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Abstract
The fundamental theorem of surface theory asserts that, if a field of positive definite

symmetric matrices of order two and a field of symmetric matrices of order two together
satisfy the Gauß and Codazzi–Mainardi equations in a connected and simply connected
open subset of R2, then there exists a surface in R3 with these fields as its first and
second fundamental forms and this surface is unique up to isometries in R3. We
establish here that a surface defined in this fashion varies continuously as a function
of its two fundamental forms, for certain natural topologies.

Sur la continuité d’une surface en fonction
de ses deux formes fondamentales

Résumé
Le théorème fondamental de la théorie des surfaces affirme que, si un champ de ma-

trices symétriques définies positives d’ordre deux et un champ de matrices symétriques
d’ordre deux vérifient ensemble les équations de Gauß et de Codazzi–Mainardi dans un
ouvert connexe et simplement connexe de R2, alors il existe une surface dans R3 dont
ces champs sont les première et deuxième formes fondamentales et cette surface est
unique aux isométries de R3 près. On établit ici qu’une surface définie de cette façon
varie continûment en fonction de ses deux formes fondamentales, pour des topologies
convenables.

1E–mail addresses: mapgc@cityu.edu.hk, pgc@ann.jussieu.fr
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Introduction

In two–dimensional nonlinear shell theories, the stored energy functions are often func-
tions of the first and second fundamental forms of the unknown deformed middle sur-
face. For instance, the well–known stored energy function wK proposed by Koiter [13,
Equations (4.2), (8.1), and (8.3)] for modeling shells made with a homogeneous and
isotropic elastic material takes the form:

wK =
ε

2
aαβστ (ãστ−aστ )(ãαβ−aαβ) +

ε3

6
aαβστ (̃bστ−bστ )(̃bαβ−bαβ),

where 2ε is the thickness of the shell,

aαβστ :=
4λµ

λ + 2µ
aαβaστ + 2µ(aασaβτ+aατaβσ),

λ > 0 and µ > 0 are the two Lamé constants of the constituting material, aαβ and bαβ

are the covariant components of the first and second fundamental forms of the given
undeformed middle surface, (aαβ) = (aαβ)−1, and finally ãαβ and b̃αβ are the covariant
components of the first and second fundamental forms of the unknown deformed middle
surface under the action of given applied forces. Naturally, appropriate boundary
conditions should also be specified along the boundary of the middle surface.

The stored energy function wK was derived by W.T. Koiter from the three–dimen-
sional one on the basis of various a priori assumptions of mechanical and geometrical
nature. It comprises the “membrane” part

wM =
ε

2
aαβστ (ãστ−aστ )(ãαβ−aαβ)

and the “flexural” part

wF =
ε3

6
aαβστ (̃bστ−bστ )(̃bαβ−bαβ).

The long–standing question of how to rigorously identify two–dimensional equations
of nonlinearly elastic shells from three–dimensional elasticity was finally settled in two
key contributions, one by Le Dret & Raoult [14] and one by Friesecke, James, Mora &
Müller [11], who respectively justified the equations of a membrane shell and those of a
flexural shell by means of Γ–convergence theory (a shell is a membrane one if there are
no nonzero admissible displacements of its middle surface S that preserve the metric
of S; it is a flexural one otherwise).

The stored energy function of a membrane shell is an ad hoc quasiconvex envelope,
which turns out to be only a function of the covariant components ãαβ of the first
fundamental form of the unknown deformed middle surface. It reduces to the above
“membrane” part wM in Koiter’s stored energy function wK for a specific class of
displacement fields of the middle surface. By contrast, the stored energy function of a
flexural shell is always equal to the above “flexural” part wF in Koiter’s stored energy
function wK .
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Interestingly, a formal asymptotic analysis of the three–dimensional equations is
only capable of delivering the above “restricted” expression wM , but otherwise fails to
provide the general expression, i.e., valid for all types of displacements, found by Le
Dret & Raoult [14]; by contrast, the same formal approach yields the correct expression
wF . For details, see Miara [16], Lods & Miara [15], and Ciarlet [6].

An inspection of the above stored energy functions thus suggests a tempting ap-
proach to shell theory, where the functions ãαβ and b̃αβ would be regarded as the primary
unknowns in lieu of the customary (Cartesian or curvilinear) components of the dis-

placement. In such an approach, the unknown components ãαβ and b̃αβ must naturally
satisfy the classical Gauß and Codazzi–Mainardi equations in order that they actually
define a surface. Likewise, the force terms in the energy and the boundary conditions
on the displacements must be adequately expressed in terms of these new unknowns.

The present paper, whose results have been announced in Ciarlet [7], constitutes one
step in this direction: Its purpose is to establish that there exist metrizable topologies
for which a surface in R3 is a continuous function of its two fundamental forms. A
welcome, but certainly challenging, extension would be to obtain a similar result for
Sobolev–type norms, more likely to be encountered in, e.g., an analysis of existence
theory undertaken from this perspective.

1 Formulation of the problem

To begin with, we list some notations and conventions that will be consistently used
throughout the article.

All spaces, matrices, etc., considered are real. The notations Md, Od, Sd, and
Sd

> respectively designate the sets of all square matrices of order d, of all orthogonal
matrices of order d, of all symmetric matrices of order d, and of all symmetric and
positive definite matrices of order d.

Latin indices and exponents vary in the set {1, 2, 3} except when they are used for
indexing sequences or when otherwise indicated, Greek indices and exponents vary in
the set {1, 2} except when otherwise indicated, and the summation convention with
respect to repeated indices or exponents is used in conjunction with these rules. Kro-
necker’s symbols are designated by δij or δj

i according to the context.
Let E3 denote a three–dimensional Euclidean space, let a · b and a ∧ b denote the

Euclidean inner product and exterior product of a, b ∈ E3, and let |a| =
√
a · a denote

the Euclidean norm of a ∈ E3.
Let there be given a two–dimensional vector space, identified with R2. Let yα denote

the coordinates of a point y ∈ R2 and let ∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ.
Let ω be an open subset of R2 and let θ ∈ C2(ω;E3) be an immersion, i.e., a

mapping such that the two vectors ∂αθ(y) are linearly independent at all points y ∈ ω.
The image θ(ω) is a surface in E3.

