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Abstract

Asymptotic formulas, as ε → 0+, are derived for the solutions of the nonlinear differ-

ential equation εu′′+Q(u) = 0 with boundary conditions u(−1) = u(1) = 0 or u′(−1) =

u′(1) = 0. The nonlinear term Q(u) behaves like a cubic; it vanishes at s−, 0, s+ and

nowhere else in [s−, s+], where s− < 0 < s+. Furthermore, Q′(s±) < 0, Q′(0) > 0 and

the integral of Q on the interval [s−, s+] is zero. Solutions to these boundary-value prob-

lems are shown to exhibit internal shock layers, and the error terms in the asymptotic

approximations are demonstrated to be exponentially small. Estimates are obtained

for the number of internal shocks that a solution can have, and the total numbers of

solutions to these problems are also given. All results here are established rigorously in

the mathematical sense.
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1 INTRODUCTION

In this paper, we consider the singularly perturbed two-point problem

(1.1) εu′′ + Q(u) = 0, −1 < x < 1,

with boundary conditions

(1.2) u(−1) = u(1) = 0

or

(1.3) u′(−1) = u′(1) = 0,

where ε is a small positive parameter. Throughout the paper, we shall assume that the

nonlinear term Q(u) vanishes at s−, 0, s+ and nowhere else in [s−, s+], where s− < 0 < s+.

Furthermore, we assume that Q′(s±) < 0, Q′(0) > 0 and

(1.4)

∫ s+

s
−

Q(s)ds = 0.

The graph of the function Q(u) has the typical shape shown in Figure 1.

Equation (1.1) can be considered as the equation of motion of a nonlinear spring with

spring constant large compared to the mass. It is also the equilibrium equation associated

with the Ginzburg-Landau model

(1.5) ut = εuxx + Q(u), −1 < x < 1, t ≥ 0,

with various boundary conditions at x = ±1. In (1.5), Q(u) = −Ṽ ′(u), where Ṽ (u) is a

double well potential with wells of equal depth located at the preferred phases u = s− and

u = s+.

Q(u)

us s- +

Figure 1. Graph of Q(u).

The problem of finding asymptotic behavior of the solutions to (1.1) & (1.2) or (1.1)

& (1.3) has been studied earlier by O’Malley [5], using a phase-plane analysis. Although
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his approach provides useful qualitative information about the solutions with internal layer

behavior, it does not give quantitative information such as asymptotic formulas for the

solutions. The best known approach to derive such formulas is probably the method of

matched asymptotics. But, as was shown by Carrier and Pearson [1, p.202], a routine

application of this method will not lead to the determination of the locations of the internal

layers, thus creating spurious solutions. To overcome this difficulty, Lange [3] extended the

method of matched asymptotics by including exponentially small terms in the expansion

of the solution; see also MacGillivray [4]. There are two difficulties with Lange’s approach;

namely, (i) explicit expressions for the internal layer solutions must be known a priorily, (ii)

second-order terms in the asymptotic expansions are needed to determine the layer positions

of the leading order approximate solutions. An alternative approach has been introduced

by Ward [8], which he later called the projection method (see [7, p.496]). Ward’s method

is an extension of the variational approach adopted by Kath et al [2], and does not require

the knowledge of the explicit form of the internal layer solution. However, as stated by

himself in [8, p.98], he is not able to determine the number of solutions to (1.1) for small

fixed ε. More recently, Reyna and Ward [7] introduced another method, which involves

a nonlinear WKB-type transformation for (1.1). The advantage of this method is that it

avoids the use of exponential asymptotics, i.e., it is sufficient to use just the conventional

singular perturbation approach on the transformed problem.

Despite the usefulness of all these methods mentioned above in providing approximate

solutions to the problem (1.1) & (1.2) or (1.1) & (1.3) they have a common defect from

a mathematical point of view; that is, none of the arguments used in these methods can

be modified to show that for each approximate solution, there is one and only one true

solution, and that their difference in absolute value tends to zero as ε approaches zero. A

first attempt in this direction was made in [6], where only the special case Q(u) = 1−u2 was

considered. For instance, it was shown in [6] that in this special case, there exists exactly

one solution u1(x, ε) to (1.1) & (1.2) satisfying

(1.6) u1(x, ε) = ũ1(x, ε) + q

(
x√
ε

)
+ O(e−

√
2/ε),

where

ũ1(x, ε) = −1 + 3sech2

(
x + 1√

2ε
+ ln(

√
3 +

√
2)

)

+ 3sech2

(
1 − x√

2ε
+ ln(

√
3 +

√
2)

)(1.7)

and

(1.8) q(ζ) =
12e

√
2ζ

(1 + e
√

2ζ)2
.

The graph of the solution u1(x, ε) is shown in Figure 2.
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Figure 2. Graph of the solution u1(x, ε) when ε = 0.01

The internal layer near the origin is called a spike. Furthermore, it was shown in [6]

that if n(ε) denotes the number of solutions to the boundary-value problem (BVP) − (1.1)

& (1.2) when Q(u) = 1 − u2, then we have the asymptotic formula

(1.9) n(ε) ∼ 1.64√
ε

as ε → 0+.

As to the maximum number, say N(ε), of spikes that a solution to (1.1) & (1.2) can have,

we have the estimate

(1.10) N(ε) ≤ 0.41√
ε

+ 1.

In the present paper, we shall establish corresponding results for the BVP (1.1) & (1.2)

or (1.1) & (1.3), when Q(u) is of the form shown in Figure 1. For instance, in the case when

Q(u) = 2u − 2u3 which was considered by Lange [3], we will show that there exist exactly

two solutions u1,1(x, ε) and u1,2(x, ε) to (1.1) & (1.2) such that

(1.11) u1,2(x, ε) = u1,1(−x, ε)

and

u1,1(x, ε) = tanh

(
x + 1√

ε

)
+ tanh

(
− x√

ε

)

+ tanh

(
x − 1√

ε

)
+ O(e−1/

√
ε).

(1.12)

The graph of u1,1(x, ε) is shown in Figure 3. The internal layer near x = 0 in this case is

called a shock. An estimate for the maximum number n1(ε) of shocks is given by

4



11

1

1_

_

Figure 3. Graph of u1,1(x, ε) when ε = 0.01.

(1.13) n1(ε) ≤
2

π

√
2

ε
− 1,

and the number n2(ε) of solutions to (1.1) – (1.2) behaves like

(1.14) n2(ε) ∼
4

π

√
2

ε
.

The presentation of this paper is arranged as follows. In §2, we consider an initial-

value problem (IVP), which is directly related to the BVP (1.1) – (1.2). We show that the

existence of a solution to (1.1) – (1.2) depends very much on the slope of the solution to

this IVP at x = −1. We also establish some properties about the lengths of the intervals in

which the solution to this IVP is above or below the x-axis. In addition, we give estimates

for the number of solutions to (1.1) – (1.2), and the maximum number of shocks that a

solution can have. In §3, we examine the asymptotic nature of the approximate solutions

in the case when there is no shocks or at most one shock. In fact, we shall prove that

the differences between approximate solutions and true solutions are exponentially small.

The results for the general case with n shocks are presented in §4. In §5, we state the

corresponding results for the BVP (1.1) & (1.3). Two special but typical examples are

given in §6. The final section contains discussions of some cases not touched upon in the

previous sections, including the boundary-value problem consisting of equation (1.1) and

the boundary conditions

(1.15)
√

εu′(1) + kr(u(1) − s+) = 0

and

(1.16)
√

εu′(−1) − kl(u(−1) − s−) = 0

studied in Ward [8].
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2 NUMBER OF SHOCKS

As in our previous paper [6], our approach is based on the shooting method. That is,

we start with the initial-value problem (IVP)

(2.1)

{
εu′′ + Q(u) = 0

u(−1) = 0, u′(−1) = k,

where k is a real number. When Q(u) is sufficiently smooth, it is known that this problem

has a unique solution which can be extended to all x > −1. For convenience, we introduce

the notation

(2.2) kmax :=

√
2

ε

∫ s+

0
Q(s) ds.

LEMMA 1. Let u(x, k) denote the solution to the IVP (1.1) − (1.2). If k > kmax,

then u(x, k) is increasing for x > −1 and limx→∞ u(x, k) = ∞. (b) If k < −kmax, then

u(x, k) is decreasing for x > −1 and limx→∞ u(x, k) = −∞. (c) If |k| < kmax, then u(x, k)

is periodic and intersects the x-axis infinitely many times. (d) In the critical case, i.e. when

k = ±kmax, u(x, ε) = ±f(ξ) where ξ = x+1√
ε

and f satisfies

(2.3) f ′′(ξ) + Q(f) = 0, −∞ < ξ < ∞,

(2.4) f(−∞) = s−, f(∞) = s+, f(0) = 0;

furthermore,

(2.5) f(ξ) ∼ s+ − A+ e−σ+ξ, as ξ → ∞

and

(2.6) f(ξ) ∼ s− + A− eσ
−

ξ, as ξ → −∞,

where σ± = (−Q′(s±))1/2, and A+, A− are explicitly given positive constants.

