GE2213: UNDERSTANDING UNCERTAINTY AND STATISTICAL REASONING

Effective Term Semester B 2024/25

Part I Course Overview

Course Title Understanding Uncertainty and Statistical Reasoning

Subject Code GE - Gateway Education Course Number 2213

Academic Unit Decision Analytics and Operations (DAOS)

College/School College of Business (CB)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

GE Area (Primary) Area 2 - Study of Societies, Social and Business Organisations

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses Nil

Exclusive Courses CB2200 Business Statistics GE2262 Business Statistics

Part II Course Details

Abstract

The use of statistics in the media and academe is now widespread. This course aims to equip students with a good understanding of the concept of uncertainty to help them to become informed decision-makers and critical consumers of statistical information in their future professional lives.

Uncertainty, variability and incomplete information are inherent in all disciplines. As there are minimal mathematical prerequisites for this course, students majoring in diverse disciplines will find it useful. The course content is based on real-world case studies that involve issues of current significance.

By the end of the course, students will be able to evaluate and make critical judgments about reports that involve uncertainty and statistical concepts, and will have developed the capacity to assume individual and social responsibilities.

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the concept of uncertainty and the uses and limitations of statistics.	10	Х	х	X
2	Describe the key changes in the historical development of the concept of uncertainty and statistical reasoning principles.	10	х	x	
3	Critique various methods of statistical reporting used in the media across different fields such as business, public administration, engineering, science, law, marketing, and the environment.	20	X	х	x
4	Apply concepts of uncertainty and statistical thinking to analyze and construct data-based arguments presented in various media formats (e.g., newspapers, magazines, videos).	20	X	х	x
5	Interpret and critically evaluate statistically- based reports from different disciplines	20	Х	X	X
6	Provide recommendations/innovations based on statistical data	20	X	X	X

Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Students will learn the concepts and relevant knowledge of how to identify uncertainty and use basic statistical theories which are explained. Students learn how to identify uncertainty and become familiar with the use of basic statistical theories in lectures.	1, 2, 3, 4, 5, 6	
		Videos: Videos are shown to highlight real-life examples of uncertainty. Follow-up group discussions provide students with the opportunity to critique and identify relevant statistical solutions to the examples.		

2	Tutorials	Students will work in	3, 4, 5, 6	
		groups to research and		
		discuss the latest issues		
		related to uncertainty		
		and statistics in group		
		discussion. Students		
		conduct a critical		
		evaluation and make		
		informed contributions		
		to tutorial discussions on		
		the basis of background		
		reading.		
		Case Studies:		
		Prior to class students		
		work in groups to read		
		and critique academic		
		research papers or		
		business case studies		
		that illustrate uncertainty		
		and demonstrate how		
		statistics are used in		
		the real world. In class		
		students brainstorm		
		possible answers to		
		questions arising from		
		various case study		
		problems before giving a		
		brief presentation of their		
		findings, their critiques and recommendations.		
		Group Project:		
		Students work in		
		groups to study the		
		statistics published in		
		the Hong Kong Annual		
		Digest of Statistics.		
		They are required to		
		identify the relevant		
		data relating to critical		
		social, economic or		
		environmental problems		
		in Hong Kong. Students		
		need to understand the		
		terms used in the Hong		
		Kong Annual Digest of Statistics. They also		
		need to decide how to		
		present the important/		
		significant information		
		graphically so as to be		
		able to clearly describe		
		the trends or observable		
		characteristics. The		
		students are encouraged		
		to identify and interpret		
		the relationships		
		between the selected		

3	Outside Classroom	Students will be able	3, 5, 6	
	Activities	to visit the Hong Kong	-) -) -	
		Government Census and		
		Statistics Department;		
		a marketing research		
		company, the analytic		
		department of firms in		
		the banking and/or other		
		industries, etc.		
		Consultations:		
		Additional help is		
		provided to individuals		
		and groups outside		
		official class time within		
		advertised hours.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Quiz	1, 2, 3, 4, 5	40	
2	Group Project / Case Study	3, 4, 5, 6	40	
3	Assignment	1, 2, 3, 4, 5	20	

Continuous Assessment (%)

100

Examination (%)

0

Assessment Rubrics (AR)

Assessment Task

Quiz

Criterion

Level of understanding of statistical concepts, sampling methods and statistical modelling featured in lectures and indicated readings.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Group Project

Criterion

Level of effective presentation and communication and with flair in oral and electronic format; Excellence coverage of materials and contents and demonstrates time management skills; quality answers to questions raised during presentation.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Dasie

Failure (F) Not even reaching marginal levels

Assessment Task

Assignment

Criterion

Level of evidence of critical capacity and analytic ability; understanding of concepts

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Uncertainty and variability; logic of uncertainty; the uses of uncertainty; measuring uncertainty; what are statistics; statistical concepts and reasoning; data-based arguments; "data sense" development, modern use of statistics, limitations of statistics; current affairs; media, interpret and critique statistically-based reports.