The first fundamental form of the surface θ(ω) is defined by means of its covariant
components

aαβ(y) := ∂αθ(y) · ∂βθ(y), y ∈ ω,
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which are used in particular for computing lengths of curves on the surface θ(ω),
considered as being isometrically imbedded in E3.

The second fundamental form of the surface θ(ω) is defined by means of its covariant
components

bαβ(y) := ∂αβθ(y) ·
{ ∂1θ(y) ∧ ∂2θ(y)

|∂1θ(y) ∧ ∂2θ(y)|

}
, y ∈ ω,

which, together with those of the first fundamental form, are used for computing cur-
vatures of curves on the surface θ(ω).

It is well known that the matrix fields (aαβ) : ω → S2
> and (bαβ) : ω → S2 defined in

this fashion cannot be arbitrary. More specifically, given an immersion θ ∈ C3(ω;E3),
let the functions Cαβτ ∈ C1(ω) and Cσ

αβ ∈ C1(ω) be defined by

Cαβτ :=
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ) and Cσ

αβ := aστCαβτ , where (aστ ) := (aαβ)−1.

Then the functions aαβ and bαβ and some of their partial derivatives must satisfy
the following relations (according to our rule governing Greek indices, these relations
are meant to hold for all α, β, σ, τ ∈ {1, 2}):

∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Cµ
ασbβµ − Cµ

αβbσµ = 0 in ω,

which respectively constitute the Gauß, and Codazzi–Mainardi, equations.

To see this, let aα := ∂αθ and a3 :=
a1 ∧ a2

|a1 ∧ a2|
. As is easily verified, the Gauß and

Codazzi–Mainardi equations simply amount to re–writing the relations ∂ασaβ = ∂αβaσ

in the form of the equivalent relations

∂ασaβ · aτ = ∂αβaσ · aτ and ∂ασaβ · a3 = ∂αβaσ · a3.

The vectors aα introduced above form the covariant basis of the tangent plane to
the surface θ(ω), while the unit vector a3 is normal to the surface. The functions aαβ

are the contravariant components of the metric tensor, the functions and Cαβτ Cσ
αβ are

the Christoffel symbols of the first and second kind, and finally, the functions

Sταβσ := ∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ

are the covariant components of the Riemann–Christoffel curvature tensor of the sur-
face θ(ω).

Remark. The notations Cαβτ and Cσ
αβ are intended to avoid confusions with the

“three–dimensional” Christoffel symbols Γijq and Γp
ij introduced in Section 2. The

notations Sταβσ are likewise intended to avoid confusions with the components Rqijk of
the “three–dimensional” Riemann Christoffel curvature tensor introduced in the same
section. �

It is remarkable that, conversely, given two smooth enough matrix fields (aαβ) :
ω → S2

> and (bαβ) : ω → S2 under the additional assumptions that ω is connected and
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simply connected, the Gauß and Codazzi–Mainardi equations are also sufficient for the
existence of an immersion θ : ω → E3 such that

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|

}
in ω.

Besides, this immersion is unique up to isometries in E3.
A self–contained, complete, and essentially elementary, proof of this well–known

result, often referred to as the “fundamental theorem of surface theory”, is found in
Ciarlet & Larsonneur [8]. This proof consists in showing that it can be established
as a simple corollary to another well–known result of differential geometry, which as-
serts that, if the Riemann–Christoffel tensor associated with a field of positive definite
symmetric matrices of order three vanishes in a connected and simply connected open
subset of R3, then this field is the metric tensor field of an open set that can be iso-
metrically imbedded in R3 and this open set is unique up to isometries in E3 (see
Theorems 3 and 4 in Section 2). A direct proof of the fundamental theorem of sur-
face theory is given in Klingenberg [12, Theorem 3.8.8]. Its “local” version, which
constitutes Bonnet’s theorem, is proved in, e.g., do Carmo [3].

This result comprises two essentially distinct parts, a global existence result (Theo-
rem 1) and a uniqueness result (Theorem 2), the latter being called a rigidity theorem.

Theorem 1 (global existence theorem) Let ω be a connected and simply connected
open subset of R2 and let (aαβ) ∈ C2(ω; S2

>) and (bαβ) ∈ C2(ω; S2) be two matrix fields
that satisfy the Gauß and Codazzi–Mainardi equations, viz.,

∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Cµ
ασbβµ − Cµ

αβbσµ = 0 in ω,

where

Cαβτ :=
1

2
(∂βaατ + ∂αaβτ − ∂τaαβ) and Cσ

αβ := aστCαβτ , where (aστ ) := (aαβ)−1.

Then there exists an immersion θ ∈ C3(ω;E3) such that

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|

}
in ω.

�

Theorem 2 (rigidity theorem) Let ω be a connected open subset of R2 and let θ ∈
C2(ω;E3) and θ̃ ∈ C2(ω;E3) be two immersions such that their associated first and
second fundamental forms satisfy (with self–explanatory notations)

aαβ = ãαβ and bαβ = b̃αβ in ω.

Then there exist a vector a ∈ E3 and an orthogonal matrix Q ∈ O3 such that

θ(y) = a+Qθ̃(y) for all y ∈ ω.

�
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Together, Theorems 1 and 2 establish the existence of a mapping F that associates
to any pair of matrix fields (aαβ) ∈ C2(ω; S2

>) and (bαβ) ∈ C2(ω; S2) satisfying the Gauß
and Codazzi–Mainardi equations in ω a well–defined element F ((aαβ), (bαβ)) in the

quotient set C3(ω;E3)/R, where (θ, θ̃) ∈ R means that there exists a vector a ∈ E3

and a matrix Q ∈ O3 such that θ(y) = a+Qθ̃(y) for all y ∈ ω.
A natural question thus arises as to whether there exist ad hoc topologies on the

set C2(ω; S2
>) × C2(ω; S2) and on the quotient set C3(ω;E3)/R such that the mapping

F defined in this fashion is continuous.

2 A brief review of an analogous problem in dimen-

sion three

The purpose of this paper is to provide an affirmative answer to the above question
through a proof that relies in an essential way on the solution to an analogous problem
in dimension three. In this section, we accordingly formulate this analog problem. We
also sketch its solution, as given by Ciarlet & Laurent [9, 10], so as to make the present
paper self–contained.

To begin with, we introduce some notations specific to the three–dimensional case.
Let ρ(A) denote the spectral radius and let |A| := {ρ(ATA)}1/2 denote the spectral
norm of a matrix A ∈ M3.

