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Abstract

Let Ω be an open connected subset of R3 and let Θ be an immersion
from Ω into R3. It is first established that the set formed by all rigid
displacements, i.e., that preserve the metric, of the open set Θ(Ω) is a
submanifold of dimension 6 and of class C∞ of the space H1(Ω). It is
then shown that the vector space formed by all the infinitesimal rigid
displacements of the same set Θ(Ω) is nothing but the tangent space
at the origin to this submanifold. In this fashion, the familiar “in-
finitesimal rigid displacement lemma” of three-dimensional linearized
elasticity is put in its proper perspective.
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Introduction

Further details about the various notions and notations used here are pro-
vided in the next sections.

The following infinitesimal rigid displacement lemma in curvilinear co-
ordinates plays a crucial rôle in linearized three-dimensional elasticity : Let
Ω be an open connected subset of R3, let Θ be a smooth enough immersion
from Ω into a three-dimensional Euclidean space E3, and let ṽ ∈ H1(Ω) be
a vector field that satisfies

ei‖j(ṽ) = 0 a.e. in Ω,

where
ei‖j(ṽ) =

1
2
(∂iṽ · gj + ∂j ṽ · gi) and gi = ∂iΘ.

Then there exist vectors c ∈ E3 and d ∈ E3 such that

ṽ(x) = c + d ∧Θ(x) for almost all x ∈ Ω.

For a proof, see [3, Theorem 1.7-3].
In elasticity theory in curvilinear coordinates, the set Θ(Ω) ⊂ E3 is

viewed as the reference configuration of a three-dimensional elastic body
and the field ṽ is viewed as a displacement field of the set Θ(Ω).

The functions ei‖j(ṽ) are the covariant components of the linearized
change of metric tensor associated with the displacement field ṽ and a dis-
placement field of the above form ṽ = c + d ∧Θ is called an infinitesimal
rigid displacement of the set Θ(Ω).

The infinitesimal rigid displacement lemma plays a crucial rôle for estab-
lishing the uniqueness (possibly in a quotient space) and, in conjunction with
Korn’s inequality, the existence of solutions to the boundary value problems
of three-dimensional linearized elasticity expressed in terms of curvilinear
coordinates; see [3, Chapter 1]. Note in passing that the more customary
version, in Cartesian coordinates, of this lemma is immediately recovered by
identifying E3 with R3 and by letting Θ = idΩ.

One objective of this paper is to put this lemma in its proper perspec-
tive, as the linearized counterpart of the familiar rigidity theorem of three-
dimensional differential geometry, once this theorem has been properly ex-
tended to the Sobolev space H1(Ω).

This extension is carried out in Theorem 1, which relies in particular
on a crucial extension of Liouville’s theorem, originally due to Reshetnyak
[8] and recently given a particularly concise and elegant proof by Friesecke,
James and Müller [7].
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It is then shown in Theorem 2 and its corollary that the set Mrig formed
by all the rigid displacements of the set Θ(Ω), i.e., those that satisfy the as-
sumptions of the extended rigidity theorem, is a submanifold of dimension 6
and of class C∞ of the space H1(Ω).

It is finally established in Theorem 3 that the vector space spanned by the
infinitesimal rigid displacements of the set Θ(Ω) is nothing but the tangent
space at the origin to the manifold Mrig. This result hinges on the well-
known characterization of the tangent space at I to the special orthogonal
group.

The results of this paper have been announced in [5]. Their extension to
rigid and infinitesimal rigid displacements on a surface is carried out in [6].

1 The rigidity theorem in Sobolev spaces

All spaces, matrices, etc., considered are real. The notations M3, O3, O3
+,

and A3 respectively designate the sets of all square matrices of order 3, of
all orthogonal matrices of order 3, of all matrices Q ∈ O3 with detQ = 1,
and of all antisymmetric matrices of order 3. The set O3

+ is the special
orthogonal group. Given A ∈ M3, Cof A designates the cofactor matrix of
A; thus Cof A = (det A)A−T if A is invertible.

Latin indices range over the set {1, 2, 3} and the summation convention
with respect to repeated indices is used in conjunction with this rule. The
identity mapping of a set X is denoted idX .