The following is an indicative of likely modules and topics students will undertake to learn in this course. Final details and specific reading materials for specific topics will be provided to students in their first week of attendance in this course. Module 1: Introduction

- · What is uncertainty?
- $\cdot~$ The role of uncertainty in people's lives
- · Approaches to uncertainty probabilistic, fuzzy logic, …
- · Historical development of the concept of uncertainty and statistical reasoning principles
- \cdot Statistics concepts relating to post-renaissance modernization
- · Statistics as data and as methodology
- $\cdot\;$ Data vs information: a distinction between data on the individual entity and statistics

Module 2: Understanding Uncertainty

- · Uncertainty about specific future, present, or past events
- · Uncertainty about the parameters within models
- · Uncertainty about the structure of models
- · Uncertainty about the relevance to particular problems of the entire modeling process
- Module 3: Case studies and applications

3.1 Applications in business management

- · Investment strategies: trends, moving average and noise
- · Premium estimation: pricing of insurance products
- · Utility functions: how to make decisions
- · Quality management: reliability, six-sigma
- 3.2 Applications in science and technology
- · Ignorance, chaos and quantum mechanics: causes of randomness
- · Evolution, genes, and viruses: randomness in biology
- · Medical decision making: specificity and sensitivity
- · Spam, probability, and spam: blocking unwanted e-mail
- 3.3 Applications in everyday life
- · Commonly encountered social and economic statistics
- · Fifty-one percent to forty-nine percent: the true meaning of polls
- · Laying down the law: why casinos always win
- · Final exam: do you have probability perspective?
- Module 4: Statistical concepts and reasoning
- · Use of statistics to support claims or positions
- $\cdot\;$ Common errors in the use and presentation of numerical measures
- · Making judgments from surveys and experiments

Reading List

Compulsory Readings

	Title
1	Lindley D V, Understanding Uncertainty, Latest edition, Wiley
2	Best J, Damned Lies and Statistics, Latest edition, University of California Press
3	Moore D S and Notz W I, Statistics: Concepts and Controversies, Latest edition, New York: W.H. Freeman
4	Rosenthal J S, Struck by Lightning, Latest edition, Joseph Henry Press
5	Utts J M, Seeing Through Statistics, Latest edition, Brooks/Cole, Thomson
6	Tanur J, Statistics: A Guide To The Unknown, Latest edition, Wiley

7	Stigler (1986): The History of Statistics: The Measurement of Uncertainty before 1900, The Belknap Press of the Harvard University Press. Cambridge, Massachusetts
8	Stigler (1999): Statistics on the Table: The History of Statistical Concepts and Methods, Harvard University Press. Cambridge, Massachusetts
9	David (1962): Games, Gods and Gambling, Republished by Dover in 1998.

Additional Readings

	Title
1	Chance, American Statistical Association
2	Stats: The Magazine For Students of Statistics, American Statistical Association
3	Annual Digest of Statistics, Latest issue, Census and Statistics Department, HKSAR Government
4	Grier (2006): When Computers Were Human, Princeton University Press
5	Understanding Uncertainty http://understandinguncertainty.org/
6	American Statistical Association http://www.amstat.org/
7	Royal Statistical Society http://www.rss.org.uk/
8	Statistical Society of Canada http://www.ssc.ca/
9	Statistical Society of Australia http://www.statsoc.org.au/
10	Hong Kong Statistical Society http://www.hkss.org.hk/
11	Census and Statistics Department, HKSAR Government http://censtatd.gov.hk

Annex (for GE courses only)

A. Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)

PILO 1: Demonstrate the capacity for self-directed learning

6

PILO 2: Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology

1, 2, 3

PILO 3: Demonstrate critical thinking skills

4

PILO 4: Interpret information and numerical data

4

PILO 6: Demonstrate effective oral communication skills

5

PILO 7: Demonstrate an ability to work effectively in a team

5

PILO 10: Demonstrate the attitude and/or ability to accomplish discovery and/or innovation

6

B. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

9 GE2213: Understanding Uncertainty and Statistical Reasoning

Selected Assessment Task

Quiz, Group Project Presentation, Individual Assignment