SYE2100: ENGINEERING STATISTICS AND EXPERIMENTATION

Effective Term Semester A 2024/25

Part I Course Overview

Course Title Engineering Statistics and Experimentation

Subject Code SYE - Systems Engineering Course Number 2100

Academic Unit Systems Engineering (SYE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses ADSE2100 Engineering Statistics and Experimentation

Exclusive Courses Nil

Part II Course Details

Abstract

In this course, students will gain a comprehensive understanding of statistical data analysis methods and develop skills in designing, executing, and analyzing experiments for engineering applications. Through active learning and hands-on experience, students will master the principles and techniques of data analysis and experimentation, including systematic data collection, estimation of models using the collected data, and the interpretation and practical implementation of the results. By the end of the course, students will be equipped with the necessary knowledge and skills to effectively apply these techniques in real-world engineering contexts.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Elaborate on applications of Engineering Statistics and experimentation	25	x		
2	Design, execute experiments and analyse and interpret the experimental results	25			Х
3	Understand the basic theory and principles of Engineering Statistics and experimentation	25	X		
4	Apply software to solve case study and engineering statistics projects	25		X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Weekly lectures. Lectures will be supplemented by: - Discussions - Cases - Small group exercises to facilitate conceptual understanding and introduction to applications.	1, 2, 3, 4	3 hr / week
2	Laboratory	Three labs with Q&A and discussion on Week 6, 9, 12 (tentative). Labs are supplemented by: - Cases - Presentation by students - Small group exercises	1, 2, 3, 4	1 hour / session (3 sessions / semester)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Group project	1, 2, 3, 4	25	The group project evaluates students' quantitative skills, statistical analysis, and their ability to effectively collaborate with others.
2	Assignments	1, 2, 3	35	The individual assignments assess student's understanding.

Continuous Assessment (%)

60

Examination (%)

40

Examination Duration (Hours)

2

Additional Information for ATs

Written exam paper at the end of the course. For a student to pass the course, at least 30% of the maximum mark for the examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Group project

Criterion

The group project evaluates students' proficiency in collaboration, and their capability to collect data, analyze data, apply relevant statistical tools, and draw informed conclusions about an experiment.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task Assignment

Criterion

The assignments assesses students' understanding of statistical engineering and experimental design principles, as well astheir proficiency in analyzing data using mathematical or programming approaches.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

The examination questions serve to assess student's level of achievement of the intended learning outcomes, with emphasis placed on conceptual understanding and correct application, mostly through numerical calculation, of the various statistical design and analysis of experiments methodologies.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Additional Information for AR

The test, assignments, laboratory work and examination will be numerically-marked and grades-awarded accordingly.

Part III Other Information

Keyword Syllabus

- · Discrete/Continuous random variables and their probability distributions
- · Linear regression model
- · Hypothesis testing

- · Bayesian data analysis
- \cdot $\,$ Process variability and it relevance to modern statistical engineering
- Engineering statistics

Reading List

Compulsory Readings

	Title
1	Lecture notes and slides

Additional Readings

	-
	Title
1	Wackerly, Dennis, William Mendenhall, and Richard L. Scheaffer, Mathematical statistics with applications, 7th ed., Cengage Learning, 2014.
2	Montgomery, Douglas C., George C. Runger, and Norma F. Hubele. Engineering statistics, 5th ed., Wiley, 2009.
3	Box, Hunter and Hunter, Statistics for Experimenters, 2nd edition Wiley.
4	D.C. Montgomery, Introduction to Statistical Quality Control, 7th ed., Wiley, 2012
5	D.C. Montgomery, Design and Analysis of Experiments, 8th ed., Wiley, 2012
6	Mason, R.L., Gunst, R.F., and Hess, J.L. (2003). Statistical Design and Analysis of Experiments with Applications to Engineering and Science (2nd Edition). New York: John Wiley & Sons