Let there be given a three–dimensional vector space, identified with R3. Let xi

denote the coordinates of a point x ∈ R3 and let ∂i := ∂/∂xi and ∂ij := ∂2/∂xi∂xj.
Let Ω be an open subset of R3. The notation K b Ω means that K is a compact

subset of Ω. If f ∈ C`(Ω; R), ` ≥ 0, and K b Ω, we let

‖f‖`,K := sup{
x∈K
|α|≤`

|∂αf(x)|,

where ∂α stands for the standard multi–index notation for partial derivatives. If Θ ∈
C`(Ω;E3) or A ∈ C`(Ω; M3) and K b Ω, we let (recall that | · | denotes both the
Euclidean and the spectral norm):

|Θ|`,K := sup{
x∈K
|α|=`

|∂αΘ(x)| and ‖Θ‖`,K := sup{
x∈K
|α|≤`

|∂αΘ(x)|,

‖A‖`,K := sup{
x∈K
|α|≤`

|∂αA(x)|.

Let Θ ∈ C1(Ω;E3) be an immersion, i.e., a mapping such that the three vectors
∂iΘ(x) are linearly independent at all points x ∈ Ω. Then the metric tensor field
(gij) ∈ C0(Ω; S3

>) of the set Θ(Ω) (which is open in E3 since Θ is an immersion) is
defined by means of its covariant components

gij(x) := ∂iΘ(x) · ∂jΘ(x), x ∈ Ω,
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which are used in particular for computing lengths of curves inside the set Θ(Ω),
considered as being isometrically imbedded in E3.

When R3 is identified with E3, immersions such as Θ = (Θi) ∈ C1(Ω;E3) may
be thought of as deformations of the set Ω viewed as a reference configuration, in the
sense of geometrically exact three–dimensional elasticity (although they should then be
in addition injective and orientation–preserving in order to qualify for this definition;
for details, see, e.g., Ciarlet [5, Section 1.4] or Antman [1, Chapter XII, Section 1]). In
this context, the matrix (gij(x)) is usually denoted C(x) := (gij(x)), and is called the
(right) Cauchy–Green tensor at x. Note that one also has

(gij(x)) = ∇Θ(x)T ∇Θ(x),

where ∇Θ(x) := (∂jΘi(x)) ∈ M3 denotes the deformation gradient at x (j denotes the
column index).

We now recall two classical results from three–dimensional differential geometry,
which are essential to the ensuing analysis. Theorem 3 provides sufficient conditions
guaranteeing that, given a smooth enough matrix field C = (gij) : Ω → S3

>, there
exists an immersion Θ : Ω → E3 such that gij = ∂iΘ · ∂jΘ in Ω, i.e., such that
C is the metric tensor field of the set Θ(Ω), while Theorem 4 specifies how two such
immersions differ (a self–contained, complete, and essentially elementary, proof of these
well–known results, whose outline follows with some modifications and simplifications
that of Blume [2], is found in Ciarlet & Larsonneur [8]).

Notice the analogies with Theorems 1 and 2.

Theorem 3 (global existence theorem) Let Ω be a connected and simply connected
open subset of R3 and let C = (gij) ∈ C2(Ω; S3

>) be a matrix field that satisfies

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp = 0 in Ω,

where

Γijq :=
1

2
(∂jgiq+∂igjq−∂qgij) and Γp

ij := gpqΓijq, where (gpq) := (gij)
−1.

Then there exists an immersion Θ ∈ C3(Ω;E3) such that

C = ∇ΘT ∇Θ in Ω.

�

Theorem 4 (rigidity theorem) Let Ω be a connected open subset of R3 and let

Θ ∈ C1(Ω;E3) and Θ̃ ∈ C1(Ω;E3) be two immersions whose associated metric tensors

C = ∇ΘT ∇Θ and C̃ = ∇Θ̃
T
∇Θ satisfy

C = C̃ in Ω.

Then there exist a vector a ∈ E3 and a matrix Q ∈ O3 such that

Θ(x) = a+QΘ̃(x) for all x ∈ Ω.

�

7



The functions gij are the contravariant components of the metric tensor, the func-
tions Γp

ij and Γijq are the Christoffel symbols of the first, and second, kind and finally,
the functions

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp

are the covariant components of the Riemann–Christoffel curvature tensor, of the set
Θ(Ω). The relations Rqijk = 0 thus express that the Riemann–Christoffel tensor of the
set Θ(Ω) (equipped with the metric tensor with covariant components gij) vanishes.
For details, see, e.g., Choquet–Bruhat, Dewitt–Morette & Dillard–Bleick [4, p. 303].

Together, Theorems 3 and 4 establish the existence of a mapping F that associates
to any matrix field C = (gij) ∈ C2(Ω; S3

>) satisfying Rqijk = 0 in Ω (the functions Rqijk

being defined in terms of the functions gij as in Theorem 3) a well–defined element

F(C) in the quotient set C3(Ω;E3)/R, where (Θ, Θ̃) ∈ R means that there exists a

vector a ∈ E3 and a matrix Q ∈ O3 such that Θ(x) = a+QΘ̃(x) for all x ∈ Ω.
As shown by Ciarlet & Laurent [10], there exist topologies on the space C2(Ω; S3

>)
and on the quotient set C3(Ω;E3)/R such that the mapping F defined in this fashion
is continuous. More specifically, the continuity of F is established as a consequence of
the following crucial result, which will likewise play later on a key role (see Part (v) of
the proof of Theorem 6).

Theorem 5 Let Ω be a connected and simply connected open subset of R3. Let
C = (gij) ∈ C2(Ω; S3

>), and Cn = (gn
ij) ∈ C2(Ω, S3

>), n ≥ 0, be matrix fields respectively
satisfying Rqijk = 0 in Ω and Rn

qijk = 0 in Ω, n ≥ 0 (with self–explanatory notations),
such that

lim
n→∞

‖Cn−C‖2,K = 0 for all K b Ω.

Let Θ ∈ C3(Ω;E3) be any mapping that satisfies ∇ΘT ∇Θ = C in Ω (such map-
pings exist by Theorem 1). Then there exist mappings Θn ∈ C3(Ω;E3) satisfying
(∇Θn)T ∇Θn = Cn in Ω, n ≥ 0, such that

lim
n→∞

‖Θn−Θ‖3,K = 0 for all K b Ω.

