employ quadratic models are ex-
pected to achieve fast convergence eventually if the models become sufficient-
ly accurate approximations to the objective function within a suitable region of
Rn. Furthermore, Broyden, Dennis and Moré (1973) identify conditions on quasi-
Newton methods that are sufficient for superlinear convergence, this work being
a major breakthrough, because the errors in the approximations Bk = ∇2Qk ≈
∇2F (xk), k = 1, 2, 3, . . ., may remain bounded away from zero as k→∞, where
the notation is taken from equation (1.1). Similarly, BOBYQA often completes its
iterations successfully without calculating enough values of F (x), x∈Rn, for the
construction of an accurate quadratic model. For example, in all five experiments
of Table 1 with n = 320, m = 2n+1 and θ = 0, the difference between the final
vector of variables xfin and the optimal vector x∗ satisfies ∥xfin−x∗∥∞≤1.5×10−5,
but a good quadratic model cannot be constructed from only 12034 values of F ,
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n #F ∥xfin− x∗∥∞ ∥E1∥F ∥Efin∥F
20 967.2 1.7×10−6 116.3 57.2
40 2069.4 2.6×10−6 161.9 114.7
80 4176.8 2.9×10−6 226.3 191.8
160 7633.0 3.0×10−6 317.9 294.3
320 13751.6 6.4×10−6 448.3 433.9

Table 4: Some results when F is quadratic, m=2n+1 and ρend=10−6

as a quadratic in 320 variables has 51681 degrees of freedom.
The author ran some numerical experiments in 2009 that investigated the

monotonically decreasing sequence ∥∇2Qk−∇2F∥F , k = 1, 2, 3, . . ., when homo-
geneous quadratics are minimized by the unextended version of BOBYQA. The
eigenvectors of ∇2F , namely vj, j=1, 2, . . . , n, were generated randomly, v1 being
from the uniform distribution on the surface of the unit ball {x : ∥x∥2=1}, and
vj, j = 2, 3, . . . , n, being from the uniform distribution on the set {x : ∥x∥2 = 1;
xTvi =0, i=1, 2, . . . , j−1}, but the eigenvalues were in a geometric progression
from 1 to 100, which provided the objective function

F (x) = 1
2
xT
{ ∑n

j=1 100(j−1)/(n−1) vj v
T
j

}
x, x∈Rn. (5.1)

The initial vector of variables x0 was also chosen randomly subject to ∥x0∥2=1,
five different values of m were tried, and BOBYQA was given ρbeg = 0.1 and
ρend = 10−6. Further, five sets of random numbers supplied five different test
problems for each n, as in Section 4. Some results of these calculations with
m=2n+1 are shown in Table 4, all the entries being averages over the five test
problems of each row of the table. In the column headings, xfin is still the vector
of variables that is returned by BOBYQA, the matrix Ek is defined to be the
difference ∇2Qk−∇2F , and Efin is the error of the approximation ∇2Qk≈∇2F on
the last iteration.

We see in the table that #F grows no faster than linearly as n→∞, so again
#F becomes too small to allow the construction of good quadratic models when n
is large. Nevertheless, the author had not expected the entries in the last column
of the table to be so close to the entries in the previous column. When n=320
and #F = 13751, there are about 13110 terms in the monotonically decreasing
sequence ∥Ek∥F , k = 1, 2, . . .,fin, and the final term is about 96.8% of the first
term. Hence, on average, the improvement to the approximation ∇2Qk≈∇2F by
each update of the model is less than 0.00025%. Therefore, although BOBYQA
achieves good accuracy in xfin, it may be the world’s worst procedure for estimating
second derivatives of objective functions.

