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Abstract

Asymptotic formulas, as ¢ — 0%, are derived for the solutions of the nonlinear differ-
ential equation eu” 4+ Q(u) = 0 with boundary conditions u(—1) = u(1) =0 or v’'(—1) =
u’(1) = 0. The nonlinear term Q(u) behaves like a cubic; it vanishes at s_,0,s; and
nowhere else in [s_, sy|, where s_ < 0 < s;. Furthermore, Q'(s1+) < 0,Q’(0) > 0 and
the integral of @ on the interval [s_, sy ] is zero. Solutions to these boundary-value prob-
lems are shown to exhibit internal shock layers, and the error terms in the asymptotic
approximations are demonstrated to be exponentially small. Estimates are obtained
for the number of internal shocks that a solution can have, and the total numbers of
solutions to these problems are also given. All results here are established rigorously in
the mathematical sense.
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1 INTRODUCTION

In this paper, we consider the singularly perturbed two-point problem
(1.1) ev’ +Q(u) = 0, -l<z<1,

with boundary conditions

(1.2) u(=1)=wu(l)=0
(1.3) u'(—1) =4'(1) =0,

where € is a small positive parameter. Throughout the paper, we shall assume that the
nonlinear term ()(u) vanishes at s_, 0, s; and nowhere else in [s_, s;], where s_ < 0 < s4.
Furthermore, we assume that Q'(s+) < 0,Q’(0) > 0 and

(1.4) / Q(s

The graph of the function Q(u) has the typical shape shown in Figure 1.

Equation (1.1) can be considered as the equation of motion of a nonlinear spring with
spring constant large compared to the mass. It is also the equilibrium equation associated
with the Ginzburg-Landau model

(1.5) U = EUzg + Q(u), —-l<z<l, t>0,

with various boundary conditions at 2 = £1. In (1.5), Q(u) = —V'(u), where V(u) is a
double well potential with wells of equal depth located at the preferred phases u = s_ and
U= S4.

Q(u)

Figure 1. Graph of Q(u).

The problem of finding asymptotic behavior of the solutions to (1.1) & (1.2) or (1.1)
& (1.3) has been studied earlier by O’Malley [5], using a phase-plane analysis. Although



his approach provides useful qualitative information about the solutions with internal layer
behavior, it does not give quantitative information such as asymptotic formulas for the
solutions. The best known approach to derive such formulas is probably the method of
matched asymptotics. But, as was shown by Carrier and Pearson [1, p.202], a routine
application of this method will not lead to the determination of the locations of the internal
layers, thus creating spurious solutions. To overcome this difficulty, Lange [3] extended the
method of matched asymptotics by including exponentially small terms in the expansion
of the solution; see also MacGillivray [4]. There are two difficulties with Lange’s approach;
namely, (i) explicit expressions for the internal layer solutions must be known a priorily, (ii)
second-order terms in the asymptotic expansions are needed to determine the layer positions
of the leading order approximate solutions. An alternative approach has been introduced
by Ward [8], which he later called the projection method (see [7, p.496]). Ward’s method
is an extension of the variational approach adopted by Kath et al [2], and does not require
the knowledge of the explicit form of the internal layer solution. However, as stated by
himself in [8, p.98], he is not able to determine the number of solutions to (1.1) for small
fixed €. More recently, Reyna and Ward [7] introduced another method, which involves
a nonlinear WKB-type transformation for (1.1). The advantage of this method is that it
avoids the use of exponential asymptotics, i.e., it is sufficient to use just the conventional
singular perturbation approach on the transformed problem.

Despite the usefulness of all these methods mentioned above in providing approximate
solutions to the problem (1.1) & (1.2) or (1.1) & (1.3) they have a common defect from
a mathematical point of view; that is, none of the arguments used in these methods can
be modified to show that for each approximate solution, there is one and only one true
solution, and that their difference in absolute value tends to zero as € approaches zero. A
first attempt in this direction was made in [6], where only the special case Q(u) = 1 —u? was
considered. For instance, it was shown in [6] that in this special case, there exists exactly
one solution u;(z,¢) to (1.1) & (1.2) satisfying

(1.6) wi(z,€) = i (z,¢) —i—q(%) +O(e V25,

where
Uy (w,€) = —1 + 3sech? vl +In(V3 + Vv2)
()
+ 3S€Ch2< NG +In(vV3 + \/5))
and
12V
(1.8) () = (1 oV

The graph of the solution u;(z,¢) is shown in Figure 2.



Figure 2. Graph of the solution u;(z,e) when € = 0.01

The internal layer near the origin is called a spike. Furthermore, it was shown in [6]
that if n(e) denotes the number of solutions to the boundary-value problem (BVP) — (1.1)
& (1.2) when Q(u) = 1 — u?, then we have the asymptotic formula

1.64
Ve

As to the maximum number, say N (g), of spikes that a solution to (1.1) & (1.2) can have,
we have the estimate

as ¢ — 0T,

(1.9) n(e)

0.41

(1.10) N(e) < NG

+ 1.

In the present paper, we shall establish corresponding results for the BVP (1.1) & (1.2)
or (1.1) & (1.3), when Q(u) is of the form shown in Figure 1. For instance, in the case when
Q(u) = 2u — 2u® which was considered by Lange [3], we will show that there exist exactly
two solutions uy 1(x,¢) and uy 2(x,¢) to (1.1) & (1.2) such that

(1.11) ur2(z,e) = ur1(—x,¢)

and

. ui1(@,e€) :tanh<x;—gl> +tanh<—%>

z—1 ~1/VE
+tanh< NG )—i—O(e ).

The graph of uy,1(z,¢) is shown in Figure 3. The internal layer near = 0 in this case is
called a shock. An estimate for the maximum number n(e) of shocks is given by




Figure 3. Graph of uy 1(x, ) when ¢ = 0.01.

(1.13) n(e) < %\/g— 1,
(

and the number na(e) of solutions to (1.1) — (1.2) behaves like

4 /2
(1.14) na(e) ~ Vo
The presentation of this paper is arranged as follows. In §2, we consider an initial-
value problem (IVP), which is directly related to the BVP (1.1) — (1.2). We show that the
existence of a solution to (1.1) — (1.2) depends very much on the slope of the solution to
this IVP at x = —1. We also establish some properties about the lengths of the intervals in
which the solution to this IVP is above or below the z-axis. In addition, we give estimates
for the number of solutions to (1.1) — (1.2), and the maximum number of shocks that a
solution can have. In §3, we examine the asymptotic nature of the approximate solutions
in the case when there is no shocks or at most one shock. In fact, we shall prove that
the differences between approximate solutions and true solutions are exponentially small.
The results for the general case with n shocks are presented in §4. In §5, we state the
corresponding results for the BVP (1.1) & (1.3). Two special but typical examples are
given in §6. The final section contains discussions of some cases not touched upon in the
previous sections, including the boundary-value problem consisting of equation (1.1) and
the boundary conditions

(1.15) Veu' (1) + k- (u(1) — s ) =0
and

(1.16) Veu!' (1) = ky(u(=1) —s_) =0
studied in Ward [8].



2 NUMBER OF SHOCKS

As in our previous paper [6], our approach is based on the shooting method. That is,
we start with the initial-value problem (IVP)

1) { eu’ + Q(u) =0
u(=1) =0, u'(-1) =k,

where k is a real number. When Q(u) is sufficiently smooth, it is known that this problem
has a unique solution which can be extended to all x > —1. For convenience, we introduce
the notation

(2.2) Emax := \/g /OS+ Q(s) ds.

