波音游戏-波音娱乐城赌球打不开

‘Bionic eyes’ enhanced through groundbreaking CityU technology

 

 
New technology developed by researchers in the Department of Electronic Engineering at City University of Hong Kong (CityU) can enhance the effectiveness of “bionic eyes”, creating more stable images for people suffering from visual impairments.
 
Professor Henry Chung Shu-hung, Dr Leanne Chan Lai-hang, Assistant Professor, and their team have found a way to improve the power transfer efficiency of “bionic eyes”, which also reduces the users’ exposure to radiation, and extends the life of the portable battery.
 
“Bionic eyes”, also known as retinal prostheses, work via a wireless telemetry system made up of a transmitter, a receiver and two sets of coupled coils with one set at the transmitting side and another one at the receiving side. The glasses are equipped with a wireless power transmitter that generates high-frequency alternating magnetic fields to the receiving coils and matching network implanted in the eyeballs, providing electricity to the built-in artificial chip implanted in the eyeball. The chip converts visual images into electrical signals that stimulate the intact retinal neurons, producing perception for the user.
 
“The problem with the previous technology is that any misalignment between the transmitting coils in the glasses and the receiving coils in the users’ eye diminishes the power transfer efficiency,” said Professor Chung.
 
“Avoiding misalignment is a challenge because the orientation and distance between the glasses and the eyeballs may change when the user is going about his or her daily life. The lack of efficiency consumes more power of the portable battery and shortens its operating hours,” he said.
 
The CityU innovation is the development of a new coil structure and a matching circuit that can allow a relatively larger misalignment between the glasses and the eyeball. Even if the glasses slide from the user’s nose and become slanted, electrical power can still be effectively transmitted to the receiving coil set in the eyeballs.
 
In the current system of “bionic eyes”, the transmitting and receiving coils are one-dimensional and are placed in parallel for power transfer. In contrast, the new CityU receiving coil set has a multi-dimensional structure and the improved matching network design can maximise the power transfer efficiency under misalignment.
 
Compared with current technology, CityU’s new architecture can also allow for an increase in lateral misalignment of 50% and an expansion of the transmitting angle of over 200%, which means that the efficiency of the power transfer can be maintained at a relatively higher level even if there is a greater lateral and angular misalignment. Another benefit is that battery life can be extended and the battery itself made smaller.  
 
CityU’s new technology may also be used in other biomedical implants.
 
Media enquiries: Christina Wu, Communications and Public Relations Office (Tel: 3442 6819 or 9841 2774)

YOU MAY BE INTERESTED

Back to top
社旗县| 天博国际娱乐城| 百家乐闲庄和| 宝胜| 百家乐游戏排行榜| 彰化县| 百家乐庄闲赢负表| 高级百家乐官网出千工具| 百家乐胜率在哪| 威尼斯人娱乐城在线赌博网站| 电脑版百家乐官网分析仪| 百家乐网络游戏信誉怎么样| 百家乐官网PK| 澳门皇冠娱乐城| 百家乐稳一点的押法| 百家乐官网如何必胜| 威尼斯人娱乐城好玩吗| 澳门百家乐官网线上娱乐城| 678百家乐博彩赌场娱乐网规则| E乐博百家乐官网娱乐城| 棋牌评测网| 利都百家乐国际娱乐网| 真钱百家乐官网大转轮| 网上娱乐城老虎机| 百家乐赌博博彩赌博网| 百家乐官网波音平台有假吗| 爱玩棋牌下载| 百家乐电话投注怎么玩| 网络百家乐官网诈骗| 威尼斯人娱乐官方| 百家乐官网双峰县| 百家乐官网三号的赢法| 大发888大发888m摩卡游戏博彩官方下载| 百家乐官网免费下| 单双和百家乐官网游戏机厂家| 肯博娱乐| 威尼斯人娱乐棋牌app| 百家乐试玩全讯网2| 金百家乐官网的玩法技巧和规则 | 百家乐官网投注综合分析法| bet365百科|