Proof. (a) Multiplying both sides of the differential equation in (2.1) by u′, and inte-

grating from −1 to x, we obtain

(2.7)
ε

2
(u′)2 +

∫ u

0
Q(s)ds = C,

where C = ε
2k2. If k > kmax, then it is easily seen from the graph of Q(s) that C >

∫ u
0 Q(s)ds

for any u > 0 and ε
2(u′)2 > 0; cf. (2.2). Since u′(−1, ε) = k > 0 and u′(x, ε) never vanishes,

it follows that u′(x, ε) > 0 for x > −1. Therefore, u(x, ε) is increasing for x > −1 and we

can assume that

lim
x→∞

u(x, ε) = l.
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We shall show that l = ∞. Since k > kmax, there is a number β > 0 such that

k2 >
2

ε

∫ s+

0
Q(s)ds + β.

Substituting this inequality into (2.7) gives

u′(x) >
√

β

for x > −1, from which it follows that

lim
x→∞

u(x, ε) = ∞.

(b) The argument in this case is similar to that in case (a). Using (2.7), one can easily

show that u(x, ε) is decreasing for x > −1, and that it tends to −∞ as x approaches ∞.

(c) We consider only the case 0 < k < kmax; the argument for −kmax < k < 0 is more

or less the same. From the graph of Q(u) in Figure 1, it is readily seen that the equation∫ u
0 Q(s)ds = C has two roots u1(k) and u2(k) such that u1(k) ∈ (0, s+) and u2(k) ∈ (s−, 0).

From the initial conditions in (2.1) and equation (2.7), it also follows that there are two

points x = d1 and x = d2 with d1 < d2 such that

u′(d1, k) = 0, u(d1, k) = u1(k) ∈ (0, s+),

and

u(d2, k) = 0, u′(d2, k) = −k.

Starting from x = d2, one can also show that there exist two points d3 and d4 such that

u′(d3, k) = 0, u(d3, k) = u2(k) ∈ (s−, 0),

and

u(d4, k) = 0, u′(d4, k) = k.

At x = d4, u(x, k) has the same initial values as those at the starting point x = −1. Hence,

u(x, k) is periodic with period d4 + 1.

In the case k = 0, u ≡ 0 is the only solution to (2.1).

(d) When |k| = kmax, we have C = ε
2k2 =

∫ s+

0 Q(s)ds. First, consider the case k = kmax,

and make the change of variables

(2.8) ξ =
x + 1√

ε
, f(ξ) = u(x, k).

It is readily verified that f satisfies (2.3). From (2.7), it also follows that

(2.9)
1

2

(
df

dξ

)2

+

∫ f

0
Q(s)ds =

∫ s+

0
Q(s)ds.

We claim

(2.10) 0 < f < s+

7



for ξ > 0 and

(2.11) lim
ξ→∞

f(ξ) = s+.

Since f(0) = u(−1, k) = 0, it is easily seen that f(ξ) < s+ for ξ in a right neighborhood

of 0. From (2.9), it can also be seen that there is such a neighborhood in which f ′(ξ) > 0,

i.e., f(ξ) is increasing. We shall show that in fact, f(ξ) is increasing in the whole interval

0 < ξ < ∞. Assume to the contrary that there exists a point η such that f(η) = s+ and

0 < f(ξ) < s+ for 0 < ξ < η. Put

(2.12) V (f) :=

∫ f

s+

Q(s)ds.

Clearly, V (s+) = V ′(s+) = 0 and V ′′(s+) = Q′(s+) < 0. Since V (f) is sufficiently smooth,

we may write V (f) = (s+ − f)2H(f), where H(f) is a negative function, so that

(2.13) σ+ =
√
−Q′(s+) =

√
−2H(s+).

(Note that as long as ξ < η, we have f < s+ and V < 0.) From (2.9), we obtain

(2.14)
df

(s+ − f)
√

−2H(f)
= dξ.

Integrating both sides from ξ = 0 to ξ = η gives

(2.15)

∫ s+

0

df

(s+ − f)
√

−2H(f)
=

∫ η

0
dξ,

which is not possible since the left-hand side is infinite while the right-hand is finite; this

completes the proof of (2.10). Since f ′(ξ) is positive in a right neighborhood of the origin

and does not vanish elsewhere, it follows from (2.9) that f ′(ξ) > 0, i.e., f(ξ) is increasing,

in 0 < ξ < ∞ and

lim
ξ→∞

f(ξ) = l ≤ s+.

To show that l = s+, we integrate (2.14) on both sides form 0 to ∞ to yield

∫ l

0

df

(s+ − f)
√

−2H(f)
= ∞,

from which it follows that l = s+, thus proving (2.11).

To derive the asymptotic behavior of f(ξ), we return to (2.14) and obtain

(2.16)

∫ f

0

ds

(s+ − s)
√

−2H(s)
= ξ.

The integral on the left-hand side can be written as
∫ f

0

ds

(s+ − s)
√
−2H(s+)

+

∫ s+

0

1√
2(s+ − s)

(
1√

−H(s)
− 1√

−H(s+)

)
ds

−
∫ s+

f

1√
2(s+ − s)

(
1√

−H(s)
− 1√

−H(s+)

)
ds.
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On account of (2.13), this gives

(2.17)

∫ f

0

ds

(s+ − s)
√
−2H(s)

=
1

σ+
[ln(s+) − ln(s+ − f)] + c+ − c2(f),

where

(2.18) c+ =

∫ s+

0

(
1√

−2V (s)
− 1

(s+ − s)σ+

)
ds

and

(2.19) c2(f) =

∫ s+

f

1√
2(s+ − s)

(
1√

−H(s)
− 1√

−H(s+)

)
ds.

Note that the last two integrals are well defined. Coupling (2.16) and (2.17), we have

f = s+ − s+ eσ+c+ e−σ+ξ e−c2(f)σ+ .

Since c2(f) → 0 as f → s+, the result in (2.5) follows with A+ = s+eσ+c+ . A similar

argument can be used to demonstrate (2.6) with A− = −s−eσ
−

c
− where

c− =

∫ s
−

0

( −1√
−2V (s)

− 1

(s− − s)σ−

)
ds

This completes the proof of the lemma.

REMARK 1. The proof of case (d) above actually gives the existence of a mono-

tonically increasing function f(ξ), which satisfies the differential equation in (2.3) and the

conditions in (2.4). Furthermore, it has the asymptotic behavior given in (2.5) and (2.6).

This result is stated explicitly in Ward [8, p.99], but without a proof.

REMARK 2. Using (2.13) and (2.14), one can also deduce from (2.5) and (2.6)

(2.20) f ′(ξ) ∼ σ+A+ e−σ+ξ, as ξ → ∞,

(2.21) f ′(ξ) ∼ σ−A− eσ
−

ξ, as ξ → −∞.

From Lemma 1, it is clear that in order to have u(1, k) = 0, we must choose k in the

interval (−kmax, 0) or (0, kmax), in which case the solution to the initial-value problem (2.1)

is periodic and intersects the x-axis infinitely many times.

We consider only the case k ∈ (0, kmax), since the case k ∈ (−kmax, 0) is entirely similar.

Let x1 be the first point to the right of −1 such that u(x1, k) = 0 and u(x, k) > 0 for

−1 < x < x1, and x2 be the first point to the right of x1 such that u(x2, k) = 0 and

u(x, k) < 0 for x1 < x < x2. We denote by T1(k) and T2(k), respectively, the lengths of the

interval [−1, x1] and [x1, x2]. From (2.7) and the graph of Q(u) in Figure 1, we can also

find two points u1(k) ∈ (0, s+) and u2(k) ∈ (s−, 0) such that

(2.22) −
∫ 0

u2(k)
Q(s)ds =

∫ u1(k)

0
Q(s)ds =

ε

2
k2.
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It is readily seen that when k → 0, u1(k) and u2(k) tend to zero and when k → kmax, u1(k)

tends to s+ and u2(k) tends to s−. Differentiating both sides of (2.22) with respect to k

shows that u′
1(k) > 0 and u′

2(k) < 0. From (2.7), we obtain

(2.23)
√

ε
du√

2
∫ u1(k)
u Q(s)ds

= dx,

from which it follows that

(2.24) T1(k) =
√

2ε

∫ u1(k)

0

du√∫ u1(k)
u Q(s)ds

and

(2.25) T2(k) =
√

2ε

∫ 0

u2(k)

du√∫ u2(k)
u Q(s)ds

.

In the case k ∈ (−kmax, 0), the solution u(x, k) to the initial-value problem (2.1) is again

oscillatory about the x-axis, except that it now starts at x = −1 with a negative slope.