LEMMA 1. Let u(z, k) denote the solution to the IVP (1.1) — (1.2). If k > kmax,
then u(x, k) is increasing for x > —1 and limy_ u(z, k) = 00. (b) If k < —kmax, then

u(z, k) is decreasing for x > —1 and lim,_ u(x, k) = —c0. (¢) If |k| < kmax, then u(x, k)
is periodic and intersects the x-axis infinitely many times. (d) In the critical case, i.e. when
k = +kmax, u(z,€) = £ f(€) where € = T2 and f satisfies

N
(2.3) (&) +Q(f) =0, —00 < £ < 00,
(2.4) f(=00) =s_, f(o0) = s4, f(0) =0;
furthermore,

(2.5) F€) ~ sy — Ape 7+, as € — oo
and

(2.6) @ ~s +A €5 as & — —o0,

where o4 = (—Q'(s+))Y/2, and Ay, A_ are explicitly given positive constants.

Proof. (a) Multiplying both sides of the differential equation in (2.1) by u/, and inte-
grating from —1 to z, we obtain

(2.7) g(u’)2 + /OuQ(s)ds =C,

where C' = %kzz. If £ > Emax, then it is easily seen from the graph of Q(s) that C' > fSL Q(s)ds
for any u > 0 and §(u/)? > 0; cf. (2.2). Since uv/(—1,e) =k > 0 and v/(z, ) never vanishes,
it follows that u'(z,e) > 0 for & > —1. Therefore, u(z,¢) is increasing for z > —1 and we
can assume that

lim u(z,e) =1.
T—00



We shall show that [ = co. Since k > kpax, there is a number 8 > 0 such that
2 [+
k2 > g/ Q(s)ds + .
0

Substituting this inequality into (2.7) gives

u'(z) > /B
for x > —1, from which it follows that

lim u(z,e) = 0.
T— 00
(b) The argument in this case is similar to that in case (a). Using (2.7), one can easily
show that u(z,e) is decreasing for x > —1, and that it tends to —oo as x approaches cc.
(c) We consider only the case 0 < k < kpax; the argument for —kpax < k < 0 is more
or less the same. From the graph of Q(u) in Figure 1, it is readily seen that the equation
Jo Q(s)ds = C has two roots u; (k) and up(k) such that ui(k) € (0,s4) and ug(k) € (s_,0).
From the initial conditions in (2.1) and equation (2.7), it also follows that there are two
points x = d; and x = dy with di < dy such that

u'(dy, k) =0, u(di, k) = ui(k) € (0,s4),

and
u(dg, k?) = 0, u/<d2, /{?) = —k.

Starting from x = ds, one can also show that there exist two points d3 and d4 such that

u'(ds, k) =0, u(ds, k) = ua2(k) € (s—,0),
and
u(d4, k‘) = 0, u’(d4, k‘) =k.
At © = dg,u(z, k) has the same initial values as those at the starting point z = —1. Hence,

u(x, k) is periodic with period dy + 1.

In the case k = 0,u = 0 is the only solution to (2.1).

(d) When [k| = kmax, we have C' = 5k* = [J* Q(s)ds. First, consider the case k = kmax,
and make the change of variables

r+1
\/E’

It is readily verified that f satisfies (2.3). From (2.7), it also follows that

(2.9) %(%>2+ZjQQMy:A&Q@M&

We claim

(2.8) £= f(&) = ulx, k).

(2.10) 0< f<sy



for £ > 0 and

(2.11) lim f(§) = s4.

E—o0
Since f(0) = u(—1,k) = 0, it is easily seen that f(§) < s4 for £ in a right neighborhood
of 0. From (2.9), it can also be seen that there is such a neighborhood in which f'(§) > 0,
i.e., f(&) is increasing. We shall show that in fact, f(£) is increasing in the whole interval
0 < & < 0o. Assume to the contrary that there exists a point n such that f(n) = s; and
0< f(§) <syfor0<&<m. Put

f
(2.12) V() = / Q(s)ds.

Clearly, V(sy) = V'(s4) =0 and V"(s4) = Q'(s4) < 0. Since V(f) is sufficiently smooth,
we may write V(f) = (s; — f)?H(f), where H(f) is a negative function, so that

(2.13) oy =/ —Q'(51) = V/—2H(s4).

(Note that as long as £ <7, we have f < sy and V < 0.) From (2.9), we obtain
d

(2.14) f e

(s4 = f)vV/—2H(f)
Integrating both sides from & = 0 to £ = 7 gives
s df n
= [ de,
b whmm

which is not possible since the left-hand side is infinite while the right-hand is finite; this

(2.15)

completes the proof of (2.10). Since f/(£) is positive in a right neighborhood of the origin
and does not vanish elsewhere, it follows from (2.9) that f'(£) > 0, i.e., f(&) is increasing,
in 0 < & < oo and

lim f(§) =1 < s4.

£—o0

To show that | = s, we integrate (2.14) on both sides form 0 to oo to yield

[ o=
0 (s4—f)V/=2H(f)

from which it follows that [ = s, thus proving (2.11).
To derive the asymptotic behavior of f(&), we return to (2.14) and obtain

51 f ds B
(2.16) /0 s — V2l

The integral on the left-hand side can be written as

f S S+

B /fs+ \/ﬁ(si —s) <\/_2(S) - \/_;[(S+)) ds.

8



On account of (2.13), this gives

f ds 1
e TS TR~ e ey~ Pl s —aalf),

where

(2.18) o /OSJr (J% sy 1s)a+> o

and

(2.19) e(f) =

— s.
FoV2(s: —s)\/—H(s) +/—H(s3)
Note that the last two integrals are well defined. Coupling (2.16) and (2.17), we have

f=sy— s, et e~ 0+8 g—c2(fo+

Since co(f) — 0 as f — s, the result in (2.5) follows with A} = s;e?t“r. A similar
argument can be used to demonstrate (2.6) with A_ = —s_e”~¢ where

5= -1 1
c_ = — ds
/o (\/ —2V(s) (s-— 3)0—>
This completes the proof of the lemma. |

REMARK 1. The proof of case (d) above actually gives the existence of a mono-
tonically increasing function f(&), which satisfies the differential equation in (2.3) and the
conditions in (2.4). Furthermore, it has the asymptotic behavior given in (2.5) and (2.6).
This result is stated explicitly in Ward [8, p.99], but without a proof.

REMARK 2. Using (2.13) and (2.14), one can also deduce from (2.5) and (2.6)

(2.20) F1(&) ~ o Ap e, as £ — oo,

(2.21) (&) ~o_A_e’-¢, as & — —oo.

From Lemma 1, it is clear that in order to have u(1l, k) = 0, we must choose k in the
interval (—kmax, 0) or (0, kmax), in which case the solution to the initial-value problem (2.1)
is periodic and intersects the x-axis infinitely many times.

