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Abstract

Let ω be an open connected subset of R2 and let θ be an immersion from ω into R3.
It is first established that the set formed by all rigid displacements, i.e., that preserve
the metric and the curvature, of the surface θ(ω) is a submanifold of dimension 6
and of class C∞ of the space H1(ω). It is then shown that the vector space formed
by all the infinitesimal rigid displacements of the surface θ(ω) is nothing but the
tangent space at the origin to this submanifold. In this fashion, the “infinitesimal
rigid displacement lemma on a surface”, which plays a key rôle in shell theory, is
put in its proper perspective.

Résumé

Soit ω un ouvert connexe de R2 et soit θ une immersion de ω dans R3. On établit
d’abord que l’ensemble formé par tous les déplacements rigides, c’est-à-dire ceux
qui préservent la métrique et la courbure, de la surface θ(ω) est une sous-variété
de dimension 6 et de classe C∞ de l’espace H1(ω). On établit ensuite que l’espace
vectoriel formé par tous les déplacements rigides infinitésimaux de la surface θ(ω)
n’est autre que l’espace tangent à cette sous-variété à l’origine. De cette façon,
le “lemme du déplacement rigide infinitésimal sur une surface”, qui joue un rôle
important en théorie des coques, est placé en perspective.
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Introduction

Further details about the various notions and notations used here are pro-
vided in the next sections.

The following “infinitesimal rigid displacement lemma on a surface” plays
a crucial rôle in linearized shell theory: Let ω be an open connected subset
of R2, let θ be a smooth enough immersion from ω into a three-dimensional
Euclidean space E3, and let η̃ ∈ H1(ω) be a vector field that satisfies

γαβ(η̃) = 0 a.e. in ω and ραβ(η̃) = 0 in H−1(ω),

where

γαβ(η̃) =
1

2
(∂αη̃ · aβ + ∂βη̃ · aα),

ραβ(η̃) = ∂αβ(η̃ · a3)− ∂αη̃ · ∂βa3 − ∂β(η̃ · ∂αa3)− Γσ
αβ∂ση̃ · a3,

the vectors aα = ∂αθ are tangent to the surface θ(ω), the unit vector a3 =
a1 ∧ a2

|a1 ∧ a2|
is normal to θ(ω), and the functions Γσ

αβ are the Christoffel symbols.

Then there exist vectors c ∈ E3 and d ∈ E3 such that

η̃(y) = c + d ∧ θ(y) for almost all y ∈ ω.

The infinitesimal rigid displacement lemma on a surface was first estab-
lished in [4, Theorem 5.1-1] for vector fields η̃ ∈ H1(ω) such that η̃ · a3 ∈
H2(ω), under the assumptions that ω is bounded with a Lipschitz-continuous
boundary and that θ ∈ C3(ω). See also [5], or [7, Theorem 2.6-2], [2], [11]
for simpler proofs, or [3], [6] for generalizations under substantially weaker
regularity assumptions on the mapping θ.

In shell theory, the set θ(ω) ⊂ E3 is viewed as the reference configuration of
the middle surface of an elastic shell and the field η̃ is viewed as a displacement
field of the surface θ(ω).

The functions γαβ(η̃) and ραβ(η̃) are the covariant components of the lin-
earized change of metric tensor and of the linearized change of curvature ten-
sor associated with a displacement field η̃ and a displacement field of the
above form η̃ = c + d ∧ θ is called an infinitesimal rigid displacement of the
surface θ(ω).

The infinitesimal rigid displacement lemma on a surface plays a crucial
rôle for establishing the uniqueness (possibly in a quotient space) and, in
conjunction with an inequality of Korn’s type on a surface, the existence of
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solutions to the well-known Koiter’s equations , proposed in 1970 by W.T.
Koiter [13] for modeling linearly elastic shells. For details, see [7, Chapter 2].

One objective of this paper is to put this lemma in its proper perspective,
as the linearized counterpart of the familiar rigidity theorem of surface theory,
once this theorem has been properly extended to the Sobolev space H1(ω).

This extension, which is carried out in Theorem 3, itself relies on an ex-
tension, due to [9], to a Sobolev space setting of the familiar rigidity theorem
for open sets in three-dimensional differential geometry. For convenience this
extension is first reviewed in Section 1 (see Theorem 1).

It is then shown in Theorem 4 and its corollary that the set M rig formed
by all the rigid displacements of the surface θ(ω), i.e., those that satisfy the
assumptions of the extended rigidity theorem, is a submanifold of dimension
6 and of class C∞ of the space H1(ω).