�

The proof of Theorem 5 is broken into those of three lemmas. Lemma 1 deals
with the special case where C = I; Lemma 2 deals with the special case where the
mapping Θ ∈ C3(Ω;E3) is injective; finally, Lemma 3 deals with the general case. For
conciseness, the proofs of the next lemmas are only sketched. Complete proofs are
found in Ciarlet & Laurent [10].

Lemma 1 Let Ω be a connected and simply connected open subset of R3. Let Cn =
(gn

ij) ∈ C2(Ω; S3
>), n ≥ 0, be matrix fields satisfying Rn

qijk = 0 in Ω, n ≥ 0, such that

lim
n→∞

‖Cn−I‖2,K = 0 for all K b Ω.

Then there exist mappings Θn ∈ C3(Ω;E3) satisfying (∇Θn)T ∇Θn = Cn in Ω,
n ≥ 0, such that

lim
n→∞

‖Θn−id‖3,K = 0 for all K b Ω,

where id denotes the identity mapping of R3, identified here with E3.
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Sketch of proof. (i) Let there be given mappings Θn ∈ C3(Ω;E3), n ≥ 0, that satisfy
(∇Θn)T ∇Θn = Cn in Ω (such mappings exist by Theorem 3). Then limn→∞ |Θn−id|`,K =
limn→∞ |Θn|`,K = 0 for all K b Ω and for ` = 2, 3.

Given any immersion Θ ∈ C3(Ω;E3), let gi := ∂iΘ and let the vectors gq be defined
by means of the relations gi · gq = δq

i . Then proving (i) relies on the relation

∂ijΘ = ∂igj = (∂igj · gq)g
q =

1

2
(∂jgiq + ∂igjq − ∂qgij)g

q

applied to the mappings Θn and on the uniform boundedness with respect to n of the
norms |(gn

ij)
−1|0,K on any K b Ω.

(ii) There exist mappings Θ̃
n
∈ C3(Ω;E3) that satisfy (∇Θ̃

n
)T ∇Θ̃

n
= Cn in Ω,

n ≥ 0, and limn→∞ |Θ̃
n
−id|1,K = 0 for all K b Ω.

Let ψn ∈ C3(Ω;E3) be mappings that satisfy (∇ψn)T ∇ψn = Cn in Ω, n ≥ 0
(such mappings exist by Theorem 3) and let x0 denote a point in the set Ω. Since
limn→∞∇ψn(x0)

T ∇ψn(x0) = I by assumption, Part (i) implies that there exist or-
thogonal matrices Qn, n ≥ 0, such that

lim
n→∞

Qn∇ψn(x0) = I.

Then the mappings
Θ̃

n
:= Qnψn ∈ C3(Ω;E3), n ≥ 0,

satisfy (∇Θ̃
n
)T ∇Θ̃

n
= Cn in Ω, so that their gradients ∇Θ̃

n
∈ C2(Ω; M3) satisfy

lim
n→∞

‖∂i∇Θ̃
n
‖0,K = 0 for all K b Ω,

by Part (i). In addition, limn→∞∇Θ̃
n
(x0) = limn→∞Q

n∇ψn(x0) = I.
Hence a classical theorem about the differentiability of the limit of a sequence of

mappings that are continuously differentiable on a connected open set and that take
their values in a Banach space (see, e.g., Schwartz [17, Theorem 3.5.12]) shows that

the mappings ∇Θ̃
n

uniformly converge on every compact subset of Ω toward a limit
R ∈ C1(Ω; M3) that satisfies ∂iR(x) = 0 for all x ∈ Ω. This shows that R is a
constant mapping since Ω is connected. Consequently, R = I since in particular
R(x0) = limn→∞∇Θ̃

n
(x0) = I.

(iii) There exist mappings Θn ∈ C3(Ω;E3) satisfying (∇Θn)T ∇Θn = Cn in Ω,
n ≥ 0, and limn→∞ |Θn−id|`,K = 0 for all K b Ω and for ` = 0, 1.

To see this, apply again the theorem about the differentiability of the limit of a
sequence of mappings used in Part (ii) to the mappings

Θn := (Θ̃
n
− {Θ̃

n
(x0)−x0}) ∈ C3(Ω;E3), n ≥ 0.
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Lemma 2 Let Ω be a connected and simply connected open subset of R3. Let C =
(gij) ∈ C2(Ω; S3

>) and Cn = (gn
ij) ∈ C2(Ω; S3

>), n ≥ 0, be matrix fields satisfying
respectively Rqijk = 0 in Ω and Rn

qijk = 0 in Ω, n ≥ 0, such that

lim
n→∞

‖Cn−C‖2,K = 0 for all K b Ω.

Assume that there exists an injective mapping Θ ∈ C3(Ω;E3) such that ∇ΘT ∇Θ =
C in Ω. Then there exist mappings Θn ∈ C3(Ω;E3) satisfying (∇Θn)T ∇Θn = Cn

in Ω, n ≥ 0, such that

lim
n→∞

‖Θn−Θ‖3,K = 0 for all K b Ω.

Sketch of proof. Let Ω̂ := Θ(Ω) and define the matrix fields (ĝn
ij) ∈ C2(Ω̂; S3

>), n ≥ 0,
by letting

(ĝn
ij(x̂)) := ∇Θ(x)−T (gn

ij(x))∇Θ(x)−1 for all x̂ = Θ(x) ∈ Ω̂.

Then the assumptions of Lemma 2 imply that limn→∞ ‖ĝn
ij−δij‖2,K̂ = 0.

Given x̂ = (x̂i) ∈ Ω̂, let ∂̂i =
∂

∂x̂i

. By Lemma 1 applied over the set Ω̂, there

exist mappings Θ̂
n
∈ C3(Ω̂;E3) satisfying ∂̂iΘ̂

n
· ∂̂jΘ̂

n
= ĝn

ij in Ω̂, n ≥ 0, such that

limn→∞ ‖Θ̂
n
−îd‖3,K̂ = 0 for all K̂ b Ω̂. Then the mappings Θn ∈ C3(Ω; S3

>), n ≥ 0,

defined by letting Θn(x) := Θ̂
n
(x̂) for all x = Θ̂(x̂) ∈ Ω, satisfy limn→∞ ‖Θn−Θ‖3,K = 0.

Lemma 3 The assumption that the mapping Θ : Ω ⊂ R3 → E3 is injective is su-
perfluous in Lemma 2, all its other assumptions holding verbatim. In other words,
Theorem 5 holds.

