波音游戏-波音娱乐城赌球打不开

Breakthrough in High-strength but Ductile Ordered Intermetallic Alloys

 

The strength-ductility trade-off has always been a dilemma in materials science. The higher the strength of a material, the less the ductility and toughness, meaning that strong materials tend to be less deformable or stretchable without fracture. Professor Liu Chain-tsuan, University Distinguished Professor in the College of Engineering and Senior Fellow of the Hong Kong Institute for Advanced Study (HKIAS) at CityU, together with his team member Dr Yang Tao, Assistant Professor in the Department of Materials Science and Engineering, has developed a novel alloy design strategy to overcome this challenge, paving the way for fabricating materials for operating in extreme temperatures and aerospace systems.

Alloy
The new high-entropy alloy is extremely strong but ductile.

 

“Most conventional alloys comprise one or two major elements, such as nickel and iron,” Professor Liu explained. “However, by adding aluminium and titanium to form massive precipitates in an iron-cobalt-nickel (FeCoNi)-based alloy, we found a significant increase in both strength and ductility.”

In the prestigious scientific journal Science, they reported that their high-entropy alloy had a superior strength of 1.5 gigapascals, which is five times stronger than FeCoNi based-alloys, and had ductility as high as 50% in tension at ambient temperature. 

They also found that adding multicomponent intermetallic nanoparticles can greatly enhance plastic deformation stability, avoiding the common problem of early necking fracture. 

Professor Liu believed this innovative strategy would allow the development of alloys that can perform well in temperatures ranging from -200°C to 1000°C, thus providing a good base for developing new cryogenic devices, as well as aircraft and high temperature systems, such as aeronautical engineering applications. 

In their other research also reported in Science recently, they revealed a new way to resolve the strength-ductility trade-off effectively by forming disordered nanoscale layers at grain boundaries in ordered intermetallic alloys. 

By adding 1.5 to 2.5 atomic percent of boron to an intermetallic alloy, they found that distinctive nanoscale layers were formed between the orderly packed grains in the alloy. “This serves as a buffer zone between adjacent grains, which enables plastic-deformation extensively at the grain boundaries, resulting in the large tensile ductility at an ultra-high yield strength level,” said Dr Yang, who is the first author of the research. 

With nanolayers formed at the grain boundaries, the alloy showed an ultra-high yield strength of 1.6 gigapascals, with tensile ductility of 25% at ambient temperature. It also maintained the alloy’s strength with excellent thermal stability at high temperature.

“The discovery of this disordered nanolayer in the alloy will have an impact on the development of high-strength materials in the future, such as structural materials for applications in high-temperature settings, like aerospace, aeronautics, nuclear power and chemical engineering,” said Professor Liu.

Professor Liu, Dr Yang and the team will continue to work on ultra-high strength steels, multicomponent high-entropy alloys, lightweight materials, and nanostructured materials for various applications. 

Prof Liu and team
(From left, front row) Professor Liu Chain-tsuan, and his research team members Dr Yang Tao, (back row, from left) Dr Zhao Yilu and Dr Luan Junhua.

 

This research article originated from CityU RESEARCH.

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
大发888娱乐送体验金| 威尼斯人娱乐场 老品牌值得您信赖| 瑞丰备用网址| 乐宝百家乐官网娱乐城| 大发888 下载| 永川市| 百家乐官网一邱大师打法| 百家乐开户最快的平台是哪家| 百家乐双峰县| 真钱赌博| 百家乐官网怎么稳赢| 御金百家乐娱乐城| 名门国际娱乐| 沙龙百家乐官网娱乐网| 大发888 3403| 永利博线上娱乐城| 绍兴县| 索雷尔百家乐官网的玩法技巧和规则| 菲律宾百家乐娱乐场| 百家乐官网缆的打法| 网上百家乐靠谱吗| 百家乐技巧秘| 百家乐官网赢钱公式1| 366百家乐娱乐城| 太阳城娱乐城官网| 财神百家乐官网的玩法技巧和规则 | 迪威百家乐赌场娱乐网规则| 优博国际娱乐| 什么叫百家乐的玩法技巧和规则 | 博彩行业| 疯狂百家乐官网游戏| 威尼斯人娱乐百利宫| 百家乐官网赌场策略大全| 百家乐娱乐优惠| 真人百家乐官网皇冠网| 如何赢百家乐的玩法技巧和规则| 百家乐官网投注很不错| 百家乐棋牌游戏开发| 新濠百家乐官网现金网| 百家乐是怎样算牌| 博彩百家乐官网在线|