It is finally established in Theorem 5 that the vector space spanned by the
infinitesimal rigid displacements of the surface θ(ω) is nothing but the tangent
space at the origin to the manifold M rig. This result hinges on the well-known
characterization of the tangent space at I to the special orthogonal group and
on an extension, also due to [9], of the three-dimensional infinitesimal rigid
displacement lemma in curvilinear coordinates. For convenience, this extension
is also reviewed in Section 1 (see Theorem 2).

The results of this paper have been announced in [10].

1 Preliminaries

All spaces, matrices, etc., considered are real. The notations M3, O3, O3
+,

and A3 respectively designate the sets of all square matrices of order 3, of all
orthogonal matrices of order 3, of all matrices Q ∈ O3 with det Q = 1, and of
all antisymmetric matrices of order 3.

Latin indices range over the set {1, 2, 3} except when they are used for
indexing sequences, and the summation convention with respect to repeated
indices is used in conjunction with this rule.

The notation E3 designates a three-dimensional Euclidean space and a ·
b, a∧ b, and |a| =

√
a · a respectively designate the Euclidean inner product

and the exterior product of a, b ∈ E3, and the Euclidean norm of a ∈ E3.

Let Ω be an open subset of R3, let xi denote the coordinates of a point
x ∈ R3, and let ∂i := ∂/∂xi. Let Θ ∈ C1(Ω; E3) be an immersion, i.e., a
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mapping such that the three vectors gi(x) := ∂iΘ(x) are linearly independent
at all points x ∈ Ω. The metric tensor field (gij) ∈ C0(Ω; M3) of the set Θ(Ω)
(which is open in E3 since Θ is an immersion; see, e.g., [15, Theorem 3.8.10])
is then defined by means of its covariant components

gij(x) := gi(x) · gj(x), x ∈ Ω.

The classical rigidity theorem for open sets asserts that, if two immersions
Θ̃ ∈ C1(Ω) := C1(Ω; E3) and Θ ∈ C1(Ω) have the same metric tensor fields,
i.e., if g̃ij = gij in Ω (with self-explanatory notations), and Ω is connected,
then there exist a vector c ∈ E3 and a matrix Q ∈ O3 such that

Θ̃(x) = c + QΘ(x) for all x ∈ Ω.

For a proof, see, e.g., [8, Theorem 3].

The following result, established in [9], shows that a similar result holds
under the assumption that Θ̃ ∈ H1(Ω) := H1(Ω, E3). Note that this extension
itself relies on a crucial extension of the classical Liouville theorem, originally
due to Reshetnyak [14] and recently given a particularly concise and elegant
proof by Friesecke, James and Müller [12]. The notation ∇Θ(x) designates
the matrix whose columns are the vectors gi(x), x ∈ Ω.

Theorem 1 Let Ω be a connected open subset of R3 and let Θ ∈ C1(Ω) be
a mapping that satisfies det ∇Θ > 0 in Ω. Assume that there exists a vector
field Θ̃ ∈ H1(Ω) that satisfies

det ∇Θ̃ > 0 a.e. in Ω and g̃ij = gij a.e. in Ω.

Then there exist a vector c ∈ E3 and a matrix Q ∈ O3
+ such that

Θ̃(x) = c + QΘ(x) for almost all x ∈ Ω.

�

In three-dimensional elasticity, the set Θ(Ω) is viewed as the reference
configuration of a three-dimensional elastic body (under the additional, but
irrelevant here, assumption that the immersion Θ is injective) and a field ṽ ∈
H1(Ω) is viewed as a displacement field of the reference configuration Θ(Ω),
the set Θ̃(Ω), where Θ̃ := Θ+ ṽ, being its associated deformed configuration.

The covariant components of the linearized change of metric tensor asso-
ciated with a displacement field ṽ of the set Θ(Ω) are then defined by

ei‖j(ṽ) :=
1

2
[g̃ij − gij]

lin,
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where g̃ij and gij are the covariant components of the metric tensors of the

sets Θ̃(Ω) and Θ(Ω) and [· · · ]lin denotes the linear part with respect to ṽ in
the expression [· · · ]. An immediate computation then shows that

ei‖j(ṽ) =
1

2
(∂iṽ · gj + ∂jṽ · gi), where gi := ∂iΘ.

A displacement field ṽ ∈ H1(Ω) that satisfies ei‖j(ṽ) = 0 a.e. in Ω is called
an infinitesimal rigid displacement. The next theorem, due to [9], is an exten-
sion of the infinitesimal rigid displacement lemma in curvilinear coordinates
found in [7, Theorem 1.7-3].