Hence, the graph of u(x, k) is below the x-axis in the interval (−1, x1), where x1 is the

first point to the right of −1 at which u(x, k) meets the line u = 0 again, i.e., u(x, k) < 0

in (−1, x1). Let x2 denote the first point to the right of x1 such that u(x2, k) = 0 and

u(x, k) > 0 for x1 < x < x2. Unlike before, we now reverse the order, and denote by T2(k)

and T1(k) the length of the intervals [−1, x1] and [x1, x2], respectively. Hence, the values of

T1(k) and T2(k) are actually dependent on the value of |k|.

LEMMA 2. We have

lim
k→0+

T1(k) = lim
k→0+

T2(k) =
π
√

ε√
Q′(0)

.

Proof. Let

V2(u) =

∫ u

0
Q(s)ds.

Since V2(u) is sufficiently smooth and V2(0) = V ′
2(0) = 0, we may write V2(u) = u2G(u),

where G is a sufficiently smooth function with G(0) = 1
2Q′(0). From (2.24), it follows that

T1(k) =
√

2ε

∫ u1(k)

0

du√
V2(u1(k)) − V2(u)

=
√

2ε

∫ u1(k)

0

du√
u2

1(k)G(u1(k)) − u2G(u)
.

(2.26)

It is easily seen that

√
2ε

∫ u1(k)

0

du√
G(0)(u2

1(k) − u2)
=

π

2

√
2ε√

G(0)
=

π
√

ε√
Q′(0)

.
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Since the integral

√
2ε

∫ u1(k)

0

(
1√

V2(u1(k)) − V2(u)
− 1√

G(0)(u2
1(k) − u2)

)
du.

exists and the length of the integration interval tends to zero as k → 0, we obtain

T1(k) − π
√

ε√
Q′(0)

→ 0 as k → 0.

In a similar manner, one can prove

lim
k→0+

T2(k) =
π
√

ε√
Q′(0)

.

On the other hand, we have u1(k) → s+ and u2(k) → s− as k → kmax; see the second

paragraph following Remark 2. Hence

(2.27) lim
k→kmax

T1(k) = lim
k→kmax

T2(k) = ∞.

Put

(2.28) t1 := inf
0<k<kmax

T1(k)

and

(2.29) t2 := inf
0<k<kmax

T2(k).

It is easily seen that

(2.30) 0 < t1, t2 ≤ π
√

ε√
Q′(0)

.

Recall that our goal is to use the shooting method to determine whether the original

boundary-value problem has solutions with shocks. If it has, then we would like to give an

estimate to the number of shocks that a solution can have. This is equivalent to choosing

appropriate values of k so that

(2.31) u(1, k) = 0.

Since u(x, k) is periodic and oscillatory, equation (2.31) can be expressed in the form

(2.32) NT1(k) + MT2(k) = 2,

where N and M are nonnegative integers and represent, respectively, the number of intervals

with lengths T1(k) and T2(k). Now we look at the arches bounded by the graph of u(x, k)

and the line u = 0. Since every arch above the line u = 0 is followed by an arch below u = 0

and vice versa, the integers N and M are related in such a way that for every given N,

there are only three possible values of M , namely, M = N − 1, N, or N +1. It is easy to see
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that the number of zeros, which corresponds to the number of shocks, of a solution u(x, k)

in the interval (−1, 1) is N + M − 1. Therefore, the number of shock layers is N + M − 1.

From here on, our task is to choose appropriate values of k, and determine possible

integers N and M , so that (2.32) holds.

For ε > 0, we define

(2.33) N1(ε) :=

[
2

t1 + t2

]

and

(2.34) N2(ε) :=

[
2

T1(0+) + T2(0+)

]
,

where t1, t2 are given above and [x] denotes the largest integer less than or equal to x.

The following result provides estimates for the number of shocks that the solutions to BVP

(1.1)–(1.2) can have.

LEMMA 3. If N ≥ N1(ε) + 1 and M ≥ N1(ε) + 1, then there exists no slope k such

that (2.32) holds, i.e., the BVP (1.1) − (1.2) has no solution with more than or equal to

2N1(ε) + 1 shocks. If N ≤ N2(ε) and M ≤ N2(ε), then there exists at least one value of k

so that (2.32) holds, i.e., BVP (1.1)− (1.2) has at least one solution with N +M −1 shocks.

Proof. The function

NT1(k) + MT2(k)

is continuous in 0 < k < kmax. For any k > 0, we have by (2.33)

NT1(k) + MT2(k) ≥ Nt1 + Mt2

≥ (N1(ε) + 1)t1 + (N1(ε) + 1)t2

= (N1(ε) + 1)(t1 + t2) > 2.

Thus, (2.32) fails to hold and the boundary-value problem has no solution.

If N ≤ N2(ε) and M ≤ N2(ε), then by (2.34) and (2.27) the function NT1(k) + MT2(k)

satisfies

lim
k→0+

NT1(k) + MT2(k) ≤ N2(ε)(T1(0+) + T2(0+)) ≤ 2

and

lim
k→kmax

NT1(k) + MT2(k) = ∞.

In view of the continuity of the function NT1(k) + MT2(k), there exists at least one point

k0 ∈ (0, kmax) such that

NT1(k0) + MT2(k0) = 2,

which means that there exists at least one solution to BVP (1.1)-(1.2). Also, it follows that

this solution has N +M −1 zeros, and hence N +M −1 internal shock layers, in the interval

(−1, 1).

When Q(u) satisfies the additional condition given below, we can in fact establish the

monotonicity of T1(k) and T2(k) with respect to k, in which case more accurate estimates

for the numbers of shocks and solutions can be obtained.
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LEMMA 4. If, in addition, Q(s)/s is decreasing in s for s ∈ (0, s+) and increasing

for s ∈ (s−, 0), then T1(k) and T2(k) are increasing in k for k ∈ (0, kmax).

Proof. From (2.24), we have

T1(k) =
√

2ε

∫ u1(k)

0

du√∫ u1(k)
u Q(s)ds

.

Changing variables u = u1(k)t yields

T1(k) =
√

2ε

∫ 1

0

dt√
f1(k)

,

where

f1(k) =
1

u2
1(k)

∫ u1(k)

u1(k)t
Q(s)ds.

Straightforward differentiation gives

df1

du1
=

1

u3
1

(
Q(u1)u1 − 2

∫ u1

0
Q(s)ds − [Q(tu1)tu1 − 2

∫ tu1

0
Q(s)ds]

)
.

Since Q(x)/x is decreasing, we have Q′(x)x − Q(x) < 0 for almost all x ∈ (0, s+), from

which it follows that Q(x)x − 2
∫ x
0 Q(s)ds is decreasing. Hence

df1

du1
< 0 and

df1

dk
=

df1

du1

du1

dk
< 0

for almost all k ∈ (0, kmax); see a statement following (2.22). Note that dT1/df1 is negative.

Thus, by the chain rule,
dT1(k)

dk
> 0,

i.e., T1(k) is increasing in k. The proof of the monotonicity of T2(k) is similar; this completes

the proof of the lemma.

From Lemma 4, it follows that

(2.35) t1 = t2 = T1(0+) = T2(0+) =
π
√

ε√
Q′(0)

.

REMARK 3. Note that the function sQ′(s) − Q(s) vanishes at s = 0, is negative

in (0, s+) and positive in (s−, 0). Hence, if Q(s) satisfies Q′′(s) < 0 for s ∈ (0, s+) and

Q′′(s) > 0 for s ∈ (0, s−), then the condition in Lemma 4 holds and T1(k), T2(k) are in-

creasing in k for 0 < k < kmax.

Let

(2.36) N(ε) =

[
2

t1

]
=

[
2
√

Q′(0)

π
√

ε

]
.

We have the following result concerning the numbers of shocks and solutions to the BVP

(1.1) − (1.2)
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THEOREM 1. Let n1(ε) denote the numbers of shocks that a solution to (1.1)−(1.2)

can have, and let n2(ε) denote the number of solutions to (1.1)−(1.2). If Q(s)/s is decreasing

for s ∈ (0, s+) and increasing for s ∈ (s−, 0), then n1(ε) satisfies

0 ≤ n1(ε) ≤ N(ε) − 1,

and n2(ε) satisfies

n2(ε) = 2N(ε),

where N(ε) is given in (2.36).

Proof. If n1(ε) ≤ N(ε) − 1, we choose

(2.37) M =

[
n1(ε) + 1

2

]

and

(2.38) N = n1(ε) −
[
n1(ε) + 1

2

]
+ 1.

Then N ≥ M, N + M = n1(ε) + 1 ≤ N(ε), and

N − M ≤ 1.

Consider the function

NT1(k) + MT2(k).

By (2.35) and (2.36), we have

lim
k→0+

NT1(k) + MT2(k) = (N + M)t1

= (n1(ε) + 1)t1 ≤ N(ε)t1 ≤ 2

and

lim
k→kmax

NT1(k) + MT2(k) = ∞.

Since by Lemma 4 this function is increasing in k, there exists a unique point k0 such that

NT1(k0) + MT2(k0) = 2.