We consider only the case k € (0, kpmax), since the case k € (—kmax, 0) is entirely similar.
Let x; be the first point to the right of —1 such that u(z1,k) = 0 and u(z, k) > 0 for
—1 < z < x1, and z2 be the first point to the right of x; such that u(ze,k) = 0 and
u(z, k) <0 for x1 < x < x9. We denote by Ti(k) and Ta(k), respectively, the lengths of the
interval [—1,z1] and [z1,22]. From (2.7) and the graph of Q(u) in Figure 1, we can also
find two points u;(k) € (0,s4) and ua(k) € (s—,0) such that

0 u1 (k)
(2.22) - /u Qs = /0 Q(s)ds = S

9



It is readily seen that when k — 0,u;(k) and ua(k) tend to zero and when k — Kmax, u1 (k)
tends to s; and ug(k) tends to s_. Differentiating both sides of (2.22) with respect to k
shows that u} (k) > 0 and u)(k) < 0. From (2.7), we obtain

(2.23) NG du = da,
2 f;“(k) Q(s)ds
from which it follows that
w1 (k)
(2.24) Ty (k) = \/%/ du
0 /fil(k) Q(s)ds
and
(2.25)

0 du
Th(k) = \/Q—E/uz(k) \/m

In the case k € (—kmax,0), the solution u(z, k) to the initial-value problem (2.1) is again
oscillatory about the z-axis, except that it now starts at + = —1 with a negative slope.
Hence, the graph of u(z, k) is below the z-axis in the interval (—1,x1), where x7 is the
first point to the right of —1 at which u(z, k) meets the line u = 0 again, i.e., u(z, k) < 0
in (—1,z1). Let x2 denote the first point to the right of z; such that u(x2,k) = 0 and
u(z, k) > 0 for 1 < x < z3. Unlike before, we now reverse the order, and denote by T>(k)
and Tj (k) the length of the intervals [—1, 2] and [z1, 2], respectively. Hence, the values of
T (k) and Ty(k) are actually dependent on the value of |k|.

LEMMA 2. We have

lim Ti(k) = lim Th(k) = .
h0t 1(R) e 2(k) Q'(0)

Proof. Let .
Va(u) = /0 Q(s)ds.

Since Va(u) is sufficiently smooth and V2(0) = V4(0) = 0, we may write Va(u) = u?G(u),
/

DN — II

where G is a sufficiently smooth function with G(0) = (0). From (2.24), it follows that
u1(k) du
Ty (k) = \/%/
0 VVa(ui(k)) — Va(u)
(2.26)
ur (k) du

_va |
o JEmemm) - eaw

It is easily seen that

u1 (k) du o V2e B A€
ﬁ/o VGO (i) —u?)  2,/G0) Q)

10



Since the integral

€ — U.
0 VVa(ui(k)) = Va(u)  /G0)(ui(k) — u?)
exists and the length of the integration interval tends to zero as k — 0, we obtain

TVE

Ti(k) — —0 as k— 0.
VQ'(0)
In a similar manner, one can prove
lim Ty(k) = —Y°_. N

T

On the other hand, we have u;(k) — sy and ua(k) — s— as k — kpax; see the second
paragraph following Remark 2. Hence

(2.27) kiikmmax Ti(k) = iikmmax Ts(k) = oc.
Put

(2.28) o=t Tyk)

and

(2.29) tg := O<I<:igl£max Ts(k).

It is easily seen that
TVE
Q'(0)

Recall that our goal is to use the shooting method to determine whether the original

(2.30) 0<ty,ts <

boundary-value problem has solutions with shocks. If it has, then we would like to give an
estimate to the number of shocks that a solution can have. This is equivalent to choosing
appropriate values of k so that

(2.31) u(1,k) = 0.
Since u(z, k) is periodic and oscillatory, equation (2.31) can be expressed in the form
(2.32) NTl(k) + MTQ(I{J) =2,

where N and M are nonnegative integers and represent, respectively, the number of intervals
with lengths T (k) and T5(k). Now we look at the arches bounded by the graph of u(x, k)
and the line u = 0. Since every arch above the line u = 0 is followed by an arch below ©v = 0
and vice versa, the integers N and M are related in such a way that for every given N,
there are only three possible values of M, namely, M = N —1, N, or N + 1. It is easy to see

11



that the number of zeros, which corresponds to the number of shocks, of a solution u(x, k)
in the interval (—1,1) is N + M — 1. Therefore, the number of shock layers is N + M — 1.
From here on, our task is to choose appropriate values of k, and determine possible
integers N and M, so that (2.32) holds.
For £ > 0, we define

(2.33) Ni(e) = [tl —thz]
and
2
(2.34) Na(e) = [T1(0+) + T2(0+)]’

where t1,t9 are given above and [z]| denotes the largest integer less than or equal to x.
The following result provides estimates for the number of shocks that the solutions to BVP
(1.1)=(1.2) can have.

LEMMA 3. If N > Ny(e) + 1 and M > Ny(e) + 1, then there exists no slope k such
that (2.32) holds, i.e., the BVP (1.1) — (1.2) has no solution with more than or equal to
2Ni(e) + 1 shocks. If N < Na(e) and M < Ny(e), then there exists at least one value of k
so that (2.32) holds, i.e., BVP (1.1) — (1.2) has at least one solution with N + M —1 shocks.

Proof. The function
NTy (k) + MT(k)

is continuous in 0 < k < kpax. For any k£ > 0, we have by (2.33)

NTi(k) + MTo(k) > Nt + Mty
> (N1(6) + 1)t1 + (N1(5) + 1)t2
= (Nl(e’-:) + 1)<t1 + tg) > 2.

Thus, (2.32) fails to hold and the boundary-value problem has no solution.
If N < Ni(e) and M < N(e), then by (2.34) and (2.27) the function N7y (k) + MTs(k)
satisfies
s NTy(k) + MTy(k) < Na(e)(T1(04) + T2(04)) < 2

and
lim NTl(k‘) + MTQ(k) = Q.

In view of the continuity of the function NTj(k) + MT»(k), there exists at least one point
ko € (0, kmax) such that
NTl(k()) + MTQ(ko) =2,
which means that there exists at least one solution to BVP (1.1)-(1.2). Also, it follows that
this solution has N+ M —1 zeros, and hence N + M —1 internal shock layers, in the interval
(—=1,1). |
When Q(u) satisfies the additional condition given below, we can in fact establish the
monotonicity of T7(k) and T(k) with respect to k, in which case more accurate estimates
for the numbers of shocks and solutions can be obtained.

12



LEMMA 4. If, in addition, Q(s)/s is decreasing in s for s € (0,sy) and increasing
for s € (s—,0), then T\ (k) and T5(k) are increasing in k for k € (0, kmax)-

Proof. From (2.24), we have

u(k) du
Ty (k) = \/%/0 \/m

Changing variables u = uq (k)t yields

1
T1(k‘):\/£/0 \/%,

where

u1 (k)
fi(k) = ﬁ / Q(s)ds.

Straightforward differentiation gives
d, 1 ut
a1 (Q(ul)ul - 2/ Q(s)ds — [Q(tuy)tug — 2
0

3
duq uy

tuy

Q(s)ds]) .

