CA4717: ELECTRICAL ENGINEERING PRACTICES

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Electrical Engineering Practices

Subject Code CA - Civil and Architectural Engineering Course Number 4717

Academic Unit Architecture and Civil Engineering (CA)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors CA3712 Electrical Services

Students must have attempted (including class attendance, coursework submission, and examination) the precursor course(s) so identified.

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

The course equips student with knowledge of electromagnetic compatibility, power quality and the usage of a diesel generator and anuninterruptible power supply in buildings; and also the basic concept of high voltage engineering in modern buildings.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the electricity supply system, supply rules and their relationship with sustainable development;	20		x	x
2	Explain the specifications of electrical distribution systems in buildings;	40		х	Х
3	Explain an emergency power supply systems;	20	X		x
4	Explain the overcurrent and electric shock protection.	20	X		Х

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures and Tutorials	 Student will engage with key theories of energy source and sustainable electrical system design. Student will engage with the concept and application of statutory regulations, design considerations of electrical distribution networks, earthling systems, lightning protection. Student will engage with the concept and participate in the design of diesel generators, various types of uninterruptible power supplies (UPS). Student will engage with concept of various cable fault location techniques and their comparison. 	1, 2, 3, 4	

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Mid-term Test	1, 2	20	
2	Coursework	1, 2, 3, 4	30	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%.

Assessment Rubrics (AR)

Assessment Task

Mid-term Test

Criterion

ABILITY to DEMONSTRATE electrical system design. CAPACITY to SUGGEST green and sustainable system design.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Coursework

Criterion

ABILITY to DEMONSTRATE the understanding on electrical system calculation.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

ABILITY to RELATE and EXPLAIN building codes and design principles of electrical installation. ABILITY to USE scientific techniques to solve design problems.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Electromagnetic environment. Causes and impacts of electric power harmonics. LV distribution systems. Protection and load flow. Electrical insulators. Emergency generator design and UPS.

Reading List

Compulsory Readings

	fitle
1	Nil

Additional Readings

	Title	
1	EMSD, Code of Practice for Electricity (Wiring) Regulations, 2009.	
2	BSI and The Institution of Electrical Engineers, Requirements for Electrical Installations - IEE Wiring Regulations 17th Edition, 2008.	
3	Tony Sung, Advanced Electrical Services Engineering Volume 1- Fundamental Theory & LV Electrical Installation Design, Smart and Sustainable Technologies Publishing Co. Ltd., Hong Kong, 2010.	
4	The IEE, Electrical Installation Design Guide-Calculation for electricians and Designers, IET, UK, 2008.	