波音游戏-波音娱乐城赌球打不开

DENG, Xin

DENG, Xin (鄧新)

Professor

PhD (Kansas State University)

  • 1B-106, 1/F, Block 1, To Yuen Building
  • +852 3442-5693
  • +852 3442-0549
  • CityU Scholars
  • Lab Website
  • Virulence regulation in pathogenic bacteria • Antibiotic resistance • Host-pathogens interactions • RNA epigenetics

Prof. Deng received his Bachelor and Master degrees in Microbiology from China Agricultural University. He completed PhD in Genetics at the Kansas State University and postdoctoral training at the University of Chicago. He was a Professor at Nankai University, and has been working in CityUHK as Assistant Professor, Associate Professor and Professor. He is interested in bacterial virulence, including gene regulation, signaling pathways, and RNA epigenetics. His research lies on the interface of multi-disciplinary approaches with the ultimate goal of developing novel therapies to combat bacterial infection. More information can be found at the group website.

He has published over 100 papers in SCI-indexed journals including Cell, Cell Host Microbe, Nature Communications, Cell Reports, eLife, EMBO Reports, PLOS Biology, Nucleic Acids Research, mBio, etc. His work has earned him over 7,200 citations on Google Scholar (H-index of 37).

Prof. Deng was awarded a CityUHK President’s Award in 2019 and Outstanding Research Award in 2023. His research has been supported by Hong Kong Research Grants Council (including ECS, GRF, CRF and TBRS), National Natural Science Foundation of China (NSFC), Health and Medical Research Fund (HMRF), Innovation and Technology Fund (ITF), Shenzhen Science and Technology Innovation Commission, and Guangdong Basic and Applied Basic Research Foundation for a total available resource of over $30 million HKD.

Prof. Deng serves as an editor for 6 SCI journals, including Genes & Diseases as Associate Editor. He is a Grant Review Board member for HMRF, and has reviewed grant applications for more than 10 funding agents from more than 10 countries and regions, including China, UK and Singapore.

Research Interests

The emergence and spread of various multidrug-resistant bacterial strains have posed alarming challenges to public health and agriculture worldwide. Public demand for new antibiotics is enormous, yet drug development pipelines of the pharmaceutical industry started to run dry with limited targets available for inventing new bactericidal antibiotics. His lab has been working on molecular mechanism of virulence in model bacterial pathogens including Pseudomonas syringaePseudomonas aeruginosa, Bacillus cereus, Klebsiella pneumoniae. These pathogens rely on multiple system to invade their hosts, which is finely regulated by a group of transcription factors and signaling pathways. Research in his group has led to the identification of a variety of new virulence-associated two-component systems, transcription factors and their molecular mechanisms. His lab has mapped the global transcription factor-based regulatory networks for these superbugs, and found a couple of potent lead compounds inhibiting them. His work also demonstrates that RNA modifications exist in a wide range of bacterial species, which suggests their potential important roles in gene regulation.

 

Representative Recent Publications

  1. Hua C#, Huang J#, Sun Y#, Wang T#, Li Y, Cui Z, Deng X*. Hfq mediates transcriptome-wide RNA structurome reprogramming under virulence-inducing conditions in a phytopathogen. Cell Reports. (2024) 43(8):114544.
  2. Huang J#, Chen F#, Lu B, Sun Y, Li Y, Hua C, Deng X*. DNA methylome regulates virulence and metabolism in Pseudomonas syringae. eLife. (2024) DOI: 10.7554/eLife.96290.1
  3. Sun Y#, Li J#, Huang J#, Li S, Li Y, Deng X*. Architecture of genome-wide transcriptional regulatory network reveals dynamic functions and evolutionary trajectories in Pseudomonas syringae. eLife. (2024) DOI: 10.7554/eLife.96172.1
  4. Xie Y#, Li J#, Ding Y#, Shao X, Sun Y, Xie F, Liu S, Tang S, Deng X*. An atlas of bacterial two-component systems reveals function and plasticity in signal transduction. Cell Reports. (2022) 41(3):111502.
  5. Hua C#, Huang J#, Wang T#, Sun Y, Liu J, Huang L, Deng X*. Bacterial transcription factors bind to coding regions and regulate internal cryptic promoters. mBio. (2022) e0164322.
  6. Xie Y#, Ding Y#, Shao X, Yao C, Li J, Liu J, Deng X*. Pseudomonas syringae senses polyphenols via phosphorelay crosstalk to inhibit virulence. EMBO Reports. (2021) 12:e52805.
  7. Shao X#, Tan M#, Xie Y, Yao C, Wang T, Huang H, Zhang Y, Ding Y, Liu J, Han L, Hua C, Wang X*, Deng X*. Integrated regulatory network in Pseudomonas syringae reveals dynamics of virulence. Cell Reports. (2021) 34:108920.
  8. Fan L#, Wang T#, Hua C#, Sun W#, Li X, Grunwald L, Liu J, Wu N, Shao X, Yin Y, Yan J*, Deng X*. A compendium of DNA-binding specificities of transcription factors in Pseudomonas syringae. Nature Communications. (2020) 11:4947.
  9. Huang H#, Shao X#, Xie Y#, Wang T, Zhang Y, Wang X*, Deng X*. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nature Communications. (2019) 10:2931.
  10. Xie Y, Shao X, Zhang Y, Liu J, Wang T, Zhang W, Hua C, Deng X*. Pseudomonas savastanoi two-component system RhpRS switches between virulence and metabolism by tuning phosphorylation state and sensing nutritional conditions. mBio. (2019) 10(2):e02838-18.

6 October 2024

More Faculty
百家乐官网游戏平台排名| 亲朋棋牌手机版下载| 三穗县| 百家乐官网如何打轮盘| 百家乐与21点| 使用的百家乐官网软件| 游戏机百家乐庄闲| 百家乐官网8点直赢| 做生意的好风水| 百家乐官网视频地主| 百家乐游戏玩法规则| 皇冠网游戏小说| 百家乐视频软件下载| 百家乐官网英皇娱乐平台| k7娱乐城开户| 百家乐试玩平台| 澳门百家乐官网如何算| 威尼斯人娱乐城澳门赌博| 百家乐线上代理网站| 网上玩百家乐官网犯法| 视频百家乐是真是假| 杨氏百家乐必胜公式| 玩百家乐官网去哪个娱乐城最安全 | 百家乐游戏解码器| 百家乐高手论坮| 3u娱乐城| 大发888bocai官方下载| 财神百家乐官网的玩法技巧和规则| 新澳博百家乐官网现金网| 棋牌58w| 大发888娱乐真钱游戏 下载| 百家乐发牌盒子| 网页百家乐官网游戏下载| 玩百家乐官网是否有技巧| 网上百家乐官网辅助软件| 赌博百家乐判断决策| 百家乐是片人的吗| 百家乐官网游乐园| 百家乐官网游戏机路法| 百家乐官网现场投注平台| 百家乐官网鸿泰棋牌|