If n1(ε) ≥ N(ε), then N + M ≥ n1(ε) + 1 ≥ N(ε) + 1 and by (2.28) and (2.36)

NT1(k) + MT2(k) ≥ (N + M)t1 ≥ (N(ε) + 1)t1 > 2

for any k. Thus, we cannot expect (2.32) to hold, i.e., there exists no solution to problem

(1.1) − (1.2) if n1(ε) ≥ N(ε).

On one hand, for any n1(ε) in 0 ≤ n1(ε) ≤ N(ε) − 1, we can choose M and N as

given in (2.37) and (2.38) so that there exists exactly one value k0 satisfying u(1, k0) = 0.

On the other hand, by interchanging the two values of M and N in (2.37) and (2.38) and

14



considering k ∈ (−kmax, 0), we conclude by the symmetry that u(1,−k0) = 0. Therefore,

there are exactly two solutions with n1(ε) shock layers.

Adding all solutions together, we get the number of solutions to (1.1) − (1.2) given by

n2(ε) = 2N(ε).

This completes the proof of the theorem.

When Q(u) = 2u − 2u3, Q(u)/u = 2 − 2u2 is decreasing for u > 0 and increasing for

u < 0. Therefore, Lemma 4 applies and both T1(k) and T2(k) are increasing in k for k > 0.

For k < 0, the situation is just the opposite and both T1(k) and T2(k) are decreasing in k

for k < 0. In fact, T1(k) and T2(k) depend on the absolute value of k (i.e., |k|), and we have

T1(k) = T1(−k), T2(k) = T2(−k).

From (2.35) and (2.36), it follows that

t1 = inf
k>0

T1(k) = T1(0+) =

√
επ√
2

and

N(ε) =

[
2

t1

]
=

[
2
√

2√
επ

]
.

Applying Theorem 1, we obtain the following result.

COROLLARY 1. If Q(u) = 2u − 2u3, then the number n1(ε) of shocks, that a

solution to problem (1.1) − (1.2) can have, satisfies

0 ≤ n1(ε) ≤ N(ε) − 1 =

[
2
√

2√
επ

]
− 1.

Moreover, the number n2(ε) of solutions to (1.1) − (1.2) satisfies

n2(ε) = 2N(ε) = 2[
2
√

2√
επ

] ∼ 4
√

2√
επ

.

If Q(u) = sin(πu), then s(Q(s)/s)′ ≤ 0 for s ∈ [−1, 1], Q′(0) = π and N(ε) =
[ 2√

πε

]
. A

similar result is obtained.

COROLLARY 2. If Q(u) = sin(πu), then the number n1(ε) of shocks, that a solution

to problem (1.1) − (1.2) can have, satisfies

0 ≤ n1(ε) ≤ N(ε) − 1 =

[
2√
πε

]
− 1.

Moreover, the number n2(ε) of solutions to (1.1) − (1.2) satisfies

n2(ε) = 2N(ε) = 2

[
2√
πε

]
∼ 4√

επ
.
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3 APPROXIMATE SOLUTIONS WITH AT MOST ONE

SHOCK

First, we confine ourselves to solutions with no shock layers, i.e., solutions which is either

entirely positive, or entirely negative, in the interval (−1, 1).

THEOREM 2. The BVP problem (1.1)−(1.2) has one and only one solution u0,1(x)

which is positive in the interval (−1, 1). The asymptotic formula for this solution is given

by

(3.1) u0,1(x) = f

(
x + 1√

ε

)
+ f

(
1 − x√

ε

)
− s+ + O

(
e−σ+/

√
ε

)
,

where f is the function given in Lemma 1(d). Likewise, the problem (1.1) − (1.2) also has

one and only one solution u0,2(x) which is negative in the interval (−1, 1). The asymptotic

formula for this solution is given by

(3.2) u0,2(x) = f

(
−x + 1√

ε

)
+ f

(
−1 − x√

ε

)
− s− + O

(
e−σ

−
/
√

ε

)
.

Proof. We shall give only the proof of (3.1), as the proof of (3.2) is very similar. It

is easily seen that in order to have a positive solution to the BVP (1.1)-(1.2), we must

choose a solution to the IVP (2.1) with a positive slope k. First, we recall that if Q(x)/x is

decreasing in x for x ∈ (0, s+) then by Lemma 4, T1(k) is increasing in k with the endpoint

values

T1(0+) = O(ε)

and

lim
k→kmax

T1(k) = ∞;

cf. Lemma 2 and (2.27). By the continuity of T1(k), we conclude that there exists one and

only one value k0 such that T1(k0) = 2, i.e., equation (2.32) holds with k = k0, N = 1 and

M = 0. This, in turn, implies the existence of a unique positive solution u(x, k0) to the

IVP (2.1) which also satisfies the boundary conditions in (1.2). We denote this solution

by u0,1(x). Returning to the original equation, it is easily verified that u0,1(−x) is also a

solution to (1.1)-(1.2). Using the uniqueness of solution, we have u0,1(x) = u0,1(−x), which

means the solution u0,1(x) is symmetric and u′
0,1(0) = 0. Furthermore, it is readily seen

that the solution u0,1(x) is increasing in [−1, 0) and decreasing in (0, 1].

If Q(x)/x is not decreasing in x, we can still establish the uniqueness result. To this

end, we note that since Q′(s+) < 0, and Q(s+) = 0, we can choose a constant δ > 0, which

is independent of ε such that for x in the internal (s+ − δ, s+)

(3.3) Q(x) + xQ′(x) < −m1,

where m1 is a positive number. Let kδ satisfy

∫ s+−δ

0
Q(s)ds =

ε

2
k2

δ .
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For k ∈ (0, kδ), we have u1(k) ∈ (0, s+ − δ) since u1(k) is increasing in (0, s+), and

(3.4) T1(k) =
√

2ε

∫ u1(k)

0

du√∫ u1(k)
u Q(s)ds

= O(
√

ε)

For convenience, we still denote by k0 the minimum value of k satisfying T1(k) = 2,

namely

k0 = inf{k : T1(k) = 2}.

From (2.27) and (3.4), it is clear that

k0 > kδ.

Since u′
1(k) > 0, it follows from (2.22) that

u1(k0) > u1(kδ) = s+ − δ;

see the statement between (2.22) and (2.23). Furthermore, since

T1(k0) = 2,

we have from (2.24)

∫ u1(k0)

0

du√
2
√

(s+ − u1)2H(u1) − (s+ − u)2H(u)
=

√
1

ε
,

where u1(k0) is the maximum value that u0,1(x) attains at x = 0. Let t = s+ − u and

a = s+ − u1(k0). Then

(3.5)

∫ s+

a

dt√
2
√

t2g(t) − a2g(a)
=

√
1

ε
,

where g(t) = −H(s+ − t) > 0 for any t ∈ [0, s+] and also satisfies

t2g(t) − a2g(a) > 0

for t ∈ (a, s+) and

g(0) = −H(s+) = −Q′(s+)

2
, g′(0) =

Q′′(s+)

6
.

Consider the function
t2g(t) − a2g(a)

t2 − a2
,

which is positive and continuous in the interval (a, s+]. When t → a, using L’Hospital’s

rule, we have

lim
t→a

t2g(t) − a2g(a)

t2 − a2
= g(a) +

1

2
ag′(a)

=
Q(s+ − a)

2a
> 0

(3.6)
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for any a = s+ − u1(k0) < s+. So there is a positive constant m such that

t2g(t) − a2g(a)

t2 − a2
> m

for t ∈ (a, s+]. By (3.6), we have from (3.5)

∫ s+

a

dt√
2m

√
t2 − a2

>

√
1

ε
,

which yields

cosh−1 s+

a
>

√
2m

ε

and hence

(3.7) a ≤ 2s+ e−
√

2m/ε.

We now show that T (k) is strictly increasing for k ≥ k0. This, in turn, gives the uniqueness

of the positive solution to BVP (1.1)–(1.2).

To differentiate T1(k) with respect to u1(k), we first make the change of variable u =

tu1(k), and then use the product rule. After dropping the term with the positive sign, we

obtain

dT1(k)

du1(k)
≥ −

√
ε

2

∫ 1

0

(∫ u1(k)

u1(k)t
Q(s)ds

)−3/2

[u1(k)Q(u1(k)) − tu1(k)Q(tu1(k))]dt.

On the right-hand side, we change the integration variable back to u, and write

dT1(k)

du1(k)
≥ −

√
ε

2

1

u1(k)
(I1 + I2) ,

where I1 and I2 are integrals of
(∫ u1(k)

u Q(s)ds
)−3/2

[u1(k)Q(u1(k))−uQ(u)] on the intervals

(0, s+ − δ) and (s+ − δ, u1(k)), respectively. When k ≥ k0, the integrand of I1 is bounded

by some constant M1. Thus,

I1 ≤ M1(s+ − δ).