Theorem 2 Let Ω be a connected open subset of R3 and let Θ ∈ C1(Ω) ∩
H1(Ω) be a mapping that satisfies det ∇Θ > 0 in Ω. Then a vector field
ṽ ∈ H1(Ω) satisfies ei‖j(ṽ) = 0 a.e. in Ω if and only if there exist a vector
c ∈ E3 and a matrix A ∈ A3 such that

ṽ(x) = c + AΘ(x) for almost all x ∈ Ω.

�

2 The classical rigidity theorem on a surface and its extension to
Sobolev spaces

Greek indices range over the set {1, 2} and the summation convention for
Latin indices also applies to these. Let ω be an open subset of R2, let yα denote
the coordinates of a point y ∈ R2, and let ∂α := ∂/∂yα and ∂αβ := ∂2/∂yα∂yβ.
Let θ ∈ C1(ω) := C1(ω; E3) be an immersion, i.e., a mapping such that the
two vectors

aα(y) := ∂αθ(y)

are linearly independent at all points y ∈ ω. The image θ(ω) is a surface in
E3. Note that the vectors aα(y) span the tangent plane to the surface θ(ω) at
the point θ(y).

The first fundamental form of the surface θ(ω) is defined by means of its
covariant components

aαβ(y) := aα(y) · aβ(y), y ∈ ω,

used in particular for computing lengths of curves on the surface θ(ω), con-
sidered as being isometrically imbedded in E3.

Let

a3(y) :=
a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|
, y ∈ ω,
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so that a3(y) is a unit vector, normal to the surface θ(ω) at θ(y). If a3 ∈ C1(ω),
the second fundamental form of the surface is defined by means of its covariant
components

bαβ(y) := −aα(y) · ∂βa3(y), y ∈ ω,

which, together with those of the first fundamental form, are used for com-
puting curvatures of curves on the surface θ(ω).

The classical rigidity theorem on a surface asserts that, if two immersions
θ̃ ∈ C2(ω) := C2(ω; E3) and θ ∈ C2(ω) have the same first and second fun-
damental forms, i.e., if ãαβ = aαβ and b̃αβ = bαβ in ω (with self-explanatory
notations) and ω is connected, then there exist a vector c ∈ E3 and a matrix
Q ∈ O3

+ such that

θ̃(y) = c + Qθ(y) for all y ∈ ω.

For a proof, see, e.g., [8, Theorem 6].

We now show that a similar result holds under the assumptions that θ̃ ∈
H1(ω) := H1(ω; E3) and ã3 :=

ã1 ∧ ã2

|ã1 ∧ ã2|
∈ H1(ω) (again with self-explanatory

notations). Naturally, our first task will be to verify that the vector field
ã3, which is not necessarily well defined a.e. in ω for an arbitrary mapping
θ̃ ∈ H1(ω), is nevertheless well defined a.e. in ω for those mappings θ̃ that
satisfy the assumptions of the next theorem. This observation will in turn
imply that the functions b̃αβ = −ãα · ∂βã3 are likewise well defined a.e. in ω.

Theorem 3 (rigidity theorem) Let ω be a connected open subset of R2 and
let θ ∈ C1(ω) be an immersion that satisfies a3 ∈ C1(ω). Assume that there
exists a vector field θ̃ ∈ H1(ω) that satisfies

ãαβ = aαβ a.e. in ω, ã3 ∈ H1(ω), and b̃αβ = bαβ a.e. in ω.

Then there exist a vector c ∈ E3 and a matrix Q ∈ O3
+ such that

θ̃(y) = c + Qθ(y) for almost all y ∈ ω.

PROOF. (i) To begin with, we record several technical preliminaries.

First, we observe that the relations ãαβ = aαβ a.e. in ω and the assumption
that θ ∈ C1(ω) is an immersion together imply that

|ã1 ∧ ã2| =
√

det(ãαβ) =
√

det(aαβ) > 0 a.e. in ω.

Consequently, the vector field ã3, and thus the functions b̃αβ, are well defined
a.e. in ω.
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Second, we establish that

bαβ = bβα in ω and b̃αβ = b̃βα a.e. in ω,

i.e., that aα ·∂βa3 = aβ ·∂αa3 in ω and ãα ·∂βã3 = ãβ ·∂αã3 a.e. in ω. To this
end, we note that either the assumptions θ ∈ C1(ω) and a3 ∈ C1(ω), or the
assumptions θ ∈ H1(ω) and a3 ∈ H1(ω), imply that aα ·∂βa3 = ∂αθ ·∂βa3 ∈
L1

loc(ω), hence that ∂αθ · ∂βa3 ∈ D′(ω).