The function (5.1) is useful for investigating whether positive values of θ in
the semi-norm (1.4) may be helpful to the rate of convergence of the sequence xk,
k = 1, 2, 3, . . ., generated by the extended version of BOBYQA. We recall from
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m=n+6 m=n+6 m=2n+1 m=2n+1
n

θ=0 θ>0 θ=0 θ>0

20 33.6—34.6 34.1—34.8 30.1∗—35.4∗ 31.5—34.4
40 106.7—110.6 103.1—107.0 102.8—105.9 102.8—105.4
80 436.9—447.1 399.8—405.5 364.8—371.9 356.3—366.5
160 1819.9—1839.6 1537.6—1553.8 1180.5—1194.9 1159.3—1170.2

Table 5: Ranges of 10−3#F when F is quadratic and ρend=10−5000

the last paragraph of Section 1 that the homogeneity of expression (5.1) gives a
way of avoiding underflows in computer arithmetic when ρend is tiny. Specifically,
the values ρbeg=1 and ρend=10−5000 are assumed in the experiments below, and
every initial vector x0 is chosen randomly from the set {x : ∥x∥2=10}. Because
the reductions in the lower bound ρk on ∆k are by factors of ten, as mentioned in
the second paragraph of Section 4, we employ the identity

100σF (x) = F (10σx), x∈Rn, (5.2)

which is equivalent to equation (1.11), and we let σ take integer values in the range
[0, 5000], beginning with σ = 0 and ending with σ = 5000 on the final iteration.
Also, σ is increased by one whenever the reduction ρk+1=0.1ρk occurs. It follows
that, if x is of magnitude ρk for any iteration number k, then expression (5.2) is
of magnitude one, so its value can be calculated without overflows or underflows
in floating point computer arithmetic. Further, instead of storing such an x, the
values of σ and 10σx are retained, which avoids underflows too. In particular,
the vectors 10σy+

j
, j =1, 2, . . . ,m, are stored with σ instead of the interpolation

points of the conditions (1.6), and these vectors are multiplied by 10 whenever
σ is increased by one. Overflows do not occur, because the replacement of one
interpolation point on each iteration of BOBYQA tends to avoid automatically
the retention of points that are relatively far from xk.

The four versions of BOBYQA that gave the numerical results of Section 4 were
extended further to include the device in the previous paragraph, for minimizing
a homogeneous quadratic function without underflow when ρend is tiny. We apply
the extended software to the functions F that occur in the calculations of Table
4, except that the functions with n=320 are omitted, because otherwise the tiny
value of ρend would cause the total amount of computation to be inconvenient.
The choices ρbeg = 1, ρend = 10−5000 and ∥x0∥2 = 10 are employed, as mentioned
already. Some results of these calculations are shown in Table 5, with #F scaled
by 10−3, but otherwise the format is taken from the tables of Section 4. We find
now that, in most cases with m=n+6 and in all of the tests with n=160, going
“beyond symmetric Broyden” does reduce the number of iterations.

The n=20 entry in the third column of Table 5 includes asterisks that denote
failure to achieve the required accuracy in one of the five test problems, but all
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Average #F for each Average #F for each
n ∥Efin∥F ρ ∈ [10−1500, 10−501] ρ ∈ [10−5000, 10−4001]

20 0.000032 / 0.000027 6.67 / 6.76 3.91 / 3.90
40 0.002107 / 0.001448 23.56 / 22.89 9.18 / 8.96
80 0.304445 / 0.230877 119.05 / 103.92 32.86 / 32.21
160 34.62499 / 26.13208 436.25 / 352.69 200.73 / 173.07

Table 6: On the rate of convergence of the Table 5 tests with m=n+6

the other runs finished successfully. In the bad case, an error return occurs after
26370 calculations of F , the final accuracy being ∥xfin−x∗∥∞=0.84×10−3720, so
this value of #F is excluded from the table. In all other cases of Table 5, the
norms ∥xfin−x∗∥∞ are satisfactory, the greatest of them being 1.64×10−5000. A
major difficulty in maintaining adequate accuracy is that some of the distances
∥y+

j
−xk+1∥, j=1, 2, . . . ,m, from the interpolation points to the trust region centre,

become much larger than ∆k. For instance, in the experiment of Table 5 with
n=20, m=2n+1 and θ=0 that gives 10−3#F =30.1, there are on average about
6 calculations of the objective function for every reduction in ∆k by a factor of
10, so m=41 implies that on average ∆k is decreased about 7 times during the
retention of each new F . Thus some of the ratios ∥y+

j
∥/∆k, j=1, 2, . . . ,m, exceed

107. At the error return mentioned above, the greatest ratio is 1.06×109, and
there are even larger ratios in some of the other calculations.