The notation E3 designates a three-dimensional Euclidean space and
a · b, a ∧ b, and |a| =

√
a · a respectively designate the Euclidean inner

product, the exterior product of a, b ∈ E3, and the Euclidean norm of
a ∈ E3.

Let Ω be an open subset of R3, let xi denote the coordinates of a point
x ∈ R3, and let ∂i := ∂/∂xi and ∂ij := ∂2/∂xi∂xj . Let Θ ∈ C1(Ω; E3) be an
immersion, i.e., a mapping such that the three vectors

gi(x) := ∂iΘ(x)

are linearly independent at all points x ∈ Ω. The metric tensor field (gij) ∈
C0(Ω; M3) of the set Θ(Ω) (which is open in E3 since Θ is an immersion; see,
e.g., [10, Theorem 3.8.10]) is defined by means of its covariant components

gij(x) := gi(x) · gj(x), x ∈ Ω,

which are used in particular for computing lengths of curves inside the set
Θ(Ω), considered as isometrically imbedded in E3. Note that the symmetric
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positive definite matrix (gij(x)) ∈ M3, x ∈ Ω, is also given by

(gij(x)) = ∇Θ(x)T ∇Θ(x),

where ∇Θ(x) ∈ M3 is the matrix whose j-th column is gj(x).
In order to avoid cumbersome statements, the distinction will not be

made between an element in a Sobolev space, which is an equivalence class,
and one of its elements.

The classical rigidity theorem for an open set asserts that, if two im-
mersions Θ̃ ∈ C1(Ω) := C1(Ω; E3) and Θ ∈ C1(Ω) have the same metric
tensor fields, i.e., if g̃ij = gij in Ω (with self-explanatory notations) and Ω is
connected, then there exist a vector c ∈ E3 and a matrix Q ∈ O3 such that

Θ̃(x) = c + QΘ(x) for all x ∈ Ω.

For a proof, see, e.g., [4, Theorem 3].
We now show that a similar result holds under the weaker assumption

that Θ̃ ∈ H1(Ω) := H1(Ω; E3).
The way the result in part (i) of the next proof is derived is due to

Friesecke, James & Müller [7]; the result itself goes back to Reshetnyak [8].

Theorem 1 (rigidity theorem) Let Ω be a connected open subset of R3

and let Θ ∈ C1(Ω) be a mapping that satisfies det ∇Θ > 0 in Ω. Assume
that there exists a vector field Θ̃ ∈ H1(Ω) that satisfies

det ∇Θ̃ > 0 a.e. in Ω and g̃ij = gij a.e. in Ω.

Then there exist a vector c ∈ E3 and a matrix Q ∈ O3
+ such that

Θ̃(x) = c + QΘ(x) for almost all x ∈ Ω.

Proof. The Euclidean space E3 is identified with the space R3 throughout
the proof.

(i) To begin with, we consider the special case where Θ = idΩ. In other
words, we are given a mapping Θ̃ ∈ H1(Ω) that satisfies ∇Θ̃(x) ∈ O3

+ for
almost all x ∈ Ω. Hence

Cof ∇Θ̃(x) = (det ∇Θ̃(x))∇Θ̃(x)−T = ∇Θ̃(x)−T for almost all x ∈ Ω,

on the one hand. Since, on the other hand,

divCof ∇Θ̃ = 0 in (D′(B))3
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in any open ball B such that B ⊂ Ω (to see this, combine the classical
Piola identity in the space C2(B) with the density of C2(B) in H1(B)), we
conclude that

∆Θ̃ = divCof ∇Θ̃ = 0 in (D′(B))3.

Hence Θ̃ = (Θ̃j) ∈ (C∞(Ω))3. For such mappings, the identity

∆(∂iΘ̃j∂iΘ̃j) = 2∂iΘ̃j∂i(∆Θ̃j) + 2∂ikΘ̃j∂ikΘ̃j ,

together with the relations ∆Θ̃j = 0 and ∂iΘ̃j∂iΘ̃j = 3 in Ω, shows that
∂ikΘ̃j = 0 in Ω. The assumed connectedness of Ω then implies that there
exist a vector c ∈ E3 and a matrix Q ∈ O3

+ (by assumption, ∇Θ̃(x) ∈ O3
+

for almost all x ∈ Ω) such that

Θ̃(x) = c + Qox for almost all x ∈ Ω.