Given any ϕ ∈ D(ω), let U denote an open subset of R2 such that supp ϕ ⊂
U and U is a compact subset of ω. Denoting by X′〈·, ·〉X the duality pairing
between a topological vector space X and its dual X ′, we have

D′(ω)〈∂αθ · ∂βa3, ϕ〉D(ω) =
∫

ω
ϕ∂αθ · ∂βa3 dy

=
∫

ω
∂αθ · ∂β(ϕa3)dy −

∫
ω
(∂βϕ)∂αθ · a3 dy.

Observing that ∂αθ · a3 = 0 a.e. in ω and that

−
∫

ω
∂αθ · ∂β(ϕa3)dy =−

∫
U

∂αθ · ∂β(ϕa3)dy

= H−1(U ;E3)〈∂β(∂αθ), ϕa3〉H1
0 (U ;E3),

we reach the conclusion that the expression D′(ω)〈∂αθ ·∂βa3, ϕ〉D(ω) is symmet-
ric with respect to α and β since ∂αβθ = ∂βαθ in D′(U). Hence ∂αθ · ∂βa3 =
∂βθ · ∂αa3 in L1

loc(ω), and the announced symmetries are established.

Third, let

c̃αβ := ∂αã3 · ∂βã3 and cαβ := ∂αa3 · ∂βa3.

Then we claim that c̃αβ = cαβ a.e. in ω. To see this, we note that the matrix
fields (ãαβ) := (ãαβ)−1 and (aαβ) := (aαβ)−1 are well defined and equal a.e. in
ω since θ is an immersion and ãαβ = aαβ a.e. in ω. The formula of Weingarten

can thus be applied a.e. in ω, showing that c̃αβ = ãστ b̃σαb̃τβ a.e. in ω.

The assertion then follows from the assumptions b̃αβ = bαβ a.e. in ω.

(ii) Starting from the set ω and the mapping θ (as given in the statement
of Theorem 3), we next construct a set Ω and a mapping Θ that satisfy the
assumptions of Theorem 1. More precisely, let

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ ω × R .
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Then the mapping Θ := ω ×R → E3 defined in this fashion is clearly contin-
uously differentiable on ω × R and

det ∇Θ(y, x3) =
√

det(aαβ(y)){1− x3(b
1
1 + b2

2)(y) + x2
3(b

1
1b

2
2 − b2

1b
1
2)(y)}

for all (y, x3) ∈ ω × R, where

bβ
α(y) := aβσ(y)bασ(y), y ∈ ω.

Let ωn, n ≥ 0, be open subsets of R2 such that ωn is a compact subset of
ω and ω =

⋃
n≥0 ωn. Then the continuity of the functions aαβ, aαβ, bαβ and the

assumption that θ is an immersion together imply that, for each n ≥ 0, there
exists εn > 0 such that

det ∇Θ(y, x3) > 0 for all (y, x3) ∈ ωn × [−εn, εn].

Besides, there is no loss of generality in assuming that εn ≤ 1 (this property
will be used in part (iii)).

Let then

Ω :=
⋃
n≥0

(ωn×]− εn, εn[).

Then it is clear that Ω is a connected open subset of R3 and that the mapping
Θ ∈ C1(Ω) satisfies det ∇Θ > 0 in Ω.

Finally, note that the covariant components gij ∈ C0(Ω) of the metric tensor
field associated with the mapping Θ are given by (the symmetries bαβ = bβα

established in (i) are used here)

gαβ = aαβ − 2x3bαβ + x2
3cαβ, gα3 = 0, g33 = 1.

(iii) Starting with the mapping θ̃ (as given in the statement of Theorem
3), we construct a mapping Θ̃ that satisfies the assumptions of Theorem 1. To
this end, we define a mapping Θ̃ : Ω → E3 by letting

Θ̃(y, x3) := θ̃(y) + x3ã3(y) for all (y, x3) ∈ Ω,

where the set Ω is defined as in (ii). Hence Θ̃ ∈ H1(Ω), since Ω ⊂ ω×]− 1, 1[.
Besides, det ∇Θ̃ = det ∇Θ a.e. in Ω since the functions b̃β

α := ãβσ b̃ασ, which
are well defined a.e. in ω, are equal, again a.e. in ω, to the functions bβ

α.
Likewise, the components g̃ij ∈ L1(Ω) of the metric tensor field associated

with the mapping Θ̃ satisfy g̃ij = gij a.e. in Ω since ãαβ = aαβ and b̃αβ = bαβ

a.e. in ω by assumption and c̃αβ = cαβ a.e. in ω by part (i).

