波音游戏-波音娱乐城赌球打不开

Novel device to charge mobile electronics from daily activities

Terry Lam

 

Research team include Dr Walid Daoud (right) and PhD student Xiya Yang.
The energy you spend in daily activities, such as exercising, walking or even sitting and typing in front of the computer, will no longer be wasted, but converted to electrical energy for powering-up your cell phone, tablet, or other smart electronics through a promising wearable energy-harvesting device developed by City University of Hong Kong (CityU). 

With this novel device, the energy collected from your daily activities is expected to contribute 5 to 25% of the energy required to run the battery of a small portable electronic gadgets. The research has recently been published in the journal Advanced Functional Materials and has already drawn interest from potential industry partners.

The research team, led by Dr Walid Daoud, Associate Professor in CityU’s School of Energy and Environment, has combined two energy conversion concepts, namely piezoelectric and triboelectric effects, to create a hybrid system. It is a sandwich structure, whose surface has zinc oxide nanorods to maximise the effective electrification area. When mechanically compressed, the piezoelectric generator produces polarization charges, and the triboelectric generator produces triboelectric and electrostatic charges. The flow of these charges through an external circuit forms an electric current, which can be stored in the form of electrical energy.

Researchers on the team were able to develop the hybrid system after successfully unravelling the energy-conversion mechanisms of the individual generators and the combined effects.  

“We conducted this pioneer study to better understand the transduction mechanisms. These findings provide a foundation of knowledge to further enhance the conversion efficiency and energy output of hybrid generators. We found that the energy output can be increased by 50 to 60% owing to the zinc oxide nanorods,” said Dr Daoud.

The energy harvesting device developed by CityU converts mechanical energy to electrical energy to charge mobile electronics.
Dr Daoud’s team is exploring the vast range of possibilities revealed by these crucial findings. For instance, a device could be fabricated using textiles to make it a part of your clothing. It could also be installed in a shoe sole, which would be one of the most efficient settings for harvesting the energy pulses produced by our movements. The energy generated could be transmitted wirelessly to charge a portable device.  

This promising technology has attracted the interest of a leading smart electronic company to apply it in its smart watches. 

“By virtue of its simple design and the wide range of materials it can be used with, the device is highly practical and the manufacturing cost is expected to be low,” added Dr Daoud.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
网上百家乐游戏玩法| 娱乐百家乐官网可以代理吗| 余干县| 韩国百家乐官网的玩法技巧和规则 | 万达百家乐娱乐城| 百家乐官网销售视频| 百家乐趋势方向| 大发888黄金版| 布加迪百家乐官网的玩法技巧和规则 | 公海百家乐的玩法技巧和规则| 尊龙网站| 百家乐官网电子发牌盒| 水果机万能遥控器| 百家乐官网送彩金平台| 百家乐桌小| 百家乐官网3号眨眼技术| 百家乐哪条下路好| 百家乐完美一对| 玩百家乐官网澳门368娱乐城| 金冠百家乐的玩法技巧和规则 | 南京百家乐的玩法技巧和规则 | 真人百家乐官网游戏网址| 网上百家乐网站导航| 皇冠网现金网| 百家乐制胜绝招| 百家乐波音平台路单| 威尼斯人娱乐欢迎您| 大上海百家乐娱乐城| 78棋牌游戏| 百家乐官网破解辅助| 百家乐双面数字筹码怎么出千| 百家乐官网平注法是什么| 大发888注册页| 单机百家乐官网游戏下| 常宁市| 在线百家乐技巧| 澳门百家乐官网投注法| 威尼斯人娱乐城投注网| 百家乐官网百家乐官网视频| 阿玛尼百家乐的玩法技巧和规则 | 玩百家乐官网新澳门娱乐城 |