(ii) We consider next the general case. Let x0 ∈ Ω be given. Since Θ is
an immersion, the local inversion theorem can be applied; there thus exist
bounded open neighborhoods U of x0 and Û of Θ(x0) satisfying U ⊂ Ω and
{Û}− ⊂ Θ(Ω), such that the restriction ΘU of Θ to U can be extended to
a C1-diffeomorphism from U onto {Û}−.

Let Θ−1 : Û → U denote the inverse mapping of ΘU , which therefore
satisfies ∇̂Θ−1(x̂) = (∇Θ(x))−1 for all x̂ = Θ(x) ∈ Û (the notation ∇̂
indicates that differentiation is carried out with respect to the variable x̂ ∈
Û). Define the composite mapping

Φ̂ := Θ̃ ·Θ−1 : Û → R3.

Since Θ̃ ∈ H1(U) and Θ−1 can be extended to a C1-diffeomorphism from
{Û}− onto U , it follows that Φ̂ ∈ H1(Û) and that

∇̂Φ̂(x̂) = ∇Θ̃(x)∇̂Θ−1(x) = ∇Θ̃(x)∇Θ(x)−1

for almost all x̂ = Θ(x) ∈ Û (see, e.g., [2, Chapter 3]). Hence the assump-
tions det ∇Θ > 0 in Ω, det ∇Θ̃ > 0 a.e. in Ω, and g̃ij = gij a.e. in Ω,
together imply that ∇̂Φ̂(x̂) ∈ O3

+ for almost all x̂ ∈ Û . By (i), there thus
exist c ∈ R3 and Q ∈ O3

+ such that

Φ̂(x̂) = Θ̃(x) = c + Qox̂ for almost all x̂ = Θ(x) ∈ Û ,

or equivalently, such that

Ξ(x) := ∇Θ̃(x)∇Θ(x)−1 = Q for almost all x ∈ U.
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Since the point x0 ∈ Ω is arbitrary, this relation shows that Ξ ∈ L1
loc(Ω).

By a classical result from distribution theory (cf. [9, Section 2.6]), we con-
clude from the assumed connectedness of Ω that Ξ(x) = Q for almost all
x ∈ Ω, and consequently that

Θ̃(x) = c + QΘ(x) for almost all x ∈ Ω.

�

Remarks. (1) The existence of Θ̃ ∈ H1(Ω) satisfying the assumptions of
Theorem 1 thus implies that Θ ∈ H1(Ω) and Θ̃ ∈ C1(Ω).

(2) If Θ̃ ∈ C1(Ω), the assumptions det∇Θ > 0 in Ω and det ∇Θ̃ > 0 in
Ω are no longer necessary; but then it can only be concluded that Q ∈ O3:
This is the classical rigidity theorem, of which Liouville’s theorem is the
special case corresponding to Θ = idΩ.

(3) By contrast, if the mapping Θ̃ is assumed to be instead in the space
H1(Ω) (as in the statement of Theorem 1), an assumption about the sign
of det ∇Θ̃ becomes necessary. To see this, let (for instance) Ω be an open
ball centered at the origin in R3 and let Θ̃(x) = x if x1 ≥ 0 and Θ̃(x) =
(−x1, x2, x3) if x1 ≤ 0. Then Θ̃ ∈ H1(Ω) and ∇Θ̃ ∈ O3 a.e. in Ω; yet there
does not exist any orthogonal matrix such that Θ̃(x) = Qox for all x ∈ Ω,
since Θ̃(Ω) ⊂ {x ∈ R3; x1 ≥ 0}.

(4) If a mapping Θ ∈ C1(Ω) satisfies det∇Θ > 0 in Ω, then Θ is an
immersion. Conversely, if Ω is a connected open set and Θ ∈ C1(Ω) is
an immersion, then either det ∇Θ > 0 in Ω or det ∇Θ < 0 in Ω. The
assumption that det ∇Θ > 0 in Ω made in Theorem 1 is simply intended
to fix ideas (a similar result clearly holds under the other assumption).