One purpose of the tests of Table 5 is to investigate the sequence of errors
Ek=∇2Qk−∇2F , k=1, 2, 3, . . ., as k becomes large. We recall the property of the
symmetric Broyden method that ∥Ek∥F decreases monotonically as k increases
when F is quadratic and θ is zero. The accuracy of our experiments is sufficient
to demonstrate this property numerically with ρend = 10−5000 and n ≥ 20, but,
for n = 10, the norms ∥Ek∥F become of the magnitude of computer rounding
errors in the difference ∇2Qk−∇2F . The final values of these norms provide the
∥Efin∥F column of Table 6 for the m= n+6 calculations of Table 5, each entry
being of the form a / b, where a and b are taken from the θ= 0 and θ > 0 tests,
respectively. Both a and b are averages of the final values of ∥Ek∥F for the five
objective functions that are generated randomly for each n. We see that smaller
values of ∥Efin∥F are obtained by going beyond symmetric Broyden, in spite of
the loss of monotonicity in the sequence ∥Ek∥F , k = 1, 2, . . . ,fin. It seems that
∥Ek∥F tends to zero in exact arithmetic as k→∞, although, when n is 160, more
than 106 iterations are required to reduce ∥Ek∥F from its initial value by a factor
of ten.

If our extended version of BOBYQA had superlinear convergence, then, in
exact arithmetic, the number of reductions in the lower bound ρ on ∆k by a factor
of ten would be infinite, and the average number of calculations of the objective
function for each ρ would tend to zero. This situation would be unsustainable
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m=n+6 m=n+6 m=2n+1 m=2n+1
ℓ

θ=0 θ>0 θ=0 θ>0

1 222.4—228.2 198.9—200.9 157.1—159.9 161.2—166.0
2 308.4—317.5 277.2—279.8 229.8—234.2 231.6—238.4
3 363.2—373.5 328.9—332.9 283.5—289.1 280.4—289.0
4 404.0—414.3 367.9—373.0 326.8—333.5 320.0—329.7
5 436.9—447.1 399.8—405.5 364.8—371.9 356.3—366.5

Table 7: Ranges of 10−3#F to achieve F (xk+1)≤10−2000ℓ twice when n=80

in practice, however, because, as mentioned at the end of the paragraph before
last, some of the ratios ∥y+

j
∥/∆k, j=1, 2, . . . ,m, would become infinite. Therefore

BOBYQA includes the feature that usually a reduction in ρ is not allowed until at
least three new values of F have been generated for the current ρ, which excludes
superlinear convergence. This limiting behaviour is nearly achieved in practice by
the n= 20 experiments of Table 5, the average number of calculations of F for
each new ρ in the interval [10−5000, 10−4001] being less than four. The last column
of Table 6 shows these averages for m = n+6 and our usual choices of n, the
notation a / b being employed as before to separate the θ=0 results from the θ>0
results. The averages when ρ is in the interval [10−1500, 10−501] are also recorded.
We note that the entries in the last column of Table 6 are much less than the
corresponding entries in the previous column. The growth in the entries of the
final column as n increases may be due to the magnitudes of ∥∇2Qk−∇2F∥F ,
which have been addressed briefly already. All the figures in the last three rows
of Table 6 suggest that θ > 0 is more efficient than θ= 0, but the reader should
look again at the last paragraph of Section 4.

Table 7 was added to the original version of this paper, in order to show
faster convergence as k increases in a way proposed by a referee. It goes beyond
the n = 80 row of Table 5 by providing values of 10−3#F when the algorithm
achieves F (xk+1)≤ 10−2000ℓ for the second time for ℓ∈ {1, 2, 3, 4, 5}, except that
each ℓ = 5 entry is replaced by the final value of 10−3#F . The use of second
time instead of first time avoids distortion of the results by iterations that cause
F (xk+1) to be much smaller than usual for the current ρ. The differences between
the rows of Table 7 demonstrate that, for all four versions of BOBYQA, the speed
of convergence becomes faster as the iterations proceed, the gains being stronger
when θ is positive.

17



Acknowledgements

Much of the work of this paper was done at the Liu Bie Ju Centre for Mathematical
Sciences of the City University of Hong Kong. The author is very grateful for the
excellent support, facilities and welcome that he enjoyed there from January to
March, 2010. He is also very grateful to two referees for several suggestions that
have improved the presentation.

