波音游戏-波音娱乐城赌球打不开

CityU becomes world’s first university to manufacture next-generation self-designed electron microscopes

Cathy Choi

 

Professor Chan Chi Hou, Acting President (from left), Prof Chen Fu-rong, Chair Professor in the Department of Materials Science and Engineering, Director of the Time-Resolved Aberration-Corrected Environmental EM Unit (TRACE) and Director of the Shenzhen Futian Research Institute; and Dr Hsueh Yu-chun, Research Fellow, TRACE.
Professor Chan Chi-hou, Acting President (from left), Professor Chen Fu-rong, Chair Professor in the Department of Materials Science and Engineering, Director of the Time-Resolved Aberration-Corrected Environmental EM Unit (TRACE) and Director of the Shenzhen Futian Research Institute; and Dr Hsueh Yu-chun, Research Fellow, TRACE.

 

A research team at City University of Hong Kong (CityU) is pioneering advanced technology for the next-generation self-design and manufacture of electron microscopes (EMs). CityU is the first university in the world to achieve this.

An EM system composed of a pulsed electron source, a fast camera, a staged pumping vacuum system, and an aberration corrector has been developed by a team led by Professor Chen Fu-rong, Chair Professor in the Department of Materials Science and Engineering.

The team’s ultimate goal is to develop a miniature high space-time resolved “quantum” EM that can be used to study atom dynamics of beam-sensitive materials.

Since EMs are capable of imaging at a significantly higher resolution than light microscopes and provide measurements and analysis at the micro-nano, and even the atomic scale, they are much sought after, especially in medicine, life science, chemistry, materials, integrated circuits and other research industries.

The team has also overcome some longstanding problems in the development of EMs. Currently, EMs cannot overcome the scientific bottleneck of radiation damage and a static view of the sample, hindering their capability for studying small molecule and electron beam-sensitive materials. Furthermore, their size limits their application in space-expensive environments, such as space shuttles, and deep sea and deep earth research ships and devices.

Desktop electron microscopes, self-designed by CityU can be applied in various research industry fields.
Desktop electron microscopes, self-designed by CityU can be applied in various research industry fields.

 

To overcome these limitations, the CityU research team designed pulsed electron sources and the fast camera that can be used with a desktop EM. By equipping the fast camera with a deflector, the speed of imaging is not limited to the readout time. This is the first time that such a concept can be verified on a desktop EM system. The team also designed an aberration corrector, which can further improve imaging resolution. 

In the future, with the ability to independently design and hold intellectual property rights, the team will be able to produce customised miniature EMs at a lower cost. For instance, the LaB6 desktop electron microscope is expected to be sold at 60% of the price of similar products on the market.

“The miniaturisation of high-end instruments is an inevitable trend in industrial development,” said Professor Chen, concurrently Director of the Time-Resolved Aberration-Corrected Environmental EM Unit and Director of the Shenzhen Futian Research Institute at CityU.

With the support of the Futian District Government, the team is the only university-based research group to have produced several high-end EMs.

The research team is developing a high spatio-temporal resolution desktop scanning transmission electron microscope (STEM) that utilises pulsed hollow cones to enable observation and reconstruction of protein structures in 3D in room temperature and liquid conditions. This overcomes the current limitation of observing protein structures only under extremely low-temperature conditions using cryo-electron microscopy.

The next stage is to establish a world-leading electro-optical design and manufacturing centre in the Greater Bay Area that will focus on technology transfer and research into electron optics technology.

An electron microscope system composed of a pulsed electron source, a fast camera, a staged pumping vacuum system, and an aberration corrector has been developed by the research team.
An electron microscope system composed of a pulsed electron source, a fast camera, a staged pumping vacuum system, and an aberration corrector has been developed by the research team.

 

“This centre aims to spin off electron optics-related technologies for established and start-up companies,” said Professor Chen. 

The goal is to stay 15 years ahead of the world’s other EM user facilities in terms of instrumentation and science, he added.

The centre will be organised around novel electron optics for servicing a series of high space/time resolution EMs dedicated to science applications, such as artificial photosynthesis, quantum materials and water science, in environments with a varied range of external stimuli (for example, electric fields, lasers, high temperatures and low temperatures) that are not accessible today. 

This platform will lead to breakthroughs in quantum devices, future energy, life science and medicine, said Professor Chen, thereby helping to transform the team’s research findings into applications with real-world benefits, and stimulating collaboration between industry and academia.

Professor Chan Chi-hou, CityU Acting President, Mr Huang Wei, Secretary of the CPC Futian District Committee, Mr Ouyang Huiyu, Vice-District Mayor of the Futian District People’s Government, and Mr Chen Wenhsien, Chief of Science and Technology Major Project Division, Science, Technology and Innovation Commission of Shenzhen Municipality attended the press conference held on 20 April.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
威尼斯人娱乐城注册网址| 百家乐平注法规则| 中骏百家乐官网的玩法技巧和规则| 百家乐技巧技巧| 百家乐官网赌博合作| 诺贝尔百家乐官网的玩法技巧和规则 | 全讯网分析| 亚洲百家乐官网博彩的玩法技巧和规则| 大发888娱乐城欢迎您| V博百家乐官网的玩法技巧和规则| 德州扑克明星| 玩百家乐官网出千方法| 百家乐筹码方形| 六合彩网上投注| 百家乐官网分| 大发888娱乐城大奖| 百家乐官网庄牌闲牌| 富贵乐园棋牌游戏| 百家乐视频游戏官网| 雅安市| 百家乐怎样做弊| 桐柏县| 网上百家乐赌场| 百家乐官网美国玩法| 威尼斯人娱乐城上不了| 百家乐官网下注法| 大发888促销代码| 皇冠百家乐| 百家乐线上代理网站| 百家乐官网棋牌游戏皇冠网| 钱柜娱乐城现金网| KK百家乐官网娱乐城| 百家乐官网桩闲落注点| 娱乐场游戏| 大发888代理| 百家乐游戏作弊| 百家乐娱乐城送分| 线上百家乐官网攻略| 澳门顶级赌场金鹰娱乐| 百家乐没边| 百家乐官网园百乐彩|