Sketch of proof. (i) Let Θ ∈ C3(Ω;E3) be any mapping that satisfies ∇ΘT ∇Θ = C
in Ω. Then there exists a countable number of open balls Br ⊂ Ω, r ≥ 1, such that
Ω =

⋃∞
r=1 Br and such that, for each r ≥ 1, the set

⋃r
s=1 Bs is connected and the

restriction of Θ to Br is injective.

These assertions, which essentially rely on the assumed connectedness of the set Ω,
are established by means of an iterative procedure.

(ii) By Lemma 2, there exist mappings Θn
1 ∈ C3(B1;E

3) and Θ̃
n

2 ∈ C3(B2;E
3),

n ≥ 0, that satisfy

(∇Θn
1 )T ∇Θn

1 = Cn in B1 and lim
n→∞

‖Θn
1−Θ‖3,K = 0 for all K b B1,

(∇Θ̃
n

2 )T ∇Θ̃
n

2 = Cn in B2 and lim
n→∞

‖Θ̃
n

2−Θ‖3,K = 0 for all K b B2,

and by Theorem 4, there exist vectors an ∈ E3 and matrices Qn ∈ O3, n ≥ 0, such that
Θ̃

n

2 (x) = an+QnΘn
1 (x) for all x ∈ B1∩B2. Then limn→∞ a

n = 0 and limn→∞Q
n = I.

10



The proof hinges on the relations

Θ(x) = lim
p→∞

Θ̃
p

2(x) = lim
p→∞

(ap+QpΘp
1(x)) for all x ∈ B1 ∩B2.

(iii) Let the mappings Θn
2 ∈ C3(B1 ∪ B2;E

3), n ≥ 0, be defined by Θn
2 (x) :=

Θn
1 (x) for all x ∈ B1, and Θn

2 (x) := (Qn)T (Θ̃
n

2 (x)−an) for all x ∈ B2. Then
limn→∞ ‖Θn

2−Θ‖3,K = 0 for all K b B1 ∪B2.

The plane containing the intersection of the boundaries of the open balls B1 and
B2 is the common boundary of two closed half–spaces in R3, H1 containing the center
of B1, and H2 containing that of B2 (by construction, the set B1∪B2 is connected; see
Part (i)). Any compact subset K of B1∪B2 may thus be written as K = K1∪K2, where
K1 := (K ∩ H1) ⊂ B1 and K2 := (K ∩ H2) ⊂ B2. Hence limn→∞ ‖Θn

2−Θ‖3,K1 = 0
and limn→∞ ‖Θn

2−Θ‖3,K2 = 0, the second relation following from the definition of the

mapping Θn
2 on B2 ⊃ K2 and on the relations limn→∞ ‖Θ̃

n

2−Θ‖3,K2 = 0 (Part (ii)),
and limn→∞Q

n = I and limn→∞ a
n = 0 (Part (iii)).

(iv) It remains to iterate the procedure described in Parts (ii) and (iii).

Assume that, for some r ≥ 2, mappings Θn
r ∈ C3(

⋃r
s=1 Bs;E

3), n ≥ 0, have been
found that satisfy

(∇Θn
r )T ∇Θn

r = Cn in
r⋃

s=1

Bsand lim
n→∞

‖Θn
r−Θ‖2,K = 0 for all K b

r⋃
s=1

Bs.

Since the restriction of Θ to Br+1 is injective (Part (i)), Lemma 2 shows that there

exist mappings Θ̃
n

r+1 ∈ C3(Br+1;E
3), n ≥ 0, that satisfy

(∇Θ̃
n

r+1)
T ∇Θ̃

n

r+1 = Cn in Br+1, lim
n→∞

‖Θ̃
n

r+1−Θ‖3,K = 0 for all K b Br+1,

and since the set
⋃r+1

s=1 Bs is connected (Part (i)), Theorem 4 shows that there exist
vectors cn ∈ E3 and matrices Qn ∈ O3, n ≥ 0, such that

Θ̃
n

r+1(x) = an +QnΘn
r (x) for all x ∈

( r⋃
s=1

Bs

)
∩Br+1.

Then an argument similar to that used in Parts (ii) and (iii) shows that the mappings
Θn

r+1 ∈ C3(
⋃r

s=1 Bs;E
3), n ≥ 0, defined by

Θn
r+1(x) := Θn

r (x) for all x ∈
r⋃

s=1

Bs,

Θn
r+1(x) := (Qn)T (Θ̃

n

r (x)−an) for all x ∈ Br+1,

satisfy

lim
n→∞

‖Θn
r+1−Θ‖3,K = 0 for all K b

r⋃
s=1

Bs.

11



It is then easily seen that the mappings Θn : Ω → E3, n ≥ 0, defined by

Θn(x) := Θn
r (x) for all x ∈

r⋃
s=1

Bs, r ≥ 1,

possess all the properties announced in Lemma 3. �

3 A key preliminary result

Let us first introduce the following two–dimensional analogs to the notations used in
Section 2. Let ω be an open subset of R3. The notation κ b ω means that κ is a
compact subset of ω. If f ∈ C`(ω; R) or θ ∈ C`(ω;E3), ` ≥ 0, and κ b ω, we let

‖f‖`,κ := sup{
y∈κ
|α|≤`

|∂αf(y)| , ‖θ‖`,κ := sup{
y∈κ
|α|≤`

|∂αθ(y)|,

where ∂α stands for the standard multi–index notation for partial derivatives and | · |
denotes the Euclidean norm in the latter definition. If A ∈ C`(ω; M3), ` ≥ 0, and
κ b ω, we likewise let

‖A‖`,κ = sup
{ y∈κ
|α|≤`

|∂αA(y)|,

where | · | denotes the matrix spectral norm.
The next theorem constitutes the key step towards establishing the continuity of a

surface as a function of its two fundamental forms (see Theorem 7 in Section 4).

Theorem 6 Let ω be a connected and simply connected open subset of R2. Let (aαβ) ∈
C2(ω; S2

>) and (bαβ) ∈ C2(ω; S2) be matrix fields satisfying the Gauß and Codazzi–
Mainardi equations in ω and let (an

αβ) ∈ C2(ω; S2
>) and (bn

αβ) ∈ C2(ω; S2) be matrix fields
satisfying for each n ≥ 0 the Gauß and Codazzi–Mainardi equations in ω. Assume that
these matrix fields satisfy

lim
n→∞

‖an
αβ−aαβ‖2,κ = 0 and lim

n→∞
‖bn

αβ−bαβ‖2,κ = 0 for all κ b ω.