References

C.G. Broyden, J.E. Dennis and J.J. Moré (1973), “On the local and super-
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Appendix A. The calculation of Λt

We recall from Sections 1 and 2 that the quadratic model of our extension to
BOBYQA is updated by the formula

Qk+1(x) = Qk(x) + {F (y+
t
)−Qk(y

+
t
)}Λt(x), x∈Rn. (A.1)

The vector y+
t
=xk+dk is the new interpolation point of the k-th iteration, and the

function Λt is a convenient estimate of the quadratic polynomial that minimizes
the semi-norm

∥Λt∥θ =
{
∥∇2Λt∥2F + 2θ ∥∇Λt(v)∥22

}1/2
, (A.2)

subject to the Lagrange interpolation equations

Λt(y
+
j
) = δjt, j=1, 2, . . . ,m, (A.3)

the choices of θ and v being specified in Section 3. The procedure that constructs
Λt in all the calculations of Tables 1–3 and 5–7 is described in this appendix,
after some relevant theory. Usually it requires only O(n2) operations when m is
of magnitude n, this small amount of work being achieved by applying a version
of truncated conjugate gradients that provides an approximation to the optimal
Λt. Then a refinement procedure satisfies the conditions (A.3) exactly except for
contributions from computer rounding errors.

We write Λt in the form

Λt(x) = c+ (x−v)Tg + 1
2
(x−v)TG (x−v), x∈Rn, (A.4)

and assume for the moment that the number c∈R, the components of g∈Rn and
the elements of the n×n matrix G have the values that minimize the expression

1
4
∥Λt∥2θ = 1

4
∥G∥2F + 1

2
θ ∥g∥22, (A.5)

subject to the constraints

c+ (y+
j
−v)Tg + 1

2
(y+

j
−v)TG (y+

j
−v) = δjt, j=1, 2, . . . ,m, (A.6)

which is a quadratic programming problem. The contributions to the first order
KKT conditions of this problem from first derivatives with respect to the elements
of G supply the identity

G =
∑m

ℓ=1 µℓ (y
+
ℓ
−v) (y+

ℓ
−v)T , (A.7)

the multipliers µℓ, ℓ=1, 2, . . . ,m, being the Lagrange parameters of the constraints
(A.6) in the KKT conditions. Furthermore, differentiation with respect to c and
the components of g shows that these multipliers also have the properties∑m

ℓ=1 µℓ = 0 and
∑m

ℓ=1 µℓ (y
+
ℓ
−v) = θ g. (A.8)
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By substituting the form (A.7) into expression (A.6), we deduce that these con-
straints with the properties (A.8) provide the (m+n+1)×(m+n+1) linear system
of equations 

A e Y T

eT 0 0

Y 0 0




µ

c

g

 =


et

0

θ g

 , (A.9)

where A is the m×m matrix with the elements

Ajℓ = 1
2

{
(y+

j
− v)T (y+

ℓ
− v)

}2
, j=1, 2, . . . ,m, ℓ=1, 2, . . . ,m, (A.10)

where all the components of e ∈ Rm are 1, where Y is the n×m matrix with
the columns y+

ℓ
−v, ℓ=1, 2, . . . ,m, and where et is the t-th coordinate vector in

Rm. Putting the θg term of the system (A.9) on the right hand side brings the
advantage that the matrix on the left hand side is independent of θ.

The techniques of BOBYQA for updating the interpolation points y+
j
, j =

1, 2, . . . ,m, ensure that the matrix on the left hand side of expression (A.9) is
nonsingular. We write its inverse in the partitioned form


A e Y T

eT 0 0

Y 0 0


−1

=


Ωv εv ΓT

v

εTv ξv ωT
v

Γv ωv Υv

 , (A.11)

the dependence on v that is indicated by the subscripts being important later.
We also assume for the moment that the submatrices Ωv, Γv and Υv are available,
their dimensions being m×m, n×m and n×n, respectively. Let the system (A.9)
be multiplied by the inverse matrix (A.11). Then the last n components of the
product are the relation

g = Γv et + θΥv g. (A.12)

