波音游戏-波音娱乐城赌球打不开

Breakthrough in High-strength but Ductile Ordered Intermetallic Alloys

 

The strength-ductility trade-off has always been a dilemma in materials science. The higher the strength of a material, the less the ductility and toughness, meaning that strong materials tend to be less deformable or stretchable without fracture. Professor Liu Chain-tsuan, University Distinguished Professor in the College of Engineering and Senior Fellow of the Hong Kong Institute for Advanced Study (HKIAS) at CityU, together with his team member Dr Yang Tao, Assistant Professor in the Department of Materials Science and Engineering, has developed a novel alloy design strategy to overcome this challenge, paving the way for fabricating materials for operating in extreme temperatures and aerospace systems.

Alloy
The new high-entropy alloy is extremely strong but ductile.

 

“Most conventional alloys comprise one or two major elements, such as nickel and iron,” Professor Liu explained. “However, by adding aluminium and titanium to form massive precipitates in an iron-cobalt-nickel (FeCoNi)-based alloy, we found a significant increase in both strength and ductility.”

In the prestigious scientific journal Science, they reported that their high-entropy alloy had a superior strength of 1.5 gigapascals, which is five times stronger than FeCoNi based-alloys, and had ductility as high as 50% in tension at ambient temperature. 

They also found that adding multicomponent intermetallic nanoparticles can greatly enhance plastic deformation stability, avoiding the common problem of early necking fracture. 

Professor Liu believed this innovative strategy would allow the development of alloys that can perform well in temperatures ranging from -200°C to 1000°C, thus providing a good base for developing new cryogenic devices, as well as aircraft and high temperature systems, such as aeronautical engineering applications. 

In their other research also reported in Science recently, they revealed a new way to resolve the strength-ductility trade-off effectively by forming disordered nanoscale layers at grain boundaries in ordered intermetallic alloys. 

By adding 1.5 to 2.5 atomic percent of boron to an intermetallic alloy, they found that distinctive nanoscale layers were formed between the orderly packed grains in the alloy. “This serves as a buffer zone between adjacent grains, which enables plastic-deformation extensively at the grain boundaries, resulting in the large tensile ductility at an ultra-high yield strength level,” said Dr Yang, who is the first author of the research. 

With nanolayers formed at the grain boundaries, the alloy showed an ultra-high yield strength of 1.6 gigapascals, with tensile ductility of 25% at ambient temperature. It also maintained the alloy’s strength with excellent thermal stability at high temperature.

“The discovery of this disordered nanolayer in the alloy will have an impact on the development of high-strength materials in the future, such as structural materials for applications in high-temperature settings, like aerospace, aeronautics, nuclear power and chemical engineering,” said Professor Liu.

Professor Liu, Dr Yang and the team will continue to work on ultra-high strength steels, multicomponent high-entropy alloys, lightweight materials, and nanostructured materials for various applications. 

Prof Liu and team
(From left, front row) Professor Liu Chain-tsuan, and his research team members Dr Yang Tao, (back row, from left) Dr Zhao Yilu and Dr Luan Junhua.

 

This research article originated from CityU RESEARCH.

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
百家乐全讯网2| 利都百家乐官网国际娱乐场开户注册| 玩百家乐有何技巧| 百家乐官网发牌| 百家乐投注网| 威尼斯人娱乐城真人赌博| 平定县| 大发888官网 888| 太阳百家乐网| 百家乐官网庄多还是闲多| 百家乐官网天天赢钱| 甘泉县| 大发888体育网| 澳门百家乐国际娱乐城| 百佬汇百家乐官网的玩法技巧和规则| 百家乐官网算牌皇冠网| 德州扑克 单机| 老虎百家乐的玩法技巧和规则| 百家乐官网制胜法| 枣强县| 百家乐官网博彩开户博彩通| 百家乐博彩免费体验金3| tt百家乐的玩法技巧和规则| 百家乐怎样玩才会赢钱| 百家乐两边| 24山风水 九运| 百家乐官网园首选海立方| 24山向内什么山向最好| 澳门百家乐娱乐城开户| 百家乐破解秘籍| 百家乐改单软件| 百家乐波音平台开户导航| 大发百家乐官网的玩法技巧和规则| 百家乐官网筹码套装100片| 百家乐娱乐皇冠世界杯| 百家乐官网庄牌| 百家乐官网走势图解| 24山度数| 威尼斯人娱乐网可信吗| 死海太阳城酒店| 白凤凰博彩通|