On the interval (s+ − δ, u1(k)), we have by the mean-value theorem and (3.3)

u1(k)Q(u1(k)) − uQ(u) =
(
Q(ū) + ūQ′(ū)

)
(u1(k) − u)

≤ −m1(u1(k) − u),
(3.8)

where u ≤ u ≤ u1(k). When k ≥ k0, u1(k) ≥ u1(k0) ≥ s+ − a. Substituting (3.8) into I2,

and letting t = s+ − u, and ā = s+ − u1(k), where ā < a when k ≥ k0, we get

I2 ≤ −m1

∫ δ

ā

t − ā

(t2g(t) − ā2g(ā))3/2
dt ≤ −m1m2 cosh−1 δ

ā

Here, we have made use of the fact that

t − ā

(t2g(t) − ā2g(ā)3/2
≥ m2

1√
t2 − ā2
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for t ∈ [ā, δ]. Hence,

I1 + I2 < 0 when ā ≤ a ≤ 2s+e−
√

2m/ε.

Since u′
1(k) > 0, we have

dT1(k)

dk
=

dT1(k)

du1(k)

du1(k)

dk
> 0

for k ≥ k0. This completes the proof of the uniqueness.

Next, we will prove (3.1). In (3.7), we already have a rough estimate for a, which states

that a → 0 as ε → 0. Using this piece of information, we shall now give a more refined

estimate. The left-hand side of (3.5) can be written as
∫ s+

a

dt√
2
√

t2g(t) − a2g(a)
=

∫ s+

a

dt√
2
√

(t2 − a2)F (t, a)
,(3.9)

where

F (t, a) =
t2g(t) − a2g(a)

t2 − a2
.

From (3.6), it is clear that for any a ∈ (0, s+), F (t, a) is positive and continuous for t > a.

Moreover, we have

lim
t→a

F (t, a) = g(a) +
a

2
g′(a)

and

lim
t→a

∂F (t, a)

∂t
=

3

4
g′(a) +

1

4
ag′′(a).

From (3.9), we obtain
∫ s+

a

dt√
2
√

t2g(t) − a2g(a)

=
1√

2g(a) + ag′(a)

∫ s+

a

dt√
t2 − a2

+ G1(a),

(3.10)

where

G1(a) =

∫ s+

a

1√
(t2 − a2)

(
1√

2F (t, a)
− 1√

2g(a) + ag′(a)

)
dt.

The first term on the right-hand side of (3.10) can be evaluated explicitly; to the second

term, we apply the mean-value theorem. This gives
∫ s+

a

dt√
2
√

t2g(t) − a2g(a)
=

1√
2g(a) + ag′(a)

cosh−1 s+

a

+

∫ s+

0

1√
t2

(
1√

2F (t, 0)
− 1√

2g(0)

)
dt + O(a).

Since g(0) = −Q′(s+)/2 = σ2
+ and g′(0) = Q′′(s+)/6, it can be shown that

1√
2g(a) + ag′(a)

cosh−1 s+

a
=

1√
2g(0)

(ln
s+

a
+ ln 2) +

Q′′(s+)

4σ3
+

a ln a + O(a)
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and the last integral is equal to the integral in (2.18). Thus

∫ s+

a

dt√
2
√

t2g(t) − a2g(a)
=

1

σ+

(
ln

s+

a
+ ln 2

)
+ c+ +

Q′′(s+)

4σ3
+

a ln a + O(a)

Inserting the above formula into (3.5), we obtain

a = 2s+eσ+c+ e−σ+/
√

ε

(
1 +

Q′′(s+)A+

2σ+
√

ε
e−σ+/

√
ε + O

(
e−σ+/

√
ε
))

= 2A+e−σ+/
√

ε

(
1 +

Q′′(s+)A+

2σ+
√

ε
e−σ+/

√
ε + O

(
e−σ+/

√
ε
))

or, equivalently,

(3.11) u1(k0) = s+ − 2A+e−σ+/
√

ε

(
1 +

Q′′(s+)A+

2σ+
√

ε
e−σ+/

√
ε + O

(
e−σ+/

√
ε
))

as ε → 0.

To prove (3.1), we first restrict x to the interval [−1, 0], and put

uL(x) = f

(
x + 1√

ε

)
.

From the proof of Lemma 1, it is readily seen that uL(x) satisfies

(3.12) εu′′
L + Q(uL) = 0

and

uL(−1) = 0, u′
L(−1) = kmax.

Hence, it follows from Lemma 1(a) that

u′
L(−1) = kmax > u′

0,1(−1) = k0.

We further claim that

(3.13) uL(x) > u0,1(x)

for x ∈ (−1, 0]. Assume, to the contrary, that there exists a point x = η in the right

neighborhood of x = −1 such that uL(η) = u0,1(η), uL(x) > u0,1(x) for x ∈ (−1, η) and

(3.14) u′
L(η) ≤ u′

0,1(η).

Using energy equations like (2.7) associated with uL(x) and u0,1(x), we have

(3.15)
ε

2
(u′

L(η))2 +

∫ uL(η)

0
Q(s)ds =

ε

2
k2

max

and

(3.16)
ε

2
(u′

0,1(η))2 +

∫ u0,1(η)

0
Q(s)ds =

ε

2
k2

0.
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Since kmax > k0, u
′
L(η) > 0, and u′

0,1(η) > 0, we conclude from (3.15) and (3.16) that

u′
L(η) > u′

0,1(η),

which contradicts (3.14), thus establishing (3.13). Let s = b be the last point in the interval

(0, s+) such that Q′(b) = 0 and Q′(s) < 0 for s ∈ (b, s+]. Correspondingly, we denote by

x0,1,b, and xL,b the points in the interval [−1, 0] such that

u0,1(x0,1,b) = b

and

uL(xL,b) = b.

From (3.15), we can derive as in (3.5)

(3.17) xL,b + 1 =
√

ε

∫ s+

s+−b

dt√
2
√

t2g(t)
.

Similarly, from (3.16), we obtain

x0,1,b + 1 =
√

ε

∫ s+

s+−b

dt√
2
√

t2g(t) − a2g(a)

=
√

ε

∫ s+

s+−b

dt√
2
√

t2g(t)
+ O(

√
εa2).

(3.18)

Subtracting (3.17) from (3.18) yields

d := x0,1,b − xL,b = O(
√

εa2).

By the same argument, we also have

(3.19) x + 1 =
√

ε

∫ s+

s+−uL(x)

dt√
2
√

t2g(t)

and

(3.20) x + 1 =
√

ε

∫ s+

s+−u0,1(x)

dt√
2
√

t2g(t)
+ O(

√
εa2)

for −1 ≤ x ≤ x0,1,b; see (3.17) and (3.18). Since t2g(t) is bounded away from zero for

t ∈ [s+ − b, s+], it follows from (3.19) and (3.20) that

(3.21) uL(x) − u0,1(x) = O(a2)

for −1 ≤ x ≤ x0,1,b.

For x0,1,b ≤ x ≤ 0, the function uL(x−d) satisfies (3.12) and hence (3.15). Furthermore,

u0,1(x) satisfies (3.16) and

uL(x0,1,b − d) = b = u0,1(x0,1,b).
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Since kmax > k0, we obtain

(3.22) u′
L(x0,1,b − d) > u′

0,1(x0,1,b).

Based on (3.22), one can use an argument similar to that for (3.13) to deduce

(3.23) uL(x − d) ≥ u0,1(x) ≥ b

for x0,1,b ≤ x ≤ 0.

Now, let R(x) denote the difference between uL(x − d) and u0,1(x), i.e.,

(3.24) R(x) := uL(x − d) − u0,1(x).

From the differential equation, we have

R′′(x) = u′′
L(x − d) − u′′

0,1(x)

=
1

ε

(
−Q(uL(x − d)) + Q(u0,1(x))

)
≥ 0.

(3.25)

The last inequality follows from the fact that Q(s) is nonincreasing for s ≥ b.

The convexity of R(x) implies that R′(x) ≥ R′(x0,1,b) > 0 by (3.22). Since R(x0,1,b) = 0,

(3.26) 0 ≤ R(x) < R(0) = uL(0 − d) − u0,1(0) = O(a)

for x0,1,b ≤ x ≤ 0. To demonstrate the O-estimate in (3.26), we first note that u0,1(0) =

u1(k0) and uL(0 − d) = uL(0) + O(a2). Since uL(0) = f(1/
√

ε), the desired estimate now

follows from (2.5) and (3.11). In view of the fact that uL(x − d) − uL(x) = O(a2), we have

by coupling (3.21) and (3.26)

(3.27) uL(x) − u0,1(x) = O(a) = O(e−σ+/
√

ε)

for any x ∈ [−1, 0]. Recall that in (3.1), the second term satisfies

f

(
1 − x√

ε

)
= s+ + O(e−σ+/

√
ε)

when x ∈ [−1, 0], on account of (2.5). Therefore, (3.27) infers that (3.1) is true. When x lies

in [0, 1], the proof is similar and hence omitted. This completes the proof of (3.1), and thus

the theorem.