The elements (A.10) make A positive definite or semi-definite, which is going to

be demonstrated neatly when we address the calculation of the term ∥∇2Λ
(0)
t ∥2F in

formula (3.7). It follows that Υv in expressions (A.11) and (A.12) has no positive
eigenvalues, so the eigenvalues of the n×n matrix I−θΥv are bounded below by
one for θ≥ 0. We regard the solution of the system (A.12) as the unconstrained
minimization of the strictly convex quadratic function

Φ(g) = −gT Γv et +
1
2
gT (I − θΥv) g, g∈Rn. (A.13)

Indeed, unless the choice g = Γvet is made as mentioned below, we construct g
by applying a few iterations of the conjugate gradient method with exact line
searches to the function (A.13), starting at g = 0 = g(0), say, this method being
described in Fletcher (1987), for instance. The ℓ-th conjugate gradient iteration
obtains g(ℓ) by searching from g(ℓ−1) along a direction d(ℓ), the work for each ℓ

being only O(n), except that d(ℓ) has to be multiplied by the matrix (I−θΥv).
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The numbers Φ(g(ℓ)), ℓ≥ 0, and the gradients ∇Φ(g(ℓ)) are calculated during

the conjugate gradient iterations, ∇Φ(g(ℓ)) being important to the choice of d(ℓ+1).

The iterations are terminated, g(ℓ) being accepted as a sufficiently accurate esti-

mate of the minimizer of the function (A.13), g(opt) say, when one (or both) of the
conditions

Φ(g(ℓ−1))− Φ(g(ℓ)) ≤ 0.01
{
Φ(g(0))− Φ(g(ℓ−1))

}
and ∥∇Φ(g(ℓ))∥ ≤ 0.01 ∥y+

s
− xk+1∥−1

 (A.14)

is achieved, where y+
s
is the closest point to xk+1 in the set {y+

j
: j=1, 2, . . . ,m}

excluding xk+1. The first test causes truncation if the reductions in Φ become
relatively small. The other test is derived from the view that, because gradients
of magnitude ∥y+

s
−xk+1∥−1 are unavoidable near xk+1 in some Lagrange functions

even if θ is huge, errors of at most 0.01 ∥y+
s
−xk+1∥−1 in the estimate g(ℓ)≈g(opt)

are tolerable. The negative definiteness of Υv in the definition (A.13) provides the
bound

∥ g(ℓ)− g(opt)∥ ≤ ∥ (I − θΥv) (g
(ℓ) − g(opt))∥

= ∥∇Φ(g(ℓ))−∇Φ(g(opt))∥ = ∥∇Φ(g(ℓ))∥. (A.15)

Therefore the second test of expression (A.14) is suitable.
We return to the case when the estimate g(ℓ)≈g(opt) is picked with ℓ≥1, after

considering two other situations that are without conjugate gradient iterations.
This happens when θ is zero, because then expressions (A.9) and (A.11) show
that the parameters g=Γvet and µ=Ωvet provide the required Lagrange function
(A.4), G being the matrix (A.7). The value c=Λt(v) is taken directly from the
constraints (A.3), as v=xk+1 is one of the points y

+
j
, j=1, 2, . . . ,m. Furthermore,

this Lagrange function is selected in all situations without conjugate gradients
even if θ is positive.

In particular, the second of the inequalities (A.14) is tested for ℓ= 0 before
any conjugate gradient iterations, and if it holds we switch to the procedure of
the previous paragraph. In this case ∇Φ(g(ℓ)) is the vector ∇Φ(g(0)) =∇Φ(0) =

−Γvet, and g is set to Γvet, which supplies the estimate Γvet ≈ g(opt) instead of

the approximation g(ℓ) ≈ g(opt) that occurred before. Therefore we ask whether

the error ∥Γvet−g(opt)∥ is also bounded above by 0.01 ∥y+
s
−xk+1∥−1. The identity

g(opt)=(I−θΥv)
−1Γvet provides the equation

∥Γv et− g(opt)∥ = ∥ (I − θΥv)
−1 (−θΥv) Γv et∥, (A.16)

and the negative definiteness of Υv with θ≥ 0 implies that all the eigenvalues of
the symmetric matrix (I−θΥv)

−1(−θΥv) are in the interval [0, 1). Thus expression
(A.16) is at most ∥Γvet∥=∥∇Φ(g(0))∥, which gives the required result.

