波音游戏-波音娱乐城赌球打不开


 [   ] 

Prof. NOLIN Pierre

PhD – Université Paris-Sud 11 & école Normale Supérieure

Associate Professor

Contact Information

Office: Y5126 Academic 1
Phone: +852 3442-8569
Fax: +852 3442-0250
Email: [email protected]

Research Interests

  • Probability Theory
  • Stochastic Processes
  • Statistical Mechanics
Dr. Pierre Nolin received his PhD from Université Paris-Sud 11 and École Normale Supérieure, France, in 2008. Before joining City University in 2017, he worked as an instructor and PIRE fellow at the Courant Institute of Mathematical Sciences, New York University, USA, from 2008 to 2011, and then as an assistant professor in the Department of Mathematics at ETH Zürich, Switzerland, from 2011 to 2017.

Dr. Pierre Nolin's research is focused on probability theory and stochastic processes, in connection with questions originating from statistical mechanics. He is particularly interested in lattice models such as the Ising model of ferromagnetism, Bernoulli percolation, Fortuin-Kasteleyn percolation, frozen percolation, and forest fire processes.


Awards and Achievements

  • 2008 “Prix de thèse Jacques Neveu” Société de Mathématiques Appliquées et Industrielles (Modélisation Aléatoire et Statistique).


Publications Show All Publications Show Prominent Publications


Journal

  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2025). Backbone exponent and annulus crossing probability for planar percolation. Physical Review Letters. 134. 117101 .
  • Gao, Y. , Nolin, P. & Qian, W. (2025). Up-to-constants estimates on four-arm events for simple conformal loop ensemble. arXiv:2504.06202. 36 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two I. Arm events in the random walk loop soup. arXiv:2409.16230. 50 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two II. Connectivity properties of two-sided level sets. arXiv:2409.16273. 71 pp.
  • van den Berg, J. & Nolin, P. (2024). Two-dimensional forest fires with boundary ignitions. arXiv:2407.13652. 23 pp.
  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2023). Backbone exponent for two-dimensional percolation. arXiv:2309.05050. 63 pp.
  • Nolin, P. , Tassion, V. & Teixeira, A. (2023). No exceptional words for Bernoulli percolation. Journal of the European Mathematical Society. 25. 4841 - 4868.
  • van den Berg, J. & Nolin, P. (2022). A 2D forest fire process beyond the critical time. arXiv:2210.05642. 53 pp.
  • van den Berg, J. & Nolin, P. (2021). Near-critical 2D percolation with heavy-tailed impurities, forest fires and frozen percolation. Probability Theory and Related Fields. 181. 211 - 290.
  • Lam, W. K. & Nolin, P. (2021). Near-critical avalanches in 2D frozen percolation and forest fires. arXiv:2106.10183. 72 pp.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2018). Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales Scientifiques de l'école Normale Supérieure. 51. 1017 - 1084.
  • van den Berg, J. & Nolin, P. (2017). Boundary rules and breaking of self-organized criticality in 2D frozen percolation. Electronic Communications in Probability. 22 (no. 65). 1 - 15.
  • van den Berg, J. & Nolin, P. (2017). Two-dimensional volume-frozen percolation: exceptional scales. Annals of Applied Probability. 27. 91 - 108.
  • Hilário, M. , de Lima, B. , Nolin, P. & Sidoravicius, V. (2014). Embedding binary sequences into Bernoulli site percolation on Z^3. Stochastic Processes and their Applications. 124. 4171 - 4181.
  • Ménard, L. & Nolin, P. (2014). Percolation on uniform infinite planar maps. Electronic Journal of Probability. 19 (no. 78). 1 - 27.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2012). A percolation process on the binary tree where large finite clusters are frozen. Electronic Communications in Probability. 17 (no. 2). 1 - 11.
  • van den Berg, J. , de Lima, B. & Nolin, P. (2012). A percolation process on the square lattice where large finite clusters are frozen. Random Structures & Algorithms. 40. 220 - 226.
  • Beffara, V. & Nolin, P. (2011). On monochromatic arm exponents for 2D critical percolation. Annals of Probability. 39. 1286 - 1304.
  • Duminil-Copin, H. , Hongler, C. & Nolin, P. (2011). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Communications on Pure and Applied Mathematics. 64. 1165 - 1198.
  • Nolin, P. & Werner, W. (2009). Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society. 22. 797 - 819.
  • Chayes, L. & Nolin, P. (2009). Large scale properties of the IIIC for 2D percolation. Stochastic Processes and their Applications. 119. 882 - 896.
  • Nolin, P. (2008). Critical exponents of planar gradient percolation. Annals of Probability. 36. 1748 - 1776.
  • Nolin, P. (2008). Near-critical percolation in two dimensions. Electronic Journal of Probability. 13 (no. 55). 1562 - 1623.

Book Chapter

  • van den Berg, J. & Nolin, P. (2021). On the four-arm exponent for 2D percolation at criticality. In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability, vol 77. (pp. 125 - 145). Birkh?user, Cham.


Last update date : 11 Apr 2025
永利百家乐赌场娱乐网规则| 百家乐官网透视用设备| 缅甸百家乐玩家吗| 真人百家乐体验金| 鸿发| 金矿百家乐的玩法技巧和规则| 百家乐官网小型抽水泵| 大众百家乐官网的玩法技巧和规则| 百家乐的路图片| 百家乐官网电投网站| 威尼斯人娱乐城投注网| 赌博百家乐官网技术| 百家乐那里最好| 东丽区| 百家乐赌博技巧网| 大发888电子游艺| 百家乐官网娱乐网佣金| 德州扑克概率表| 24山是什么意思| 足球博彩| 现金百家乐攻略| 模拟百家乐官网下| 博娱乐城| 百家乐是否能赢| 利都百家乐官网国际娱乐网| 大发888注册送彩金| 百家乐官网法则| 嵩明县| 威尼斯人娱乐场wnsrdcylcbywz| 有百家乐的棋牌游戏| 百家乐官网翻天粤| 大发888充值500| 百家乐百家乐群| 赌百家乐官网的心得体会| 大发888 大发888娱乐城 大发888娱乐场| 百家乐官网投注双赢技巧| 333娱乐城| 百家乐娱乐网真人娱乐网| 百家乐终端下载| 东莞百家乐的玩法技巧和规则 | 真人游戏豆瓣|