波音游戏-波音娱乐城赌球打不开

Master of Science in Materials Engineering and Nanotechnology

As the No. 1 programme (US News & Shanghai Rankings in Hong Kong)  and a Top-20  programme (US News & Shanghai Rankings in the World) in the field of materials science and engineering, the programme provides an opportunity for applied scientists and engineers to pursue an in-depth study in various aspects of materials engineering and nanotechnology. Courses in this programme can also be used to fulfill the "top up courses" requirement for joining the Materials Discipline of the Hong Kong Institution of Engineers (HKIE).

Programme Master of Science in Materials Engineering and Nanotechnology
理學碩士(材料工程及納米科技)
Award Title Master of Science in Materials Engineering and Nanotechnology
理學碩士(材料工程及納米科技)
Offering Academic Unit Department of Materials Science and Engineering
Mode of Study Combined mode
Programme Leader Prof. LEI Dangyuan

Programme Aims and Features

Designed to benefit students from a broad spectrum of academic background, the programme aims to enable students to:

  • have extensive knowledge of and possess analytical ability in the field of materials engineering and nanotechnology;
  • have the ability to apply the knowledge of materials engineering and nanotechnology to generate creative technical solutions in the working environment;
  • be capable of communicating effectively in materials related professions;
  • design and conduct experiments, and to analyze and interpret data;
  • identify, formulate, solve engineering problems and generate new ideas in materials engineering and nanotechnology; and
  • recognize the need for, and an ability to engage in life-long learning.

Research Opportunity

Top students with relatively higher GPA and suitable background can take the “Advanced Research” course (12 credit units), and have the opportunity to conduct world-class research using our sophisticated instruments.

Assessment and Progression

The assessment system consists of a combination of assessments in course work and written examination. The assessment criteria vary according to the different components of a course but students are provided with as many opportunities as possible to demonstrate their competence.
Course work consists of student performance in written assignments, tutorials, projects and laboratories. Formal written examination(s) are normally held at the end of each semester.

Professional Career Prospects:

  • Materials Engineers & Scientists
  • Quality Control Engineers
  • Production Engineers
  • Laboratory Managers
  • Research & Development Engineers
  • Engineering Sales Managers for high-ended equipment and sophisticated materials
  • Specialists in Electronics, Semiconductors, EV batteries,  Solar Cells, Catalysis, Biomaterials, Metals, Ceramics, Computational Materials, AI for Materials, and Construction
  • Better prepared candidates for Ph.D. study in top universities.

Programme Structure

For student of 2021-22 Cohort and 2022-23 Cohort
For student of 2023-24 Cohort
For student of 2024-25 Cohort 
For student of 2025-26 Cohort and Thereafter

1. Programme Core Courses: (9 credits)
Course Code Course Title Credit Units Course Offering in 2025/26 Semester
MSE5301 Instrumentation for Materials Characterization 3 A
MSE5303 Structure and Deformation of Materials 3 A
MSE6265 Quantum Theory of Semiconductors 3 A
2. Programme Electives: (21 credits)
MSE5304 Thermodynamics of Materials 3 B
MSE6121 Thin Film Technology and Nanocrystalline Coatings 3 A
MSE6176 Nanomaterials Design for Energy Applications 3 A
MSE6181 Photonics in Nanomaterial Systems and Devices 3 A
MSE6182 Polymers and composites and nano-applications 3 A
MSE6183 Computational Methods for Materials Science 3 B
MSE6184 Biomedical Materials and Devices with Nano-applications 3 B
MSE6185 Advanced Structural Materials 3 B
MSE6266 Semiconductor Materials and Devices 3 B
MSE6303 Corrosion and Surface Engineering 3 B
MSE6309 Advanced Research 9 Normally A and B
MSE8015 Theory and Practice of TEM & Related Spectroscopy 3 B
MSE8020 Structural Properties of Materials 3 A
MSE8021 Kinetic and Thermodynamic Properties of Materials 3 B
The course syllabus is subject to change

3. Additional Notes:

Intermediate and other awards:

Postgraduate Diploma in Materials Engineering and Nanotechnology (24 CUs)
深造文憑(材料工程及納米科技)
Postgraduate Certificate in Materials Engineering and Nanotechnology (12 CUs)
深造證書(材料工程及納米科技)

For the Postgraduate Diploma award, students are required to complete the three required courses (9 CUs) and 15 CUs electives to make up the total of 24 CUs.
Entrance requirement: same as Master of Science in Materials Engineering and Nanotechnology

For the Postgraduate Certificate award, students are required to complete the three required courses (9 CUs) and 3 CUs electives to make up the total of 12 CUs.
Entrance requirement: same as Master of Science in Materials Engineering and Nanotechnology

Admission

To be eligible for admission, you must satisfy the General Entrance Requirements, and you should normally have a degree in a relevant physical science or engineering discipline. For further details of admission requirements and application procedures, Click here for more information.

MSMENENG   MSMENCHIN

Related Links

Department of Materials Science and Engineering
Master's Programme

百家乐筹码免运费| 乐天百家乐的玩法技巧和规则 | 威尼斯人娱乐老| 百家乐网盛世三国| 金杯百家乐的玩法技巧和规则| 娱网棋牌大厅下载| 伯爵百家乐官网娱乐城| 百家乐赌博牌路分析| 恒利百家乐官网的玩法技巧和规则 | 豪门国际娱乐城| 大发888屡败屡战| 龙江县| 现场百家乐平台源码| 百家乐怎么完才能嬴| 赌博博彩论坛| 百家乐官网海滨网现场| 百家乐视频游戏中心| 大发888下载 34| 百家乐官网博彩开户博彩通| 威尼斯人娱乐网可信吗| 百家乐官网娱乐人物| 百家乐斗视频游戏| 大发888客服电话多少| 皇冠百家乐官网客户端皇冠| 龙川县| 亿酷棋牌世界| 世嘉百家乐官网的玩法技巧和规则| 墨竹工卡县| 赌博百家乐游戏| 如东县| 百家乐官网怎么会赢| 五张百家乐的玩法技巧和规则 | 威尼斯人娱乐 老品牌| 百家乐号论坛博彩正网| 百家乐官网五湖四海娱乐平台| 百家乐官网庄闲对冲| 威尼斯人娱乐平台赌| A8百家乐娱乐城| 百家乐官网现金网排名| 太原百家乐招聘| 澳博娱乐|