REMARK 4. If the interval [−1, 1] in the BVP (1.1)− (1.2) is replaced by [a, b], then

we have instead of (3.1) and (3.2), respectively,

(3.28) u0,1(x) = f

(
x − a√

ε

)
+ f

(
b − x√

ε

)
− s+ + O

(
e−(b−a)σ+/2

√
ε

)

and

(3.29) u0,2(x) = f

(
−x − a√

ε

)
+ f

(
−b − x√

ε

)
− s− + O

(
e−(b−a)σ

−
/2

√
ε

)
.

For the solutions to the BVP (1.1)− (1.2) which have one internal shock layer, we have

the following result.
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THEOREM 3. There exist exactly two solutions to the BVP (1.1) − (1.2), each of

which has one internal shock. The first solution starts at the end point x = −1 with an

upper arch, followed by a lower arch; while the second one starts at the end point x = −1

with an lower arch, followed by a upper arch. The asymptotic formulas for these two exact

solutions u1,1(x) and u1,2(x) are given by

u1,1(x) =f

(
x + 1√

ε

)
+ f

(
−x − x̄1√

ε

)
+ f

(
x − 1√

ε

)

− (s+ + s−) + O

{
exp
(
− σ+σ−

(σ+ + σ−)
√

ε

)}(3.30)

and

u1,2(x) = u1,1(−x) =f

(
−x + 1√

ε

)
+ f

(
x + x̄1√

ε

)
+ f

(
1 − x√

ε

)

− (s+ + s−) + O

{
exp
(
− σ+σ−

(σ+ + σ−)
√

ε

)}(3.31)

where

(3.32) x̄1 = −σ+ − σ−
σ+ + σ−

+
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−
+ B exp

(
− σ+σ−

(σ+ + σ−)
√

ε

)

and

B =
Q′′(s+)A+σ−
(σ+ + σ−)2σ+

(
σ+A+

σ−A−
)
− σ+

σ++σ
− +

Q′′(s−)A−σ+

(σ+ + σ−)2σ−
(
σ+A+

σ−A−
)

σ
−

σ++σ
− .

Proof. As before, we give only the proof of (3.30). Consider the function T1(k) + T2(k)

for 0 < k < kmax. By Lemma 2 and (2.27), we have

lim
k→0

T1(k) + T2(k) = O(
√

ε)

and

lim
k→kmax

T1(k) + T2(k) = ∞.

Hence, we conclude that there exists at least one value k0 ∈ (0, kmax) such that

(3.33) T1(k0) + T2(k0) = 2.

The fact that there is only one such k0 can be established as in Theorem 2; we shall denote

by u1,1(x) the solution to (1.1)− (1.2) with initial slope k0 at x = −1. For −kmax < k < 0,

there also exists a value k0 such that (3.33) holds; its corresponding solution to (1.1)− (1.2)

will be denoted by u1,2(x). Next, we shall locate the position of x1, the zero of u1,1(x).

From the definition of T1(k0) in (2.24), we can show as in (3.11) that

(3.34) u1(k0) = s+−2A+e−T1(k0)σ+/2
√

ε

{
1+

Q′′(s+)A+T1(k0)

4σ+
√

ε
e−T1(k0)σ+/2

√
ε
[
1+O(

√
ε )
]}

.

Similarly, we also have

(3.35) u2(k0) = s−+2A−e−T2(k0)σ
−

/2
√

ε

{
1−Q′′(s−)A−T2(k0)

4σ−
√

ε
e−T2(k0)σ

−
/2

√
ε
[
1+O(

√
ε )
]}

.
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Equation (2.16) states

−
∫ 0

u2(k0)
Q(s)ds =

∫ u1(k0)

0
Q(s)ds,

which by Taylor’s expansion gives

σ2
−A2

−e−T2(k0)σ
−

/
√

ε

{
1 − Q′′(s−)A−T2(k0)

2σ−
√

ε
e−T2(k0)σ

−
/2

√
ε
[
1 + O(

√
ε )
]}

= σ2
+A2

+e−T1(k0)σ+/
√

ε

{
1 +

Q′′(s+)A+T1(k0)

2σ+
√

ε
e−T1(k0)σ+/2

√
ε
[
1 + O(

√
ε )
]}

.

(3.36)

In (3.36), we now insert T1(k0) = x1 + 1, T2(k0) = 1 − x1, and solve for x1. This yields

x1 = − σ+ − σ−
σ+ + σ−

+
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−
+ B exp

(
− σ+σ−

(σ+ + σ−)
√

ε

)

+ O

{√
ε exp

(
− σ+σ−

(σ+ + σ−)
√

ε

)}
.

(3.37)

Note that the sum of the first three terms in (3.37) is exactly the value x̄1 given in (3.32).

On the interval [−1, x1], by using (3.28) and

f

(
x1 − x√

ε

)
= f

(
x̄1 − x√

ε

)
+ O

{
exp
(
− σ+σ−

(σ+ + σ−)
√

ε

)}
,

we obtain

(3.38) u1,1(x) = f

(
x + 1√

ε

)
+ f

(
x̄1 − x√

ε

)
− s+ + O

{
exp
(
− σ+σ−

(σ+ + σ−)
√

ε

)}
.

Since f(x−1√
ε

)−s− = O(e−σ+σ
−

/(σ++σ
−

)
√

ε) for x ∈ [−1, x1], (3.30) follows immediately from

(3.38). Similarly, for x ∈ [x1, 1], we can use (3.29) and (3.37) to verify (3.31), thus complet-

ing the proof.

4 APPROXIMATE SOLUTIONS WITH N INTERNAL

SHOCK LAYERS

We are now ready to state and prove the general result for solutions to (1.1)− (1.2) with

n internal shock layers.

THEOREM 4. For any fixed nonnegative integer n, there exist exactly two solutions

to the BVP (1.1) − (1.2), each having n shock layers. The asymptotic formulas to these

solutions un,1 and un,2 are given by

(i) if n is odd, then

un,1(x) =f

(
x + 1√

ε

)
+

n∑

i=1

f

(
(−1)i x − x̄i√

ε

)
+ f

(
x − 1√

ε

)

− n + 1

2
(s+ + s−) + O

{
exp
(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}
(4.1)
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and

un,2(x) = un,1(−x),

where

x̄i = − 1 +

[
i + 1

2

]
4

n + 1

σ−
σ+ + σ−

+

[
i

2

]
4

n + 1

σ+

σ+ + σ−

+

([
i + 1

2

]
−
[

i

2

])
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

+

([
i + 1

2

]
−
[

i

2

])
B(n) exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)
,

(4.2)

and

B(n) =
2Q′′(s+)A+σ−

(n + 1)(σ+ + σ−)2σ+
(
σ+A+

σ−A−
)
− σ+

σ++σ
−

+
2Q′′(s−)A−σ+

(n + 1)(σ+ + σ−)2σ−
(
σ+A+

σ−A−
)

σ−
σ++σ

− ;

(ii) if n is even, then

un,1(x) =f

(
x + 1√

ε

)
+

n∑

i=1

f

(
(−1)i x − x̄i√

ε

)
+ f

(
−x − 1√

ε

)

−
(

n

2
+ 1

)
s+ − n

2
s− + O

{
exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}
,

(4.3)

where x̄i is still given by (4.2), and

un,2(x) =f

(
−x + 1√

ε

)
+

n∑

i=1

f

(
(−1)i+1 x − x̄i√

ε

)
+ f

(
x − 1√

ε

)

− n

2
s+ −

(
n

2
+ 1

)
s− + O

{
exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}
,

(4.4)

where

x̄i = − 1 +

[
i

2

]
4

n + 1

σ−
σ+ + σ−

+

[
i + 1

2

]
4

n + 1

σ+

σ+ + σ−

+

([
i

2

]
−
[
i + 1

2

])
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

−
([

i + 1

2

]
−
[

i

2

])
B(n) exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)
.

(4.5)

Proof. (i) Consider the function

n + 1

2
T1(k) +

n + 1

2
T2(k).

In a manner similar to that in the proof of Theorem 3, one can show that there exists a k0

such that

(4.6)
n + 1

2
T1(k0) +

n + 1

2
T2(k0) = 2
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and

(4.7)
n + 1

2
T1(−k0) +

n + 1

2
T2(−k0) = 2,

which, in turn, means that when n is odd, there exist exact two solutions to the BVP

(1.1) − (1.2) with n shock layers.

By making use of (4.6), one can solve T1(k0) and T2(k0) in (3.36). This yields

T1(k0) =
4

n + 1

σ−
σ+ + σ−

+
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

+ B(n) exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)
+ O

{√
ε exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}

and

T2(k0) =
4

n + 1

σ+

σ+ + σ−
− 2

√
ε

σ+ + σ−
log

σ+A+

σ−A−

− B(n) exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)
+ O

{√
ε exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}
.