0

Since Q(z)/x is decreasing, we have Q'(z)xr — Q(z) < 0 for almost all z € (0,s4), from
which it follows that Q(z)x — 2 [ Q(s)ds is decreasing. Hence

dfy dfi _ dfi duy
Y1 d @1 91 4t
o, 20 an Ak duy dk

for almost all k € (0, kyqz); see a statement following (2.22). Note that d77/df; is negative.
Thus, by the chain rule,

<0

dT (k)
dk
i.e., T1(k) is increasing in k. The proof of the monotonicity of T5(k) is similar; this completes

> 0,

the proof of the lemma. |

From Lemma 4, it follows that

(2.35) tr =ty =T1(04) =T2(04) = :
Q'(0)

REMARK 3. Note that the function sQ'(s) — Q(s) vanishes at s = 0, is negative
in (0,s4) and positive in (s_,0). Hence, if Q(s) satisfies Q”(s) < 0 for s € (0,s4) and
Q"(s) > 0 for s € (0,s_), then the condition in Lemma 4 holds and T} (k),T>(k) are in-
creasing in k for 0 < k < kpax-

Let
2 2,/Q'(0
(2.36) N(e) = [_] - [7”2()]
t1 m\E
We have the following result concerning the numbers of shocks and solutions to the BVP
(1.1) — (1.2)

13



THEOREM 1. Let ni(e) denote the numbers of shocks that a solution to (1.1)—(1.2)
can have, and let na(e) denote the number of solutions to (1.1)—(1.2). If Q(s)/s is decreasing
for s € (0,s4) and increasing for s € (s—,0), then ni(e) satisfies

0 <ni(e) < N(e)—1,

and na(e) satisfies
na(e) = 2N(e),

where N (g) is given in (2.36).

Proof. If nj(e) < N(e) — 1, we choose

(2.37) M = [4”1(2 ha 1}
and
(2.38) N =me) - {%] b1

Then N > M, N+ M =ny(e) +1 < N(e), and
N-M<1.

Consider the function

By (2.35) and (2.36), we have
klil& NTi(k) + MT(k) = (N + M)ty
= (ni(e) +1)t1 < N(e)t; <2
and

lim NTl(k) + MTQ(kI) = OQ.

k—kmax

Since by Lemma 4 this function is increasing in k, there exists a unique point kg such that
NTi (ko) + MT5(ko) = 2.
If ni(e) > N(g), then N + M >ny(e) +1 > N(e) + 1 and by (2.28) and (2.36)

NTl(k) +MT2(]<J) > (N+M)t1 > (N(€) + 1)t1 > 2

for any k. Thus, we cannot expect (2.32) to hold, i.e., there exists no solution to problem
(1.1) = (1.2) if n1(e) > N(e).

On one hand, for any ni(¢) in 0 < ny(e) < N(e) — 1, we can choose M and N as
given in (2.37) and (2.38) so that there exists exactly one value kg satisfying u(1, ko) = 0.
On the other hand, by interchanging the two values of M and N in (2.37) and (2.38) and

14



considering k € (—kmax,0), we conclude by the symmetry that u(1, —ko) = 0. Therefore,
there are exactly two solutions with n;(e) shock layers.
Adding all solutions together, we get the number of solutions to (1.1) — (1.2) given by

na(e) = 2N (e).

This completes the proof of the theorem. |

When Q(u) = 2u — 2u?, Q(u)/u = 2 — 2u? is decreasing for u > 0 and increasing for
u < 0. Therefore, Lemma 4 applies and both 77 (k) and T5(k) are increasing in k for k > 0.
For k < 0, the situation is just the opposite and both 77 (k) and T»(k) are decreasing in k
for k < 0. In fact, 71 (k) and T>(k) depend on the absolute value of k (i.e., |k|), and we have

Ty (k) = Th(—k), Ty(k) = To(—k).
From (2.35) and (2.36), it follows that

. NEis
t1 = inf Ty(k) = T1(0+) 73

and

2 2v/2

N = [2] = [22]
tl \/gﬂ'

Applying Theorem 1, we obtain the following result.

COROLLARY 1. If Q(u) = 2u — 2u?, then the number ni(g) of shocks, that a
solution to problem (1.1) — (1.2) can have, satisfies

0<ni(e) < N(e)— 1= [%ﬁ] Y
Moreover, the number na(e) of solutions to (1.1) — (1.2) satisfies
2v2,  4V2
na(e) =2N(e) = Z[E] ~ NS
If Q(u) = sin(mu), then s(Q(s)/s)’ <0 for s € [-1,1], Q'(0) = 7 and N(g) = [\/Lﬂ_g] A

similar result is obtained.

COROLLARY 2. IfQ(u) = sin(wu), then the number ny(g) of shocks, that a solution
to problem (1.1) — (1.2) can have, satisfies

0<mi(e) < N(E)—1= [\/%] Y

Moreover, the number na(e) of solutions to (1.1) — (1.2) satisfies

na(e) = 2N(e) = 2 [\/%} ~ \/%

15



3 APPROXIMATE SOLUTIONS WITH AT MOST ONE
SHOCK

First, we confine ourselves to solutions with no shock layers, i.e., solutions which is either

entirely positive, or entirely negative, in the interval (—1,1).

THEOREM 2. The BVP problem (1.1) —(1.2) has one and only one solution ug1(x)
which is positive in the interval (—1,1). The asymptotic formula for this solution is given

by

(3.1) w1 () = f(ﬂ”\j;) . f(l_Tx) st o(e—w/ﬁ),

where f is the function given in Lemma 1(d). Likewise, the problem (1.1) — (1.2) also has

one and only one solution ug2(x) which is negative in the interval (—1,1). The asymptotic
formula for this solution is given by

9 i) 152) vl )

Proof. We shall give only the proof of (3.1), as the proof of (3.2) is very similar. It

is easily seen that in order to have a positive solution to the BVP (1.1)-(1.2), we must
choose a solution to the IVP (2.1) with a positive slope k. First, we recall that if Q(x)/z is
decreasing in x for x € (0, s4+) then by Lemma 4, T (k) is increasing in k£ with the endpoint
values

T1(0+) = O(e)

and
lim Ti(k) = oc;

k—kmax

cf. Lemma 2 and (2.27). By the continuity of 77 (k), we conclude that there exists one and
only one value kg such that 77 (ko) = 2, i.e., equation (2.32) holds with k = ko, N = 1 and
M = 0. This, in turn, implies the existence of a unique positive solution u(x, ko) to the
IVP (2.1) which also satisfies the boundary conditions in (1.2). We denote this solution
by ug1(x). Returning to the original equation, it is easily verified that ug1(—=z) is also a
solution to (1.1)-(1.2). Using the uniqueness of solution, we have w1 (z) = up1(—x), which
means the solution ug 1(x) is symmetric and ug 1(0) = 0. Furthermore, it is readily seen
that the solution ug () is increasing in [—1,0) and decreasing in (0, 1].