Let θ ∈ C3(ω;E3) be any mapping that satisfies

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|

}
in ω

(such mappings exist by Theorem 1). Then there exist mappings θn ∈ C3(ω;E3)
satisfying

an
αβ = ∂αθ

n · ∂βθ
n and bn

αβ = ∂αβθ
n ·

{ ∂1θ
n ∧ ∂2θ

n

|∂1θ
n ∧ ∂2θ

n|

}
in ω, n ≥ 0,

such that
lim

n→∞
‖θn−θ‖3,κ = 0 for all κ b ω.
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Proof. For clarity, the proof is broken into five parts.

(i) Let the matrix fields (gij) ∈ C2(ω × R; S3) and (gn
ij) ∈ C2(ω × R; S3), n ≥ 0, be

defined by
gαβ := aαβ − 2x3bαβ + x2

3cαβ and gi3 := δi3,

gn
αβ := an

αβ − 2x3b
n
αβ + x2

3c
n
αβ and gn

i3 := δi3, n ≥ 0

(the variable y ∈ ω is omitted, x3 designates the variable in R), where

cαβ := bτ
αbβτ , bτ

α := aστbασ, (aστ ) := (aαβ)−1,

cn
αβ := bτ,n

α bn
βτ , bτ,n

α := aστ,nbn
ασ, (aστ,n) := (an

αβ)−1, n ≥ 0.

Let ω0 be an open subset of R2 such that ω0 b ω. Then there exists ε0 = ε0(ω0) > 0
such that the symmetric matrices

C(y, x3) := (gij(y, x3)) and Cn(y, x3) := (gn
ij(y, x3)), n ≥ 0,

are positive definite at all points (y, x3) ∈ Ω0, where

Ω0 := ω0 × ]−ε0, ε0[ .

The matrices C(y, x3) ∈ S3 and Cn(y, x3) ∈ S3 are of the form (the notations are
self–explanatory):

C(y, x3) = C0(y) + x3C1(y) + x2
3C2(y),

Cn(y, x3) = Cn
0 (y) + x3C

n
1 (y) + x2

3C
n
2 (y), n ≥ 0.

First, it is easily deduced from the matrix dentity B = A(I + A−1(B−A)) and
the assumptions limn→∞ ‖an

αβ−aαβ‖0,ω0 = 0 and limn→∞ ‖bn
αβ−bαβ‖0,ω0 = 0 that there

exists a constant M such that

‖(Cn
0 )−1‖0,ω0 + ‖Cn

1‖0,ω0 + ‖Cn
2‖0,ω0 ≤ M for all n ≥ 0.

This uniform bound and the relations

C(y, x3) = C0(y){I + (C0(y))−1(−2x3C1(y) + x2
3C2(y))},

Cn(y, x3) = Cn
0 (y){I + (Cn

0 (y))−1(−2x3C
n
1 (y) + x2

3C
n
2 (y))}, n ≥ 0,

together imply that there exists ε0 = ε0(ω0) > 0 such that the matrices C(y, x3) and
Cn(y, x3), n ≥ 0, are invertible for all (y, x3) ∈ ω0 × [−ε0, ε0].

These matrices are positive definite for x3 = 0 by assumption. Hence they remain
so for all x3 ∈ [−ε0, ε0] since they are invertible.

(ii) Let ω`, ` ≥ 0, be open subsets of R2 such that ω` b ω for each ` and ω =
⋃

`≥0 ω`.
By (i), there exist numbers ε` = ε`(ω`) > 0, ` ≥ 0, such that the symmetric matrices
C(x) = (gij(x)) and Cn(x) = (gn

ij(x)), n ≥ 0, defined for all x = (y, x3) ∈ ω × R as

13



in (i), are positive definite at all points x = (y, x3) ∈ Ω`, where Ω` := ω` × ]−ε`, ε`[,
hence at all points x = (y, x3) of the open set

Ω :=
⋃
`≥0

Ω`,

which is connected and simply connected.
The set Ω is connected since it is clearly arcwise connected. To show that Ω is

simply connected, let γ be a loop in Ω, i.e., a mapping γ ∈ C0([0, 1]; R3) that satisfies

γ(0) = γ(1) and γ(t) ∈ Ω for all 0 ≤ t ≤ 1.

Let the projection operator π : Ω → ω be defined by π(y, x3) = y for all (y, x3) ∈ Ω,
and let the mapping ϕ0 : [0, 1]× [0, 1] → R3 be defined by

ϕ0(t, λ) := (1−λ)γ(t) + λπ(γ(t)) for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1.

Then ϕ0 is a continuous mapping such that ϕ0([0, 1] × [0, 1]) ⊂ Ω; furthermore,
ϕ0(t, 0) = γ(t) and ϕ0(t, 1) = π(γ(t)) for all t ∈ [0, 1]. The mapping

γ̃ := π ◦ γ ∈ C0([0, 1]; R2)

is a loop in ω since γ̃(0) = π(γ(0)) = π(γ(1)) = γ̃(1). Since ω is simply connected,
there exist a mapping ϕ1 ∈ C0([0, 1]× [0, 1]; R2) and a point y0 ∈ ω such that

ϕ1(t, 1) = γ̃(t) and ϕ1(t, 2) = y0 for all 0 ≤ t ≤ 1,

and
ϕ1(t, λ) ∈ ω for all 0 ≤ t ≤ 1, 1 ≤ λ ≤ 2.

Then the mapping ϕ ∈ C0([0, 1]× [0, 2]; R3) defined by

ϕ(t, λ) = ϕ0(t, λ) for all 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1,
ϕ(t, λ) = ϕ1(t, λ) for all 0 ≤ t ≤ 1, 1 ≤ λ ≤ 2,

is a homotopy in Ω that reduces the loop γ to the point (y0, 0) ∈ Ω. Hence the set Ω
is simply connected.

(iii) The set Ω being defined as in (ii), let the functions Rqijk ∈ C0(Ω) and Rn
qijk ∈

C0(Ω), n ≥ 0, be constructed as in Theorem 3 from the matrix fields (gij) ∈ C2(Ω; S3
>)

and (gn
ij) ∈ C2(Ω; S3

>), n ≥ 0. Then

Rqijk = 0 in Ω and Rn
qijk = 0 in Ω for all n ≥ 0.