(iv) By Theorem 1, there exist a vector c ∈ E3 and a matrix Q ∈ O3
+ such
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that

θ̃(y) + x3ã3(y) = c + Q(θ(y) + x3a3(y)) for almost all (y, x3) ∈ Ω.

Differentiating with respect to x3 in this equality between functions in H1(Ω)
shows that ã3(y) = Qa3(y) for almost all y ∈ ω. Hence θ̃(y) = c + Qθ(y) for
almost all y ∈ ω as announced. �

Remarks. (1) The existence of θ̃ ∈ H1(ω) satisfying the assumptions of
Theorem 3 implies that θ̃ ∈ C1(ω) and ã3 ∈ C1(ω), and that θ ∈ H1(ω) and
a3 ∈ H1(ω).

(2) It is easily seen that the conclusion of Theorem 3 is still valid if the
assumptions θ̃ ∈ H1(ω) and ã3 ∈ H1(ω) are replaced by the weaker assump-
tions θ̃ ∈ H1

loc(ω) and ã3 ∈ H1
loc(ω).

3 The submanifold of rigid displacements on a surface

All the results needed below about submanifolds in infinite-dimensional
Banach spaces are found in [1]. The tangent space at a point m of a sub-
manifold M of a Banach space X is denoted TmM. If f : X → Y is a
Fréchet-differentiable mapping into a Banach space Y , the tangent map at m,
i.e., the restriction to TmM of the Fréchet derivative of f at m, is denoted
Tmf .

We now establish that the set M formed by all the mappings θ̃ ∈ H1(ω)
that satisfy the assumptions of the rigidity theorem on a surface (Theorem
3) is a finite-dimensional submanifold of the space H1(ω). Note that the as-
sumptions θ ∈ H1(ω) and a3 ∈ H1(ω) have been added to those of Theorem
3, simply to guarantee that the set M is non-empty.

We also characterize the tangent space to M at θ. Another equally im-
portant characterization of the same tangent space, in terms of the linearized
change of metric and linearized change of curvature tensors, will be given in
Theorem 5.

The notations used here are the same as in Theorem 3. In particular,
H1(ω) = H1(ω; E3), C1(ω) = C1(ω; E3), and the covariant components of
the first, and second, fundamental forms of the surfaces θ̃(ω) and θ(ω) are
respectively designated by ãαβ and aαβ, and b̃αβ and bαβ.

Theorem 4 Let ω be a connected open subset of R2 and let θ ∈ C1(ω)∩H1(ω)
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be an immersion that satisfies a3 ∈ C1(ω) ∩H1(ω). Then the set

M := {θ̃ ∈ H1(ω); ãαβ = aαβ a.e. in ω, ã3 ∈ H1(ω), b̃αβ = bαβ a.e. in ω}

is a submanifold of class C∞ and of dimension 6 of the space H1(ω) and its
tangent space at θ is given by

TθM = {η̃ ∈ H1(ω);∃ c ∈ E3, ∃A ∈ A3, η̃ = c + Aθ a.e. in ω}.

PROOF. (i) Define the linear mapping

f : (c, F ) ∈ E3 ×M3 → f(c, F ) = c + Fθ ∈ H1(ω).

By the rigidity theorem (Theorem 3), the above set M may be equivalently
defined as

M = f(E3 ×O3
+).

Since the mapping f : E3 ×M3 → H1(ω) need not be injective, some care
has to be exercised for proving that the image M of the manifold E3 × O3

+

through f is a submanifold of H1(ω). To this end, we need to prove that the
restriction f ] of the mapping f to the set E3 × O3

+ is an embedding, in the
sense that it satisfies the properties established in (ii) and (iii) below.

(ii) First, we show that, for each (c, Q) ∈ E3×O3
+, the tangent map T(c,Q)f

is injective, with a closed range having a closed complement in H1(ω).

Since f is linear, the tangent map T(c,Q)f is simply the restriction of f to

T(c,Q)(E3 ×O3
+) = E3 ×QA3.

So, given any Q ∈ O3
+, let d ∈ E3 and A ∈ A3 be such that

d + QAθ(y) = 0 for all y ∈ ω.

Multiplying on the left by QT and differentiating with respect to yα yield
Aaα(y) = 0 for all y ∈ ω. Fix y0 ∈ ω; then the relation Aaα(y0) = 0 shows
that there exist αi ∈ R such that A = (αiβj), where βj denotes the j-th
Cartesian component of the vector a3(y0). The relation A + AT = 0 then
implies that A = 0, hence that d = 0. Consequently, the tangent map T(c,Q)f
is injective for each (c, Q).