If Q(x)/x is not decreasing in x, we can still establish the uniqueness result. To this
end, we note that since Q'(s4+) < 0, and Q(s+) = 0, we can choose a constant § > 0, which
is independent of ¢ such that for x in the internal (sy — 6, s4)

(3.3) Qx) +2Q'(z) < —ma,

where my is a positive number. Let ks satisfy



For k € (0, k5), we have uj(k) € (0, s+ — 6) since uj(k) is increasing in (0, sy ), and

ua (k) du
Ty (k) = \/%/0 \/m = 0(Ve)

For convenience, we still denote by kp the minimum value of k satisfying T1(k) = 2,

(3.4)

namely

ko = inf{k : Th (k) = 2}.
From (2.27) and (3.4), it is clear that
ko > ks.
Since u} (k) > 0, it follows from (2.22) that
ui(ko) > ui(ks) = s+ — 95
see the statement between (2.22) and (2.23). Furthermore, since
Ty (ko) =2,
we have from (2.24)

u1 (ko) du 1

0 V2/lss —w)PH(uw) — (55 —wPH(u) Ve

where u; (ko) is the maximum value that wup;(x) attains at * = 0. Let t = sy — u and

)

a = sy —ui(kog). Then

(3.5)

/S+ dt B \ﬁ

o V2/tg(t) — a?g(a) e’
where g(t) = —H (s —t) > 0 for any ¢ € [0, s4] and also satisfies
t?9(t) — a*g(a) > 0

for t € (a,s4+) and

Consider the function
t*g(t) — a’g(a)
2 g2 )
which is positive and continuous in the interval (a,s;]. When ¢t — a, using L’Hospital’s
rule, we have

2 2
' _ Q4 —a) -0
2a

17



for any a = s — ui(ko) < s4. So there is a positive constant m such that
t2g(t) — a’g(a)
2 g2

for t € (a, s+]. By (3.6), we have from (3.5)

>m

dt \F
D > _,
/a V2mV/t2 — a? €

which yields

cosh™! S+ > 2_m
a 15
and hence
(3.7) a < 2sy e VIME

We now show that T'(k) is strictly increasing for k > kq. This, in turn, gives the uniqueness
of the positive solution to BVP (1.1)—(1.2).

To differentiate T3 (k) with respect to wj(k), we first make the change of variable u =
tuyi(k), and then use the product rule. After dropping the term with the positive sign, we
obtain

dTy (k) e [t a® o
d£w>z—Vgﬁl<mecx$@> a(B)QLus (K) — tun () Qe ()]

On the right-hand side, we change the integration variable back to u, and write

dT (k) e 1
an() > "V zmm O

where I; and I are integrals of (f;”(k) Q(s)ds) _3/2[u1(k:)@(u1(k:)) —u@(u)] on the intervals
(0,s4 — d) and (s — d,u1(k)), respectively. When k > kg, the integrand of I; is bounded
by some constant M;. Thus,

Il S M1(8+ - (5)

On the interval (s — d,u1(k)), we have by the mean-value theorem and (3.3)
u1 (k)Q(u1(k)) — uQ(u) = ( (@) + Q' (@) (u1(k) — u)
—m(u1(k) — ),

where v < uw < wj(k). When k > ko, u1(k) > ui(ko) > sy — a. Substituting (3.8) into Ia,
and letting t = sy —u, and @ = s — uy(k), where a < a when k > ko, we get

(3.8)

I < /5 o dt < —mim coshflé
—-m — —
TG (gl —atg(a)s2 T ST a

S

Here, we have made use of the fact that

t—a o
(t2g(t) — a?g(a)3/? — 12 _ a2

18



for t € [a, d]. Hence,
L+1,<0 when d<a§28+€_v2m/6.

Since u} (k) > 0, we have
dTl(k) . dTl(k) dul(k)

dk duy(k) dk
for k > ko. This completes the proof of the uniqueness.

>0

Next, we will prove (3.1). In (3.7), we already have a rough estimate for a, which states
that @ — 0 as ¢ — 0. Using this piece of information, we shall now give a more refined
estimate. The left-hand side of (3.5) can be written as

S+ dt S+ dt
(39 | i) e
where

£2g(t) — ag(a)
2 _ a2

From (3.6), it is clear that for any a € (0,s4), F(t,a) is positive and continuous for ¢ > a.

F(t,a) =

Moreover, we have
a
lim F(t,a) = g(a) + =g'(a)

t—a 2
and
. OF(tya) 3 1
1 ) _ 2 Zad(a).
lim —— 19 (@) +7ag”(a)

From (3.9), we obtain

/S+ w—

(3.10)

+G1()

where

+ 1 1 1
- dt
V(2 — a?) <\/2F(t, a)  +/2g9(a) + ag’(a))
The first term on the right-hand side of (3.10) can be evaluated explicitly; to the second
term, we apply the mean-value theorem. This gives

dt 1
cosh™! S+

V2 /P9t — a%g(a)  +/29(a) + ag (@) a
S+ 01 1 1
+/o Ve (¢2F(t, 0 ¢2g<0>> wrow

Since g(0) = —Q'(s+)/2 = 02 and ¢'(0) = Q"(s4)/6, it can be shown that

1 1 "
cosh™! 2+ = 7(1115—Jr +1n2) + Qs+

29(a) + ag'(a) a  V20) @ 107

)alna—i—O( )



and the last integral is equal to the integral in (2.18). Thus

S+ Z
/ dt :i<ln8—++ln2>+0++Q (?)alna—i-o(a)
o VAP - gl o\ a o]

Inserting the above formula into (3.5), we obtain

a=2s,e7 T e 0+/VE <1 + M e~ OH/IVE | O(e_‘“r/\/g))

2044/€
N (T LV IR
+
or, equivalently,
"
oA o ivE(1, QDA o N
(3.11) ui(ko) = sy —2A4e <1+ 301 e +0(e )

as e — 0.
To prove (3.1), we first restrict « to the interval [—1, 0], and put

ur(e) = f<xj;).

From the proof of Lemma 1, it is readily seen that u(z) satisfies

(3.12) eu] +Qur) =0

and
ur(=1) =0, w7y (—=1) = kmax-

Hence, it follows from Lemma 1(a) that

up(—1) = kmax > ug1(—1) = ko.
We further claim that
(3.13) ur(x) > up,1(x)

for x € (—1,0]. Assume, to the contrary, that there exists a point = 7 in the right
neighborhood of z = —1 such that ur (1) = uo,1(n), ur(x) > up1(z) for z € (—1,7n) and

(3.14) u, (1) < ugq(n).

Using energy equations like (2.7) associated with ur(z) and g 1(z), we have

ur(n)
(315) S+ [ Qs = S
and

uo,1(n)
(3.16) Sna@P+ [ Qs = 3



Since kmax > ko, u7,(n) > 0, and ug (1) > 0, we conclude from (3.15) and (3.16) that

u,(n) > ug 1 (1),

which contradicts (3.14), thus establishing (3.13). Let s = b be the last point in the interval
(0, s4+) such that Q'(b) = 0 and Q'(s) < 0 for s € (b, s4]. Correspondingly, we denote by
%01, and xr,; the points in the interval [—1, 0] such that

uo,1(%0,1,6) = b
and

ur(xrp) = b.
From (3.15), we can derive as in (3.5)

5+ dt
(3.17) rrpy+1=+/¢ _.
si—b V2¢/t2g(t)
Similarly, from (3.16), we obtain
s+

dt
S4— b \/_\/ t2 _a2

_f/s+b\f = +Ofa)

To1p+1=+e
(3.18)

Subtracting (3.17) from (3.18) yields
d:=z01p— 21y = O(\/Ea2).

By the same argument, we also have

dt
(3.19) 33—1—1—\/_&r uLx)\/_\/t2—
and
(3.20) a:+1:\/_s++u01 fﬁ?— O(vEa?)

for =1 < 2 < xg1p; see (3.17) and (3.18). Since t?g(t) is bounded away from zero for
t € [sy —b,s4], it follows from (3.19) and (3.20) that

(3.21) ur(z) — ug () = O(a?)

for =1 <z <1y
For x01p < x < 0, the function ur (x —d) satisfies (3.12) and hence (3.15). Furthermore,
up,1(z) satisfies (3.16) and

ur(zo1p —d) =b=1ug1(T0,1p)-
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Since kmax > ko, we obtain

(3.22) up (20,1, — d) > g1 (%0,1,6)-
Based on (3.22), one can use an argument similar to that for (3.13) to deduce
(3.23) ur(x —d) > wug1(x) >b
for g1, < <0.