We simply indicate here the flavor of the proof of this crucial result. Its detailed
proof is provided in Ciarlet & Larsonneur [8], where it was also used in an essential
way.

First, one shows that at any point in the set Ω0 = ω0 × [−ε0, ε0], where ε0 > 0 is
determined as in (i), the matrix (gpq) := (gij)

−1 is given by

gαβ =
∑
n≥0

(n+1)xn
3a

ασ(Bn)β
σ and gi3 = δi3,
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where
bτ
σ := aατbασ, (B)β

σ := bβ
σ and (Bn)β

σ := bσ1
σ · · · bβ

σn−1
for n ≥ 2,

i.e., (Bn)β
σ designates for any n ≥ 0 the element at the α–th row and β–th column

of the matrix Bn. Each one of the above series is absolutely convergent in the space
C2(Ω0).

Straightforward computations then show that the functions Γijq = Γjiq ∈ C1(Ω0)
and Γp

ij = Γp
ji ∈ C1(Ω0) defined by

Γijq :=
1

2
(∂jgiq + ∂igjq − ∂qgij) and Γp

ij := gpqΓijq

have the following expressions:

Γαβσ = Cαβσ − x3(b
τ
α|βaτσ + 2Cτ

αβbτσ) + x2
3(b

τ
α|βbτσ + Cτ

αβcτσ),

Γαβ3 = −Γα3β = bαβ − x3cαβ,

Γα33 = Γ3β3 = Γ33q = 0,

Γσ
αβ = Cσ

αβ −
∑

n≥0
xn+1

3 bτ
α|β(Bn)σ

τ ,

Γ3
αβ = bαβ − x3cαβ,

Γβ
α3 = −

∑
n≥0

xn
3 (Bn+1)β

α,

Γ3
3β = Γp

33 = 0,

where
bτ
α|β := ∂βbτ

α + Cτ
βµb

µ
α − Cµ

αβbτ
µ,

and the Christoffel symbols Cαβτ and Cσ
αβ are defined from the functions aαβ as in

Theorem 1. We simply point out that the assumed Codazzi–Mainardi equations are
needed to conclude that the factor of x3 in the function Γαβσ is indeed that announced.
We also note that the computation of the factor of x2

3 in Γαβσ relies in particular on
the relations

∂αcβσ = bτ
β|αbστ + bµ

σ|αbµβ + Cµ
αβcσµ + Cµ

ασcβµ.

Define next the functions Rqijk ∈ C0(Ω0) by

Rqijk := ∂jΓikq − ∂kΓijq + Γp
ijΓkqp − Γp

ikΓjqp.

Observing that, in order that the relations

Rqijk = 0 in Ω0

hold, it is sufficient that

R1212 = 0, Rα2β3 = 0, Rα3β3 = 0 in Ω0,

it is then established that these last relations indeed hold, by means of a series of ele-
mentary, but lengthy and sometimes delicate, computations. Note that while neither

15



the assumed Gauß nor the assumed Codazzi–Mainardi equations are needed for estab-
lishing the relations Rα3β3 = 0 in Ω0, the latter are needed for establishing Rα2β3 = 0
in Ω and the former are needed for establishing R1212 = 0 in Ω0.

By repeating the same computations over each one of the sets Ω` = ω` × [−ε`, ε`],
` ≥ 0, found in Part (ii), we conclude that the functions Rqijk vanish in Ω. The same
argument shows that the functions Rn

qijk vanish in Ω for all n ≥ 0.

(iv) The matrix fields C = (gij) ∈ C2(Ω; S3
>) and Cn = (gn

ij) ∈ C2(Ω; S3
>) defined in

(ii) satisfy
lim

n→∞
‖Cn−C‖2,K = 0 for all K b Ω.

Given any compact subset K of Ω, there exists a finite set ΛK of integers such that
K ⊂

⋃
`∈ΛK

Ω`. Since by assumption,

lim
n→∞

‖an
αβ−aαβ‖2,ω`

= 0 and lim
n→∞

‖bn
αβ−bαβ‖2,ω`

= 0, ` ∈ ΛK ,

it follows that
lim

n→∞
‖Cn

p−Cp‖2,ω`
= 0, ` ∈ Λk, p = 0, 1, 2,

where the matrices Cp and Cn
p , n ≥ 0, p = 0, 1, 2, are those defined in the proof of

Part (i). The definition of the norm ‖ · ‖2,Ω`
then implies that

lim
n→∞

‖Cn−C‖2,Ω`
= 0, ` ∈ ΛK .

The conclusion follows from the finiteness of the set ΛK .

(v) Conclusion of the proof.

Given any mapping θ ∈ C3(ω;E3) that satisfies

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|

}
in ω,

let the mapping Θ : Ω → E3 be defined by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ Ω,

where a3 :=
∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|
, and let

gij := ∂iΘ · ∂jΘ.

Then an immediate computation shows that

gαβ = aαβ − 2x3bαβ + x2
3cαβ and gi3 = δi3 in Ω,

where aαβ and bαβ are the covariant components of the first and second fundamental
forms of the surface θ(ω) and cαβ = aστbασbβτ .

In other words, the matrices (gij) constructed in this fashion coincide over the set Ω
with those defined in (i). Since Parts (ii), (iii), and (iv) of the above proof together
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show that all the assumptions of Theorem 5 are satisfied by the fields C = (gij) ∈
C2(Ω; S3

>) and Cn = (gn
ij) ∈ C2(Ω; S3

>), there exist mappings Θn ∈ C3(Ω;E3) satisfying
(∇Θn)T ∇Θn = Cn in Ω, n ≥ 0, such that

lim
n→∞

‖Θn−Θ‖3,K = 0 for all K b Ω.

We now show that the mappings

θn(·) := Θn(·, 0) ∈ C3(ω;E3)

indeed satisfy

an
αβ = ∂αθ

n · ∂βθ
n and bn

αβ = ∂αβθ
n ·

{ ∂1θ
n ∧ ∂2θ

n

|∂1θ
n ∧ ∂2θ

n|

}
in ω.

