波音游戏-波音娱乐城赌球打不开

Neuromedicine breakthrough with Harvard University

 

(From left) Mr Duan Xin, Dr Lin Xudong, Dr Shi Peng, Professor Cheng Shuk Han and Dr Wang Xin.
(From left) Mr Duan Xin, Dr Lin Xudong, Dr Shi Peng, Professor Cheng Shuk Han and Dr Wang Xin.

 

A research team led by City University of Hong Kong (CityU) has found a shortcut for developing new drugs which can potentially reduce time and costs by sorting out high potential candidates out of a long list of chemical compounds, with an accuracy of around 50%.

This breakthrough in neuropharmacology came following five years of collaborated research by CityU’s Department of Biomedical Engineering (BME) and Department of Biomedical Sciences (BMS), and Harvard Medical School. The research is published in the scientific journal Nature Communications and titled “High-throughput Brain Activity Mapping and Machine Learning as a Foundation for Systems Neuropharmacology”.

The research, led by Dr Shi Peng, Associate Professor of BME, provides a platform to predict compounds that have the potential to be developed into new drugs to treat brain diseases. It can help speed up the new drug discovery process and save costs.

“Even a 1% increase in the drug development success rate would make a huge difference for central nervous system (CNS) disorder patients,” Dr Shi explained.

The study used zebrafish, a small vertebrate animal to conduct whole-brain activity mapping, which shows how the brain or the CNS react to the drugs. The setup was streamlined with innovative system to enable large-scale experiments.

“We used robotics, microfluidics and hydrodynamic force to trap and orient an awake zebrafish automatically in 20 seconds, which took 20 minutes in the past. In this way, we can carry out imaging for many zebrafishes in one go. More importantly, our platform can immobilise the fish without anaesthesia, thus avoiding interference,” Dr Shi explained.

Examples of brain activity maps used for predicting compounds’ neuropharmacology.
Examples of brain activity maps used for predicting compounds’ neuropharmacology.

 

The team first built a reference library of brain activity maps for 179 existing CNS drugs. They generated the maps from the brains of thousands of zebrafish larvae, each treated with a clinically used CNS drug. The maps showed the corresponding brain regions that reacted to those drugs. The team then classified these drugs into 10 physiological clusters based on the intrinsic coherence among the maps by machine learning algorithms.

With the reference library in hand and in close collaboration with Dr Wang Xin, Assistant Professor of BMS at CityU, and Dr Stephen Haggarty, Associate Professor at Harvard Medical School, the team went on to carry out information analysis and employed machine learning strategy to predict the therapeutic potential of 121 new compounds.

The machine learning strategy predicted that 30 out of those 121 new compounds had anti-seizure properties. To validate the prediction, the research team randomly chose 14 from the 30 potential anti-seizure compounds to perform behavioural tests with induced seizure zebrafishes.

The result showed that 7 out of 14 compounds were able to reduce the seizures of the zebrafish without causing any sedative effects, implying a prediction accuracy of around 50%. “With this high-speed in vivo drug screening system combined with machine learning, we can provide a shortcut to help identify compounds with significantly higher therapeutic potentials for further development, hence speed up the drug development and reduce the failure rate in the process,” Dr Shi said.

The first co-authors of the paper are Dr Lin Xudong, Research Associate of BME, and Mr Duan Xin, Research Associate of BMS. Other authors include Professor Cheng Shuk Han of BMS, Mr Chan Chung-yuen, BME graduate, and Ms Chen Siya, former Research Associate of BME.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐官网游戏打水方法| 亚洲百家乐官网新全讯网| 豪博百家乐官网现金网| 大发888 有斗地主吗| 广州百家乐官网扫描分析| 涞源县| 乐博娱乐| 宝马会百家乐娱乐城| 玩百家乐技巧巧| 百家乐的必赢方法| 索雷尔百家乐官网的玩法技巧和规则| 百家乐官网电投网址| 百家乐官网赢新全讯网| 百家乐官网对打反水| 赌博百家乐官网作弊法| 吴旗县| 万豪国际| 碌曲县| 澳门百家乐官网指数| 百家乐官网赌局| 百家乐官网博弈之赢者理论| 威尼斯人娱乐城首选大丰收| 百家乐官网黑牌靴| 百家乐投注技巧建议| 易胜博百家乐娱乐城| 百家乐信息| 大发888-大发娱乐城下载| 大发888存款| 大发888娱乐城游戏| 大发888娱乐城34| 香港六合彩开奖历史记录| 博彩技巧| 百家乐官网赔率计算| 百家乐凯时娱乐平台| 澳门金盛国际娱乐| 百家乐官网e78| 百家乐娱乐城游戏| 威尼斯人娱乐平台反| 百家乐官网辅助工具| 24山的丑方位| 百家乐娱乐平台网77scs|