波音游戏-波音娱乐城赌球打不开

Stretching diamond for next-generation microelectronics

 

stretching of diamonds in microelectronics
Stretching of microfabricated diamonds pave ways for applications in next-generation microelectronics.  (credit: Dang Chaoqun / City University of Hong Kong)

 

Diamond is the hardest material in nature. But out of many expectations, it also has great potential as an excellent electronic material. A joint research team led by City University of Hong Kong (CityU) has demonstrated for the first time the large, uniform tensile elastic straining of microfabricated diamond arrays through the nanomechanical approach. Their findings have shown the potential of strained diamonds as prime candidates for advanced functional devices in microelectronics, photonics, and quantum information technologies.

The research was co-led by Dr Lu Yang, Associate Professor in the Department of Mechanical Engineering (MNE) at CityU and researchers from Massachusetts Institute of Technology (MIT) and Harbin Institute of Technology (HIT). Their findings have been recently published in the prestigious scientific journal Science, titled “Achieving large uniform tensile elasticity in microfabricated diamond”.

“This is the first time showing the extremely large, uniform elasticity of diamond by tensile experiments. Our findings demonstrate the possibility of developing electronic devices through ‘deep elastic strain engineering’ of microfabricated diamond structures,” said Dr Lu.  

tensile straining of diamond bridges

Diamond: “Mount Everest” of electronic materials  

Well known for its hardness, industrial applications of diamonds are usually cutting, drilling, or grinding. But diamond is also considered as a high-performance electronic and photonic material due to its ultra-high thermal conductivity, exceptional electric charge carrier mobility, high breakdown strength and ultra-wide bandgap. Bandgap is a key property in semi-conductor, and wide bandgap allows operation of high-power or high-frequency devices. “That’s why diamond can be considered as ‘Mount Everest’ of electronic materials, possessing all these excellent properties,” Dr Lu said.

However, the large bandgap and tight crystal structure of diamond make it difficult to “dope”, a common way to modulate the semi-conductors’ electronic properties during production, hence hampering the diamond’s industrial application in electronic and optoelectronic devices. A potential alternative is by “strain engineering”, that is to apply very large lattice strain, to change the electronic band structure and associated functional properties. But it was considered as “impossible” for diamond due to its extremely high hardness.

Then in 2018, Dr Lu and his collaborators discovered that, surprisingly, nanoscale diamond can be elastically bent with unexpected large local strain. This discovery suggests the change of physical properties in diamond through elastic strain engineering can be possible. Based on this, the latest study showed how this phenomenon can be utilized for developing functional diamond devices.

Uniform tensile straining across the sample  

tensile straining of diamond bridges
Fig2: Illustration of tensile straining of microfabricated diamond bridge samples. (Credit: Dang Chaoqun / City University of Hong Kong)

 

The team firstly microfabricated single-crystalline diamond samples from a solid diamond single crystals. The samples were in bridge-like shape – about one micrometre long and 300 nanometres wide, with both ends wider for gripping (see Fig. 2).

tensile straining of diamond bridges

The diamond bridges were then uniaxially stretched in a well-controlled manner within an electron microscope. Under cycles of continuous and controllable loading-unloading of quantitative tensile tests, the diamond bridges demonstrated a highly uniform, large elastic deformation of about 7.5% strain across the whole gauge section of the specimen, rather than deforming at a localized area in bending. And they recovered their original shape after unloading. 

By further optimizing the sample geometry using the American Society for Testing and Materials (ASTM) standard, they achieved a maximum uniform tensile strain of up to 9.7%, which even surpassed the maximum local value in the 2018 study, and was close to the theoretical elastic limit of diamond. More importantly, to demonstrate the strained diamond device concept, the team also realized elastic straining of microfabricated diamond arrays.

Tuning the bandgap by elastic strains

The team then performed density functional theory (DFT) calculations to estimate the impact of elastic straining from 0 to 12% on the diamond’s electronic properties. The simulation results indicated that the bandgap of diamond generally decreased as the tensile strain increased, with the largest bandgap reduction rate down from about 5 eV to 3 eV at around 9% strain along a specific crystalline orientation. The team performed an electron energy-loss spectroscopy analysis on a pre-strained diamond sample and verified this bandgap decreasing trend.

Their calculation results also showed that, interestingly, the bandgap could change from indirect to direct with the tensile strains larger than 9% along another crystalline orientation. Direct bandgap in semi-conductor means an electron can directly emit a photon, allowing many optoelectronic applications with higher efficiency.

These findings are an early step in achieving deep elastic strain engineering of microfabricated diamonds. By nanomechanical approach, the team demonstrated that the diamond’s band structure can be changed, and more importantly, these changes can be continuous and reversible,  allowing different applications, from micro/nanoelectromechanical systems (MEMS/NEMS), strain-engineered transistors, to novel optoelectronic and quantum technologies. “I believe a new era for diamond is ahead of us,” said Dr Lu.

stretching of diamonds in microelectronics
Members of the CityU research team:(front row from the left) Dr Alice Hu, Dr Lu Yang, PhD graduate Dang Chaoqun, (back row from the left), PhD student Lin Weitong and Visiting Assistant Professor Dr Fan Rong. 

 

Dr Lu, Dr Alice Hu, who is also from MNE at CityU, Professor Li Ju from MIT and Professor Zhu Jiaqi from HIT are the corresponding authors of the paper. The co-first authors are Dang Chaoqun, PhD graduate, and Dr Chou Jyh-Pin, former postdoctoral fellow from MNE at CityU, Dr Dai Bing from HIT, and Chou Chang-Ti from National Chiao Tung University. Dr Fan Rong and Lin Weitong from CityU are also part of the team. Other collaborating researchers are from the Lawrence Berkeley National Laboratory, University of California, Berkeley, and Southern University of Science and Technology. 

The research at CityU was funded by the Hong Kong Research Grants Council and the National Natural Science Foundation of China.

DOI number: 10.1126/science.abc4174

Related Stories: Elastic properties of nano diamond revealed for the first time

Graphene’s stretchability and engineering strength revealed by CityU nanomechanical platform

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
赌片百家乐官网的玩法技巧和规则 | 大发888是怎么吃钱不| 真人百家乐官网平台排行| 百家乐在线手机玩| 网上真钱赌博网站| 澳门百家乐网址多少| 长宁区| 沙龙百家乐赌场娱乐网规则| 百家乐官网游戏机路法| 百家乐gamble| 金道百家乐官网游戏| 在线百家乐官网博彩| 大发888娱乐城官网lm0| 百家乐官网出千桌| 清远市| 太阳城房价| 凱旋门百家乐官网的玩法技巧和规则| 立博百家乐官网的玩法技巧和规则| bet365 日博| 百家乐韩泰阁| 百家乐官网tt娱乐网| 明升备用| 百家乐赌具哪里最好| 网络百家乐官网软件真假| 龙博线上娱乐| 大发888的比赛怎么报名| 百家乐投注技巧| 澳门百家乐官网赌博技巧| 甘德县| 水果机游戏机| 百家乐发牌靴发牌盒| 做生意招财的东西| 电子百家乐官网破| 百家乐官网室系统软件| 易发娱乐| 香港六合彩开奖历史记录| 太阳城百家乐分析解码| 百家乐官网怎么打啊| 上海百家乐的玩法技巧和规则| 百家乐十佳投庄闲法| 24山向|