We now address the situation when the inverse matrix (A.11) is not available,
which happens on most iterations, because the task of calculating the matrix
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directly, or of constructing it by an updating procedure from the inverse matrix
of a previous iteration when v is changed, requires O(n3) operations, due mainly
to the property that the elements (A.10) are quartic functions of v. Therefore
BOBYQA works with the inverse matrix on the right hand side of the equation

A0 e Y T
0

eT 0 0

Y0 0 0


−1

=


Ω0 ε0 ΓT

0

εT0 ξ0 ωT
0

Γ0 ω0 Υ0

 , (A.17)

where A0 has the elements 1
2
{(y+

j
−x0)

T (y+
ℓ
−x0)}2, 1 ≤ j, ℓ ≤m, where Y0 has

the columns y+
ℓ
−x0, ℓ=1, 2, . . . ,m, and where x0 is a suitable point that usually

remains fixed for several consecutive iterations. When the k-th iteration replaces
the old point y

t
by y+

t
= xk+dk, as mentioned in the first paragraph of Section

2, only the t-th row and column of the matrix on the left hand side of expression
(A.17) are altered for fixed x0, which allows the right hand side to be updated
in only O(n2) operations, details being given in Powell (2004b). That procedure
has excellent stability properties, it stores and revises only the submatrices Ω0,
Γ0 and Υ0, and Ω0 is in a factored form that preserves its rank and its positive
semi-definiteness. These features are retained in our extension to BOBYQA.

It is important to the accuracy of BOBYQA in practice to keep x0 fairly
close to the interpolation points y+

j
, j=1, 2, . . . ,m, so x0 is shifted occasionally.

We assume temporarily that the k-th iteration moves x0 to the new position
v = xk+1, knowing this does not happen on most iterations, because then the
matrices (A.11) and (A.17) become the same. Thus the operations of the shift,
described in Section 5 of Powell (2004a), include formulae that express Ωv, Γv and
Υv in terms of the available submatrices Ω0, Γ0 and Υ0. Specifically, for fixed x0,
the required submatrices are given by the product(

Ωv ΓT
v

Γv Υv

)
=

(
I 0

Z I

) (
Ω0 ΓT

0

Γ0 Υ0

) (
I ZT

0 I

)
, (A.18)

where Z is the n×m matrix that has the columns

zj =
{
(y+

j
− 1

2
x0− 1

2
v)T (v − x0)

}
(y+

j
− 1

2
x0− 1

2
v), j=1, 2, . . . ,m. (A.19)

The reader may notice that this choice of zj is without the term
1
4
∥v−x0∥2(v−x0)

that occurs in the definition of zj in Powell (2004a). These terms alter Z by the
rank one matrix 1

4
∥v−x0∥2(v−x0)e

T , which does not disturb the product (A.18),
because the definition (A.17) gives the conditions eTΩ0=0 and eTΓT

0 =0.
We now return to the calculation of g(ℓ) from g(ℓ−1) by the ℓ-th iteration of

the truncated conjugate gradient procedure. Equation (A.18) provides our way
of multiplying the direction d(ℓ) by (I−θΥv) in only O(n2) operations. Indeed, it
gives the formula

Υv d
(ℓ) =

{
ZΩ0Z

T + ZΓT
0 + Γ0Z

T +Υ0

}
d(ℓ)

= Z
{
Ω0(Z

Td(ℓ)) + ΓT
0 d

(ℓ)
}
+ Γ0 (Z

Td(ℓ)) + Υ0 d
(ℓ). (A.20)
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The vector (ZTd(ℓ)) ∈ Rm has the components zTj d
(ℓ), j = 1, 2, . . . ,m, and the

product Z {Ω0(Z
Td(ℓ))+ΓT

0 d
(ℓ)} can be formed as a linear combination of the

columns of Z. The other multiplications of vectors by matrices in expression
(A.20) are straightforward, the matrices being Ω0, Γ0 and Υ0, which are available.
The description of the truncated conjugate gradient procedure for seeking the
approximate minimum of the function (A.13) is now complete, except for the
calculation of the initial search direction d(1)=−∇Φ(g(0))=−∇Φ(0)=Γvet.

