MNE4108: NUCLEAR REACTOR ENGINEERING

Effective Term Semester B 2024/25

Part I Course Overview

Course Title Nuclear Reactor Engineering

Subject Code MNE - Mechanical Engineering Course Number 4108

Academic Unit Mechanical Engineering (MNE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites MNE3107 Principles of Nuclear Engineering

Precursors Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course aims to introduce the principles of thermal-hydraulic analysis of nuclear power systems, with special emphasis towards the analysis of nuclear power reactors.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if D) app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the principles of thermal-hydraulic analysis of nuclear power systems and teleoperated robotic inspection systems.				
2	Develop the conservation equations of mass, motion and energy in a generalized form.			X	
3	Apply the appropriate equations to specific phenomena arising in the design of nuclear systems.			X	x
4	Discuss the reactor transient response.			Х	
5	Describe dynamic characteristics of a reactor and the effect of Xenon.			X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1		Delivery of the course will be achieved through a series of formal lectures supported by practical case studies.	1, 2, 3, 4, 5	3hrs/week

2	Mini-project	A typical thermal	1, 2, 3, 4, 5	
2	Mini-project		1, 2, 3, 4, 5	
		hydraulic problem for		
		nuclear application will		
		be given to students		
		to solve. The students		
		are expected to work in		
		teams to tackle the given		
		problems. This learning		
		activity will be mainly		
		student-led but with some		
		structural guidance from		
		the teacher. At the end		
		of the learning activity, a		
		presentation session will		
		be organised for all the		
		students to present their		
		solutions for the given		
		problem.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Mid-term Test	1, 2, 3, 4	20	
2	Mini-project	1, 2, 3, 4, 5	20	Report submission and presentation to be made

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Mid-term Test

Criterion

Understand and be able to conduct the thermal analysis of nuclear fuel.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Mini-project

Criterion

Ability to apply the learned theories to conduct the research and self-learning for a nuclear reactor thermal-hydraulics related topic.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

Understand the basic principles of thermal-hydraulic analysis of nuclear power systems. Obtain the deep insight on the fuel thermal analysis, single and two phase flow and heat transfer inside the nuclear reactors.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Additional Information for AR

Note: For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Part III Other Information

Keyword Syllabus

- · Fluid dynamics and heat transfer
- · Thermal and hydraulic analysis of nuclear reactors
- · Fluid systems analysis, two-phase flow and boiling
- · Energy conversion methods
- · Heat generation in nuclear reactors
- · Thermal hydraulic design of reactor cores and plant components
- · Reactor Kinetics
- · Dynamic Characteristics of a Reactor
- · Effect of Xenon
- · Non-Destructive Testing (NDT) techniques such as Ultrasonic testing, Eddy current inspection, Infrared thermography, Shearography, impact acoustics technique, etc
- Basic robotics for tele-operated inspection and maintenance

Reading List

Compulsory Readings

	Title
1	Todreas, N. E., and Kazimi, M. S. Nuclear Systems I: Thermal Hydraulic Fundamentals. Taylor & Francis Group, LLC, Second Edition, 2011.

Additional Readings

Г

		Title
	1	Rust, J. H., Nuclear Power Plant Engineering. Haralson Publishing Company, ISBN-10: 0934534004.
-	2	Lamarsh, J. R. and Baratta, A. J. Introduction to Nuclear Engineering. Prentice Hall, ISBN: 0-201-82498-1.
	3	Versteeg, H. K., and Malalasekera W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Pearson-Prentice Hall, ISBN: 978-0-13-127498-3.