Project Title:

Bioavailability optimization of $\alpha 2M$ with nano-techniques for treating respiratory viral infections

PI: Professor HE Mingliang of CityUHK

Co-Is: Professor Michael YANG Mengsu, Professor SUN Hongyan, and Professor Renee CHAN WY of CityUHK

Project Abstract/Proposal Summary:

Current antiviral drugs are virus-specific by targeting viral components with a limited antiviral spectrum and rapidly lose their antiviral efficacy because of drug resistance due to fast viral mutations. We identified a host factor, low-density lipoprotein receptor-related protein associated with protein 1 (LRPAP1) served as an extracellular inhibitor ligand of interferon receptor 1 (IFNAR1), which was harnessed by viruses to evade innate immunity. Our fundings open a new window for developing pan-antiviral drugs by targeting LRPAP1 to protect host innate immunity. Fortunately, we found that Alpha-2-macroglobulin (α 2M), a natural inhibitor of LRPAP1, had a great antiviral effect by blocking LRPAP1 binding with IFNAR1. However, due to the poor bioavailability caused by the large molecular weight of α 2M, abundant α 2M in blood could not exert its antiviral ability at infected sites. In this project, we propose to optimize the delivery and efficacy of α 2M to improve bioavailability. First, we will use nano-techniques, including albumin and exosome nanoparticles, to improve its bioavailability and stability. Then, we will determine the antiviral effect of modified α 2M on animal and human organoid models. Our project expands the antiviral spectrum α 2M and makes α 2M more easily to achieve drug transformation.