SEE4122: CHEMICAL SEPARATIONS FOR ENERGY AND ENVIRONMENTAL APPLICATIONS

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Chemical Separations for Energy and Environmental Applications

Subject Code SEE - School of Energy and Environment Course Number

4122

Academic Unit School of Energy and Environment (E2)

College/School School of Energy and Environment (E2)

Course Duration One Semester

Credit Units

3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites SEE2101 Engineering Thermofluids I; and SEE3101 Engineering Thermofluids II

Precursors Nil

Equivalent Courses Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to educate students on the fundamental principles of chemical separation technologies essential to energy and environment-related applications that enable to achieve sustainable development. The course will include both equilibrium-controlled separation processes and separation processes that involve both mass transport and equilibrium considerations. The students will learn the basic concepts in molecular separation (especially for mixtures of gases and vapours) and how separation processes work as well as develop ability to use the basic knowledge learned to provide solutions to timely important separation problems in the field of energy and environment.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the importance of chemical separation and its relevance to enabling key energy and environmental applications for building a sustainable society	20	X		
2	Describe the concepts and principles of chemical separation processes with both equilibrium and non-equilibrium considerations.	40		x	
3	Apply the concepts and principles of chemical separation technologies to provide solutions to key energy and environment-related applications	40		x	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Students will engage in lectures with facilitated discussion to understand fundamentals, key concepts, working principles, and important energy-environment applications of chemical separation technologies.	1, 2, 3	

Learning and Teaching Activities (LTAs)

2	Tutorials	Students will work with	1, 2, 3	
		the advisor teaching		
		assistant to solidify their		
		understanding of key		
		concepts and principles		
		via practice and tacking		
		confusions or difficulties		
		encountered in the		
		lectures and exercises.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Assignments Several assignments will be given throughout the semester. Through the assignments, students will demonstrate their understanding of the underlying concepts and principles of chemical separation processes.	1, 2, 3	25	
2	In-class presentation A Separation News presentation will be given by the students to relate the concepts in class to real-world applications of separations.	1, 2, 3	5	
3	Test Students will complete a mid-term test to demonstrate their ability to apply their knowledge to analyze and solve problems related to chemical separation processes.	1, 2, 3	20	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

Examination duration: 2 hrs

Percentage of continuous assessment, examination, etc.: 50% by continuous assessment; 50% by exam

To pass a course, a student must do ALL of the following:

1) obtain at least 30% of the total marks allocated towards continuous assessment (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);

2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and3) meet the criteria listed in the section on Assessment Rubrics.

Assessment Rubrics (AR)

Assessment Task

1. Assignments

Criterion

Ability to explain concepts, analyze and solve problems related to chemical separation processes

Excellent (A+, A, A-)

Excellent understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Good (B+, B, B-)

Good understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Fair (C+, C, C-)

Acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Marginal (D)

Marginally acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Failure (F)

Poor understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Assessment Task

2. Test

Criterion

Ability to explain concepts, analyze and solve problems related to chemical separation processes

Excellent (A+, A, A-)

Excellent understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Good (B+, B, B-)

Good understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Fair (C+, C, C-)

Acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Marginal (D)

Marginally acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Failure (F)

Poor understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Assessment Task

3. Presentation

Criterion

Ability to explain concepts, analyze and solve problems related to chemical separation processes

Excellent (A+, A, A-)

Excellent understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Good (B+, B, B-)

Good understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Fair (C+, C, C-)

Acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Marginal (D)

Marginally acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Failure (F)

Poor understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Assessment Task

4. Examination

Criterion

Ability to explain concepts, analyze and solve problems related to chemical separation processes

Excellent (A+, A, A-)

Excellent understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Good (B+, B, B-)

Good understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Fair (C+, C, C-)

Acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Marginal (D)

Marginally acceptable understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Failure (F)

Poor understanding of concepts and ability to analyze and solve problems related to chemical separation processes

Part III Other Information

Keyword Syllabus

- · Fundamentals of thermodynamics in separations;
- · Conventional distillation;
- · Absorption in gas-phase separations and solvent-extraction applications;
- · Adsorption;
- Membrane technologies;
- · Ion-exchange;

- · Selectivity-permeability tradeoff;
- · Emerging separation technologies

Reading List

Compulsory Readings

	Title
1	Nil

Additional Readings

	Title
1	Wankat, Phillip C., Separation Process Engineering Second Edition, Pearson Education, Inc. 2007
2	Seader, Henley and Roper, Separation Process Principles with Applications Using Process Simulators, 4th Edition, John Wiley and Sons, Inc. 2016
3	Giddings, J. Calvin, Unified separation science, Wiley, New York, 1991