(5) A little further ado shows that the conclusion of Theorem 1 is still
valid if Θ̃ ∈ H1(Ω) is replaced by the weaker assumption Θ̃ ∈ H1

loc(Ω).

2 The submanifold of rigid displacements

All the results needed below about submanifolds in infinite-dimensional Ba-
nach spaces are found in [1]. If M is a submanifold, the tangent space to
M at m ∈M is denoted TmM.

We now establish that the set M formed by all the mappings Θ̃ ∈
H1(Ω) that satisfy the assumptions of the rigidity theorem for an open set
(Theorem 1) is a finite-dimensional submanifold of the space H1(Ω). Note
that the assumption Θ ∈ H1(Ω) has been added to those of Theorem 1,
simply to guarantee that the set M is non-empty.
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We also characterize the tangent space to M at Θ. Another equally
important characterization of the same tangent space, involving this time
the linearized change of metric tensor, will be given in Theorem 3.

The notations used here are the same as in Section 1; in particular,
H1(Ω) = H1(Ω; E3), C1(Ω) = C1(Ω; E3), and g̃ij and gij designate the co-
variant components of the metric tensor fields respectively associated with
the mappings Θ̃ and Θ.

Theorem 2 Let Ω be a connected open subset of R3 and let Θ ∈ C1(Ω) ∩
H1(Ω) be a mapping that satisfies det ∇Θ > 0 in Ω. Then the set

M := {Θ̃ ∈ H1(Ω); det ∇Θ̃ > 0 and g̃ij = gij a.e. in Ω}

is a submanifold of class C∞ and of dimension 6 of the space H1(Ω) and its
tangent space at Θ is given by

TΘM = {ṽ ∈ H1(Ω);∃ c ∈ E3, ∃A ∈ A3, ṽ = c + AΘ a.e. in Ω}.

Proof. The linear mapping f defined by

f : (c,F ) ∈ E3 ×M3 → f(c,F ) := c + FΘ ∈ H1(Ω)

is injective. To see this, let c ∈ E3 and F ∈ M3 be such that χ(x) :=
c + FΘ(x) = 0 for almost all x ∈ Ω. Then ∇χ(x) = F∇Θ(x) = 0 for
almost all x ∈ Ω and thus F = 0 since det ∇Θ > 0 in Ω by assumption.

Consequently, the image f(E3×M3) is a linear subspace of dimension 12
of H1(Ω) and f is a C∞-diffeomorphism between E3×M3 and f(E3×M3),
since f is linear and this image is finite-dimensional.

By the rigidity theorem (Theorem 1), the set M may be equivalently
defined as

M = f(E3 ×O3
+).

Since E×O3
+ is a submanifold of class C∞ and of dimension 6 of E3×M3 (the

special orthogonal group O3
+ is a submanifold of class C∞ and of dimension 3

of M3) and submanifolds of class C∞ are preserved by C∞-diffeomorphisms,
M is thus a submanifold of class C∞ and of dimension 6 of f(E3 ×M3).

Noting that the closed subspace f(E3 × M3) is “split” in H1(Ω) since
any closed subspace of the Hilbert space H1(Ω) has a closed complement in
it, we thus conclude that M is also a submanifold of class C∞ and of dimen-
sion 6 of H1(Ω) (this conclusion immediately follows from the definition of
a submanifold; see [1, Definition 3.2.1]).
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Since f is linear and TIO3
+ = A3, the tangent space to M at Θ is given

by

TΘM = Tf(0,I)f(E3 ×O3
+) = f(T(0,I)(E3 ×O3

+)) = f(E3 × A3)

= {ṽ ∈ H1(Ω); ∃ c ∈ E3, ∃A ∈ A3, ṽ = c + AΘ a.e. in Ω},

and the proof is complete. �

Remark. Let Ω be a connected open subset of R3, let Θ ∈ C1(Ω) be a
mapping that satisfies det ∇Θ > 0 in Ω, and let

M′ := {Θ̃ ∈ H1
loc(Ω); det ∇Θ̃ > 0 and g̃ij = gij a.e. Ω}.

