MA1006: CALCULUS AND LINEAR ALGEBRA FOR BUSINESS

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Calculus and Linear Algebra for Business

Subject Code MA - Mathematics Course Number 1006

Academic Unit Mathematics (MA)

College/School College of Science (SI)

Course Duration One Semester

Credit Units

3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment English

Prerequisites

HKDSE Mathematics Compulsory Part, or equivalent Notes to Students: Students with HKDSE Mathematics Extended Part Module 2 (Levels 3 –5) are suggested not to take this course.

Precursors

Nil

Equivalent Courses Nil

Exclusive Courses

MA1200 Calculus and Basic Linear Algebra I MA1201 Calculus and Basic Linear Algebra II MA1300 Enhanced Calculus and Linear Algebra I MA1301 Enhanced Calculus and Linear Algebra II

Part II Course Details

Abstract

This course is designed for students pursuing studies in business and related fields. It aims to

- · develop fluency in the concepts and techniques of calculus and linear algebra, and
- · provide students with mathematical training for all further study in business and related fields.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	describe properties of functions and manipulate expressions involving standard functions and their inverses.	17	x		
2	explain concepts of limit, continuity and differentiability of functions.	17		X	
3	perform techniques of integration to evaluate integrals of functions.	22		X	
4	implement techniques of matrix arithmetic and of solving systems of linear equations	22		X	Х
5	apply methods of differential and integral calculus and linear algebra to solve optimization problems, evaluate present value of income streams, solve input-output models and other applications in business and related fields.	22	x		X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Learning through teaching is primarily based on lectures.	1, 2, 3, 4, 5	39 hours in total
2	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	1, 2, 3, 4, 5	3 hours

Learning and Teaching Activities (LTAs)

3	Assignments		1, 2, 3, 4, 5	after class
		home assignments helps		
		students implement basic		
		concepts of functions and		
		techniques of differential		
		calculus, as well as apply		
		knowledge of which to		
		problems in business and		
		related fields.		
4	Math Help Centre	Learning activities	1, 2, 3, 4, 5	after-class,depending on
	1	in Math Help Centre		need
		provides students extra		
		assistance in study.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)	
1	Quizzes/Test/Midterm	1, 2, 3, 4, 5	15	Questions are designed to see how well students have learned basic mathematical methods, techniques and applications of differential calculus and linear algebra. These assessment tasks monitor students' progress and reveal gaps in knowledge.	
2	Formative take-home assignments	1, 2, 3, 4, 5	15	These are skills based assessment to see whether students are familiar with essential mathematical methods, techniques and applications of differential calculus and linear algebra.	

Continuous Assessment (%)

30

```
Examination (%)
```

70

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Quizzes/Test/Midterm

Criterion

1.1 CAPACITY of EXPLAIN and APPLY concepts and methods of calculus and linear algebra.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

2. Formative take-home assignments

Criterion

2.1 CAPACITY of SELF-DIRECTED LEARNING to understand the main concepts of calculus and linear algebra and master the mathematical techniques involved.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

3. Examination

Criterion

3.1 ABILITY to APPLY mathematical techniques and theories to solve problems involving the intended learning outcomes.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

A) Functions, limits, continuity and differentiability

B) Techniques of differentiation, implicit and parametric differentiation

C) Applications of differentiation: rates of change, local extrema, optimization problems, Taylor series, l'Hôpital' s rule D) Definite and indefinite integrals; techniques of integration, integration of rational functions, integration by substitution, integration by parts

E) Applications of integration: present value, accumulated net profit

F) Matrices; determinants, systems of linear equations, Gaussian elimination, matrix inverses, Gauss-Jordan elimination G) Applications of linear algebra: input-ouput models.

Reading List

Compulsory Readings

	Title
1	Ron Harshbarger and Jim Reynolds, Mathematical Applications for the Management, Life, and Social Sciences,10th ed., Cengage Learning, 2012
2	Laurence Hoffman and Gerald Bradley, Calculus for Business, Economics, and the Social and Life Sciences, 11th ed., McGraw-Hill, 2012.

Additional Readings

	litle
1	vil