That T(c,Q)f has a closed range is clear, since f(E3 × QA3) is the image
by a linear mapping of a finite-dimensional space. That f(E3 × QA3) has a
closed complement in H1(ω) is equally clear, since H1(ω) is a Hilbert space.

(iii) Second, we show that the restriction f ] of the mapping f to the sub-
manifold E3 × O3

+ is a homeomorphism, hence a C∞-diffeomorphism since f
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is linear, from E3 ×O3
+ onto the image f(E3 ×O3

+) equipped with the relative
topology induced by that of H1(ω).

To begin with, let us establish that f ] is injective. So, let c1, c2 ∈ E3 and
Q1, Q2 ∈ O3

+ be such that

c1 − c2 + (Q1 −Q2)θ(y) = 0 for all y ∈ ω.

Differentiating with respect to yα and fixing y0 ∈ ω show that there exist
αi ∈ R such that the i-th row vector of the matrix (Q1 −Q2) is of the form
αib

T
3 , where b3 := a3(y0). Let b1 be any vector that satisfies |b1| = 1 and

b1 · b3 = 0, let b2 := b3 ∧ b1, and let B be the matrix with b1, b2, b3 as its
column vectors. Then B ∈ O3

+ and

(Q1 −Q2)B =


0 0 α1

0 0 α2

0 0 α3

 .

Hence the first and second column vectors of the matrices Q1B and Q2B are
identical. Since both matrices Q1B and Q2B belong to O3

+, they are thus
equal. Therefore Q1 = Q2 since B is invertible. This equality in turn implies
that c1 = c2.

Since E3 × M3 is a finite-dimensional space, the linear mapping f : E3 ×
M3 → H1(ω) is continuous and so is its restriction f ] : E3×O3

+ → f(E3×O3
+).

It thus remains to establish that the inverse mapping of f ] is also continuous.
So, let (cn, Qn) ∈ E3 ×O3

+, n ≥ 1, and (d, R) ∈ E3 ×O3
+ be such that

f ](cn, Qn) −→
n→∞

χ := f ](d, R) in H1(ω).

Since Qn ∈ O3
+, n ≥ 1, there exist a subsequence (Qm)m≥1 and Q ∈ O3

+

such that Qm −→
m→∞

Q, which in turn implies that

cm = f ](cm, Qm)−Qmθ −→
m→∞

c := χ−Qθ.

It thus follows that f ](cm, Qm) → f ](c, Q) since f ] is continuous, hence that
c = d and Q = R since f ] is injective. The whole sequence (cn, Qn)n≥1

thus converges to (d, R) since the limit is unique. This shows that the inverse
mapping of f ] is continuous.

(iv) By (ii) and (iii), the mapping f ] : E3 ×O3
+ → H1(ω) is an embedding.

Since E3×O3
+ is a submanifold of dimension 6 of E3×M3 (the special orthogo-

nal group O3
+ is a submanifold of dimension 3 of M3), the set M = f ](E3×O3

+)
is thus a submanifold of dimension 6 of H1(ω) (see [1, Section 3.5]).
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Since the manifolds E3 × O3
+ and H1(ω) are of class C∞ (the special or-

thogonal group is a submanifold of class C∞ of M3) and the mapping f ] is of
class C∞, the submanifold M is also of class C∞.

(v) Since f is linear and TIO3
+ = A3, the tangent space to M at θ is given

by

TθM = Tf(0,I)f(E3 ×O3
+) = f(T(0,I)(E3 ×O3

+)) = f(E3 × A3)

= {η̃ ∈ H1(ω); ∃ c ∈ E3, ∃A ∈ A3, η̃ = c + Aθ a.e. in ω},

and the proof is complete. �

If the mapping f : E3 × M3 → H1(ω) is injective, in which case f is
a C∞-diffeomorphism from E3 × M3 onto f(E3 × M3), the above proof that
M = f(E3 ×O3

+) is a submanifold of H1(ω) can be substantially simplified:
Since submanifolds of class C∞ are preserved by C∞-diffeomorphisms, M is
a submanifold of class C∞ and of dimension 6 of f(E3 × M3). As a closed
subspace of the Hilbert space H1(ω), the image f(E3 × M3) has a closed
complement, i.e., f(E3 × M3) is “split” in H1(ω). The set M is thus also a
submanifold of class C∞ and of dimension 6 of H1(ω) (this conclusion follows
from the definition of a submanifold; see [1, Definition 3.2.1]).

Interestingly, one can establish that the mapping f : E3 × M3 → H1(ω)
is injective if and only if the surface θ(ω) is not contained in a plane. To see
this, let c ∈ E3 and F ∈ M3 be such that

c + Fθ(y) = 0 for all y ∈ ω.