Now, let R(x) denote the difference between ur,(z — d) and ug,1 (), i.e.,
(3.24) R(z) :==ur(x —d) — ugp,1(x).
From the differential equation, we have

R'(z) = uf(z — d) — ug(z)
(3.25) 1
= —(—Q(ur(z — d)) + Q(uo,1(x))) > 0.

e

The last inequality follows from the fact that Q(s) is nonincreasing for s > b.
The convexity of R(z) implies that R'(xz) > R'(z01,) > 0 by (3.22). Since R(zo1) =0,
(3.26) 0 < R(z) < R(0) =ur(0—d) —up,1(0) = O(a)

for 915 < < 0. To demonstrate the O-estimate in (3.26), we first note that ug1(0) =
u1 (ko) and ur (0 — d) = ur(0) + O(a?). Since ur(0) = f(1//€), the desired estimate now
follows from (2.5) and (3.11). In view of the fact that uy(z — d) — uy(z) = O(a?), we have
by coupling (3.21) and (3.26)

(3.27) ur(z) — ug1(x) = O(a) = O(e™7+/VE)

for any = € [—1,0]. Recall that in (3.1), the second term satisfies

1_

f( VEQU) = sq 4+ 0(e 7/VF)
when z € [—1,0], on account of (2.5). Therefore, (3.27) infers that (3.1) is true. When z lies
in [0, 1], the proof is similar and hence omitted. This completes the proof of (3.1), and thus

the theorem. ]
REMARK 4. If the interval [—1,1] in the BVP (1.1) — (1.2) is replaced by [a, b], then

we have instead of (3.1) and (3.2), respectively,

(3.28) o1 (x) <x — “) < ) 5,40 (e(ba)a+/2x/5>

and

(3.29) o2 () ( - a) + f< b x) st O<e—<b—“>0/2\/5>.

Ve
For the solutions to the BVP (1.1) — (1.2) which have one internal shock layer, we have
the following result.
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THEOREM 3. There exist exactly two solutions to the BVP (1.1) — (1.2), each of
which has one internal shock. The first solution starts at the end point x = —1 with an
upper arch, followed by a lower arch; while the second one starts at the end point r = —1
with an lower arch, followed by a upper arch. The asymptotic formulas for these two exact

solutions uy 1(x) and uy 2(x) are given by

) :f(x;;) +f<_x\—/§:1> +f<x¢_51>

(3.30) — (s4+s_)+ O{exp(—ﬁ)}
and

(s )+ o{exp(ﬁ)}
where
b3 T BT ()
and

o

B Q"(s4)Aro- (U+A+)—(,;IL . Q"(s-)A_oy (0+A+
(o4 +0_)20_"0_A_

(04 +0_)204 0 A
Proof. As before, we give only the proof of (3.30). Consider the function T} (k) + Ta(k)
for 0 < k < kmax. By Lemma 2 and (2.27), we have

lim 7 (k) + To(k) = O(Ve)

and
lim Ti(k)+ Ta(k) = oo.

—kmax

Hence, we conclude that there exists at least one value kg € (0, kpax) such that

The fact that there is only one such kg can be established as in Theorem 2; we shall denote
by u1,1(z) the solution to (1.1) — (1.2) with initial slope k¢ at x = —1. For —kmnax < k <0,
there also exists a value kg such that (3.33) holds; its corresponding solution to (1.1) —(1.2)
will be denoted by u;2(z). Next, we shall locate the position of z1, the zero of uy ().
From the definition of T (ko) in (2.24), we can show as in (3.11) that

"
(334) Ul(ko) — S+_2A+€—T1(]€0)U+/2\/E{1+Q (813f£1(k0) e—Tl(kO)U+/2\/E |:1+O(\/g )] }

Similarly, we also have

1!
(3.35) ua(ko) = 3_+2A_6Tz<ko>o—/2ﬁ{1_Q <84;A£2(k0>eT2<ko>U—/2ﬁ [1+0(v2 )] }
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Equation (2.16) states

0 u1 (ko)
[ Qwis= [ Qs
ua (ko) 0

which by Taylor’s expansion gives

UQAQGTQ(kO)J_/\/E{l — QN(S_)A_TQ(I{;O)e*T2(k0)U—/2\/5[1 +0(Ve )]}

20_+/e

(330 Q(5) A, Ti (k)

:aiAie—Tﬂkom/ﬁ{H )AL Tiko) -1 o)or /2vE [ 4 0(y/2 )}}_

2044/
In (3.36), we now insert T3 (ko) = x1 + 1, To(ko) = 1 — x1, and solve for z1. This yields
—o_ 2 A _

1‘1:—0+ 7 + Ve loga+ * 4 Bexp I

(3.37) oy+o_ op+o- To_A_ (04 +o0_)\/e

+o{¢5 exp(—ﬁ)}.

Note that the sum of the first three terms in (3.37) is exactly the value Z; given in (3.32).
On the interval [—1, z1], by using (3.28) and

(7)) vt mise
we obtain

€
YL L1 — T\ _ o40_
o o)) ot )
Since f(:”—\;gl) —s5_ = O(e=+-/(0++7IVE) for ¢ € [—1,21], (3.30) follows immediately from

(3.38). Similarly, for x € [z, 1], we can use (3.29) and (3.37) to verify (3.31), thus complet-
ing the proof. |

4 APPROXIMATE SOLUTIONS WITH N INTERNAL
SHOCK LAYERS

We are now ready to state and prove the general result for solutions to (1.1) —(1.2) with
n internal shock layers.

THEOREM 4. For any fized nonnegative integer n, there exist exactly two solutions
to the BVP (1.1) — (1.2), each having n shock layers. The asymptotic formulas to these
solutions uy, 1 and u, 2 are given by

(i) if n is odd, then

o1 (2) :f<x\—/1—gl> +gf<(_l)i$\—/;i> +f<$\k1>

n+1 B 2040_
g (o1 001+ Ol g ) )

(4.1)
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and

Un,2 (x) = Un,1 (—%),

where
$i:_1+[z—|—l] 4 o_ +[£] 4 o4
2 |n+loy+o_ 2ln+loy+o_
l+1 7 2\/5 O'+A+
4.2 — = |z
w2 (] B])e et
1+ 1 i 2040_
— 12| B _
S B) poee(eta)
and
2Q"(s4)Aro- oy Ay - Te
B — oy +to_
) = Do to 20s o)
n 2Q"(s-)A_o4 U+A+)(,+”;,_ :

(n+1)(ox +0-)%0_ (U,A,

(i) if n is even, then

)i F) (2 F)
20, 0_

‘<g+0*‘gs+O%”<Ywuxm+a»ﬁ)}

where T; is still given by (4.2), and

qmgm»—f<—wj;>-+§;f<“4V“£i%ﬁ>+f<?i;>

» nae) =1

(4.4)
n n 2040_
— s —(Z+1)s. —
2% @+>S+O%w<m+mu+mw9}
where
L 7 4 o_ 1+ 1 4 fo
= 1+[2]n+10++0_+{ 2 ]n+1a++0_
i Z+1 2\/5 U+A+
4. —| = 1
(43) (5] - |5]) s e 2