It is easily verified that

xi = −1 +

[
i + 1

2

]
T1(k0) +

[
i

2

]
T2(k0), i = 1, 2, · · · , n.

Hence, as in (3.37), one obtains

xi = − 1 +

[
i + 1

2

]
4

n + 1

σ−
σ+ + σ−

+

[
i

2

]
4

n + 1

σ+

σ+ + σ−

+

([
i + 1

2

]
−
[

i

2

])
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

+

([
i + 1

2

]
−
[

i

2

])
B(n) exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)

+ O

{√
ε exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}
.

Note that xi approximates x̄i in (4.2) within the O-term in the last equation.

For the proof of (4.1), we split the interval [−1, 1] into subintervals [−1, x1], [xi, xi+1], i =

1, 2, · · · , n− 1, and [xn, 1]. The validity of (4.1) is established in each of these intervals; for

example, in [−1, x1] we have, as in Theorems 2 and 3,

un,1(x) = f

(
x + 1√

ε

)
+ f

(
−x − x̄1√

ε

)
− s+ + O

{
exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}
.

Since

s+ +
n∑

i=2

f

(
(−1)i x − x̄i√

ε

)
+ f

(
x − 1√

ε

)
− n + 1

2
(s+ + s−)

= O

{
exp

(
− 2σ+σ−

(n + 1)(σ+ + σ−)
√

ε

)}

for x ∈ [−1, x1], we conclude that (4.1) holds in this interval.

The proofs of (4.3) and (4.4) are entirely similar and hence omitted. This completes the

proof of the theorem.
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5 BOUNDARY CONDITIONS (1.3)

In this section we are concerned with the boundary conditions in (1.3). As we shall see,

in this case the solutions to (1.1) & (1.3) do not have shocks at endpoints.

We again assume that Q(s) satisfies the condition in Lemma 4, i.e.,

(5.1) s

(
Q(s)

s

)′
< 0

for s ∈ [s−, s+] and s 6= 0. As in Theorem 1, the following result can be established.

THEOREM 5. Let n1(ε) denote the number of shocks that a solution to the BVP

(1.1) & (1.3) can have, and let n2(ε) denote the number of solutions to (1.1) & (1.3). If the

condition in (5.1) holds, then we have

1 ≤ n1(ε) ≤ N(ε)

and

n2(ε) = 2N(ε),

where N(ε) is as defined in (2.36).

It should be noted that condition (5.1) is not required in establishing the asymptotic

formulas for the exact solutions to BVP (1.1) & (1.3) when ε is small. Indeed, we have

THEOREM 6. For any fixed nonnegative integer n, there exist exactly two solutions

to (1.1) & (1.3), each having n shock layers. The asymptotic formulas to these solutions

un,1 and un,2 are given by

(i) if n is odd then

un,1(x) =
n∑

i=1

f

(
(−1)i+1 x − x̄i√

ε

)

− n − 1

2
(s+ + s−) + O

{
exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)}(5.2)

and

un,2(x) = un,1(−x),

where

x̄i = − 1 +
2

n

σ+

σ+ + σ−
−

√
ε

σ+ + σ−
log

σ+A+

σ−A−

+

[
i

2

](
4

n

σ−
σ+ + σ−

+
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

)

+

[
i − 1

2

](
4

n

σ+

σ+ + σ−
− 2

√
ε

σ+ + σ−
log

σ+A+

σ−A−

)

+

(
−1

2
+

[
i

2

]
−
[
i − 1

2

])
B(n − 1) exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)

(5.3)
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and B(n) is defined as in Theorem 4;

(ii) if n is even then

(5.4) un,1(x) =

n∑

i=1

f

(
(−1)i+1 x − x̄i√

ε

)
− n

2
s+ − n − 2

2
s− + O

{
exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)}
,

where x̄i is as given in (5.3), and

(5.5) un,2(x) =
n∑

i=1

f((−1)i x − xi√
ε

) − n − 2

2
s+ − n

2
s− + O

{
exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)}
,

where

x̄i = −1 +
2

n

σ−
σ+ + σ−

+

√
ε

σ+ + σ−
log

σ+A+

σ−A−

+

[
i

2

](
4

n

σ+

σ+ + σ−
− 2

√
ε

σ+ + σ−
log

σ+A+

σ−A−

)

+

[
i − 1

2

](
4

n

σ−
σ+ + σ−

+
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

)

−
(
−1

2
+

[
i

2

]
−
[
i − 1

2

])
B(n − 1) exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)
.

Proof. (i) Let k0 denote the slope of un,1 at the point x = x1, the first zero of un,1 from

the left. As before, we denote by T1(k0) and T2(k0) the length of the upper and lower arch,

respectively. Then we have

(5.6)
n

2
T1(k0) +

n

2
T2(k0) = 2.

Using (5.6), one can solve T1 and T2 in (3.36). This gives

T1(k0) =
4

n

σ−
σ+ + σ−

+
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

+ B(n − 1) exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)
+ O

{√
ε exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)}(5.7)

and

T2(k) =
4

n

σ+

σ+ + σ−
− 2

√
ε

σ+ + σ−
log

σ+A+

σ−A−

− B(n − 1) exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)
+ O

{√
ε exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)}
.

(5.8)

Since

xi = −1 +
T2(k0)

2
+

[
i

2

]
T1(k0) +

[
i − 1

2

]
T2(k0),
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it follows that

xi = −1 +
2

n

σ+

σ+ + σ−
−

√
ε

σ+ + σ−
log

σ+A+

σ−A−

+

[
i

2

](
4

n

σ−
σ+ + σ−

+
2
√

ε

σ+ + σ−
log

σ+A+

σ−A−

)

+

[
i − 1

2

](
4

n

σ+

σ+ + σ−
− 2

√
ε

σ+ + σ−
log

σ+A+

σ−A−

)

+

(
−1

2
+

[
i

2

]
−
[
i − 1

2

])
B(n − 1) exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)

+O

{√
ε exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)}
.

Neglecting the O-term in xi, we obtain x̄i given in (5.3).

In a manner analogous to that in the proof of Theorem 5, we can also deduce

un,1(x) =
n∑

i=1

f

(
(−1)i+1 x − xi√

ε

)
− n − 1

2
(s+ + s−) + O

{
exp

(
− 2σ+σ−

n(σ+ + σ−)
√

ε

)}

and

un,2(x) = un,1(−x).

(ii) The argument for this case is similar.

6 TYPICAL EXAMPLES

In this section we present two particular examples to illustrate our main results.

(a) When Q(u) = 2u − 2u3, it is easy to calculate that s− = −1, s+ = 1, Q′(±1) = −4,

σ± = 2, ∫ 1

−1
Q(s)ds = 0

and

(6.1) f(x) = tanh(x).

Applying Theorem 4, we have the following result.

COROLLARY 3. For any fixed nonnegative integer n, there exist exactly two so-

lutions to the BVP (1.1) − (1.2), each having n shock layers. The asymptotic formulas to

these solutions un,1 and un,2 are given by

(i) if n is odd, then

un,1(x, ε) = tanh

(
x + 1√

ε

)
+

n∑

i=1

tanh

(
(−1)i x − x̄i√

ε

)
+ tanh

(
x − 1√

ε

)

+ O
(
e−2/(n+1)

√
ε
)

(6.2)
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and

un,2(x, ε) = un,1(−x, ε),

where x̄i = −1 + 2i
n+1

(ii) if n is even, then

un,1(x, ε) = tanh

(
x + 1√

ε

)
+

n∑

i=1

tanh

(
(−1)i x − x̄i√

ε

)
+ tanh

(
−x − 1√

ε

)

− 1 + O
(
e−2/(n+1)

√
ε
)

(6.3)

and

un,2(x, ε) = −un,1(x, ε),

where x̄i is as given in (i).

(b) When Q(u) = sin πu, we have Q′(±1) = −π, σ± =
√

π, s− = −1, s+ = 1,

∫ 1

−1
Q(s)ds = 0

and

(6.4) f(x) =
4

π
tan−1

(−1 + e
√

πx

1 + e
√

πx

)
.

Although Q(u) has infinitely many zeros on the u-axis, Theorem 4 still applies and we have

the following corollary.

COROLLARY 4. For any fixed nonnegative integer n, there exist exactly two so-

lutions to the BVP (1.1) − (1.2), each having n shock layers. Let f(x) be given in (6.4).

Then, the asymptotic formulas to these solutions un,1 and un,2 are given by

(i) if n is odd, then

un,1(x, ε) =f

(
x + 1√

ε

)
+

n∑

i=1

f

(
(−1)i x − x̄i√

ε

)
+ f

(
x − 1√

ε

)

+ O
(
e−

√
π/(n+1)

√
ε
)

(6.5)

and

un,2(x, ε) = un,1(−x, ε),

where x̄i = −1 + 2i
n+1

(ii) if n is even, then

un,1(x, ε) =f

(
x + 1√

ε

)
+

n∑

i=1

f

(
(−1)i x − x̄i√

ε

)
+ f

(
−x − 1√

ε

)

− 1 + O
(
e−

√
π/(n+1)

√
ε
)

(6.6)
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and

un,2(x, ε) = −un,1(x, ε),

where x̄i is as given in (i).