Dropping the exponent n for notational convenience in this part of the proof, let
gi := ∂iΘ. Then ∂33Θ = ∂3g3 = Γp

33gp = 0 (see Part (iii)). Hence there exists a

mapping θ1 ∈ C3(ω;E3) such that

Θ(y, x3) = θ(y) + x3θ
1(y) for all (y, x3) ∈ Ω.

Consequently, gα = ∂αθ + x3∂αθ
1 and g3 = θ1. The relations gi3 = gi · g3 = δi3 then

show that
(∂αθ + x3∂αθ

1) · θ1 = 0 and θ1 · θ1 = 1.

These relations imply that ∂αθ · θ1 = 0. Hence either θ1 = a3 or θ1 = −a3 in ω. But
θ1 = −a3 is ruled out since we must have

{∂1θ ∧ ∂2θ} · θ1 = det(gij)|x3=0 > 0.

Noting that
∂αθ · a3 = 0 implies ∂αθ · ∂βa3 = −∂αβθ · a3,

we obtain, on the one hand,

gαβ = (∂αθ + x3∂αa3) · (∂βθ + x3∂βa3)

= ∂αθ · ∂βθ − 2x3∂αβθ · a3 + x2
3∂αa3 · ∂βa3 in Ω.

Since, on the other hand,

gαβ = aαβ − 2x3bαβ + x2
3cαβ in Ω,

we conclude that
aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ · a3 in ω,

as desired.
It remains to verify that

lim
n→∞

‖θn−θ‖3,κ = 0 for all κ b ω.

17



But these relations immediately follow from the relations

lim
n→∞

‖Θn−Θ‖3,K = 0 for all K b Ω,

combined with the observations that a compact subset of ω is also one of Ω, that
Θ(·, 0) = θ and Θn(·, 0) = θn, and finally, that

‖θn−θ‖3,κ ≤ ‖Θn−Θ‖3,κ.

�

Remark. At first glance, it seems that Theorem 6 could be established by a proof similar
to that of its “three–dimensional counterpart”, viz. Theorem 5. A quick inspection
reveals, however, that the proof of Lemma 2 does not carry over to the situation
covered by the former. �

4 Continuity in metric spaces

Let ω be an open subset of R3. For any integers ` ≥ 0 and d ≥ 1, the space C`(ω; Rd)
becomes a locally convex topological space when its topology is defined by the family
of semi–norms ‖ · ‖`,κ, κ b ω, and a sequence (θn)n≥0 converges to θ with respect to
this topology if and only if

lim
n→∞

‖θn−θ‖`,κ = 0 for all κ b ω.

Furthermore, this topology is metrizable: Let (κi)i≥0 be any sequence of subsets of
ω that satisfy

κi b ω and κi ⊂ int κi+1 for all i ≥ 0, and ω =
∞⋃
i=0

κi.

Then
lim

n→∞
‖θn−θ‖`,κ = 0 for all κ b ω ⇐⇒ lim

n→∞
d`(θ

n,θ) = 0,

where

d`(ψ,θ) :=
∞∑
i=0

1

2i

‖ψ − θ‖`,κi

1 + ‖ψ − θ‖`,κi

.

For details, see, e.g., Yosida [18, Chapter 1].
Let Ċ3(ω;E3) := C3(ω;E3)/R denote the quotient set of C3(ω;E3) by the equiva-

lence relation R, where (θ, θ̃) ∈ R means that there exist a vector a ∈ E3 and a matrix

Q ∈ O3 such that θ(y) = a +Qθ̃(y) for all y ∈ ω. Then it is easily verified that the
set Ċ3(ω;E3) becomes a metric space when it is equipped with the distance ḋ3 defined
by

ḋ3(θ̇, ψ̇) := inf{
κ∈θ̇
χ∈ψ̇

d3(κ,χ) = inf{
a∈E3

Q∈O3

d3(θ,a+Qψ),
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where θ̇ denotes the equivalence class of θ modulo R.
The announced continuity of a surface as a function of its two fundamental forms

is then a corollary to Theorem 6. If d is a metric defined on a set X, the associated
metric space is denoted {X; d}.

Theorem 7 Let ω be connected and simply connected open subset of R2. Let

C2
0(ω; S2

> × S2) := {((aαβ), (bαβ)) ∈ C2(ω; S2
>)× C2(ω; S2);

∂βCαστ − ∂σCαβτ + Cµ
αβCστµ − Cµ

ασCβτµ = bασbβτ − bαβbστ in ω,

∂βbασ − ∂σbαβ + Cµ
ασbβµ − Cµ

αβbσµ = 0 in ω}.

Given any element ((aαβ), (bαβ)) ∈ C2
0(ω; S2

> × S2), let F (((aαβ), (bαβ))) ∈ Ċ3(ω;E3)
denote the equivalence class modulo R of any θ ∈ C3(ω;E3) that satisfies

aαβ = ∂αθ · ∂βθ and bαβ = ∂αβθ ·
{ ∂1θ ∧ ∂2θ

|∂1θ ∧ ∂2θ|

}
in ω.

Then the mapping

F : {C2
0(ω; S2

> × S2); d2} → {Ċ3(ω;E3); ḋ3}

defined in this fashion is continuous.

Proof. Since {C2
0(ω; S2

> × S); d2} and {Ċ3(ω;E3); ḋ3} are both metric spaces, it suffices
to show that convergent sequences are mapped through F into convergent sequences.

Let then ((aαβ), (bαβ)) ∈ C2
0(ω; S2

> × S2) and ((an
αβ), (bn

αβ)) ∈ C2
0(ω; S2

> × S2), n ≥ 0,
be such that

lim
n→∞

d2(((a
n
αβ), (bn

αβ)), ((aαβ), (bαβ))) = 0,

i.e., such that

lim
n→∞

‖an
αβ−aαβ‖2,κ = 0 and lim

n→∞
‖bn

αβ−bαβ‖2,κ = 0 for all κ b ω.

Let there be given any θ ∈ F (((aαβ), (bαβ))). Then Theorem 6 shows that there
exist θn ∈ F (((an

αβ), (bn
αβ))), n ≥ 0, such that

lim
n→∞

‖θn−θ‖3,κ = 0 for all κ b ω,

i.e., such that
lim

n→∞
d3(θ

n,θ) = 0.

Consequently,
lim

n→∞
ḋ3(F (((an

αβ), (bn
αβ))), F (((aαβ), (bαβ)))) = 0,

and the proof is complete. �
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