(- B oo (e o)

Proof. (i) Consider the function

n+1 n+1
Ty (k
k) + =

In a manner similar to that in the proof of Theorem 3, one can show that there exists a kg
such that

Ty (k).

n+1 n+1
Tl(ki()) +

(4.6) Ty (ko) = 2
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and

1 |
(4.7) nt nt

Tl(—k()) +

Tr(—ko) = 2,

which, in turn, means that when n is odd, there exist exact two solutions to the BVP
(1.1) — (1.2) with n shock layers.
By making use of (4.6), one can solve T (ko) and T5(ko) in (3.36). This yields

4 o_ 2\/5 O'+A+
T (ko) = 1
1(ko) n+la++a_+a++a_ S A

2040_ 2040
B _ _
+ e~ anE) O e (e v )
and
4 0'+ 2\/5 O'+A+
T: = — 1
2(ko) n+loy+o- op+o_ & A

s e~ ave) HolVEe (e s evE) |

It is easily verified that

1+1
2

Hence, as in (3.37), one obtains

14 1+1| 4 o_ n 1| 4 oy
T = — = S
’ 2 |In+lop+o_ 2ln+1loy 4o

(]
(5] [3) rev e (G ve)

*O{ﬁe’q’(‘m Dot a)\/5>}'

Note that x; approximates Z; in (4.2) within the O-term in the last equation.

xi:—l—l—[ }Tl(ko)nL [%]Tg(ko), i=1,2,.n.

For the proof of (4.1), we split the interval [—1, 1] into subintervals [—1, z1], [z, Ti+1], i =
1,2,--- ,n—1, and [z, 1]. The validity of (4.1) is established in each of these intervals; for
example, in [—1, 1] we have, as in Theorems 2 and 3,

R R )

Since

sﬁif((—l)“”;;i) w12 ) - e )
= oleo(~are ) )

for z € [-1, 1], we conclude that (4.1) holds in this interval.
The proofs of (4.3) and (4.4) are entirely similar and hence omitted. This completes the

proof of the theorem. |
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5 BOUNDARY CONDITIONS (1.3)

In this section we are concerned with the boundary conditions in (1.3). As we shall see,
in this case the solutions to (1.1) & (1.3) do not have shocks at endpoints.
We again assume that Q(s) satisfies the condition in Lemma 4, i.e.,

(5.1) s <%>, <0

s
for s € [s_,s4] and s # 0. As in Theorem 1, the following result can be established.

THEOREM 5. Let ni(e) denote the number of shocks that a solution to the BVP
(1.1) & (1.3) can have, and let nay(e) denote the number of solutions to (1.1) & (1.3). If the
condition in (5.1) holds, then we have

1<ni(e) < N(e)

and
na(e) = 2N (e),

where N(g) is as defined in (2.36).

It should be noted that condition (5.1) is not required in establishing the asymptotic
formulas for the exact solutions to BVP (1.1) & (1.3) when ¢ is small. Indeed, we have

THEOREM 6. For any fized nonnegative integer n, there exist exactly two solutions
o (1.1) & (1.3), each having n shock layers. The asymptotic formulas to these solutions
Up,1 and U2 are given by

(i) if n is odd then

i) =31 ()

(5.2)
n—1 2040_
— Y+ 0 s s
e+ 0~ TR ) )
and
Un2(2) = un1 (),
where
T Ve 1 oAy
L noy+o_  oy+o_ o_A_
+ 2 4 g_ 2\/5 ] O'+A+
(5.3) 2|\ noyx+o0-  oy+o_ o_A_
’ + 1 —1 é (o _ 2\/_ lo O'+A+
2 noy+o_- oy+o_ S0 A




and B(n) is defined as in Theorem 4;

(ii) if n is even then

e A o)\

where T; is as given in (5.3), and

(5.5)  uno(z Zf )—n;23+—gs_+0{exp(—ﬁ)},

where

2 - A
o= -1+ 4 VE g ZtA
noy+o_  oy+o_ o_A_

(o e et

2|\ noyL+o0- oy+o_ o_A_

, — 1 4 _ 2 A
e

2 noy+o_  oy+o_ o_A_

T )

Proof. (i) Let ko denote the slope of u,_; at the point z = z1, the first zero of u,; from
the left. As before, we denote by T7 (ko) and T5 (ko) the length of the upper and lower arch,
respectively. Then we have

(5.6) 5T1(ko) + 5 Tako) = 2.

Using (5.6), one can solve T} and T3 in (3.36). This gives

4 _ 2 A
o + Ve 10g0++

L R

ot o 2 ) sof veen (- 2 )
and
(5.8) P _%‘”U:"— ) Uffa_ 1;’j+2:j+ 20, 0_

— B(n—1) exp(—m) * O{ﬁexp<‘m> }
Since 2y = _1+%+ [%}Tl(ko)—F {igl]ﬂ(kﬁo),
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it follows that

2
x, = —1+— Eh Ve log
noy+o_- oy+o_ o_A_

+H <4 o, 2 loga+A+>

2| \noy +o_ " op +o_ o_A_

+|:7,—1:| (4 O+ 2\/5 log O'+A+>

2 noy+o_ o.+o_ o_A_

~Carl [ po v (@)

+0{ VEen( ) |

Neglecting the O-term in z;, we obtain Z; given in (5.3).

O'+A+

In a manner analogous to that in the proof of Theorem 5, we can also deduce

Un,1(x) = Zﬁ;f((—l)iﬂx\_/;i) - ; 1(S+ tao)+ O{GXP<_ﬁ>}

and

U 2() = up,1(—x).

(ii) The argument for this case is similar.

6 TYPICAL EXAMPLES

In this section we present two particular examples to illustrate our main results.
(a) When Q(u) = 2u — 2u3, it is easy to calculate that s_ = —1, s, = 1, Q'(£1) = —4,
oL =2,

/11 Q(s)ds =0

and

(6.1) f(z) = tanh(x).

Applying Theorem 4, we have the following result.

COROLLARY 3. For any fixred nonnegative integer n, there exist exactly two so-
lutions to the BVP (1.1) — (1.2), each having n shock layers. The asymptotic formulas to
these solutions u, 1 and u, 2 are given by

(i) if n is odd, then

0 un1(z, €) :tanh(m\j;> + étanh((—l)ix\_/;i> +tanh<x\;gl)
T O/ VR
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and
un,?(xy E) = un,l(_xa 8)7

24
n+1

where T; = —1 +
(ii) if n is even, then

r+1 " x— X r—1
Un,1(z,€) :tanh< ) + ‘camh((—l)2 > + tanh<— >
(6.3) e Z; Ve
14 0(6—2/(n+1)\/5)

By

and

un,2(£? 6) = _un,l(xa 5)7

where T; is as given in (i).

(b) When Q(u) = sin7u, we have Q'(+1) = —7, o4 = /7, s- = —1, s4 =1,

/_11 Q(s)ds = 0

and

4 -1+ eV

Although Q(u) has infinitely many zeros on the u-axis, Theorem 4 still applies and we have
the following corollary.

COROLLARY 4. For any fized nonnegative integer n, there exist exactly two so-
lutions to the BVP (1.1) — (1.2), each having n shock layers. Let f(x) be given in (6.4).