REMARK 5. In the above two corollaries, if we change the boundary conditions in

(1.2) to those in (1.3), then corresponding asymptotic formulas can be obtained by dropping

the terms tanh
(

x+1√
ε

)
and tanh

(
x−1√

ε

)
in (6.2), tanh

(
x+1√

ε

)
and tanh

(
−x−1√

ε

)
in (6.3), f

(
x+1√

ε

)

and f
(

x−1√
ε

)
in (6.5), and f

(
x+1√

ε

)
and f

(
−x−1√

ε

)
in (6.6); see Theorem 6.

7 DISCUSSION

In this final section, we discuss two separate issues. The first issue concerns a set of

mixed boundary conditions studied in [8] by Ward, and the second one deals with the

situation where the nonlinear term Q(u) in (1.1) is replaced by −Q(u). Throughout the

section, we shall continue to assume that Q(u) satisfies the conditions imposed in Sec. 2.

We first consider the mixed boundary conditions

(7.1)
√

εu′(1) + kr(u(1) − s+) = 0

and

(7.2)
√

εu′(−1) − kl(u(−1) − s−) = 0,

where both kr and kl are nonnegative numbers. We claim that solutions of equation (1.1)

under these boundary conditions have properties very similar to those established in the

previous sections. For simplicity of illustration, we restrict ourselves to the case in which

there is only one shock in (−1, 1), and let x1 denote the location of the shock, i.e., u(x1) = 0.

Furthermore, let k0 denote the derivative of u(x) at x1. In what follows, we shall derive

asymptotic formulas for x1 and k0. To proceed, we bear in mind that on one hand, u(x)

is a solution of the boundary-value problem (1.1), (7.1) & (7.2), and on the other hand, it

satisfies the initial value u(x1) = 0 and u′(x1) = k0. As before, we search values for k0 in

the interval |k0| < kmax.

We consider only the case k0 ∈ (0, kmax); the other case k ∈ (−kmax, 0) can be handled

in a similar manner. Since k0 ∈ (0, kmax), from the proof of Lemma 1(c) we know that u(x)

is period and intersects the x-axis infinitely many times. Furthermore, s− < u(x) < s+ for

x ∈ (−∞,∞). Using this fact, we also have from (7.1) and (7.2)

u′(±1) ≥ 0.

Since we have assumed that there is only one shock in [−1, 1], using equation (2.7) one can

readily see that u(x) is not decreasing there.

Let z1 > 1, z2 < −1 be the two nearest points to x1 satisfying u′(z1) = u′(z2) = 0.

Then, we have u(z1) = u1(k0), u(z2) = u2(k0), z1 − x1 = 1
2T1(k0), x1 − z2 = 1

2T2(k0). Here
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u1(k0), u2(k0), T1(k0) and T2(k0) are defined as before. Similar to (3.36), one can derive

σ2
−A2

−e−T2(k0)σ
−

/
√

ε

{
1 − Q′′(s−)A−T2(k0)

2σ−
√

ε
e−T2(k0)σ

−
/2

√
ε
[
1 + O(

√
ε )
]}

= σ2
+A2

+e−T1(k0)σ+/
√

ε

{
1 +

Q′′(s+)A+T1(k0)

2σ+
√

ε
e−T1(k0)σ+/2

√
ε
[
1 + O(

√
ε )
]}

.

(7.3)

Integrating (2.23) from x1 to 1, we obtain

1 − x1 =
√

ε

∫ s+

s+−u(1)

dt√
2
√

t2g(t) − a2g(a)
;

c.f. (3.5). The integral on the right-hand side can be evaluated as in (3.10), and we have

(7.4) 1 − x1 ∼
√

ε

[
1

σ+

(
cosh−1 s+

a
− cosh−1 s+ − u(1)

a

)
+ c+

]
,

where a = s+ − u1(k0). By the same argument, from (2.24) and the equation following

(3.10) we get

T1(k0) =
√

2ε

∫ s+

a

dt√
t2g(t) − a2g(a)

∼ 2
√

ε

(
1

σ+
cosh−1 s+

a
+ c+

)
.

(7.5)

Coupling (7.4) and (7.5) gives

(7.6) 1 − x1 ∼ T1(k0)

2
−

√
ε

σ+
cosh−1 s+ − u(1)

a
,

from which it follows by (3.34) that

(7.7) u(1) ∼ s+ − A+ e−σ+(1−x1)/
√

ε − A+ e−σ+

(
T1(k0)−(1−x1)

)
/
√

ε.

Using (2.23), we can also deduce

(7.8) u′(1) ∼ A+σ+√
ε

e−σ+(1−x1)/
√

ε − A+σ+√
ε

e−σ+

(
T1(k0)−(1−x1)

)
/
√

ε.

Substituting (7.7) and (7.8) into (7.1) yields

(7.9) A2
+σ2

+

σ+ − kr

σ+ + kr
e−2σ+(1−x1)/

√
ε ∼ A2

+σ2
+e−T1(k0)σ+/

√
ε.

Similarly, at the endpoint x = −1 we have

(7.10) A2
−σ2

−
σ− − kl

σ− + kl
e−2σ

−
(1+x1)/

√
ε ∼ A2

−σ2
−e−T2(k0)σ

−
/
√

ε.
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By a combination of (7.3), (7.9) and (7.10), we obtain

x1 =
σ+ − σ−
σ+ + σ−

−
√

ε

2(σ+ + σ−)

[
2 log(

A+σ+

A−σ−
) + log(

γ+

γ−
)

]

− D exp

(
− 2σ+σ−

(σ+ + σ−)
√

ε

)
+ O

{√
ε exp

(
− 2σ+σ−

(σ+ + σ−)
√

ε

)}
,

(7.11)

where

γ+ =
σ+ − kr

σ+ + kr
, γ− =

σ− − kl

σ− + kl
,

and

D =
Q′′(s+)A+σ−
(σ+ + σ−)2σ+

(
A2

+σ2
+γ+

A2
−σ2

−γ−

)− σ+
2(σ++σ

−
)

+
Q′′(s−)A−σ+

(σ+ + σ−)2σ−

(
A2

+σ2
+γ+

A2
−σ2

−γ−

) σ−
2(σ++σ

−
)

.

The first two terms of x1 in (7.11) agree exactly with the formula given in Ward [8].

Inserting (7.11) into (7.9), and using (3.34) and the fact

ε

2
k2

0 =

∫ u1(k0)

0
Q(s)ds,

we also get the asymptotic formula

(7.12) k0 ∼ kmax −
σ2

+A2
+

εkmax
exp

{
− 4σ+σ−√

ε(σ+ + σ−)

}
.

When σ+ > kr and σ− > kl, log γ+ and log γ+ are well defined. With the values of x1 and k0

given by (7.11) and (7.12), we conclude that the solution u(x) to our initial value problem

exists, and has the asymptotic formula

(7.13) u(x) = f

(
x − x1√

ε

)
+ O

{
exp

(
− 2σ+σ−

(σ+ + σ−)
√

ε

)}
.

Next, we consider the problem when Q(u) in (1.1) is replaced by −Q(u). To our surprise,

solutions now exhibit new phenomena. For instance, let us take Q(u) = −2u(1 − u2). In

this case, we still have condition (1.4), i.e.,

∫ s+

s
−

Q(s) = 0,

but the pattern of solutions is completely changed. All solutions of (1.1) exhibit spike layers

instead of shock layers, and the values of each solution are close to 0, except those near the

spike regions; see a typical solution in Figure 4 below
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1 1-
0

1.25

Figure 4. u′(−1) = u′(1) = 0

When condition (1.4) does not hold, we find that like the above case, every solution still

exhibits only spikes. For example, if we take Q(u) = u(u + 1)(2 − u), we obtain a solution

which is close to u = −1, except at three spikes; see Figure 5.

1 1

1

0−

−

Figure 5. u(−1) = u(1) = 0

If we allow Q(u) to have the shape shown in Figure 6, i.e., Q(u) vanishes at s1, s2, 0, s3, s4

and nowhere else, and satisfies ∫ s3

s2

Q(s) = 0,
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u

Q(u)

0
s s

s s
1 2

3 4

Figure 6. Graph of Q(u)

then the problem can have solutions with both spike-type and shock-type internal layers.

For instance, if we take Q(u) = u(u2 − 1)(u2 − 4), then a typical solution is depicted in

Figure 7.

1
1

2

1

2

1

−

−

−

Figure 7. Graph of u(x)

Using the shooting method that we have introduced in the previous paper [6] and used

again in the present paper, we can prove the results that we have observed above with

mathematical rigor.
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