Then it can likewise be established under this weaker assumption on Θ that
M′ is a Fréchet submanifold (see, e.g., [1, Section 3.1]) of class C∞ and of
dimension 6 of the Fréchet space H1

loc(Ω).

In three-dimensional elasticity in curvilinear coordinates, the set Θ(Ω)
is viewed as the reference configuration of a three-dimensional elastic body
(under the additional assumption that the immersion Θ is injective, but
this assumption is irrelevant for our present purposes). Then, for each Θ̃ ∈
H1(Ω), the set Θ̃(Ω) is viewed as a deformed configuration and the field
ṽ ∈ H1(Ω) defined by

Θ̃ = Θ + ṽ

is viewed as a displacement field of the reference configuration Θ(Ω). If
in particular Θ̃ ∈ M, the field ṽ defined in this fashion is called a rigid
displacement, and the subset Mrig of H1(Ω) defined by

M = Θ + Mrig

is accordingly called the manifold of rigid displacements (of the reference
configuration Θ(Ω)). We now recast Theorem 2 in terms of the manifold
Mrig.

Corollary to Theorem 2 Let Ω be a connected open subset of R3, and let
Θ ∈ C1(Ω)∩H1(Ω) be a mapping that satisfies det ∇Θ > 0 in Ω. Then the
manifold of rigid displacements of the set Θ(Ω), viz.,

Mrig := {ṽ ∈ H1(Ω); det(∇Θ + ∇ṽ) > 0 and g̃ij = gij a.e. in Ω},
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is a submanifold of class C∞ and of dimension 6 of the space H1(Ω) and its
tangent space at 0 is given by

T0Mrig = TΘM
= {ṽ ∈ H1(Ω); ∃ c ∈ E3, ∃A ∈ A3, ṽ = c + AΘ a.e. in Ω}.

�

3 The infinitesimal rigid displacement lemma in
curvilinear coordinates revisited

The covariant components of the linearized change of metric tensor asso-
ciated with a displacement field ṽ of the set Θ(Ω), viewed as above as a
reference configuration, are defined by

ei‖j(ṽ) :=
1
2
[g̃ij − gij ]lin,

where gij and g̃ij are the covariant components of the metric tensors of the
sets Θ(Ω) and Θ̃(Ω) where Θ̃ := Θ + ṽ, and [· · · ]lin denotes the linear part
with respect to ṽ in the expression [· · · ]. A formal computation immediately
gives

ei‖j(ṽ) =
1
2
(∂iṽ · gj + ∂j ṽ · gi), where gi = ∂iΘ.

This expression thus shows that

ei‖j(ṽ) ∈ L2
loc(Ω) if ṽ ∈ H1(Ω) and Θ ∈ C1(Ω).

Under this assumption on the mapping Θ, a displacement field ṽ ∈ H1(Ω)
that satisfies ei‖j(ṽ) = 0 a.e. in Ω is called an infinitesimal rigid displacement
of the set Θ(Ω). Accordingly, the infinitesimal rigid displacement lemma in
curvilinear coordinates stated in the Introduction consists in identifying the
vector space V lin

rig formed by such displacements.
The next theorem shows that this lemma has also a remarkably simple

interpretation in terms of the manifold Mrig of rigid displacements intro-
duced at the end of Section 2.

Theorem 3 Let Ω be a connected open subset of R3 and let Θ ∈ C1(Ω) ∩
H1(Ω) be a mapping that satisfies det ∇Θ > 0 in Ω. Then the space of
infinitesimal rigid displacements of the set Θ(Ω), viz.,

V lin
rig := {ṽ ∈ H1(Ω); [g̃ij − gij ]lin = 0 a.e. in Ω},
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is given by
V lin

rig = T0Mrig,

where the tangent space T0Mrig has been identified in the Corollary to The-
orem 2.

Proof. Let the vectors gk be defined by means of the relations gk · g` = δk
`

in Ω and let [gk]i denote the i-th Cartesian component of the vector gk in
the space E3. Let Ω̂ := Θ(Ω), x̂ = (x̂i) = Θ(x) for all x ∈ Ω, ∂̂i := ∂/∂x̂i,
and ∂̂ij := ∂2/∂x̂i∂x̂j .

