波音游戏-波音娱乐城赌球打不开

‘Bionic eyes’ enhanced through groundbreaking CityU technology

 

 
New technology developed by researchers in the Department of Electronic Engineering at City University of Hong Kong (CityU) can enhance the effectiveness of “bionic eyes”, creating more stable images for people suffering from visual impairments.
 
Professor Henry Chung Shu-hung, Dr Leanne Chan Lai-hang, Assistant Professor, and their team have found a way to improve the power transfer efficiency of “bionic eyes”, which also reduces the users’ exposure to radiation, and extends the life of the portable battery.
 
“Bionic eyes”, also known as retinal prostheses, work via a wireless telemetry system made up of a transmitter, a receiver and two sets of coupled coils with one set at the transmitting side and another one at the receiving side. The glasses are equipped with a wireless power transmitter that generates high-frequency alternating magnetic fields to the receiving coils and matching network implanted in the eyeballs, providing electricity to the built-in artificial chip implanted in the eyeball. The chip converts visual images into electrical signals that stimulate the intact retinal neurons, producing perception for the user.
 
“The problem with the previous technology is that any misalignment between the transmitting coils in the glasses and the receiving coils in the users’ eye diminishes the power transfer efficiency,” said Professor Chung.
 
“Avoiding misalignment is a challenge because the orientation and distance between the glasses and the eyeballs may change when the user is going about his or her daily life. The lack of efficiency consumes more power of the portable battery and shortens its operating hours,” he said.
 
The CityU innovation is the development of a new coil structure and a matching circuit that can allow a relatively larger misalignment between the glasses and the eyeball. Even if the glasses slide from the user’s nose and become slanted, electrical power can still be effectively transmitted to the receiving coil set in the eyeballs.
 
In the current system of “bionic eyes”, the transmitting and receiving coils are one-dimensional and are placed in parallel for power transfer. In contrast, the new CityU receiving coil set has a multi-dimensional structure and the improved matching network design can maximise the power transfer efficiency under misalignment.
 
Compared with current technology, CityU’s new architecture can also allow for an increase in lateral misalignment of 50% and an expansion of the transmitting angle of over 200%, which means that the efficiency of the power transfer can be maintained at a relatively higher level even if there is a greater lateral and angular misalignment. Another benefit is that battery life can be extended and the battery itself made smaller.  
 
CityU’s new technology may also be used in other biomedical implants.
 
Media enquiries: Christina Wu, Communications and Public Relations Office (Tel: 3442 6819 or 9841 2774)

YOU MAY BE INTERESTED

Back to top
大发888娱乐场下载新澳博| 澳门百家乐一把决战输赢| 百家乐官网是娱乐场| 金皇冠娱乐城| 赌博百家乐技巧| 温州市百家乐官网鞋业| 大发888真钱棋牌软件| 怎么看百家乐官网的路| 百家乐官网手机软件| 百家乐前四手下注之观点| 百家乐官网视频游戏大厅| 名仕国际棋牌官方网| 哪家百家乐最好| 永利百家乐现金网| 百家乐官网网投注| 太阳城娱乐城官方网站| 百家乐五湖四海娱乐城| 百家乐官网单机游戏下| 肯博88网| 全讯网777| 网上的百家乐是真是假| 百家乐游戏合法吗| 娱乐网百家乐官网的玩法技巧和规则 | 百家乐官网网址| 百胜百家乐软件| 百家乐官网方案| 南京百家乐官网赌博现场被抓| 六合彩开奖网站| 百家乐14克粘土筹码| 百家乐官网庄闲几率| 大发888的微博| 全讯网历史回顾| 百家乐平注法口诀技巧| 百家乐路有几家| 百家乐博娱乐网赌百家乐| 澳门百家乐现场视频| 百家乐博彩策略论坛| 百家乐高手和勒威| 百家乐能战胜吗| 做生意怎么看风水| 百家乐官网投注外挂|