波音游戏-波音娱乐城赌球打不开

New challenges for renewable energies

Michael Gibb

 

Following hot on the heels of the Sustainability Summit at the end of last month, renewable energy was the subject of a City University Distinguished Lecture on 29 October at City University of Hong Kong (CityU).

The speaker, Professor Roger J-B Wets, Distinguished Research Professor of Mathematics at the University of California, Davis, set about outlining for the audience the major mission of a System Operator in terms of the needs of governmental, para-governmental, independent stakeholders, whose primary goal is to avoid serious disruption to the supply of electricity through the management of the electricity-grid.

Traditionally, the next day’s electricity supply is calculated based on the use of highly controllable fuel sources such as gas, coal and nuclear. But in today’s world, there is a greater push to include sustainable energy supplies, which requires a radical re-think of how to predict the next day’s energy needs for a given community.

“This means the System Operator has to accommodate serious uncertainties in the supply since wind and solar power are both extremely variable, in time and place, and renders the dispatching management of the grid significantly more complex,” said Professor Wets, whose main research interests include stochastic optimisation and variational analysis. He has published widely in pure and applied mathematical journals, but also in journals dealing with probability, statistics, economics and ecology.

The crucial point in predicting the next day’s supply comes hours after contracts have been signed with suppliers, he said. After calculating the load forecast by assessing weather conditions forecast for the next day, and following the signing of the contract in the late afternoon, the System Operator has to check the reliability of the predicted energy needs.

However, now that many countries and regions are aiming at a policy where around 50% of the load would be generated by renewables, judging the reliability requires a great deal more complex analysis.

“It requires a radically redesigned approach that comes with some practical and interesting technical challenges,” Professor Wets said.

It is necessary to generate many, many different scenarios based on temperature predictions, humidity, cloud cover, wind as well as seasonal factors such as the season and even the time of days, and so forth.

“There are millions of possibilities such as that no machine is actually able to solve the problems,” he said, a comment which further highlighted the practical applications of the quantum computing ideas presented in the recent talk by Professor Andrew Yao Chi-Chih in terms of the speed of processing data.

Using complex algorithms, Professor Wets explained how new areas of maths could help make predicting energy supply needs based on a greater mix with renewables more reliable, and thus mitigate the possibility of blackouts.

 

 

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
江山百家乐的玩法技巧和规则| 二爷百家乐官网的玩法技巧和规则 | 百家乐画面| 百家乐五湖四海娱乐网| 百家乐官网怎么开户| 百家乐有电脑游戏吗| 金龙娱乐城开户送彩金| 百家乐官网秘籍下注法| 千阳县| 菲律宾百家乐排行| 百家乐官网要怎么玩啊| 网上百家乐网站导航| 百家乐官网澳门百家乐官网| 百家乐桌布橡胶| 百家乐官网庄多还是闲多| 固原市| 百家乐扎金花现金| 百家乐官网干洗店| 威尼斯人娱乐城动态| 百家乐官网棋牌作弊器| 太阳城百家乐筹码租| 东莞百家乐的玩法技巧和规则| 致胜百家乐官网的玩法技巧和规则| 泰兴市| 首席百家乐官网的玩法技巧和规则 | 龙口市| 舟山星空棋牌下载| 百家乐的视频百家乐| 玩百家乐官网怎么能赢呢| 使用的百家乐官网软件| 百家乐官网视频麻将| 六合彩网上投注| 大发888娱乐场下载iypu rd| 百家乐7scs娱乐平台| 百家乐官网游戏唯一官网网站| 百家乐官网太阳城球讯网| 泗阳县| 上蔡县| 云顶国际娱乐开户| 百家乐高手qq| 海立方百家乐官网的玩法技巧和规则 |