波音游戏-波音娱乐城赌球打不开

CityU new structured thermal armour achieves liquid cooling above 1,000°C; solves challenge presented by Leidenfrost effect since 1756

MICHELLE LIU

 

Members of the CityU research team: (from left in front row) Dr Steven Wang, Professor Wang, Professor Pan Chin, Dr Jiang Mengnan (from left in back row) Mr Liu and Mr Li.
Members of the CityU research team: (from left in front row) Dr Steven Wang, Professor Wang, Professor Pan Chin, Dr Jiang Mengnan; (from left in back row) Mr Liu and Mr Li.

 

A research team led by scientists from City University of Hong Kong (CityU) has recently designed a structured thermal armour (STA) that achieves efficient liquid cooling even over 1,000°C, fundamentally solving a 266-year-old challenge presented by the Leidenfrost effect. This breakthrough can be applied in aero and space engines, as well as improve the safety and reliability of next-generation nuclear reactors.

The research has been led by Professor Wang Zuankai from CityU's Department of Mechanical Engineering (MNE), Professor David Quéré from the PSL Research University, France, and Professor Yu Jihong, Director of the International Center of Future Science, Jilin University and Senior Fellow of the Hong Kong Institute for Advanced Study at CityU.

The findings were published in the latest issue of the highly prestigious scientific journal Nature under the title “Inhibiting the Leidenfrost effect above 1,000?°C for sustained thermal cooling”. It was also highlighted in Nature News & Views.

The Leidenfrost effect is a physical phenomenon discovered in 1756, which refers to the levitation of drops on a surface that is significantly hotter than the liquid's boiling point. It produces an insulating vapour layer and dramatically reduces heat transfer performances at high temperature, which makes liquid cooling on the hot surface ineffective. This effect is most often detrimental and it has remained a historic challenge to suppress this effect.

Figure 1: (a) A STA consists of an array of thick pillars acting as thermal bridges and holding an insulating superhydrophilic membrane that wicks the incoming liquid. This membrane is positioned so as to create channels that can evacuate the vapour (purple arrows). (b) The membrane is made of nanometric silica fibres that are capable of resisting temperatures of up to approximately 1,200°C.
Figure 1: (a) A STA consists of an array of thick pillars acting as thermal bridges and holding an insulating superhydrophilic membrane that wicks the incoming liquid. This membrane is positioned so as to create channels that can evacuate the vapour (purple arrows). (b) The membrane is made of nanometric silica fibres that are capable of resisting temperatures of up to approximately 1,200°C.

 

The CityU-led team constructed a multitextured material with key elements that have contrasting thermal and geometrical properties. The rational design for the STA superimposes robust, conductive, protruding pillars that serve as thermal bridges for promoting heat transfer; an embedded thermally insulating membrane designed to suck and evaporate the liquid; and underground U-shaped channels that evacuate the vapour. It successfully inhibits the occurrence of the Leidenfrost effect up to 1,150 °C and achieves efficient and controllable cooling across the temperature range from 100°C to over 1,150°C. (Figures 1 & 2)

Figure 2: High-speed side and top views of water drops (dyed in orange and having a volume of 17 μl) contacting Sample A (no membrane), Sample B (no channel) and Sample C (STA), all brought to 1,000 °C. Water on Sample C gets constantly pinned and sucked by the membrane, which leads to a lifetime of 0.33s, approximately 50 times smaller than that on Samples A & B.
Figure 2: High-speed side and top views of water drops (dyed in orange and having a volume of 17 μl) contacting Sample A (no membrane), Sample B (no channel) and Sample C (STA), all brought to 1,000 °C. Water on Sample C gets constantly pinned and sucked by the membrane, which leads to a lifetime of 0.33s, approximately 50 times smaller than that on Samples A & B.

 

“This multidisciplinary research project is truly a breakthrough in science and engineering, since it mixes surface science, hydro- and aero-dynamics, thermal cooling, materials science, physics, energy and engineering. Searching for novel strategies to address the liquid cooling of high-temperature surfaces has been one of the holy grails in thermal engineering since 1756. We are fortunate to fundamentally suppress the occurrence of the Leidenfrost effect and thereby provide a paradigm shift in liquid thermal cooling at extremely high temperatures, a mission that has remained uncharted to date,” said Professor Wang.

Professor Wang pointed out that current thermal cooling strategies under extremely high temperatures adopt air cooling measures rather than effective liquid cooling owing to the occurrence of the Leidenfrost effect, especially for applications in aero and space engines and next-generation nuclear reactors.

Figure 3: (a) A smooth spheroidal piece of steel can be covered by thick pillars after wire cutting. Inserting a membrane in the pillars provides a curved STA. (b) STA can also be made on thin films of steel, which makes it flexible. The films can be welded onto flat or cylindrical solids. (c) The armours are tested to be able to provide rapid and efficient cooling, as evidenced by the drop in temperature (red data).
Figure 3: (a) A smooth spheroidal piece of steel can be covered by thick pillars after wire cutting. Inserting a membrane in the pillars provides a curved STA. (b) STA can also be made on thin films of steel, which makes it flexible. The films can be welded onto flat or cylindrical solids. (c) The armours are tested to be able to provide rapid and efficient cooling, as evidenced by the drop in temperature (red data).

 

“The designed STA can be fabricated to be flexible, eliminating the need for additional manufacturing, especially for those surfaces that are hard to be textured directly. This is why the STA possesses huge potential for practical applications,” added Professor Wang. (Figure 3)

Professor Wang, Professor Quéré and Professor Yu are the corresponding authors of the paper. The first authors are Dr Jiang Mengnan and Dr Wang Yang from MNE.

The collaborators are Professor Pan Chin, CLP Power Chair Professor of Nuclear Engineering and Head, Dr Steven Wang, Assistant Professor, Zhang Huanhuan, Research Assistant, Liu Fayu and Li Yuchao, PhD students, from CityU’s MNE; and Professor To Suet and Du Hanheng, PhD student, from the Department of Industrial and Systems Engineering, Hong Kong Polytechnic University.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
缅甸百家乐网上投注| 澳门博彩8345cc| 梦幻城百家乐的玩法技巧和规则| 正品百家乐官网的玩法技巧和规则| 金臂百家乐官网开户送彩金| 易博全讯网| 大发888真钱棋牌软件| 巴西百家乐的玩法技巧和规则| 百家乐园百利宫娱乐城怎么样百家乐园百利宫娱乐城如何 | 属兔魔羯女在哪个方位做生意| 百家乐官网投注之对冲投注| 百家乐官网怎么打啊| 百家乐官网如何破解| 云鼎娱乐城信誉| 博彩网皇冠| 外围赌球网站| 红黑轮盘| 百家乐官网转盘技巧| 菠菜百家乐官网娱乐城| 迪威百家乐官网现场| 乐九娱乐| 桃园县| 真钱百家乐官网送钱| 百家乐官网是如何骗人的| 博彩百家乐官网在线| 百家乐官网永利娱乐网| 新百家乐官网庄闲路单图记录| 百家乐官网家乐娱乐城| 做生意风水方向怎么看| 百家乐棋牌官网| 卢克索百家乐的玩法技巧和规则| 大发888线上娱乐城| 678百家乐博彩娱乐场开户注册 | 网上百家乐官网公式| 至尊百家乐官网奇热| 百家乐官网破解仪| 百家乐网页游戏网址| 怎么看百家乐路单| 蜀都棋牌游戏中心| 百家乐官网开过的路纸| 百家乐技巧论坛|