Differentiating with respect to yα yields F aα(y) = 0 for all y ∈ ω. This means
that the rows of the matrix F , which is independent of y ∈ ω, are at each
y ∈ ω proportional to the vector aT

3 (y). Hence F 6= 0 implies that a3(y) is
the same vector for all y ∈ ω; hence the surface θ(y) is contained in a plane.
If, conversely, θ(y) is contained in a plane, then a3(y) = a3 for all y ∈ ω,
the matrix F ∈ M3 with all row vectors equal to a3 does not vanish, yet
Faα(y) = 0 for all y ∈ ω.

In shell theory, the surface θ(ω) is the reference configuration of the middle
surface of an elastic shell (under the additional assumption that the immersion
θ is injective, but this assumption is irrelevant for our present purposes). Then,
for each θ̃ ∈ H1(ω), the surface θ̃(ω) is a deformed configuration of the middle
surface and the field η̃ ∈ H1(ω) defined by

θ̃ = θ + η̃
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is a displacement field of the reference configuration θ(ω). If in particular
θ̃ ∈ M , the field η̃ defined in this fashion is called a rigid displacement, and
the subset M rig of H1(ω) defined by

M = θ + M rig

is accordingly called the manifold of rigid displacements (of the reference con-
figuration θ(ω)). We now reformulate Theorem 4 in terms of the manifold
M rig.

Corollary to Theorem 4 Let ω be a connected open subset of R2, and let
θ ∈ C1(ω)∩H1(ω) be an immersion that satisfies a3 ∈ C1(ω)∩H1(ω). Then
the manifold of rigid displacements of the surface θ(ω), viz.,

M rig := {η̃ ∈ H1(ω); ãαβ = aαβ a.e. in ω, ã3 ∈ H1(ω), b̃αβ = bαβ a.e. in ω},

is a submanifold of class C∞ and of dimension 6 of the space H1(ω) and its
tangent space at 0 is given by

T0M rig = TθM

= {η̃ ∈ H1(ω); ∃ c ∈ E3, ∃A ∈ A3, η̃ = c + Aθ a.e. in ω}.

�

4 The infinitesimal rigid displacement lemma on a surface revisited

The covariant components of the linearized change of metric tensor and lin-
earized change of curvature tensor associated with a smooth enough displace-
ment field η̃ of the surface θ(ω), viewed as above as a reference configuration,
are defined by

γαβ(η̃) :=
1

2
[ãαβ − aαβ]lin and ραβ(η̃) := [b̃αβ − bαβ]lin,

where aαβ and ãαβ, and bαβ and b̃αβ, respectively designate the covariant com-
ponents of the first, and second, fundamental forms of the surfaces θ(ω) and
θ̃(ω) where θ̃ := θ + η̃, and [· · · ]lin denotes the linear part with respect to η̃
in the expression [· · · ]. A formal computation immediately gives

γαβ(η̃) =
1

2
(∂αη̃ · aβ + ∂βη̃ · aα), where aα := ∂αθ.

This expression thus shows that

γαβ(η̃) ∈ L2
loc(ω) if η̃ ∈ H1(ω) and θ ∈ C1(ω).

14

mkgohlpr
13



Another formal, but substantially less immediate, computation shows that

ραβ(η̃) = ∂αβ(η̃ · a3)− ∂αη̃ · ∂βa3 − ∂β(η̃ · ∂αa3)− Γσ
αβ∂ση̃ · a3,

where the functions Γσ
αβ := aστaτ · ∂αaβ are the Christoffel symbols of the

surface θ(ω). See, e.g., [7, Theorem 2.5-1] for the effective computation that
leads to the above expression of the functions ραβ(η̃), noting in this respect

that the functions b̃αβ are well defined a.e. in ω when ãαβ = aαβ (see Theorem
3) or when the W 1,∞(ω)-norm of the field η̃ is small enough. The above
expression thus shows that

ραβ(η̃) ∈ H−1(ω) if η̃ ∈ H1(ω) and θ ∈ C2(ω) and a3 ∈ C2(ω).

Under these assumptions on the mapping θ and the field a3, a displacement
field η̃ ∈ H1(ω) that satisfies γαβ(η̃) = 0 a.e. in ω and ραβ(η̃) = 0 in H−1(ω) is
called an infinitesimal rigid displacement of the surface θ(ω). Accordingly, the
infinitesimal rigid displacement lemma on a surface stated in the Introduction
consists in identifying the vector space V lin

rig formed by such displacements.

