BMS2805: BIOCHEMISTRY FOR VETERINARY SCIENCE

Effective Term Semester B 2024/25

Part I Course Overview

Course Title Biochemistry for Veterinary Science

Subject Code BMS - Biomedical Sciences Course Number 2805

Academic Unit Biomedical Sciences (BMS)

College/School College of Biomedicine (BD)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Completion of all Year 1 courses with C grade or above

Precursors Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course aims to provide students:

- a. an understanding of the basic principles of biomolecules involved in vertebrate metabolism;
- b. concepts in biochemical reactions and functions in metabolism;
- c. principles of several major metabolic pathways and their controls and integration;
- d. up-to-date knowledge on the biochemical basis of health, nutrition and some diseases;
- e. experience with some biochemical techniques.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Demonstrate a broad and coherent body of knowledge in the basic principles that organize the structural, chemical, and functional principles of biomolecules.			X	
2	Explain the relationships between biomolecules and cells in health and disease. Illustrate how biomolecules regulate living processes, using integrated knowledge of the dynamics of metabolism.		x	X	
3	Relate an integrated knowledge of the importance of biomolecules to animal health and society. Interpret and critically evaluate a range of information sources in biochemistry and animal health, from primary literature to multimedia.		X		
4	Summarize, extend, and communicate biochemical concepts through various modes, presenting evidence-based arguments.		х	X	
5	Experiment with acquired knowledge and technical expertise. Analyze and critically interpret results generated through experiments in laboratory.		X	X	Х

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Teaching and learning will be based on lectures explaining the thermodynamic principles employed in metabolic pathways, the bioenergetics and chemistry of metabolic reactions, the importance of regulation of metabolism by hormones, and deregulation of metabolism in diseases.	1, 2, 3	1 hours per week
2	Tutorials	Tutorials will explore the thermodynamic principles employed in metabolic pathways, the bioenergetics and chemistry of metabolic reactions, the importance of regulation of metabolism by hormones, and deregulation of metabolism in diseases using recent primary research articles on biochemistry related to health, diseases, and applications in biotechnology. During tutorials students (in small groups) will create a concept map relating biochemistry to health and disease based on case studies of applications of biochemistry in animal health and society.	3, 4	1 hour week
3	Laboratory classes	Students develop basic research skills required for biochemistry including skills in formulating a hypothesis, testing a hypothesis by designing and setting up experiments, data collection, analysis and critical evaluation of data, presentation in graphical and table forms and clear and concise written reports.	5	3 hours every third week

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Essay assignment	1, 2, 3, 4	20	
2	Tutorial presentation	3, 4	15	
3	Laboratory reports	1, 2, 5	15	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

3

Additional Information for ATs

Minimum Passing Requirement : A minimum of 30% in coursework as well as in examination, and the total minimum passing requirement for the whole BVM course is 50%.

Assessment Rubrics (AR)

Assessment Task

1.Tutorial essay assignment

Criterion

Ability to explain the chemical and biological principles behind the metabolic pathways and integrate the metabolic pathways in various medical conditions and in cancers.

Excellent (A+, A, A-)

Excellent in understanding, explaining, exploring and integrating the knowledge in written format.

Good (B+, B, B-)

Good in understanding, explaining, exploring and integrating the knowledge in written format.

Fair (C+, C, C-)

Basic ability in understanding, explaining, exploring and integrating the knowledge in written format.

Marginal (D)

Some deficiencies in understanding, explaining, exploring and integrating the knowledge in written format.

Failure (F)

Lack of understanding and inadequate explaining, exploring and integrating the knowledge in written format.

Assessment Task

2. Tutorial presentations

Criterion

Ability to explain the chemical and biological principles behind the metabolic pathways and integrate the metabolic pathways in various medical conditions and in cancers; ability to understand the principle and rationale behind the experiment.

Excellent (A+, A, A-)

Excellent in understanding, explaining, exploring and integrating the knowledge.

Good (B+, B, B-)

Good in understanding, explaining, exploring and integrating the knowledge

Fair (C+, C, C-)

Basic ability in understanding, explaining, exploring and integrating the knowledge.

Marginal (D)

Some deficiencies in understanding, explaining, exploring and integrating the knowledge.

Failure (F)

Lack of understanding and inadequate explaining, exploring and integrating the knowledge.

Assessment Task

3. Laboratory report

Criterion

Description of experimental design, scientific terms, facts, key concepts and theories, analysis of the data, and report presentation.

Excellent (A+, A, A-)

Complete and correct and provides an insightful and accurate analysis, excellent presentation.

Good (B+, B, B-)

Almost complete and correct, provides some insight, analysis and presentation generally quite good.

Fair (C+, C, C-)

Largely complete and correct, provides limited insight but analysis largely accurate and adequate presentation.

Marginal (D)

Some deficiencies across the criteria of descriptions, underpinning facts, concepts, analysis, insight, and presentation.

Failure (F)

Many deficiencies in descriptions, underpinning facts, concepts, analysis, and presentation; lack of insight.

Assessment Task

4. Examination

Criterion

Ability to explain the chemical and biological principles behind the metabolic pathways and integrate the metabolic pathways in various medical conditions and in cancers.

Excellent (A+, A, A-)

Excellent in understanding, explaining, exploring and integrating the knowledge in written format.

Good (B+, B, B-)

Good in understanding, explaining, exploring and integrating the knowledge in written format.

Fair (C+, C, C-)

Basic ability in understanding, explaining, exploring and integrating the knowledge in written format.

Marginal (D)

Some deficiencies in understanding, explaining, exploring and integrating the knowledge in written format.

Failure (F)

Lack of understanding and inadequate explaining, exploring and integrating the knowledge in written format.

Part III Other Information

Keyword Syllabus

Chemistry, biological functions, metabolic pathways Thermodynamics, bioenergetics Metabolism of carbohydrates and lipids Lipid biosynthesis and fatty acid catabolism Metabolic integration and regulation

Reading List

Compulsory Readings

	Fitle	
1	Engelking, L. (2014). Textbook of Veterinary Physiological Chemistry, 3rd Edition. Academic	Press.

Additional Readings

	Title
1	Science Daily: http://www.sciencedaily.com/news/plants_animals/biochemistry/
2	Nelson, D. and Cox, M. (2013). Lehninger Principles of Biochemistry, 6th edition. W.H. Freeman (Run Run Shaw Library Circulation Collection QD415 .L43 2013).
3	Bhagavan, N. and Ha, C-E (2011). Essentials of medical biochemistry: with clinical cases. Amsterdam ; Oxford : Academic (RB112.5 .B43 2011).