Then, the asymptotic formulas to these solutions up1 and u,2 are given by
(i) if n is odd, then

o 9= (SE) () ()
+O(e~ VA (n+DVE)

and
Un,g(l', 5) = un,l(_xa 5),
2
n+1
(ii) if n is even, then

oo e () (o) ()
1+ O(e_ﬁ/(n+1)\/§)

where T; = —1 +
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and

un,?(xy E) = _un71(x7 8)7
where T; is as given in (i).

REMARK 5. In the above two corollaries, if we change the boundary conditions in
(1.2) to those in (1.3), then corresponding asymptotic formulas can be obtained by dropping

the terms tanh(x—jgl) and tanh(x—\;;) in (6.2), tanh(x—jgl) and tanh(—x—\;gl) in (6.3), f(xjgl)

and f(””—\;gl) in (6.5), and f(‘r—\}'gl) and f(—x—\;gl) in (6.6); see Theorem 6.

7 DISCUSSION

In this final section, we discuss two separate issues. The first issue concerns a set of
mixed boundary conditions studied in [8] by Ward, and the second one deals with the
situation where the nonlinear term Q(u) in (1.1) is replaced by —Q(w). Throughout the
section, we shall continue to assume that Q(u) satisfies the conditions imposed in Sec. 2.

We first consider the mixed boundary conditions

(7.1) VEu (1) + Ky (u(1) = 5) = 0

and

(7.2) Veu'(=1) — kj(u(=1) — s_) =0,

where both k, and k; are nonnegative numbers. We claim that solutions of equation (1.1)
under these boundary conditions have properties very similar to those established in the
previous sections. For simplicity of illustration, we restrict ourselves to the case in which
there is only one shock in (—1, 1), and let 21 denote the location of the shock, i.e., u(z1) = 0.
Furthermore, let ko denote the derivative of u(z) at z;. In what follows, we shall derive
asymptotic formulas for z; and kg. To proceed, we bear in mind that on one hand, u(x)
is a solution of the boundary-value problem (1.1), (7.1) & (7.2), and on the other hand, it
satisfies the initial value u(z1) = 0 and «/(x1) = ko. As before, we search values for k¢ in
the interval |kg| < kmax-

We consider only the case kg € (0, kmax); the other case k € (—kmax,0) can be handled
in a similar manner. Since kg € (0, kpax), from the proof of Lemma 1(c) we know that u(x)
is period and intersects the z-axis infinitely many times. Furthermore, s_ < u(x) < s for
x € (—00,00). Using this fact, we also have from (7.1) and (7.2)

W' (+1) > 0.

Since we have assumed that there is only one shock in [—1, 1], using equation (2.7) one can
readily see that u(zx) is not decreasing there.

Let 21 > 1, 20 < —1 be the two nearest points to z7 satisfying u/(z1) = u/(22) = 0.
Then, we have u(z1) = u1(ko), u(22) = ua(ko), 21 — z1 = 3T1(ko), 21 — 22 = 2T (ko). Here
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ui(ko), uz(ko), Th (ko) and T5(ko) are defined as before. Similar to (3.36), one can derive

20_+\/¢

_ " A T(ko) _
AQ Ty (ko)os /v/E Q (s4)A+Th T1(ko)o+/2v2E [ .

Integrating (2.23) from x; to 1, we obtain

2 42 o Talhor_ 1 {1_ Qs )A-Tolko) —mw0)o- /221 4 (/2 )}}
(7.3)

dt
S4+— ’u \/_ \/ t2 a2

c.f. (3.5). The integral on the right-hand side can be evaluated as in (3.10), and we have

1—x1=+/¢

(7.4) 12~ \/5[01+ (cosh_ - cosh™! +_—“(1)> +c+],

a

where a = s — uj(ko). By the same argument, from (2.24) and the equation following
(3.10) we get

T1(ko) =

\/_/ w—
~2\/_<—cosh L3 >

o+

(7.5)

Coupling (7.4) and (7.5) gives

1—x1~ —Tl(ko) - ﬁ cosh~1 1 u(l)

(7.6) 5 - - ,
from which it follows by (3.34) that
(7.7) u(l) ~ s — Ay e—o+(1—z1)/VE _ A, et (Tl(ko)*(lfm))/\/g.
Using (2.23), we can also deduce
(7.8) W(1) ~ Aror o -m)ivE _ AT+ o (Tilko)-(1-21)) /VE
Ve Ve
Substituting (7.7) and (7.8) into (7.1) yields
Oy — ke og (1—a1))VE 42 2 —Ti(ko)os/vE
(7.9) Ai_ai_i +imn ~ Aot e HTTH/IVE,
o4+ + k‘
Similarly, at the endpoint x = —1 we have
(7.10) A2529- T Zl —20-(1+21)/VE o, A2 52 o~ Ta(ko)o—/VE,
T o_+ Ky
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By a combination of (7.3), (7.9) and (7.10), we obtain

O —0—
T =——"
oy t+o_
€ Ao g
(7.11) — 2(0+7\£0—) [2log(ﬁ) +10g(—f)}
2040_ 2040_
- D s s 19) s s
o~ to) ol e b
where
o —ky o —k
Ry S
and

9+ 9=
po @Cader (Mb)@l (M)
(op +o )20y \A202_ (04 +0-)20_ \ A20%~_ '

The first two terms of x; in (7.11) agree exactly with the formula given in Ward [8].
Inserting (7.11) into (7.9), and using (3.34) and the fact

w1 (ko)
fﬁz/ Q(s)ds,
2 0

we also get the asymptotic formula

o2 A2 { doyo_ }
— expy ————— .
€kmax \/E(O’JF—FO'*)

When o4 > k, and o_ > k;,log~4 and log v, are well defined. With the values of x; and kg

(7.12) ko ~ Kmax —

given by (7.11) and (7.12), we conclude that the solution u(x) to our initial value problem
exists, and has the asymptotic formula

(7.13) u(z) :f(x\_/;) +O{exp<—ﬁ>}.

Next, we consider the problem when Q(u) in (1.1) is replaced by —Q(u). To our surprise,

solutions now exhibit new phenomena. For instance, let us take Q(u) = —2u(1 — u?). In
this case, we still have condition (1.4), i.e.,

LfM@:m

but the pattern of solutions is completely changed. All solutions of (1.1) exhibit spike layers
instead of shock layers, and the values of each solution are close to 0, except those near the
spike regions; see a typical solution in Figure 4 below
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1.25¢

Figure 4. v/(—1) =4/(1) =0

When condition (1.4) does not hold, we find that like the above case, every solution still
exhibits only spikes. For example, if we take Q(u) = u(u + 1)(2 — u), we obtain a solution
which is close to u = —1, except at three spikes; see Figure 5.

_1_

Figure 5. u(—1) =u(1) =0

If we allow Q(u) to have the shape shown in Figure 6, i.e., Q(u) vanishes at s1, s9, 0, s3, 54

/5 Qs) =0,

and nowhere else, and satisfies
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Q(u)

S1 §2 u

Figure 6. Graph of Q(u)

then the problem can have solutions with both spike-type and shock-type internal layers.
For instance, if we take Q(u) = u(u? — 1)(u? — 4), then a typical solution is depicted in
Figure 7.

Figure 7. Graph of u(z)

Using the shooting method that we have introduced in the previous paper [6] and used
again in the present paper, we can prove the results that we have observed above with

mathematical rigor.
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