The next theorem shows that this lemma has also a remarkably simple
interpretation in terms of the manifold M rig of rigid displacements introduced
at the end of Section 3. The proof is reminiscent of that used in [2] or [11] for
establishing the Korn inequality on a surface as a consequence of its three-
dimensional counterpart in curvilinear coordinates.

Theorem 5 Let ω be a connected open subset of R2 and let θ ∈ C2(ω) ∩
H1(ω) be an immersion that satisfies a3 ∈ C2(ω)∩H1(ω). Then the space of
infinitesimal rigid displacements of the surface θ(ω), viz.,

V lin
rig := {η̃ ∈ H1(ω); γαβ(η̃) = 0 a.e. in ω and ραβ(η̃) = 0 in H−1(ω)},

is given by

V lin
rig = T0M rig,

where the tangent space T0M rig has been identified in the Corollary to Theorem
4.

PROOF. (i) Since the set ω is open and connected, there exist open and
connected subsets ωn, n ≥ 0, of R2 such that ωn is a compact subset of ω and
ωn ⊂ ωn+1 for any n ≥ 0, and ω =

⋃
n≥0 ωn. Let the mapping Θ ∈ C2(ω × R)

be defined by

Θ(y, x3) := θ(y) + x3a3(y) for all (y, x3) ∈ ω ∈ R.

As shown in part (ii) of the proof of Theorem 3, there exist 0 < εn ≤ 1 such
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that det ∇Θ(y, x3) > 0 for all (y, x3) ∈ Ω, where

Ω :=
⋃
n≥0

Ωn and Ωn := ωn×]− εn, εn[.

(ii) Given any displacement field η̃ ∈ H1(ω) that satisfies η̃ ·a3 ∈ H2
loc(ω),

let

ṽ(y, x3) := η̃(y)− x3({∂α(η̃ · a3)− η̃ · ∂αa3}aα)(y)

for almost all (y, x3) ∈ Ω, where Ω is defined as in part (i) and aα := aαβaβ.
The vector field ṽ defined in this fashion satisfies ṽ ∈ H1

loc(Ω). Hence ṽ ∈
H1(Ωn) for all n ≥ 0.

A careful computation then shows that, for any n ≥ 0, the covariant compo-
nents ei‖j(ṽ) ∈ L2(Ωn) of the linearized change of metric tensor (see Section
1) associated with the above displacement field ṽ are related in Ωn to the
functions γαβ(η̃) ∈ L2(ωn) and ραβ(η̃) ∈ L2(ωn) by means of the relations

eα‖β(ṽ) = γαβ(η̃)− x3ραβ(η̃) +
x2

3

2
{bσ

αρβσ(η̃) + bτ
βρατ (η̃)− 2bσ

αbτ
βγστ (η̃)},

ei‖3(ṽ) = 0,

where bσ
α := aσβbαβ.

(iii) Let a displacement field η̃ ∈ V lin
rig be given. The definition of the dis-

tributions ραβ(η̃) and the assumptions ραβ(η̃) = 0 in H−1(ω) together imply
that η̃ · a3 ∈ H2

loc(ω), thus allowing to conclude from part (ii) that, for each
n ≥ 0, ṽ ∈ H1(Ωn) and ei‖j(ṽ) = 0 a.e. in Ωn.

Theorem 2 can thus be applied (each open set Ωn = ωn×] − εn, εn[ is
connected since ωn is connected), showing that, for each n ≥ 0, there exist
a vector cn ∈ E3 and a matrix An ∈ A3 such that ṽ(x) = cn + AnΘ(x) for
almost all x ∈ Ωn, i.e., such that

η̃(y)− x3({∂α(η̃ · a3)− η̃ · ∂αa3}aα)(y) = cn + An{θ(y) + x3a3(y)}

for almost all (y, x3) ∈ Ωn. Differentiating with respect to x3 this equality
between functions in H1(Ωn), we conclude that

({∂α(η̃ · a3)− η̃ · ∂αa3}aα)(y) = Ana3(y)

for almost all y ∈ ωn. Hence

η̃(y) = cn + Anθ(y)

for almost all y ∈ ωn.
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That the vectors cn and An are in fact independent of n ≥ 0 is a conse-
quence of the inclusions ωn ⊂ ωn+1, n ≥ 0. For, if d ∈ E3 and A ∈ A3 are
such that d+Aθ(y) = 0 for all y ∈ ωn for some n ≥ 0, then d = 0 and A = 0
(see part (ii) of the proof of Theorem 4). �

By Theorem 5, the infinitesimal rigid displacements of the surface θ(ω)
thus span the tangent space at the origin to the manifold formed by the
rigid displacements of θ(ω). This is the essence of the “infinitesimal rigid
displacement lemma on a surface”.
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