Given any x0 ∈ Ω, there exists by the local inversion theorem an open
and connected neighborhood U of x0 such that U is a compact subset of
Ω and Θ restricted to U can be extended to a C1-diffeomorphism from U
onto {Û}−, where Û := Θ(U). Let Θ̂ : Û → U denote the inverse mapping
defined in this fashion. If a function v belongs to H1(U), the function
v̂ = v ◦Θ̂ belongs to H1(Û) since the restriction of Θ to U and the mapping
Θ̂ are both Lipschitz-continuous on their domains of definitions.

Given a vector field ṽ ∈ H1(U), let the vector field v̂ = (v̂i) ∈ H1(Û)
be defined by v̂(x̂) = ṽ(x) for almost all x̂ = Θ(x) ∈ Û . Then a simple
computation based on the chain rule shows that the relations

êij(v̂)(x̂) :=
1
2
(∂̂j v̂i + ∂̂iv̂j)(x̂) = (ek‖`(ṽ)[gk]i[g`]j)(x)

hold for almost all x̂ = Θ(x) ∈ Û .
Hence the relations ei‖j(ṽ) = 0 in U imply that êij(v̂) = 0 in Û . Conse-

quently, the identity

∂̂jkv̂i = ∂̂j êik(v̂) + ∂̂kêij(v̂)− ∂̂iêjk(v̂) in D′(Û)

shows that ∂̂jkv̂i = 0 in D′(Û). By the same result in distribution theory as
that used in the proof of Theorem 1, each function v̂i is thus a polynomial
of degree ≤ 1 (the set Û is connected). In other words, there exist a vector
c ∈ E3 and a matrix A ∈ M3 such that v̂(x̂) = c+A ox̂ for almost all x̂ ∈ Û
and the relations êij(v̂) = 0 further imply that A ∈ A3. We thus conclude
that

ṽ(x) = c + AΘ(x) for almost all x ∈ U.

Since the point x0 is arbitrary and Ω is connected, this relation holds in
fact for almost all x ∈ Ω (given any x1 ∈ Ω, cover any path joining x0 to x1
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by a finite number of neighborhoods similar to U and repeat the previous
argument). In other words,

V lin
rig = {ṽ ∈ H1(Ω); ∃ c ∈ E3, ∃A ∈ A3, ṽ = c + AΘ a.e. in Ω}.

The conclusion then follows from the Corollary to Theorem 2. �

Remarks. (1) Theorem 3 indicates why an “infinitesimal” rigid displacement
should preferably be called a “linearized” rigid displacement.

(2) The proof of Theorem 3 also shows that, under the weaker assumption
Θ ∈ C1(Ω), a vector field ṽ ∈ H1

loc(Ω) satisfies ei‖j(ṽ) = 0 a.e. in Ω if and
only if there exist a vector c ∈ E3 and a matrix A ∈ A3 such that ṽ = c+AΘ
a.e. in Ω.

The manifold of rigid displacements can be equivalently written as

Mrig = {ṽ ∈ H1(Ω); det(∇Θ + ∇ṽ) > 0 a.e. in Ω, Fij(ṽ) = 0 a.e. in Ω},

where the mappings Fij : H1(Ω) → L1(Ω) are defined by

Fij(ṽ) := ∂i(Θ + ṽ) · ∂j(Θ + ṽ)− ∂iΘ · ∂jΘ, ṽ ∈ H1(Ω).

Such mappings are clearly Fréchet-differentiable and their Gâteaux deriva-
tives at 0 are given by DFij(0)ṽ = 2ei‖j(ṽ) for all ṽ ∈ H1(Ω), by definition
of the functions ei‖j(ṽ). Theorem 3 thus shows that

T0Mrig = {ṽ ∈ H1(Ω); DFij(0)ṽ = 0 a.e. in Ω}.

In other words, the space T0Mrig has the expression that is naturally
expected, albeit often delicate to establish, of the tangent space to a subman-
ifold of an infinite-dimensional Banach space defined by means of equations;
see in this respect [1, Chapter 3].
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