Equation (A.18) implies that Γvet is the vector (Γ0+ZΩ0)et, but we prefer
an equivalent form that is without the dependence on Z, this form being the
expression

Γvet = Γ0 et +
∑m

j=1 µj (y
+
j
− v) (y+

j
− v)T (v − x0), (A.21)

where µj, j=1, 2, . . . ,m, are now the components of Ω0 et. In order to show the
equivalence, we note that, because ZΩ0 et is the sum

∑m
j=1 µjzj, a rearrangement

of the definition (A.19) supplies the identity

ZΩ0 et =
∑m

j=1 µj (y
+
j
− 1

2
x0− 1

2
v) (y+

j
− 1

2
x0− 1

2
v)T (v−x0). (A.22)

Moreover, equation (A.17) gives not only eTΩ0 = 0 but also Y0Ω0 = 0, providing
both eTΩ0 et=0 and Y0Ω0 et=0, which are the conditions∑m

j=1 µj = 0 and
∑m

j=1 µj (y
+
j
− x0) = 0. (A.23)

It follows that the sum of equation (A.21) is the vector ZΩ0 et as required.

Formula (A.21) is also useful in the construction of Λ
(0)
t (x), x ∈ Rn, which

is defined in the last paragraph of Section 3 to be the quadratic that minimizes
expression (A.2) subject to the constraints (A.3) when θ is zero. The parameters

of Λ
(0)
t are given by the system (A.9) with θ=0, so the definition (A.11) provides

µ=Ωvet and g=Γvet. Therefore, because the product (A.18) implies Ωv=Ω0, the
components of µ are those that occur in the previous paragraph, and g is the vector

(A.21). These remarks give the parameters of Λt when Λt is set to Λ
(0)
t , which

happens if and only if there are no conjugate gradient iterations. Furthermore, the
value of ∥∇2Λ

(0)
t ∥2F is required for equation (3.7), its calculation being addressed

next.
The square of the Frobenius norm of a real matrix is the trace of the matrix

times its transpose. Thus expression (A.7) provides the formula

∥G∥2F = Trace
{ m∑
j=1

µj (y
+
j
− v) (y+

j
− v)T

m∑
ℓ=1

µℓ (y
+
ℓ
− v) (y+

ℓ
− v)T

}

= Trace
{ m∑
j=1

m∑
ℓ=1

µj µℓ (y
+
j
− v) (y+

j
− v)T (y+

ℓ
− v) (y+

ℓ
− v)T

}

=
m∑
j=1

m∑
ℓ=1

µj µℓ

{
(y+

j
− v)T (y+

ℓ
− v)

}2
= 2µTAµ, (A.24)
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where A has the elements (A.10). This equation is valid for general µ∈Rm, and
the left hand side is always nonnegative, which establishes the result stated earlier
that A is positive definite or semi-definite. The work of applying this formula is
reduced to O(n2) operations by employing the scalar products

Ξjℓ = (y+
j
− v)T (y+

ℓ
−v) = (y+

j
− xk+1)

T (y+
ℓ
−xk+1), j, ℓ=1, 2, . . . ,m. (A.25)

They are calculated for v=x1 before the first iteration, and they are updated on
every iteration, the work of this updating for each k being only O(n2), even if

xk+1 is different from xk. We recall from the previous paragraph that G=∇2Λ
(0)
t

is the matrix (A.7) when the multipliers µj, j =1, 2, . . . ,m, are the components
of Ω0 et. Then equations (A.24) and (A.25) supply the value

∥∇2Λ
(0)
t ∥2F =

m∑
j=1

m∑
ℓ=1

µj µℓ Ξ
2
jℓ. (A.26)

Thus the implementation of formula (3.7) by the extended version of BOBYQA
takes only O(n2) operations, due to our assumption m=O(n).

The remainder of this appendix completes the description of the choice of Λt

after the truncated conjugate gradient method has constructed an estimate g(ℓ)

with ℓ≥1 of the vector g(opt) that minimizes the function (A.13). We recall that

g(opt) is the g defined by the system (A.9), and we let µ(opt) be the corresponding
value of µ. By multiplying the system by the inverse matrix (A.11) again, we find
that the first m components of the product are the expression

µ(opt) = Ωv et + θ ΓT
v g

(opt) = Ω0 et + θ (ΓT
0 + Ω0 Z

T ) g(opt), (A.27)

where the last equation depends on the relation (A.18). The replacement of g(opt)

by g(ℓ)=g(est), say, provides the estimate

µ(est) = Ω0 et + θ ΓT
0 g

(est) + θΩ0 (Z
Tg(est)) (A.28)

of µ(opt), which is calculated in a way that depends on the properties Ω0 e=0 and
Ω0Y

T
0 = 0, mentioned already and implied by equation (A.17). Specifically, the

definition (A.19) allows the components of ZTg(est) to be replaced by the numbers

(y+
j
−v)T (v−x0) (y

+
j
−v)Tg(est), j=1, 2, . . . ,m.

After g(est) = g(ℓ) and µ(est) are constructed, it is assumed there is no need to
give further attention to the fact that θ is positive in the semi-norm (A.2). Indeed,
our stopping conditions for the conjugate gradient iterations are intended to take
sufficient account of θ > 0 in a way that keeps ℓ small. On the other hand, we
require our choice of Λt to satisfy the Lagrange interpolation equations (A.3) to
high accuracy, assuming that computer rounding errors are negligible.

Therefore the final choice of Λt is a perturbation of the estimate

Λ
(est)
t (x) = Λt(v) + (x−v)Tg(est) + 1

2
(x−v)TG(est)(x−v), x∈Rn, (A.29)
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where the value of Λt(v) is taken from equation (A.3) with v=xk+1, where G(est)

is the matrix
G(est) =

∑m
ℓ=1 µ

(est)
ℓ (y+

ℓ
−v) (y+

ℓ
−v)T , (A.30)

and where the perturbation is defined in a way that achieves all of the conditions
(A.3).

The values Λ
(est)
t (y+

j
), j=1, 2, . . . ,m, are calculated by applying the formula

Λ
(est)
t (y+

j
) = Λt(v) + (y+

j
− v)Tg(est) + 1

2
(y+

j
− v)TG(est)(y+

j
− v)

= Λt(v) + (y+
j
− v)Tg(est) + 1

2

m∑
ℓ=1

µ
(est)
ℓ Ξ2

jℓ, j=1, 2, . . . ,m, (A.31)

which requires only O(n2) operations altogether, because the scalar products

(A.25) are available. Then Λt is the sum Λ
(est)
t (x)+Π(x), x ∈ Rn, where the

perturbation Π is a quadratic polynomial that satisfies the constraints

Π(y+
j
) = δjt − Λ

(est)
t (y+

j
), j=1, 2, . . . ,m. (A.32)

It is convenient to take up the freedom in Π by minimizing ∥∇2Π∥F , which is the
familiar symmetric Broyden method.

Indeed, by putting θ = 0 and v = x0 in the variational calculation that gives
the linear system (A.9), we find that the perturbation Π is the function

Π(x) = Π(x0) + (x− x0)
Tg(π) + 1

2
(x−x0)

TG(π)(x− x0), x∈Rn, (A.33)

with the second derivative matrix

G(π) =
∑m

ℓ=1 µ
(π)
ℓ (y+

ℓ
− x0) (y

+
ℓ
− x0)

T , (A.34)

where g(π)∈Rn and µ(π)∈Rm are defined by the linear system of equations
A0 e Y T

0

eT 0 0

Y0 0 0




µ(π)

Π(x0)

g(π)

 =


r

0

0

 , (A.35)

the components of r being the right hand sides of expression (A.32). Therefore
the inverse matrix (A.17), which is available, supplies the values g(π) = Γ0 r and

µ(π)=Ω0 r. Further, because the properties eTΩ0=0 and Y0Ω0=0 provide both

eTµ(π)=0 and Y0µ
(π)=0, which are the constraints (A.23) with µ=µ(π), we may

change x0 to v in expression (A.34). It follows that, writing Λt=Λ
(est)
t +Π in the

form (A.4) with the second derivative matrix (A.7), its parameters g ∈ Rn and
µ∈Rm take the values

g = g(est) +∇Π(v) = g(est) + g(π) +G(π) (v − x0)

= g(est) + Γ0 r +
∑m

ℓ=1 µ
(π)
ℓ (y+

ℓ
− v) (y+

ℓ
− v)T (v−x0) (A.36)

and µ= µ(est)+µ(π). The description of the construction of Λt by the extended
version of BOBYQA is complete.
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